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Abstract. Richly labeled images representing several sub-strucfran organ
occur quite frequently in medical images. For example, &gffprain image can
be labeled into grey matter, white matter or cerebrospingd fleach of which
may be subdivided further. Many manipulations such as piatation, transfor-
mation, smoothing, or registration need to be performechesd images before
they can be used in further analysis. In this work, we preaemtvel multi-shape
representation and compare it with the existing repreientato demonstrate
certain advantages of using the proposed scheme. Spégjficalproposdabel
space, a representation that is both flexible and well suited farpted multi-
shape analysis. Under this framework, object labels arepethfo vertices of a
regular simplexg.g. the unit interval for two labels, a triangle for three laheal
tetrahedron for four labels, etc. This forms the basis ofravew linear structure
with the property that all labels are equally spaced. Weaéthonstrate that this
representation has several desirable properties: algetparations may be per-
formed directly, label uncertainty is expressed equivilileas a weighted mixture
of labels or in a probabilistic manner, and interpolatioaribiased toward any la-
bel or the background. In order to demonstrate these piepevte compare label
space to signed distance maps as well as other implicit septations in tasks
such as smoothing, interpolation, registration, and jwaiccomponent analysis.

1 Introduction

Shape analysis is an important task in the medical imagimgneonity, and for such
analysis, coupled multi-shape models are powerful tontieéd, tissue boundaries may
vary as organs press up against each other. Image segraerygtically draws upon
such models as priors. For example, while the outline of @ggon may be difficult
to discern in the image, the shape of neighboring regiortsatteacorrelated may offer
important evidence for the outline locatiohZ,3].

The first step in constructing such models is choosing ancgpiate shape descrip-
tor capable of accurately representing statistical véifgbThere are two main types
of models: explicit and implicit. Splines and medial axiekstons are two popular
examples of explicit modelst[5,6,7,8,9]. While providing a reduced parametric rep-
resentation, explicit models have several drawbacks. ¥amele, they often assume a
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Fig. 1: The first three£™ label space configurations: a unit inten2d C R for two labels, a
triangle£® C R? for three labels, and a tetrahedrgh c R? for four labels(left to right).

fixed shape topology, require care in distributing contahgs, and/or do not provide
natural point correspondence unless based on objectfispaodels.

This work focuses on implicit models which avoid these peofs. After mapping
the entire volume to another space, the value of each pixdtibates to describe the
shape. In this new space, arbitrary topologies may be repted, correspondences are
naturally formed between pixels, and there are no contrivitpdo redistribute. How-
ever, since this shape space is often of higher dimensionttteaoriginal dataset, one
key disadvantage for this type of representational modlasit will usually increase
the spatial and computational complexity of the analysis.

For a single object, the simplest implicit representat®a binary map where each
pixel indicates the presence or absence of the object. 8idiseance maps (SDMs) are
another example, each pixel having the distance to the sidapendary of the object,
a negative distance being prescribed for points inside Ifeco[3,10].

For multiple objects, vector-valued mappings are ofterduaa approach to which
our method is most closely related. A typical approach isrtgly layer the single ob-
ject representations, each layer representing a diffeigject 2], and effort has been
made to reduce the spatial demands of layering by mappingututanypersphere of
lower dimension 11,12]. A problem with layering is that it often does not form a
closed vector space,g. adding two signed distance maps does not necessarily yield
a signed distance map. To address this, Roblal. [1] proposed a closed field repre-
sentation with natural probabilistic interpretation atgefraic operations based upon
Bayesian rationale. This representation has proven to tyevegsatile, but still suffers
from the need of having to perform a certain normalizaticscpdure in order to make
the defined “addition” operation compatible with Bayes'ecuMoreover, there is the
problem of choosing a certain intermediate mapping whick mmpact the computed
probabilities. See the discussionSection 2

1.1 Our contributions

This paper proposes a coupled multi-object representétimnmaps object labels to
the vertices of a regular simplex, going from a scalar labéie to a vertex coordinate
position in a high dimensional space which we tdaioel space and denote by.™ for

n labels. lllustrated irFig. 1, this regular simplex is a hyper-dimensional analogue of
an equilateral trianglep vertices (labels) capable of being represented in 1 di-
mensions £ C R"~1). This rather simple convex representation has severabthes
properties: all labels are equally separated in spacebrdgeoperations may be done
directly, label uncertainty is expressed equivalently agmhted combination of labels
or in a probabilistic manner, and interpolation is unbiasmdard any label including
the background.
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(a) Binary P] (b) Reference and image (c) Binary [2] (d) Label space

Fig. 2: (a)Binary vector representatiog][for two labels and backgroun¢h) Reference template
and image with extraneous regidblue). (c),(d) Energy landscapes for translation: extra strip
leads to nonunique minim@ed dots) using binary vectors while the unbiased label space has a
unigue minima.

We believe that the proposed method addresses severagprehlith current vec-
tor mappings. For example, while the binary vector repriedem of Tsaiet al. [2]
was proposed for registration, we will demonstrate thahdluices a bias sometimes
leading to misalignment. On the other hand, since Burabel space representation
equally spaces labels, there is no such bias. Additioradippared to the layered signed
distance maps, the proposed method introduces no inhezemixel variation across
equally labeled regions making it more robust for statitanalysis. Hence, the pro-
posed method better encapsulates the functionality of tlegitesentations. Further, the
registration energy proposed by T#tial. [2] is designed to consider each label in-
dependent of the others. In contrast, label space jointly considers all labels. Next,
we will show that, while lowering the spatial demands of thepming, the hypersphere
representation of Babalola and Cooté§][biases interpolation and can easily lead to
erroneous results. The arrangement of our proposed laBeéspcurs no such bias al-
lowing convex combinations of arbitrary labels. Lastlfereing to the work of Pohl
et al. [1], we will show that label space may be regarded as a certdinesiof the
logarithm-of-odds space with probabilistic and algebiaterpretations. Therefore it
inherits many of the advantages of this powerful approach.

2 Related representations

In this section, we describe several of the problems thatsesglop in shape represen-
tations which the label space approach circumvents.

The signed distance map (SDM) has been used as a represelnateveral stud-
ies [1,2,3,10,13]; however, it may produce artifacts during statistical lgsia [14]. For
example, small deviations at the interface cause largatianis in the surface far away,
thus itinherently contains significant per-pixel variatiddditionally, ambiguities arise
when using layered signed distance maps to represent feutlijects: what happens
if more than one of the distance maps indicates the presdrareabject? Such ambi-
guities and distortions stem from the fact SDMs lie on a n@difvhere direct linear
operations are inappropriat&415). Strictly speaking because of this, linear statisti-
cal techniques such as principal component analysis (P@#ghare typically used in
conjunction with the SDM representation are not rigoroagiplicable.
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Fig. 3: Progressive Gaussian smoothing using binary vecgrard the label space. Smoothing
among several labels in the binary vector representateldypoints closer to backgrouftalack)
while label space correctly represents the mixture at thistjon.
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(&) s™ (b) S™ hyperspherel[1] (c) Label space

Fig. 4. Progressive Gaussian smoothing usisigy hyperspheresifl] and label space. Hyper-
spheres develop intervening strips of erroneous labelkevdbel space correctly captures label
mixtures.

Label maps have inherently little per-pixel variation, glxfar from the interface
having the same label as those just off the interface. Ftisstal analysis in the case
of one object, Dambrevillet al. [14] demonstrated that binary label maps have higher
fidelity compared to SDMs. However, for the multi-objectteef, the question then
becomes one of how to represent multiple shapes using soahytmaps?

For the purpose of multi-object registration, Tshial. [2] have proposed layer-
ing binary maps. Afig. 3(a)shows, this representation places labels at the corners of
a right-triangular simplex; however, unlike this presemtrky it is not a regular sim-
plex but has a bias with respect to the background. The baakgr located at the
origin, is a unit distance from any other label, while any tlabels, located along a
positive axis, are separated by a distance/af For translation alonerig. 2 demon-
strates that this bias may produce non-unique minima; theeu of such local minima
multiplies when considering additional alignment pararetWhen smoothedfig. 3
demonstrates that this bias may erroneously introducegpackd presence.

To address the spatial demands of such layered approachiesloa and Cootes
[11] have proposed mapping labels to points on the surface oftdhyperspheres™
placing the background at the center. They demonstratectitdigurations involving
dozens of labels can be efficiently represented by distriguabel locations uniformly
on the unit hypersphere using as few as three dimensionsfuRidamental assump-
tion is that pixels only vary between labels that are locatedr to each other on the
hypersphere, so the placement of labels is crucial to awszheous label mixtures.
For exampleFig. 4indicates how simple Gaussian smoothing can introduceeoas
labels. Here, two labels far from each other are mixed andetlt is attributed erro-
neously to other labels (s&&g. 5(a).

As we mentioned, the logarithm-of-odds representatiorodil Bt al. [1] provides a
powerful representation for statistical shape analys@véver, in addition to the nor-
malization requirement in the definition of the “additiorgeration, the main concern
when using this methodology is the choice of intermediatppiray, a choice that di-
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Fig.5: Probability of each region using inverse logistic functionlabel space on the final
smoothed maps dfig. 3. Color is scaled by underlying probability, black beingaprobability.
When using logarithm-of-odddeft), notice significant nonzero character across the domain of
each region, so much so that background starts to dominatlier regions (s€éig. 4(a).

rectly impacts the resulting probabilities. The authorplese the use of both binary
vectors and layered SDM&Jf however, both choices have certain drawbacks. For the
layered SDM intermediate mapping, Pahlal. [1] notes that the results of algebraic
manipulations in the logarithm-of-odds space often predoealid SDMs even though
the logarithm-of-odds representations are still validughcomputing probabilities as
described in ] may yield erroneous likelihoods.

3 Labe space

Our goal is to create a robust representation where algebparations are natural,
label uncertainty is captured, and interpolation is unddlaoward any label. To this
end we propose mapping each label to a vertex of a reguladesingivenn labels,
including the background, we use a regular simplex whichifie: — 1 dimensions and
denote this byC™ (seeFig. 1). A regular simplex is am-dimensional analogue of an
equilateral triangle.

In this space, algebraic operations are as natural as caudition, scalar multi-
plication, inner products, and norms; hence, there is na f@enormalization as in
[1]. The key property is that for any two points, z2 € L™ in the simplex, the point
txy + (1 —t)zo € L™, 0 <t < 1, remains in the simplex.

Note that label uncertainty may be expressed naturallyasvdighted mixture of
vertices. For example, a pixel representing labels #1,#@#8 with equal characteris-
tics would simply be the point = %ll + %12 + %13, a point equidistant from those three
vertices. Using this fact, one can map any point in a profstigibtias to a unique point
in the label spac&£”, i.e. given the probabilitieg, .., p,, with > p; = 1, the corre-
sponding representation " is given byl = > p;l; € L™, wherel; € L™ is a vertex
of the simplex. Thus, the above function defines a mappindasito thelogit function
used in the logarithm-of-odds spadé. [Alternatively, the probability for: € £™ being
labell € L™ is, P(z = 1) = exp(—||z—1||?)/Z, whereZ = " exp(—||z—;||*) acts as
a normalization constant. Taking this to define the invesgéstic function, label space
becomes an element of the logarithm-of-odds spakcd he proposed framework how-
ever has distinct advantage over the traditional logarittirodds space in that it does
not use logarithms, thus removing singularities in the dt#dim of the logit function
when any of the probabilities; is zero.

Alternatively, computing probabilities from the smoothleithary mappings may
produce undesirable results. On the one h&mgl, 3 demonstrates that smoothing can



(a) Patient #1 (b) Patient #2 (c) Patient #3

Fig.6: Manually segmented amygdala, hippocampus, and paratdapgmes (blue, red, cyan)
from three patients.

introduce the presence of background, while on the othed tiause of the exponen-
tial in thelogit function leaves significant nonzero probability acrossdbmain Fig. 5
visualizes the probabilities for each region of the final sthed binary and label space
maps inFig. 3 Here, the top left corner which is clearly the red regiorildgea prob-
ability of only P(red) = 0.475 when using the logistic functiorl], while yielding a
more appropriate probability d?(red) = 0.948 in label space.

We should note that generating probabilistic atlases fromoathed binary vectors
(using the logistic function) could thus produce erroneprababilities in certain re-
gions misguiding any atlas-based segmentation method.t®gpace constraints, a
detailed analysis of differences in segmentation basedlases generated using either
method is outside the scope of this work.

4 Experiments

After having explored many of the properties of label spagesynthetic examples,
we turned to examine a set of 31 patient brains with manualiyrented amygdala,
hippocampus, and parahippocampuisg. 6 shows these subcortical structures for the
first three patients. Using label space as the underlyingsentation to eliminate bias,
we performed affine registratiog]|

To demonstrate the detail maintained in label space prbs@bcalculationsFig. 7
shows the conditional probabilities for the amygdala ampghbcampus of the first three
patients,.e. the probability of the amygdala given the probability o thmygdala in
the other patients. For visualization, one slice is takam passes through both regions.
These probabilities were computed via the exponential iteinm Section 3 Condi-
tional probabilities like this may be used to judge inteterssegmentation. Notice the
sharp tail of the hippocampus, a feature which may easilp$iEth either intermediate
representation used in the logarithm-of-odds approach.

We then compared label space against both the SDMs and bipatgrs for use
in linear principal component analysis (PCA); s2d ()] and the references therein for
a description of this technique. We chose to separate owtgpétient, compute the

! Data obtained from the NAMIC data repository of the Brighand aVomen’s Hospital,
Boston.



(a) Amygdala

(b) Hippocampus

Fig.7: For one slice, conditional probability of the presence ofgdala and hippocampus of
the first three patients given the other patigmiite indicates high probability). Notice the fine
detail of the hippocampus, features which may be lost whergusnoothed intermediate repre-
sentationsJ].

PCA basis on the remaining patients, and examine the piaject the test patient onto
that learned basis. As a side note, we used the eigenveefmessenting 99% of the
variation in the data.

We employed the Dice coefficient as a measure of percentagpvbdtween the test
mapM and its projectionV/. The Dice coefficient is defined as the amount of overlap-
ping volume divided by the average total volunig(A, M) = 2|M N M|/|M U M|,
where| - | denotes volume. The following table gives the mean and neeiaf the Dice
coefficient for each tissue cl&s§Ve found that label space is better than SDMs because
of the inherent low per pixel variance and also better thaatyi vectors because it can
represent unbiased label mixtures; SDMs and binary veotorsre thresholding to de-
termine label ownership. Note that the parahippocampustseisnprove significantly
when label uncertainty is taken into account

SDMs Binary vectors Label space
Amygdala 0.783t 0.0031 0.825t 0.0014  0.855t 0.0004
Hippocampus 0.782 0.0016 0.819+ 0.0006 0.843+ 0.0003

Parahippocampus  0.4940.0033 0.56H 0.0017 0.773t 0.0003

5 Conclusion

This paper describes label space, a new coupled multi-biojgaticit representation.
For this representation, we demonstrated that algebracatipns may be done di-
rectly, label uncertainty is expressed equivalently as ighted mixture of labels or in
a probabilistic manner, and interpolation and smoothingnisiased toward any label
or the background.

It remains to perform a detailed analysis of label space énftamework of the
logarithm-of-odds space]. However, label space can be thought of as an element of

2 Data reported asnean + variance
% Label space values corrected from original publication



the logarithm-of-odds space, inheriting all the functiiganentioned above. For non-
rigid registration, we believe that both representatiameshest suited because of their
local descriptive nature compared to SDMs. For segmemtgtiese initial experiments
indicate that label space may be better suited for prolstibiktlas construction.

Modeling shapes in label space does have its limitationg @ajor drawback to
label space is the spatial demand. It might be possible ta dwpersphere interpo-
lation issued[1] (seeFig. 5(a) by taking into consideration the empirical presence of
neighbor pairings when determining vertex distribution.
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