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Abstract. Richly labeled images representing several sub-structures of an organ
occur quite frequently in medical images. For example, a typical brain image can
be labeled into grey matter, white matter or cerebrospinal fluid, each of which
may be subdivided further. Many manipulations such as interpolation, transfor-
mation, smoothing, or registration need to be performed on these images before
they can be used in further analysis. In this work, we presenta novel multi-shape
representation and compare it with the existing representations to demonstrate
certain advantages of using the proposed scheme. Specifically, we proposelabel
space, a representation that is both flexible and well suited for coupled multi-
shape analysis. Under this framework, object labels are mapped to vertices of a
regular simplex,e.g. the unit interval for two labels, a triangle for three labels, a
tetrahedron for four labels, etc. This forms the basis of a convex linear structure
with the property that all labels are equally spaced. We willdemonstrate that this
representation has several desirable properties: algebraic operations may be per-
formed directly, label uncertainty is expressed equivalently as a weighted mixture
of labels or in a probabilistic manner, and interpolation isunbiased toward any la-
bel or the background. In order to demonstrate these properties, we compare label
space to signed distance maps as well as other implicit representations in tasks
such as smoothing, interpolation, registration, and principal component analysis.

1 Introduction

Shape analysis is an important task in the medical imaging community, and for such
analysis, coupled multi-shape models are powerful tools. Indeed, tissue boundaries may
vary as organs press up against each other. Image segmentation typically draws upon
such models as priors. For example, while the outline of one region may be difficult
to discern in the image, the shape of neighboring regions that are correlated may offer
important evidence for the outline location [1,2,3].

The first step in constructing such models is choosing an appropriate shape descrip-
tor capable of accurately representing statistical variability. There are two main types
of models: explicit and implicit. Splines and medial axis skeletons are two popular
examples of explicit models [4,5,6,7,8,9]. While providing a reduced parametric rep-
resentation, explicit models have several drawbacks. For example, they often assume a



Fig. 1: The first threeLn label space configurations: a unit intervalL2 ⊂ R for two labels, a
triangleL3 ⊂ R

2 for three labels, and a tetrahedronL4 ⊂ R
3 for four labels(left to right).

fixed shape topology, require care in distributing control points, and/or do not provide
natural point correspondence unless based on object-specific models.

This work focuses on implicit models which avoid these problems. After mapping
the entire volume to another space, the value of each pixel contributes to describe the
shape. In this new space, arbitrary topologies may be represented, correspondences are
naturally formed between pixels, and there are no control points to redistribute. How-
ever, since this shape space is often of higher dimension than the original dataset, one
key disadvantage for this type of representational model isthat it will usually increase
the spatial and computational complexity of the analysis.

For a single object, the simplest implicit representation is a binary map where each
pixel indicates the presence or absence of the object. Signed distance maps (SDMs) are
another example, each pixel having the distance to the nearest boundary of the object,
a negative distance being prescribed for points inside the object [3,10].

For multiple objects, vector-valued mappings are often used, an approach to which
our method is most closely related. A typical approach is to simply layer the single ob-
ject representations, each layer representing a differentobject [2], and effort has been
made to reduce the spatial demands of layering by mapping to aunit hypersphere of
lower dimension [11,12]. A problem with layering is that it often does not form a
closed vector space,e.g. adding two signed distance maps does not necessarily yield
a signed distance map. To address this, Pohlet al. [1] proposed a closed field repre-
sentation with natural probabilistic interpretation and algebraic operations based upon
Bayesian rationale. This representation has proven to be very versatile, but still suffers
from the need of having to perform a certain normalization procedure in order to make
the defined “addition” operation compatible with Bayes’ rule. Moreover, there is the
problem of choosing a certain intermediate mapping which may impact the computed
probabilities. See the discussion inSection 2.

1.1 Our contributions

This paper proposes a coupled multi-object representationthat maps object labels to
the vertices of a regular simplex, going from a scalar label value to a vertex coordinate
position in a high dimensional space which we termlabel space and denote byLn for
n labels. Illustrated inFig. 1, this regular simplex is a hyper-dimensional analogue of
an equilateral triangle,n vertices (labels) capable of being represented inn − 1 di-
mensions (Ln ⊂ R

n−1). This rather simple convex representation has several desirable
properties: all labels are equally separated in space, algebraic operations may be done
directly, label uncertainty is expressed equivalently as aweighted combination of labels
or in a probabilistic manner, and interpolation is unbiasedtoward any label including
the background.
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Fig. 2: (a)Binary vector representation [2] for two labels and background.(b) Reference template
and image with extraneous region(blue). (c),(d) Energy landscapes for translation: extra strip
leads to nonunique minima(red dots) using binary vectors while the unbiased label space has a
unique minima.

We believe that the proposed method addresses several problems with current vec-
tor mappings. For example, while the binary vector representation of Tsaiet al. [2]
was proposed for registration, we will demonstrate that it induces a bias sometimes
leading to misalignment. On the other hand, since ourLn label space representation
equally spaces labels, there is no such bias. Additionally,compared to the layered signed
distance maps, the proposed method introduces no inherent per-pixel variation across
equally labeled regions making it more robust for statistical analysis. Hence, the pro-
posed method better encapsulates the functionality of bothrepresentations. Further, the
registration energy proposed by Tsaiet al. [2] is designed to consider each label in-
dependent of the others. In contrast,Ln label space jointly considers all labels. Next,
we will show that, while lowering the spatial demands of the mapping, the hypersphere
representation of Babalola and Cootes [11] biases interpolation and can easily lead to
erroneous results. The arrangement of our proposed label space incurs no such bias al-
lowing convex combinations of arbitrary labels. Lastly, referring to the work of Pohl
et al. [1], we will show that label space may be regarded as a certain subset of the
logarithm-of-odds space with probabilistic and algebraicinterpretations. Therefore it
inherits many of the advantages of this powerful approach.

2 Related representations

In this section, we describe several of the problems that maydevelop in shape represen-
tations which the label space approach circumvents.

The signed distance map (SDM) has been used as a representation in several stud-
ies [1,2,3,10,13]; however, it may produce artifacts during statistical analysis [14]. For
example, small deviations at the interface cause large variations in the surface far away,
thus it inherently contains significant per-pixel variation. Additionally, ambiguities arise
when using layered signed distance maps to represent multiple objects: what happens
if more than one of the distance maps indicates the presence of an object? Such ambi-
guities and distortions stem from the fact SDMs lie on a manifold where direct linear
operations are inappropriate [14,15]. Strictly speaking because of this, linear statisti-
cal techniques such as principal component analysis (PCA) which are typically used in
conjunction with the SDM representation are not rigorouslyapplicable.



(a) Binary vector [2] (b) Label space

Fig. 3: Progressive Gaussian smoothing using binary vectors [2] and the label space. Smoothing
among several labels in the binary vector representation yields points closer to background(black)
while label space correctly represents the mixture at this junction.
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Fig. 4: Progressive Gaussian smoothing usingS
n hyperspheres [11] and label space. Hyper-

spheres develop intervening strips of erroneous labels while label space correctly captures label
mixtures.

Label maps have inherently little per-pixel variation, pixels far from the interface
having the same label as those just off the interface. For statistical analysis in the case
of one object, Dambrevilleet al. [14] demonstrated that binary label maps have higher
fidelity compared to SDMs. However, for the multi-object setting, the question then
becomes one of how to represent multiple shapes using such binary maps?

For the purpose of multi-object registration, Tsaiet al. [2] have proposed layer-
ing binary maps. AsFig. 3(a)shows, this representation places labels at the corners of
a right-triangular simplex; however, unlike this present work, it is not a regular sim-
plex but has a bias with respect to the background. The background, located at the
origin, is a unit distance from any other label, while any twolabels, located along a
positive axis, are separated by a distance of

√
2. For translation alone,Fig. 2 demon-

strates that this bias may produce non-unique minima; the number of such local minima
multiplies when considering additional alignment parameters. When smoothed,Fig. 3
demonstrates that this bias may erroneously introduce background presence.

To address the spatial demands of such layered approaches, Babalola and Cootes
[11] have proposed mapping labels to points on the surface of a unit hypersphereSn

placing the background at the center. They demonstrate thatconfigurations involving
dozens of labels can be efficiently represented by distributing label locations uniformly
on the unit hypersphere using as few as three dimensions. Thefundamental assump-
tion is that pixels only vary between labels that are locatednear to each other on the
hypersphere, so the placement of labels is crucial to avoid erroneous label mixtures.
For example,Fig. 4 indicates how simple Gaussian smoothing can introduce erroneous
labels. Here, two labels far from each other are mixed and theresult is attributed erro-
neously to other labels (seeFig. 5(a)).

As we mentioned, the logarithm-of-odds representation of Pohl et al. [1] provides a
powerful representation for statistical shape analysis. However, in addition to the nor-
malization requirement in the definition of the “addition” operation, the main concern
when using this methodology is the choice of intermediate mapping, a choice that di-



(a) logit−1 on binary vectors [1,2] (b) Label space

Fig. 5: Probability of each region using inverse logistic functionor label space on the final
smoothed maps ofFig. 3. Color is scaled by underlying probability, black being zero probability.
When using logarithm-of-odds(left), notice significant nonzero character across the domain of
each region, so much so that background starts to dominate the other regions (seeFig. 4(a)).

rectly impacts the resulting probabilities. The authors explore the use of both binary
vectors and layered SDMs [2]; however, both choices have certain drawbacks. For the
layered SDM intermediate mapping, Pohlet al. [1] notes that the results of algebraic
manipulations in the logarithm-of-odds space often produce invalid SDMs even though
the logarithm-of-odds representations are still valid. Thus, computing probabilities as
described in [1] may yield erroneous likelihoods.

3 Label space

Our goal is to create a robust representation where algebraic operations are natural,
label uncertainty is captured, and interpolation is unbiased toward any label. To this
end we propose mapping each label to a vertex of a regular simplex; givenn labels,
including the background, we use a regular simplex which lies inn− 1 dimensions and
denote this byLn (seeFig. 1). A regular simplex is ann-dimensional analogue of an
equilateral triangle.

In this space, algebraic operations are as natural as convexaddition, scalar multi-
plication, inner products, and norms; hence, there is no need for normalization as in
[1]. The key property is that for any two pointsx1, x2 ∈ Ln in the simplex, the point
tx1 + (1 − t)x2 ∈ Ln, 0 ≤ t ≤ 1, remains in the simplex.

Note that label uncertainty may be expressed naturally as the weighted mixture of
vertices. For example, a pixel representing labels #1, #2, and #3 with equal characteris-
tics would simply be the pointx = 1

3
l1 + 1

3
l2 + 1

3
l3, a point equidistant from those three

vertices. Using this fact, one can map any point in a probabilistic atlas to a unique point
in the label spaceLn, i.e. given the probabilitiesp1, .., pn with

∑
pi = 1, the corre-

sponding representation inLn is given byl =
∑

pili ∈ Ln, whereli ∈ Ln is a vertex
of the simplex. Thus, the above function defines a mapping similar to thelogit function
used in the logarithm-of-odds space [1]. Alternatively, the probability forx ∈ Ln being
labell ∈ Ln is,P (x = l) = exp(−‖x−l‖2)/Z, whereZ =

∑
exp(−‖x−li‖2) acts as

a normalization constant. Taking this to define the inverse logistic function, label space
becomes an element of the logarithm-of-odds space [1]. The proposed framework how-
ever has distinct advantage over the traditional logarithm-of-odds space in that it does
not use logarithms, thus removing singularities in the definition of the logit function
when any of the probabilitiespi is zero.

Alternatively, computing probabilities from the smoothedbinary mappings may
produce undesirable results. On the one hand,Fig. 3 demonstrates that smoothing can



(a) Patient #1 (b) Patient #2 (c) Patient #3

Fig. 6: Manually segmented amygdala, hippocampus, and parahippocampus(blue, red, cyan)
from three patients.

introduce the presence of background, while on the other hand the use of the exponen-
tial in thelogit function leaves significant nonzero probability across thedomain.Fig. 5
visualizes the probabilities for each region of the final smoothed binary and label space
maps inFig. 3. Here, the top left corner which is clearly the red region yields a prob-
ability of only P (red) = 0.475 when using the logistic function [1], while yielding a
more appropriate probability ofP (red) = 0.948 in label space.

We should note that generating probabilistic atlases from smoothed binary vectors
(using the logistic function) could thus produce erroneousprobabilities in certain re-
gions misguiding any atlas-based segmentation method. Dueto space constraints, a
detailed analysis of differences in segmentation based on atlases generated using either
method is outside the scope of this work.

4 Experiments

After having explored many of the properties of label space on synthetic examples,
we turned to examine a set of 31 patient brains with manually segmented amygdala,
hippocampus, and parahippocampus.1 Fig. 6shows these subcortical structures for the
first three patients. Using label space as the underlying representation to eliminate bias,
we performed affine registration [2].

To demonstrate the detail maintained in label space probabilistic calculations,Fig. 7
shows the conditional probabilities for the amygdala and hippocampus of the first three
patients,i.e. the probability of the amygdala given the probability of the amygdala in
the other patients. For visualization, one slice is taken that passes through both regions.
These probabilities were computed via the exponential formula in Section 3. Condi-
tional probabilities like this may be used to judge inter-rater segmentation. Notice the
sharp tail of the hippocampus, a feature which may easily be lost in either intermediate
representation used in the logarithm-of-odds approach.

We then compared label space against both the SDMs and binaryvectors for use
in linear principal component analysis (PCA); see [2,10] and the references therein for
a description of this technique. We chose to separate out a test patient, compute the

1 Data obtained from the NAMIC data repository of the Brigham and Women’s Hospital,
Boston.



(a) Amygdala

(b) Hippocampus

Fig. 7: For one slice, conditional probability of the presence of amygdala and hippocampus of
the first three patients given the other patients(white indicates high probability). Notice the fine
detail of the hippocampus, features which may be lost when using smoothed intermediate repre-
sentations [1].

PCA basis on the remaining patients, and examine the projection of the test patient onto
that learned basis. As a side note, we used the eigenvectors representing 99% of the
variation in the data.

We employed the Dice coefficient as a measure of percent overlap between the test
mapM and its projectionM̂ . The Dice coefficient is defined as the amount of overlap-
ping volume divided by the average total volume:D(M, M̂) = 2|M ∩ M̂ |/|M ∪ M̂ |,
where| · | denotes volume. The following table gives the mean and variance of the Dice
coefficient for each tissue class2. We found that label space is better than SDMs because
of the inherent low per pixel variance and also better than binary vectors because it can
represent unbiased label mixtures; SDMs and binary vectorsrequire thresholding to de-
termine label ownership. Note that the parahippocampus results improve significantly
when label uncertainty is taken into account3.

SDMs Binary vectors Label space
Amygdala 0.783± 0.0031 0.825± 0.0014 0.855± 0.0004
Hippocampus 0.782± 0.0016 0.819± 0.0006 0.843± 0.0003
Parahippocampus 0.494± 0.0033 0.561± 0.0017 0.773± 0.0003

5 Conclusion

This paper describes label space, a new coupled multi-object implicit representation.
For this representation, we demonstrated that algebraic operations may be done di-
rectly, label uncertainty is expressed equivalently as a weighted mixture of labels or in
a probabilistic manner, and interpolation and smoothing isunbiased toward any label
or the background.

It remains to perform a detailed analysis of label space in the framework of the
logarithm-of-odds space [1]. However, label space can be thought of as an element of

2 Data reported as:mean ± variance
3 Label space values corrected from original publication



the logarithm-of-odds space, inheriting all the functionality mentioned above. For non-
rigid registration, we believe that both representations are best suited because of their
local descriptive nature compared to SDMs. For segmentation, these initial experiments
indicate that label space may be better suited for probabilistic atlas construction.

Modeling shapes in label space does have its limitations. One major drawback to
label space is the spatial demand. It might be possible to avoid hypersphere interpo-
lation issues[11] (seeFig. 5(a)) by taking into consideration the empirical presence of
neighbor pairings when determining vertex distribution.

This work was supported in part by grants from NSF, AFOSR, ARO, MURI, as well as by the
NIH (grant NAC P41 RR-13218) through Brigham and Women’s Hospital. It was also supported
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