Geometric Identities for Index Theory

Emil Prodan

Yeshiva University, New York, USA

QMath13: Mathematical Results in Quantum Physics

Work supported by U.S. NSF grant CAREER-DMR-1056168 and by Keck Foundation

Homogeneous Crystals in One Slide

Definition: A homogeneous pure crystalline phase

is defined by a measure preserving ergodic dynamical system:

$$(\Omega, \mathbb{Z}^d, \tau, d\mathbb{P})$$
, $(\Omega \text{ compact and metrizable})$.

The dynamics of the electrons is determined by a covariant family of Hamiltonians:

$$\{H_\omega\}_{\omega\in\Omega}\;,\quad T_aH_\omega\,T_a^*=H_{\tau_a\omega}\;.$$

Proposition: (On the lattice)

The bounded covariant Hamiltonians on $\mathbb{C}^d \otimes \ell^2(\mathbb{Z}^d)$ take the following form:

$$H_{\omega} = \sum_{q \in \mathbb{Z}^d} \sum_{x \in \mathbb{Z}^d} w_q(au_x \omega) \otimes |x\rangle \langle x| T_q$$

When uniform magnetic fields are present, then the ordinary translations T_q are replaced by the magnetic translations.

Classification of Homogeneous Crystalline Systems

A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

A. Kitaev, Periodic table for topological insulators and superconductors, (Advances in Theoretical Physics: Landau Memorial Conference) AIP Conference Proceedings 1134, 22-30 (2009).

S. Ryu, A. P. Schnyder, A. Furusaki, A. W. W. Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12, 065010 (2010).

j	TRS	PHS	CHS	CAZ	0,8	1	2	3	4	5	6	7
0	0	0	0	Α	\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}	
1	0	0	1	AIII		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}		\mathbb{Z}
0	+1	0	0	Al	\mathbb{Z}				2 Z		\mathbb{Z}_2	\mathbb{Z}_2
1	+1	+1	1	BDI	\mathbb{Z}_2	\mathbb{Z}				2 Z		\mathbb{Z}_2
2	0	+1	0	D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 Z	
3	-1	+1	1	DIII		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}				2 Z
4	-1	0	0	AII	2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}			
5	-1	-1	1	CII		2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}		
6	0	-1	0	C			2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
7	+1	-1	1	CI				2 Z		\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}

- each $n \in \mathbb{Z}$ or \mathbb{Z}_2 defines a distinct macroscopic insulating phase: $\sigma_{xx} = 0$.
- the phases are separated by a bulk Anderson transition: $\sigma_{xx} > 0$
- $\sigma_{\parallel} > 0$ along any boundary cut into the crystals.

The Index Theorem for Bulk Projections (d = even)

Theorem: Let d be even and let P_{ω} be a covariant projection such that:

$$\int_{\Omega} \mathrm{d}\mathbb{P}(\omega) \left\langle 0 \middle| \big| [X, P_{\omega}] \middle|^{d} \middle| 0 \right\rangle < \infty$$

Let $\Gamma_1, \ldots, \Gamma_2$ be irreducible rep of $\mathcal{C}I_d$. Then, \mathbb{P} -almost surely

$$F_{\omega} = P_{\omega} \left(\frac{X \cdot \Gamma}{|X|} \right)_{+-} P_{\omega} \in \text{Fredholm class}$$

and

$$\operatorname{Ind} F_{\omega} = \Lambda_d \sum_{\rho \in S_d} (-1)^{\rho} \int_{\Omega} d\mathbb{P}_{\omega} \Big\langle 0 \Big| P_{\omega} \prod_{i=1}^d \imath \big[X_{\rho_i}, P_{\omega} \big] \Big| 0 \Big\rangle$$

J. Bellissard, A. van Elst, H. Schulz-Baldes, *The non-commutative geometry of the quantum Hall effect*, J. Math. Phys. **35**, 5373-5451 (1994).

E. P., B. Leung, J. Bellissard, The non-commutative n-th Chern number ($n \ge 1$), J. Phys. A: Math. Theor. 46, 485202 (2013).

□ ► <
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □ ►
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □

The Index Theorem for Bulk Unitaries (d = odd)

Theorem: Let d be odd and let U_{ω} be a covariant unitary such that:

$$\int_{\Omega} \mathrm{d}\mathbb{P}(\omega) \left\langle 0 \middle| \big| [X, U_{\omega}] \middle|^{d} \middle| 0 \right\rangle < \infty$$

Let E_+ be the spectral projection onto the positive spectrum of $X \cdot \Gamma$. Then, P-almost surely

$$F_{\omega}=E_{+}U_{\omega}E_{+}\in \mathsf{Fredholm}$$
 class

and

$$\operatorname{Ind} F_{\omega} = \Lambda_d \sum_{\rho \in S_d} (-1)^{\rho} \int_{\Omega} \mathrm{d} \mathbb{P}(\omega) \Big\langle 0 \Big| \prod_{i=1}^d \imath U_{\omega}^* \big[X_{\rho_i}, U_{\omega} \big] \Big| 0 \Big\rangle$$

E. P. and H. Schulz-Baldes, Non-commutative odd Chern numbers and topological phases of disordered chiral systems, J. Funct. Anal. 271, 1150-1176 (2016).

The Proof for Even Case d=2

Condition

$$\int_{\Omega} \mathrm{d}\mathbb{P}(\omega) \left. \left\langle 0 \right| \left| \left[X, P_{\omega} \right] \right|^2 \right| 0 \right\rangle < \infty$$

ensures that \mathbb{P} -almost surely:

$$(1 - F_{\omega}F_{\omega}^*)^3$$
, $(1 - F_{\omega}^*F_{\omega})^3$

are trace class.

Pedosov's principle applies:

Index
$$F_{\omega} = \text{Tr}(1 - F_{\omega}F_{\omega}^*)^3 - \text{Tr}(1 - F_{\omega}^*F_{\omega})^3$$

Translations of ω produce only compact perturbations:

$$F_{\omega} - F_{\tau_*\omega} = \text{Compact}$$

hence an integration over ω is allowed above.

Proof Continues

Some notations: $X = X_1 + \imath X_2$, $U = \frac{X}{|X|}$

Then, expanding the traces:

$$\mathrm{Index}\; F_{\omega} = -\int \mathrm{d}\mathbb{P}(\omega)\; \mathrm{Tr} \left(P_{\omega} - \mathit{U}P_{\omega}\mathit{U}^*\right)^3 = \sum_{\pmb{q},\pmb{x},\pmb{y}} A(\pmb{q},\pmb{x},\pmb{y}) \int \mathrm{d}\mathbb{P}(\omega) \langle \pmb{0}|\Pi_{\omega}|\pmb{x}\rangle \langle \pmb{x}|\Pi_{\omega}|\pmb{y}\rangle \langle \pmb{y}|\Pi_{\omega}|\pmb{0}\rangle$$

$$A(q, x, y) = \left(1 - \frac{q(q+x)}{|q(q+x)|}\right) \left(1 - \frac{(q+x)\overline{(q+y)}}{|(q+y)(q+y)|}\right) \left(1 - \frac{(q+y)\overline{q}}{|(q+y)q|}\right)$$

And here comes the magic identity:

$$\sum_{\boldsymbol{q}} A(\boldsymbol{q}, \boldsymbol{x}, \boldsymbol{y}) = 2\pi \imath (x_1 y_2 - y_1 x_2)$$

End result:

$$\operatorname{Index} F_{\omega} = 2\pi i \sum_{i,j} \epsilon_{ij} \int_{\Omega} d\mathbb{P}_{\omega} \Big\langle 0 \Big| P_{\omega} \big[X_i, P_{\omega} \big] \big[X_j, P_{\omega} \big] \Big| 0 \Big\rangle$$

It is easy to see that:

$$\frac{-q}{|q|}\frac{\overline{x-q}}{|x-q|}=e^{\imath\phi_1},\ \frac{x-q}{|x-q|}\frac{\overline{y-q}}{|y-q|}=e^{\imath\phi_2},\ \frac{y-q}{|y-q|}\frac{\overline{-q}}{|q|}=e^{\imath\phi_3}$$

and a direct calculation will show:

$$A(-\boldsymbol{q},\boldsymbol{x},\boldsymbol{y}) = -2\imath(\sin\phi_1 + \sin\phi_2 + \sin\phi_3)$$

We write the summation in the following way:

$$\begin{aligned} & \frac{-1}{2i} \sum_{\boldsymbol{q}} A(-\boldsymbol{q}, \boldsymbol{x}, \boldsymbol{y}) = \sum_{\boldsymbol{q}} (\phi_1 + \phi_2 + \phi_3) \\ & - \sum_{\boldsymbol{q}} (\phi_1 - \sin \phi_1) + \sum_{\boldsymbol{q}} (\phi_2 - \sin \phi_2) - 2 \sum_{\boldsymbol{q}} (\phi_3 - \sin \phi_3) \end{aligned}$$

Note $\phi_i - \sin \phi_i$ antisymmetric w.r.t. inversion of \boldsymbol{q} and:

$$\phi_1 + \phi_2 + \phi_3 = \left\{ \begin{array}{l} 2\pi \text{ if } {\pmb q} \text{ is inside the triangle} \\ \pi \text{ if } {\pmb q} \text{ is on an edge} \\ 0 \text{ if } {\pmb q} \text{ is outside the triangle} \end{array} \right.$$

Geometric Interpretation

 $A(-\boldsymbol{q},\boldsymbol{x},\boldsymbol{y}) = -2\imath(\sin\phi_1 + \sin\phi_2 + \sin\phi_3).$

Higher Dimensions

$$\sum_{\pmb{q}} \sum_{\{i,j,k\}} \operatorname{Vol} \big(\pmb{q}, \pmb{p}_i, \pmb{p}_j, \pmb{p}_k \big) = \operatorname{Vol} \big(\text{unit ball} \big) \times \operatorname{Vol} \big(\pmb{0}, \pmb{x}, \pmb{y}, \pmb{z} \big)$$

(a, b, c, d) = Oriented simplex with corners a, \ldots, d

The Full Identity in Higher Dimensions

In d = 2 we had:

$$\Big(1-\frac{q\overline{(q+x)}}{|q(q+x)|}\Big)\Big(1-\frac{(q+x)\overline{(q+y)}}{|(q+y)(q+y)|}\Big)\Big(1-\frac{(q+y)\overline{q}}{|(q+y)q|}\Big)=2\pi\imath(x_1y_2-y_1x_2)$$

For arbitrary even d:

$$\int_{\mathbb{R}^d} dx \operatorname{tr} \left\{ \Gamma_0 \prod_{i=1}^d \left(\frac{\Gamma \cdot (\boldsymbol{x}_i + \boldsymbol{x})}{|\Gamma \cdot (\boldsymbol{x}_i + \boldsymbol{x})|} - \frac{\Gamma \cdot (\boldsymbol{x}_{i+1} + \boldsymbol{x})}{|\Gamma \cdot (\boldsymbol{x}_{i+1} + \boldsymbol{x})|} \right) \right\} = \frac{(2i\pi)^{d/2}}{(d/2)!} \sum_{\rho \in \mathbb{S}_d} (-1)^\rho \prod_{i=1}^d x_{i,\rho_i}$$

It ties with the previous because of well known identity:

$$\operatorname{tr}\left\{\Gamma_0\prod_{i=1}^{d}\boldsymbol{\Gamma}\cdot\boldsymbol{y}_i\right\} = (2\imath)^{d/2}(d)! \operatorname{Vol}[\boldsymbol{0},\boldsymbol{y}_1,\ldots,\boldsymbol{y}_d]$$

Concluding Remarks

1 The identity for d = odd looks quite similar:

$$\int_{\mathbb{R}^d} \mathrm{d}x \, \operatorname{tr} \Big\{ \prod_{i=1}^d \Big(\frac{\Gamma \cdot (x_i + x)}{|\Gamma \cdot (x_i + x)|} - \frac{\Gamma \cdot x_{i+1} + x)}{|\Gamma \cdot x_{i+1} + x)|} \Big) \Big\} = \\ - \frac{2^d (\imath \pi)^{(d-1)/2}}{d!!} \sum_{\rho \in \mathfrak{F}_d} (-1)^\rho \prod_{i=1}^d x_{i,\rho_i} \left(-1 \right)^{\rho} \prod_{i=1}^d x_{i+1} \left(-1 \right)^{\rho} \prod_{$$

and the proof is also very similar.

The topology can be encoded at the boundary, in a unitary operator if d = even and a projection if d = odd. For example:

$$\widehat{U}_\omega = \exp\left[2\pi\imath G(\widehat{H}_\omega)
ight]\,, \quad G = 0/1$$
 below/above the bulk gap

- Then same Index Theorems can be applied at the boundary.
- If the boundary spectrum is Anderson localized, the indices are necessarily zero (implies delocalization of boundary spectrum).

E.P. & H. Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics,

(Springer, Berlin, 2016). 4□ > 4個 > 4 = > 4 = > = 900