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SUMMARY 

 

This work is focused on the ligation activity of the hammerhead ribozyme and 

DNAzymes in plausible prebiotic conditions.  Before the Great Oxidation Event, RNA 

may have interacted with soluble Fe2+, as a replacement or in combination with Mg2+.  

Divalent metal cations are sometimes necessary in ribozyme activity by interacting with 

mostly phosphates to influence the tertiary structure of an RNA.  In some cases, these 

metal cations help in the acid/base chemistry in catalytic cores. 

Chapter 2 reveals the benefits and drawbacks of hammerhead ribozyme ligation 

with Fe2+.  Both ligation and cleavage of the hammerhead is enhanced, but an unexpected 

problem arose, RNA aggregation that is difficult to denature.   

Chapter 3 and 4 focuses on the hammerhead ligation in ice.  Freeze-induced 

ligation frees the hammerhead from divalent metal requirements and when combined 

with heat-freeze cycles to mimic day and night, yield reaches 60%.  Freezing the reaction 

mixture also reduces sequence specificity between enzyme and substrates. 

Chapter 5 reveals a RNA-cleaving DNAzyme that can ligate cleaved RNA 

substrates when the reaction mixture is frozen.  The significance behind this chapter is 

that previous ligating DNAzymes require high-energy triphosphates and instead uses a 

2’3’-cyclic phosphate.  This 2’3’-cyclic phosphate is already a product of the cleavage 

reaction of the DNAzyme and the cleavage/ligation reaction is in effect recycling the 

same materials. 
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CHAPTER 1 

INTRODUCTION 

 

Francis Crick's 1970 “Central Dogma of Molecular Biology” lists three important 

players: DNA, RNA, and protein.  This concept of how sequential information was stored 

and then transferred was first introduced in 1958 and has since been changed with new 

discoveries on the functions of each of these three key players.  Many scientists have 

pondered the question, which of these three is the best candidate for being the first 

biomolecule with the ability for self-replication? DNA has long been known as the main 

information storage molecule, while RNA acts as the intermediate between DNA and 

protein, or in some cases as the template back to DNA.  Protein, despite its essential roles 

in structure and catalysis, appears to be an informational dead-end (Figure 1.1). 

 

Figure 1.1: The Central Dogma as was known in 1970, with solid lines indicating 
probable transfers and dashed lines as possible transfers (Reprinted from Crick 1970).  
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RNA World Hypothesis 
 

The “RNA World” hypothesis began in the 1960’s with several authors 

supporting nucleic acids, not proteins, as the crucial components in a self-replicating 

system (Woese 1967, Orgel 1968 and Crick 1968). Watson-Crick base pairing of 

mononucleotides on a template strand may be sufficient in generating a complementary 

copy as demonstrated as early as 1968 by Sulston et al who created oligoadenylates from 

monomers. In contrast, the closest example of protein “replication” is from the discovery 

of prion proteins which only bestows secondary and tertiary information but not the 

peptide sequence (Prusiner 1982, Lee et al. 1996). In 1968, Crick suggested that 

ribosomal RNA and transfer RNA were remnants of an all RNA ancient machinery for 

protein synthesis. At that time, Crick stated that the protein portion of the ribosome may 

have replaced the primitive rRNA in the peptidyl transferase center. Today, with structure 

data from many bacterial ribosomes, there is much evidence that none of the ribosomal 

proteins are responsible for peptidyl transferase activity (Yusupov 2001), and that this 

activity appears to require a small portion of the ribosome’s 23S rRNA.  

Potential Role of Fe2+ in RNA catalysis 
 
 

The modern ribosome requires Mg2+ cations for proper RNA folding and 

catalysis.  These cations interact with the RNA phosphate groups that normally repel each 

other and bring them closer together.  Billions of years ago, before the biologically-

induced Great Oxidation Event, there was a higher concentration of dissolved Fe2+ in 

water, unlike today when almost all Fe2+ is rapidly oxidized into the insoluble Fe3+ 

(Anbar 2008).  Fe2+ in the presence of oxygen may lead to a harmful environment for 
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RNA when hydroxyl radicals are produced in a Fenton reaction (Prousek 2007), but in 

the absence of oxygen, Fe2+ may be able to substitute for Mg2+ in its interaction with 

RNA.  Quantum Mechanical calculations have shown that RNA-Mg2+ interactions are 

similar to RNA-Fe2+ (Figure 1.2) (Athavale et al. 2012). These cations may have been 

interchangeable before the atmosphere was heavily oxygenated. 

 

Figure 1.2: QM models for RNA-Mg2+ and RNA-Fe2+ clamps. Each cation (green and 
yellow spheres) is interacting with phosphate oxygen atoms (red) (Adapted from 
Athavale 2012). 

 

Ribozymes Perform a Variety of Functions 
 

In the late 1980’s, the identification of the first observed ribozymes Ribonuclease 

P (Guerrier-Takada 1984) and self-splicing RNA (Kruger 1982) provided further support 

for the RNA World hypothesis; it provided evidence that RNA, without the aid of 

proteins, can catalyze reactions. Other natural ribozymes include the hammerhead 

ribozyme that can cleave and ligate (Prody et al. 1986, Hutchins et al. 1986), the hairpin 

ribozyme which is also able to cleave and ligate (Hampel and Tritz 1989, Felstein et al. 

1989, Kazakov et al. 2006), self-splicing Group I introns (Cech 1990), and the glmS 

ribozyme that can both catalyze the production of glucosamine-6-phosphate and self-
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cleavage (Winkler et al. 2004).  Artificial ribozymes were also discovered in in vitro 

selection experiments, like the L1 ligase that catalyzes the formation of a 3’-5’ 

phosphodiester bond (Robertson et al. 2001) and the R18 polymerase (Attwater et al. 

2010). 

Challenges to the RNA World Hypothesis 
 

One major caveat to the RNA World hypothesis is the general instability of RNA, 

as opposed to DNA's long standing reputation as a stable molecule fairly resistant to 

degradation. RNA can be easily cleaved by hydrolysis, posing a challenge to the survival 

of long and complex RNA strands (Pace et al. 1991). One solution to RNA instability is 

the lowering of temperature, specifically temperatures which promote a eutectic mixture 

of solid ice and interstitial fluid composed of the remaining liquid water and solutes 

(Figure 1.3). It is important that temperatures cannot be too low that solutes become 

embedded in the ice crystal lattice or salts become too concentrated to form precipitates. 

Although early Earth is commonly theorized to be warm, it may have been cool enough 

to support freezing (Fishbaugh et al. 2007, Bada 2004).   

Non-enzymatic RNA cleavage is reduced at lower temperatures (Li and Breaker 

1999) and many other reactions are possible at temperatures below freezing, including 

the formation of precursors of purines from hydrogen cyanide (Sanchez et al. 1966), 

formation of dinucleotides from adenosine 2’3’-cyclic phosphate on a poly(U) template 

(Renz et al. 1971), ligation of short uridine oligomers (Sawai and Wada 2000) and 

metastable RNA dimer formation in ice (Sun et al. 2007).  
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Figure 1.3: Phase diagram of NaCl with variable temperature and salt concentration. The 
eutectic phase exists within the triangular space labeled “ice + saltwater.” Exiting the 
boundaries of this space will eliminate the eutectic phase (Reprinted from Clark 2003). 

 

Another challenge of a prebiotic environment is that any existing catalytic RNAs 

and many important ions may be too low in concentration for function.  Estimated 

ancient ocean concentrations of Na+, K+, Ca2+, and Mg2+, Mn2+, and Zn2+ are  >0.4, 

~0.01, ~0.01, ~0.01, ~10-7, and less than 10-12 M respectively (Mulkidjanian et al. 2012).  

The eutectic system of solid and liquid phases allow a concentrating effect and a lower-

energy, protective environment. There is a range of temperatures for each solution that 

will maintain the eutectic phase; below this range the solution is solid ice with possible 

precipitates and above this range, the solution will be thawed back into liquid (Figure 

1.3). This range is dictated by the type and concentration of solutes in the solution. The 

eutectic system form channels in the ice and how they network with each other determine 

the diffusion rate in the ice (Figure 1.4). This environment has been suggested as a 
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protective environment which provides some isolation of the solutes from the majority of 

water, inhibiting the diffusion of substrates of catalytic reactions (Trinks et al. 2005).   

Dilute concentrations of RNA may be a hindrance in liquid samples, but is not the 

case once a solution is frozen. A notable example is the Round 18 ribozyme in Figure 

1.5, an artificial RNA polymerase ribozyme that demonstrates high-fidelity template-

directed RNA replication. It, however, requires mM concentrations of MgCl2 and 

ribonucleotide triphosphates for polymerization.  These high concentration requirements 

may have been an obstacle in liquid phase, but not in ice.  Diluting the magnesium ion 

and nucleotide concentrations up to 200-fold does not eliminate polymerase activity 

(Attwater 2010).  

 
Figure 1.4: Electron Microscopy images of ice surrounding channels containing the 
eutectic phase. Different anions and concentration determine the ice structure in the 
micrometer range (Reprinted from Attwater 2010). 
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Figure 1.5: Left panel: Simplified model of Round 18 ligase with Primer in orange and 
Template in green. Right panel: Protection of full length ribozyme in ice. The lower the 
temperature the more the ribozyme is preserved over a time frame of 15 days (Adapted 
from Attwater 2010). 

 

Another boon of cold incubation temperatures is the natural defense from random 

degradation. The Round 18 polymerase degrades completely within 15 days in 17° C, but 

60% of the ribozyme retains its full length if incubated at -7°C (Figure 1.5). Longer 

length products from this replicase are also available at -7°C and even more extended 

products if the solution is frozen versus supercooled (Attwater 2010).  

Ice also provides an indirect benefit to catalytic RNAs; it may help lower the 

breakdown of certain catalysts such as carbodiimide, a common reagent for ligation of 

nucleic acids. Carbodiimide-activated ligation occurs over several days in freezing 

temperatures when compared to room temperature or 37 °C incubation. The carbodiimide 

is generally longer lived the lower the temperature (data not shown).  

Freezing temperatures contribute to greater stability in RNA complexes or may 

induce alternative conformations not easily accessible at higher temperatures. Kazakov et 

al in 2004 showed that truncated and divided forms of the hairpin ribozyme are still able 

to ligate substrates (up to 23%) in -10°C but almost no detectable activity in 37° C 

(Figure 1.6). Furthermore, experiments with a 21 nt RNA hairpin indicates it can form a 
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metastable dimer when frozen, but stays as a hairpin if incubated in temperatures above 

freezing (Sun et al. 2007).  

 

Figure 1.6: Truncated forms of the hairpin ribozyme. Indicated values represent the 
amount of ligated products incubated at the designated temperatures. The mutations 
decrease ligation activity at 37°C and in some cases it cannot be detected. Ligation yield 
is higher at -10°C (Reprinted from Vlassov 2005). 

 

Hammerhead Ribozyme 
 

The magnesium-dependent hammerhead ribozyme (HHR) is an RNA motif 

generally recognized as a cleaver of RNA substrates since the 1980s and has been studied 

extensively. However any cleavage reaction is potentially reversible.  The ligation rate of 

a truncated hammerhead (kligation = .008 min-1) is about 100-fold slower than the cleavage 

rate (Fedor and Uhlenbeck 1992) and extending the Stems to allow loop-loop interactions 

show a 1300-fold higher ligation rate than the minimal hammerhead (Nelson et al. 2005).  

Stage-Zimmermann's version of the hammerhead (HHα1) is able to ligate better at low 
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temperatures, especially with the aid of a disulfide crosslinker which binds Stems I and II 

together (Figure 1.7). This indicates that tertiary interactions between the two stems are 

crucial to tipping the hammerhead enzyme from a cleavage reaction to a ligating one. 

Several years later, a slightly larger hammerhead, called Schist26, with extended Stems I 

and II demonstrated reversible cleavage-ligation reaction which boasts a 23% ligation 

yield with a kligation of 26 min-1 at room temperature with no artificial linker (Figure 1.8) 

(Canny et al 2007). The ligation rate of this hammerhead is about 3000-fold higher than 

the minimal hammerhead. The Schist26 hammerhead may perform better if the 

incubation temperatures are dropped to below freezing, possibly promoting more stable 

interactions between the two stems.  

 

Figure 1.7: Disulfide crosslinker between Stems I and II increase HHα1 hammerhead 
ligation activity (Adapted from Stage-Zimmerman and Uhlenbeck 2001). 

 



 10

 
Figure 1.8: Secondary structure model of the hammerhead ribozyme from Schistosoma 
mansoni (Schist26) adapted from Pardi et al 2007. Ribozyme strand is outlined in black 
while the substrate is colored red. Single straight arrow between two cytosines points to 
the cleavage and ligation site of the full length substrate (S) which produces a 5’ 
hydroxyl on P2 and 2’-3’ cyclic phosphate on P1. 

 

 

DNAzymes in the RNA World 
 
 

RNA is not the only nucleic acid with catalytic activity; if an “RNA World” did 

exist, it may not be an “RNA [only] World.” Despite the absence of naturally occurring 

DNAzymes, artificial ones have been in-vitro selected for RNA cleavage (Breaker and 

Joyce 1994, Santoro and Joyce 1997, Flynn-Charlebois 2003), as a biosensor for lead 

ions (Li and Lu 2000), repair enzyme for thymine dimers in DNA (Daniel and Dipankar 

2004), and even as a nanomaterial for use in nanowires, nanoarchitectures and computing 

(Ito and Fukusaki 2004).  Like the hairpin and hammerhead ribozyme, the first 



 11

discovered Dnazymes bind to complementary regions of a target RNA and cleave them in 

specific areas (Figure 1.9).  These cleaving DNAzymes have shown efficient activity, a 

reported cleavage rate of ~0.01 min-1 for the 10-23 motif under simulated physiological 

conditions. DNAzyme cleavage produces two RNA fragments: a 5' hydroxyl on one and 

a 2',3' -cyclic phosphate, 2' or 3' phosphate on the other (Santoro and Joyce 1997).  These 

RNA products are similar if not the same to the ones for the hairpin and hammerhead 

ribozymes and this may indicate that the ligation of two RNAs may occur at a reasonable 

rate by changing the temperature. 

 

 
Figure 1.9: Secondary structure model of 8-17 and 10-23 dnazyme catalytic cores and 
binding arms.  Arrows point to cleavage site in between sequence requirements of RNA 
substrate for successful catalysis (Reprinted from Santoro and Joyce 1997). 

 
 

Summary of Thesis 
 
 

The following chapters will focus on different questions about the RNA World 

Hypothesis. The first set of studies centers on the effect of Fe2+ in hammerhead ribozyme 

catalysis, both positive and negative impacts. This truncated ribozyme derived from a 

natural hammerhead motif is capable of cleaving and ligating short RNA oligos, a 
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fundamental activity for constructing more complex RNAs. Chapter 3 and 4 examines the 

catalytic activities of the hammerhead ribozyme under plausible prebiotic conditions, 

specifically in frozen solution.  The work demonstrates that hammerhead ribozyme 

ligation in ice can increase the overall product yield, the complexity and diversity of the 

RNA products. More importantly, this freeze-induced ligation does not require the 

presence of divalent metal cations. The last set of studies is on RNA ligation by RNA 

cleaving DNAzymes, DNA sequences with catalytic activity.  Like the hammerhead, 

freezing of the DNAzyme with cleaved substrates increases ligation rates. The addition of 

DNAzymes should enrich the RNA World hypothesis and show that RNA does not stand 

alone as a catalytic molecule with information storage.  
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CHAPTER 2 

EFFECT OF FE2+ ON HAMMHERHEAD CATALYSIS 

Some figures in this chapter, both in Introduction and Results sections, are reprinted from 
Athavale et al. 2012.  The figures that appear in the Introduction belong to other co-

authors, while Figure 2.6 represents the experimental data acquired by the thesis’s author. 

Introduction 
 
 The oldest direct evidence of life comes from fossilized stromatolites, 

sedimentary structures produced by mat-building communities of mostly 

photoautotrophic prokaryotes dated to ~3.5 billion years ago (Schopf 2006).  About one 

billion years later, the O2 content in the atmosphere increased (Holland 2006) and 

coincided with the highest known amount of banded iron formation (BIF) in geologic 

history (Klein 2005).  Due to this Great Oxidation Event, ancient earth went from an 

anoxic environment with soluble Fe2+ to one where the excess oxygen would precipitate 

the iron into the BIF.  

 

Figure 2.1: Similar conformations between the RNA-Mg2+ and RNA-Fe2+ clamps based 
on QM calculations (Reprinted from Athavale et al. 2012). 
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 If the RNA World Hypothesis is true, it should predate the Great Oxidation Event, 

indicating that in an anoxic environment, RNAs may have been able to utilize Fe2+ in 

folding and catalysis, similar to the Mg2+-RNA interactions observed today. Mg2+ is 

redox inactive and, unlike Fe2+ in the presence of oxygen, does not lead to the cleavage of 

RNA due to the generation of highly reactive radicals from Fenton chemistry. Quantum 

mechanical (QM) calculations for the RNA-Mg2+ clamp in the L1 ribozyme ligase show 

nearly identical RNA conformations when the Mg2+ is replaced with Fe2+ (Figure 2.1), 

but there are subtle differences between the two. Interactions with Fe2+ appear more 

stable and show a more negative charge is transferred from phosphate to Fe2+ than to 

Mg2+ by 0.14 e-.  Fe2+ may be better in activating the phosphorous in the phosphate 

groups of RNA to nucleophilic attack and may favorably impact ribozyme catalysis 

(Athavale et al. 2012). 

 Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) provides 

single-nucleotide resolution of secondary and tertiary structural information. SHAPE data 

of 2.5 mM Mg2+ and 2.5 mM Fe2+ on the P4-P6 domain of the Tetrahymena thermophila 

Group I intron show very similar reactivity profiles, supporting the theoretical claim 

made by QM calculations that proper folding of RNA can be achieved by either cation 

(Figure 2.2) (Athavale et al. 2012). Evidence of proper folding of the RNA with Fe2+ 

imply that RNA catalysis should be possible. This combined with QM predictions should 

show enhanced ribozyme activity. 
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Figure 2.2: SHAPE footprinting of the P4-P6 domain of the Tetrahymena thermophila 
Group I intron. SHAPE profiles of the RNA with Na+ only as control (green), Mg2+ in 
blue, and finally Fe2+in red. Mg2+ and Fe2+ show nearly identical profiles, indicating that 
using either cation can properly fold the P4-P6 RNA (Reprinted from Athavale 2012). 

 

 To test these predictions, the ligation activity of the Mg2+-dependent L1 ligase 

was monitored with both Mg2+ and Fe2+.  The L1 ligase is a ribozyme selected from a 

random sequence population that forms into a three-helical junction and catalyzes the 

formation of a 3'-5' phosphodiester bond between the 3' hydroxyl group of an RNA 

substrate and the 5'-triphosphate end of the L1 ligase (Robertson et al. 2001).  There is a 

25-fold difference between the initial rate of ligation for 100 μM Mg2+ (1.4 x 10-6 min-1) 

and for 100 μM Fe2+ (3.5 x 10-5 min-1) (Figure 2.3). The enhanced ligation rate of the L1 

ligase agrees with the QM prediction that Fe2+ would be better than Mg2+. 
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Figure 2.3: Fe2+ induced ligation of the L1 ligase shows a 25-fold higher initial rate of 
ligation than with Mg2+ (Reprinted from Athavale 2012). 

 

 The L1 ligase is an artificial ribozyme that requires a 5'-triphosphate for ligation. 

This triphosphate requirement presents a problem for the RNA World since there is no 

known efficient prebiotic synthesis of high-energy polyphosphates (Miller and Keefe 

1995). The hammerhead ribozyme, on the other hand, can cleave a substrate in a 

reversible reaction, meaning that it can produce two RNA cleavage products and ligate 

them back together.  The cleavage reaction generates a 5'-OH on the P1 fragment and a 

2'3' -cyclic phosphate on P2 (Figure 2.4), which are not uncommon products.  In fact the 

hairpin, HDV, VS, and glmS ribozymes also produce a 5' hydroxyl and cyclic phosphate 

(Ferre-D'amare and Scott 2010). 

 The ribozyme employs several strategies for efficient activity: general acid/base 

chemistry to deprotonate the 2' OH and protonation of the 5' oxygen, neutralization of 

phosphate backbone for complex stability, and geometric alignment for in-line 
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nucleophilic attack by the 2'O (Emilsson et al. 2003). The extensively studied 

hammerhead RNA enzyme utilizes a variety of divalent metal cations for cleavage.  The 

divalent cation not only coordinates the phosphates of the RNA for proper folding, but 

may also be indirectly involved in general acid/base chemistry of the reaction by 

interacting with one of the oxygens on the scissile phosphate (Ward and Derose 2012).  

This interaction makes the phosphorous more electrophilic and more likely for 

nucleophilic attack by the 2' oxygen (Figure 2.5).  According to the QM calculations for 

RNA-Fe2+ interactions, replacing Mg2+ with Fe2+ should better activate the scissile 

phosphate and perhaps enhance ribozyme activity. 

 

Figure 2.4: Secondary structure of truncated HHα1 hammerhead (Adapted from Stage-
Zimmerman and Uhlenbeck 2001) and Schist26 hammerhead (Adapted from Canny et al. 
2007). The truncated hammerhead enzyme strand is in red while the substrate is in black. 
The Schist26 hammerhead has longer stems and is able to ligate better than the truncated 
version due to the tertiary interactions of the loops between Stems I and II. The arrows 
indicate the cleavage/ligation site. 
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Figure 2.5: Mn2+ coordination of the scissile phosphate in the active site. The divalent 
metal cation (green) interacts with the oxygen from the scissile phosphate 1.1 (red), 
resulting in a more electrophilic phosphorous for the nucleophilic 2' oxygen (pink) to 
attack (Reprinted from Ward and DeRose 2012). 

 

Materials and Methods 
 
Hammerhead Cleavage Reaction 

 All manipulations of the hammerhead RNA in the presence of Fe2+ were carried 

out in a Coy chamber with an atmosphere of 85% N2, 10% CO2, 5% H2. The 

hammerhead ribozyme-substrate was based on the unmodified HHα1 RNA (Stage-

Zimmerman and Uhlenbeck 2001). A 31 nucleotide substrate strand (5' 

GGCAAUCGAAACGCGAAAGCGUCUAGCGGGC- 3'), labeled at the 3'- end with 

FAM, and the 21 nucleotide ribozyme strand (5'- CCCGCUACUGAUGAGAUUGCC-3') 

were purchased from IDT. Substrate and ribozyme strands (typical molar ratio used was 

1:1000) were lyophilized separately, transferred to the anaerobic chamber, left open for 

several hours, and resuspended in 50 mM HEPES, pH 7.5 (pH adjusted with KOH). The 

buffer had previously been deoxygenated by bubbling with argon for several hours. The 

strands were annealed inside the anaerobic chamber by incubating at 90 °C for 2 min and 

cooling to room temperature over 30 min. Reactions (150 μL final volume) were initiated 

by addition of 1.5 μL of cation solution (Fe2+ or Mg2+). At predetermined time points, 20 
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μL aliquots were withdrawn and quenched by treatment with divalent cation chelating 

beads. The beads and the associated divalent cations were removed with a spin column, 

and the samples were frozen and stored at -80 °C. For gel analysis, 1 μL of reaction 

mixture was mixed with 9 μL loading buffer (8 M urea, 16 TTE, 10% glycerol) and 

denatured by heating to 90 °C for 2 minutes. The intact 31 nucleotide substrate and 7 

nucleotide product were separated by capillary electrophoresis and quantified as 

described (Athavale et al. 2012). Controls were performed to ensure that oxygen had no 

effect on Mg2+-induced reactions (Shreyas Athavale, unpublished). 

 

Hammerhead Ligation Reaction 

 The Schist26 hammerhead ribozyme was chosen for ligation experiments due to 

its higher ligation rate. The 49-nt Schist26 ribozyme strand (E) was generated by in vitro 

transcription of a 68 bp DNA containing the template sequence joined to a T7 promoter. 

The DNA template strands (Integrated DNA Technologies, Coralville, Iowa, USA) were 

characterized by denaturing gel electrophoresis to verify purity.  They were heated to 90 

⁰C for two min and slowly cooled to form a duplex before being transcribed with an 

Ambion MEGAscript T7 kit (Life Technologies, Grand Island, New York, USA). The 

resulting RNA was gel purified. The ligated RNA product P1•P2: 

5’GGAGGGCAUCCUGGAUUCCACUCGCC3’ was chemically synthesized (Integrated 

DNA Technologies), characterized by denaturing gel electrophoresis and modified if 

necessary as described below.   

The P1>p strand, which is the P1 sequence with a 2’3’ -cyclic phosphate at its 3’ end, 

was generated from Schist26 -facilitated cleavage of P1•P2.  When P1•P2 was cleaved by 

the hammerhead to obtain P1>p, it was first 5’ 32P-end labeled using T4 polynucleotide 

kinase (3’phosphatase minus) and 32P-γATP. 10 pmoles of P1•P2 was typically prepared 

in a 50 μL reaction. 100 pmoles of the E strand was added to 5’ end-labeled P1•P2 in 

kinase buffer, and the reaction was cycled  four times for  2 min at 70 ⁰C and 20 min at 



 20

25 °C. P1>p was purified from its unmodified substrates by 20% denaturing PAGE, 

excised, and ethanol precipitated with glycogen. 

 All manipulations of this hammerhead RNA in the presence of Fe2+ were carried 

out in a Coy chamber with the same atmosphere listed above. A typical master mix 

contained 0.5 µM ribozyme strand, 2.5 µM P2 fragment, and trace amounts of 32P-

labeled P1>p in a 100 μL solution of 50 mM PIPES pH 8.0, 100 mM NaCl, and 0.1 mM 

EDTA (NTE buffer).  Sodium mesh chelating resin (Sigma) was used to remove trace 

amounts of Mg2+ in buffers and reaction mixtures. The buffer had previously been 

deoxygenated by bubbling with argon for several hours. The chelating resin was included 

in the RNA annealing step in which the reaction mixture was heated to 80 °C for 2 min 

and then allowed to cool at 25 °C for 30 min. The resin was removed by filter 

centrifugation. Ligation reactions in solution at 25 °C were initiated by adding FeCl2 to 

the master mix to give a final concentration of 1 mM.  Reactions were halted by adding a 

stopping solution of 80% deionized formamide and 20 mM EDTA with bromophenol 

blue and xylene cyanol in a 4:1 volume ratio to the sample.  Products were run on a 12% 

denaturing polyacrylamide gel (7 M urea) and analyzed with a GE Typhoon Imager and 

Fuji Multi Gauge Imaging software. 

Results 
 
Cleavage activity of HHα1 hammerhead is enhanced with Fe2+ 

 In these reactions the initial rate of hammerhead cleavage in 25 μM Mg2+ is 0.011 

min-1, while the initial rate of cleavage in 25 μM Fe2+ is 0.035 min-1, which is 3-fold 

higher (Figure 2.6). The maximum fraction of cleaved substrate was about 3-fold greater 

in Fe2+ versus Mg2+. When 100 μM of these two divalent cations were employed, Fe2+ 

again showed a higher initial rate of cleavage of ~3.5 fold. The enhanced cleavage 

reaction of the hammerhead shows that Fe2+ is a better metal cofactor than Mg2+. 
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Figure 2.6: Hammerhead ribozyme activity is enhanced in Fe2+ compared to Mg2+. 
Cleavage reactions were initiated by addition of FeCl2 or MgCl2 from stock solutions to a 
final concentration of 25 μM (Reprinted from Athavale et al. 2012).  

 

Ligation activity of the Schist26 hammerhead with Fe2+ 

 Ligation experiments were done with the Schist26 hammerhead ribozyme because 

it ligates better than the minimal HHα1 ribozyme (kligation = 0.008 min-1 and kligation = 26 

min-1 respectively) (Stage-Zimmerman and Uhlenbeck 2001, Canny et al. 2007).  

According to Canny et al, when 1 mM MgCl2 was added to induce ligation, their yield 

reached a maximum of 6% in about 5 minutes, kligate of ~1.5.  With Fe2+ present, the 

reaction is faster and shows a higher maximum yield of 10% by the first time point at 20 

seconds (Figure 2.7).  An accurate kligate is difficult to obtain due to the high ligation rate 

and is further complicated by the aggregation of the radiolabeled P1>P RNA.  The 

ligation yield also appears to decline with time, a similar pattern as seen with Mg2+ (Roy 

2008).  Whether this is due to the breaking of the cyclic phosphate of the P1>P RNA, 
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resulting in an irreversible cleavage reaction of the product, or some of the P1•P2 product 

is being sequestered in this aggregate band is still unclear. 

 

Figure 2.7: Fe2+-induced ligation by the Schist26 hammerhead ribozyme at 25 °C. A) 
12% PAGE separating 32P-labeled P1>P from ligated product 32P-labeled P1•P2 RNA 
and RNA aggregation. Reaction was started with the addition of 1mM FeCl2 and aliquots 
were taken out at different time points. (-) is the negative control lane and (+) is the 
positive control. B) Plot of percent ligation yield (orange line) and increasing RNA 
aggregation (blue line). 

 

RNA aggregation after the addition of Fe2+ 

 Aggregation of RNA in the Schist26 hammerhead ligation experiments by Fe2+ is 

visible even in the first time point at 20 seconds and increases with time (Figure 2.7).  

The aggregation band shows only 32P-labeled P1 or 32P-labeled P1•P2, trapped at the 

bottom of the well, unable to penetrate the gel. It is unknown if it has also captured the 

unlabeled hammerhead enzyme and P2.  Aggregates appear more quickly if the initial 

concentration of Fe2+ introduced into the reaction mixture is more concentrated even if 

the final concentration of Fe2+ is the same; it does not eliminate RNA aggregation, only 

delays it.  Aggregation breakup is possible to an extent and is dependent on buffer used.  

Tris buffer and PIPES were both used, but aggregate breakup was mostly successful 

when the reaction mixture containing Tris was heated in a solution of formamide and 20 

mM EDTA at 90 °C for 2 minutes and then snap cooled before loading onto the gel. 
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Aggregates in PIPES appear to be fairly resistant to heating and formamide denaturation.  

Aggregation was not observed for the HHα1 cleavage experiments in HEPES buffer 

using μM concentrations of Fe2+.  This suggests that mM concentrations of Fe2+ and 

buffer choice influence the formation of hardy aggregates resistant to denaturing. 

 

Discussion 
 

The work on Fe2+ on RNA catalysis adds another aspect to the RNA World hypothesis.  

Before the Great Oxidation Event, Fe2+ may have been abundant in an anoxic early earth 

and may have been involved in ancient RNA folding and catalysis.  QM calculations of 

RNA-Fe2+ clamps, SHAPE data of P4-P6 RNA folding similarly with both Fe2+ and 

Mg2+, and enhanced ligation of RNA activity all support this (Athavale 2012). 

The significance behind using the hammerhead ribozyme for Fe2+ studies is that it is a 

natural ribozyme that can reversibly cleave an RNA substrate.  The cleavage products it 

generates are the 5’OH on one RNA fragment and a 2’3’-cyclic phosphate on the other.  

The HHα1 minimal hammerhead is an efficient cleaver (Stage-Zimmerman and 

Uhlenbeck 2001), while the Schist26 ribozyme is known to be both an efficient cleaver 

and ligase (Canny et al. 2007).  Fe2+-induced ligation and cleavage were tested. 

As predicted by QM calculations, cleavage and ligation is enhanced when Fe2+ is used 

instead of Mg2+.  Both the cleavage rate and max yield for the HHα1 is 3-fold higher with 

iron than with magnesium.  Ligation also shows enhanced rate and yield, although 

determining either of these values accurately is difficult due to RNA aggregation.   

This has implications for the RNA World.  If RNA were to use Fe2+, not only must it 

utilize iron in an anoxic environment to avoid degradation but it may need to be careful 
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of unidentified factors that may induce the formation of RNA aggregates.  Before the 

Great Oxidation Event, Fe2+ may have provided more benefits than drawbacks, but 

afterwards, it was too harmful and was replaced with other divalent cations. 

 

 

 



 25

CHAPTER 3 

HAMMERHEAD RIBOZYME LIGATION IN ICE 

 

Introduction 
 
 RNAs in modern organisms serve as catalysts in splicing and translation, as well 

as in information transfer and regulatory processes (Darnell 2011). The multiple 

functions of biological RNAs, as well as the expanding catalytic repertoire associated 

with RNA (Johnston et al. 2001; Turk et al. 2010; Biondi et al. 2012; Hsiao et al. 2013) 

lend credibility to the hypothesis that RNA served as both catalysts and self-replicating 

information storage at the beginning of evolution (Gilbert 1986; Joyce 1989). Although 

evidence supporting this premise has accumulated, the fragility of RNA in aqueous 

solutions has been recognized as a difficulty for the emergence of self-replicating RNA 

(Pace 1991; Levy and Miller 1998; Li and Breaker 1999; Bada and Lazcano 2002).     

 Several conditions have been proposed that may inhibit RNA degradation 

sufficiently to allow RNA synthesis reactions to exceed the rate of degradation. They 

include selective absorption onto mineral surfaces (Ferris et al. 1996), 

compartmentalization with lipid-like membranes (Adamala and Szostak 2013) and 

freezing of aqueous solutions (Kanavarioti et al. 2001; Bada and Lazcano 2002).  

Freezing aqueous solutions at temperatures that result in a eutectic system of crystalline 

ice and interstitial liquid provide several advantages (Kanavarioti et al. 2001; Vlassov et 

al. 2004; Vlassov et al. 2005). This environment minimizes RNA degradation, yet 

enables reactions that have the potential to promote the synthesis and evolution of RNA 

molecules.  
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Figure 3.1. Secondary structure of minimal hammerhead.  E represents the hammerhead 
ribozyme and S is for the substrate of the cleavage reaction.  Cleavage produces a P1 
with a 2'3' -cyclic phosphate and a P2 with a 5' OH (Reprinted from Hertel et al. 1994). 
 
 
 Reactions involving RNA that have been demonstrated in frozen solutions 

include: the formation of dinucleotides from adenosine 2’,3’ cyclic phosphate (Renz et al. 

1971), synthesis of polynucleotides from imidazole-activated mononucleotides 

(Kanavarioti et al. 2001; Trinks et al. 2005), formation of metastable duplexes from RNA 

hairpins (Sun et al. 2007), and extension of RNA primers by an in vitro selected 

ribozyme (Attwater et al. 2010). Studies on the hairpin ribozyme (HPR) showed that 

freezing can induce self-ligation, as well as trans-ligation of RNA fragments in the 

absence of divalent cations (Kazakov et al. 1998; Vlassov et al. 2004; Kazakov et al. 

2006). The HPR and several of its truncated derivatives were able to ligate RNA 

fragments with 5-OH and 2’3’ cyclic phosphate termini to form 5’- 3’ phosphodiester 

bonds.       

 In this chapter we examine the activity of the Schistosoma mansoni hammerhead 

ribozyme (Schist26). Although the hammerhead and hairpin ribozymes catalyze the same 

reversible cleavage-ligation reaction of a phosphodiester bond, they are structurally 

distinct RNAs with different biochemical properties (Fedor 2009). Unlike hairpin 

ribozymes, which favors ligation over cleavage under ambient conditions, the 

hammerhead ribozyme’s cleavage rate typically dominates its ligation rate. This 
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ribozyme was first discovered in the satellite RNA of the tobacco ringspot virus 

(Hutchins et al. 1986) and in RNA transcripts of the avocado sunblotch viroid (Prody et 

al. 1986). Its signature characteristic was to catalyze a reaction of self-cleavage that 

processed RNA transcripts of multimeric genomes. The hammerhead ribozyme could 

also ligate together its own cleavage products (Prody et al. 1986). Since its discovery in 

1986, the hammerhead motif has been shown to be pervasive in all three domains of life 

via bioinformatics analysis (De la Pena et al. 2003; De la Pena and Garcia-Robles 2010; 

Perreault et al. 2011; Hammann et al. 2012).  

 Studies characterizing the core sequence and structure required for this RNA’s 

catalytic activity led to minimal sized hammerheads which were extensively studied 

(Forster and Symons 1987; Uhlenbeck 1987; Hertel et al. 1996; Birikh et al. 1997).  The 

minimal construct consists of a conserved core with three helixes (Figure 3.1). 

Unfortunately, while this truncated version of the ribozyme eased crystallization, it was 

not as efficient in cleavage as its native counterpart which had longer stems to 

accommodate an internal and hairpin loop that formed tertiary interactions (Penedo et al. 

2004).  
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Figure 3.2. Single turnover ligation reaction over the course of 18 seconds.  A) PAGE 
showing 32P-labeled ligated substrate increasing in amount after the addition of 10mM 
Mg2+. B) Fraction ligated reaches a maximum at 23% (Reprinted from Canny et al. 
2007). 
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Figure 3.3: Schist26 hammerhead with labeled Stems.  Substrates P1 and P2 are indicated 
in red.  Enzyme strand is in black. Arrow points to the ligation/cleavage site (Adapted 
from Canny et al. 2007). 
 
 
 Minimal size hammerhead ribozymes exhibit efficient cleavage in 10 mM Mg2+ 

in solution, but have a very low ligation rate, producing an internal equilibrium constant 

of Keq,int = kcleave/kligate ~130 (Hertel et al. 1994).  A large increase in ligation rate at 25 ⁰C 

was observed when Stems I and II of a minimal hammerhead (HHα10) were cross-linked 

with a disulfide bond (Stage-Zimmermann and Uhlenbeck 2001).  Relatively efficient 

ligation by a natural hammerhead ribozyme was demonstrated by Canny et al in their 

study of the Schistosoma mansoni hammerhead (Figure 3.2) (Canny et al. 2007). This 

hammerhead has tertiary loop-loop interactions between Stems I and II that influence its 

activity (De la Pena et al. 2003; Khvorova et al. 2003) (Figure 3.3).  In 100 mM NaCl 

solutions containing 0.1 mM to 10 mM Mg2+ Schistosoma hammerhead had an internal 

equilibrium constant of kcleave/kligate in the range of 1.5 to 3 (Canny et al. 2007).  Cleavage 



 30

and ligation activity were minimal or not observed in the absence of Mg2+ in the 

moderate ionic strength solution. Here we examined the catalytic activity of the 

Schistosoma hammerhead and its substrate requirements in frozen solutions. Our studies 

show that this ribozyme can ligate RNA oligomers in frozen solutions in the absence of 

divalent metal ions to a greater extent than occurs at 25 ⁰C with Mg2+. The effect on 

ligation of different anions, cations, pH, amino acids, and solutes that can influence water 

activity was examined.  The nature of the anion had a significant influence on ligation in 

the frozen eutectic system.   

 

Materials and Methods 
 
RNA oligomers and modification   

 The 49-nt S. mansoni hammerhead ribozyme strand (E) was generated by in vitro 

transcription of a 68 bp DNA containing the template sequence joined to a T7 promoter. 

The DNA template strands (IDT DNA) were characterized by denaturing gel 

electrophoresis to verify purity.  They were heated to 90 ⁰C for two min and slowly 

cooled to form a duplex before being transcribed with an Ambion MEGAscript T7 kit.  

The resulting RNA was gel purified. Other RNA oligomers were chemically synthesized 

(IDT DNA), characterized by denaturing gel electrophoresis and modified if necessary as 

described below. They were P1-p: 5’GGAGGGCAUCp3’, P2: 

5’CUGGAUUCCACUCGCC3’, P1•P2: 

5’GGAGGGCAUCCUGGAUUCCACUCGCC3’.  Figure 3.3 displays the E and P1•P2 

strands assembled as the S. mansoni hammerhead ribozyme.    

The P1>p strand, which is the P1 sequence with a 2’3’ cyclic phosphate at its 3’ end, was 

generated either from hammerhead ribozyme-facilitated cleavage of P1•P2, or by 

treatment of P1 with 50 mM 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) in 

100mM MES pH 5.5.  Cleavage of 10 pmoles of P1•P2 followed after it was 5’ 32P-end 
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labeled using T4 polynucleotide kinase (3’phosphatase minus) and 32P-γATP in a 50 ul 

reaction. 100 pmoles of the E strand was added to 5’ end-labeled P1•P2 in kinase buffer, 

and the reaction cycled  four times for  2 min at 70 ⁰C and 20 min at 25 ⁰C. P1>p was 

purified from its unmodified substrates by 20% denaturing PAGE, excised, and ethanol 

precipitated with glycogen.   

 

Ligation reactions 

 A typical master mix contained 0.5 µM ribozyme strand, 2.5 µM P2 fragment, 

and trace amounts of 32P-labeled P1>p in a 100 uL solution of 50 mM Tris pH 8.0, 100 

mM NaCl, and 0.1 mM EDTA (NTE buffer).  Sodium mesh chelating resin (Sigma) was 

used to remove trace amounts of Mg2+ in buffers and reaction mixtures.   The chelating 

resin was included in the RNA annealing step in which the reaction mixture was heated 

to 80 ⁰C for 2 min and then allowed to cool at 25 ⁰C for 30 min. The resin was removed 

by filter centrifugation. Freezing-induced ligation was initiated by freezing 10 uL aliquots 

in a -80 ⁰C ethanol bath for 1 min and rapidly transferring the reaction to a temperature 

controlled polyethylene glycol-water bath.  The quick freezing step avoided variations in 

the rate of freezing for timed reactions. Samples placed directly in the bath gave the same 

results in overnight reactions.  Ligation reactions in solution at 25 ⁰C were initiated by 

adding MgCl2 to the master mix to give a final concentration of 5 mM.  Reactions were 

halted by adding cold stopping solution deionized formamide and 20 mM EDTA with 

bromophenol blue and xylene cyanol in a 4:1 ratio to the sample.  Products were run on a 

12% denaturing polyacrylamide gel (7 M urea) and analyzed with a GE Typhoon Imager 

and Fuji Multi Gauge Imaging software. 

 

Measurement of pH in ice 

5 mL solutions of different buffers, along with cut strips of Baker-pHIX pH 4.5-10 from 

J.T. Baker, were placed in a 36 well plate and then frozen for 3 hours at the indicated 
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temperature.  Pictures were taken before at room temperature and immediately after 

freezing before any significant thawing occurred (Figure 3.12). 

  

Results 
 
Ligation activity of the hammerhead ribozyme in liquid 

 The trans construct of the Schistosoma mansoni hammerhead ribozyme is shown 

in Figure 2.  Single turnover kinetic experiments at 25 ⁰C have shown that the fraction of 

32P-labeled P1>p ligating to P2 plateaus at ~23% within 20 seconds (Canny et al. 2007).  

We obtained a similar value under comparable conditions, and also observed little to no 

cleavage or ligation in the absence of Mg2+ consistent with previous studies at moderate 

ionic strength (Canny et al. 2004). 

 The ligation experiments done by Canny et al in 2004 showed a remarkably fast 

reaction with a kobs, ligate of ~26 min-1, plateauing within 10 seconds with the full length 

Schist26 hammerhead ribozyme.  We extended the experiment and found that the rapid 

increase is soon followed by a gradual decrease of the product yield (Figure 3.4).  Since 

the reaction did not reach equilibrium, this implies that there is another reaction separate 

to the cleavage/ligation of P1>p and P2 to P1•P2. Substituting MgCl2 for CaCl2 shows a 

similar product yield at 20 seconds and maintains ligation products after 2 hours.  

Alternatively switching the Tris pH 8.0 with PIPES pH 8.0 does not prevent the decline 

of the amount of product but instead slows down the rate.  By the end of 2 hours, using 

MgCl2 will have reduced the max yield by over 10%, while CaCl2 is about a 5% loss.  

This separate reaction to the cleavage/ligation appears to be especially exacerbated by the 

combination of MgCl2 and Tris buffer.  Our results are consistent with the observation by 

Roy indicating the 2’3’ cyclic phosphate of P1>p opens with time in the presence of the 

Schist26 complex and high Mg2+ concentration, in which the dynamic ligase/cleavage 

reaction trends irreversibly toward the cleaved state of P1 and P2 (Roy 2008) (Figure 
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S3.1). An experiment was done to test whether the MgCl2 can interact with only the 

P1>p, opening the cyclic phosphate and thereby making the P1 fragment unusable in 

ligation, but after incubation at 25 ⁰C, it showed no bandshift to indicate that the P1>p 

had lost its cyclic phosphate (Figure 3.5). 

 

 

Figure 3.4.  Single turnover ligation kinetics of 32P-labeled P1>p and P2 oligomer 
catalyzed by the hammerhead ribozyme at 25 ⁰C. A) Left lane is aliquot from reaction 
prior to addition of MgCl2. Other lanes show aliquots removed at various times after 
MgCl2 is added to give 5 mM Mg2+. B) Plot of the percentage of P1>p ligated to P1•P2 as 
a function of time. 
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Figure 3.5: 20% PAGE of 32P-P1>p in the presence of 10 mM MgCl2 at room 
temperature.  The first lane has three markers:  32P-P1 (with no phosphate), 32P-P1>p (2'3' 
-cyclic phosphate), and 32P-P1-p (phosphate on the 3').  The individual lanes correspond 
to different time points after MgCl2 was added and no bandshift is visible. 
 

Although Mg2+ greatly enhances ligation in the hammerhead ribozyme, divalent cations 

are not an absolute requirement for ligation even at moderate ionic strength.  Buffer 

choice and incubation temperature also influence ligation.  Using NTE buffer without 

MgCl2 can induce a small amount of ligation if the solution is supercooled to below -10 

⁰C and incubated extended to several days.  Incubating for three days gives a 2% ligation 

yield. If the Tris pH is changed to 7.0, this value increases to 4%.  Using a different 

buffer such as sodium phosphate pH 8.0 gave 6% ligation yield after 24 hrs in a 

supercooled solution at -10 ⁰C.  The low temperature may inhibit the side reaction in 

which the 2’3’ cyclic phosphate of P1>p is opened, and/or enhance the ratio of ligation to 

cleavage rates. The ligation yield without MgCl2 at moderate ionic strength is still much 

lower than can be achieved with freezing. 

 

 Ligation activity of the hammerhead ribozyme in ice 

 We examined if this Schist26 hammerhead ribozyme exhibited the ability to ligate 

RNA in a frozen solution lacking divalent cations as previously demonstrated for the 

HPR (Vlassov et al. 2004).  Figure 3.6A shows that the Schist26 can indeed ligate P1>p 

and P2 under these conditions.  The percentage of P1>p  ligated to P2 was 30% for 

32P-P1 
32P-P1>p 
 
32P-P1-p 
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samples that were quick-frozen in NTE solvent (0.1 M NaCl, 50 mM Tris (pH 8.0), 1 

mM EDTA) and incubated at -10 ⁰C for 24 hours.   Freezing-induced ligation was 

observed at temperatures between -7 ⁰C and -20 ⁰C with the maximum yield for the 

above solvent occurring between -10 ⁰C and -15 ⁰C. When a reaction tube was placed in 

a -10 ⁰C freezer so that the sample remained a super-cooled liquid for 24 hours very little 

ligation was observed (Figure 3.6A and B). Incubating a reaction tube at -80 ⁰C exhibited 

about 2% ligation. 

Figure 3.6C shows the time course of a ligation reaction at -20 ⁰C over one day. The 

majority of the ligated RNA was produced in the first 30 min after freezing. The 

maximum ligation yield at this temperature was 25%. The kinetic data of Figure 3.6D 

was fit by a single exponential. The observed rate constant for ligation was kobs,ligate ~ 

0.066/min.  A kinetic cleavage reaction was also conducted under similar experimental 

conditions starting with trace amounts of the 26 nt 32P-labeled P1•P2 substrate and 0.5 

μM of ribozyme strand. Similar to the ligation assay, samples were prepared in NTE 

solvent, placed in a 80 ⁰C water bath for two minutes, and cooled to 25 oC before being 

frozen and incubated at -20 ⁰C. With no Mg2+ present, cleavage in ice was observed over 

24 hours, kobs,cleavage ~ .060 min-1 (Figure 3.7).   
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Figure 3.6. A)   12 % denaturing polyacrylamide gel showing ligation of P1>p to P2 by 
the hammerhead ribozyme under freezing conditions. First four lanes show results for 
samples quick-frozen and maintained for 24 hrs at -80 ⁰C, -20 ⁰C, -15 ⁰C, and -10 ⁰C. 
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The right-most lane shows a sample that was supercooled to -10 ⁰C and remained a liquid 
for the 24 hr period. B) Fraction of P1>p ligated to P2 for reactions indicated in A.  Bars 
show the average and standard deviation of three replicates.  C) Fraction ligated over a 
day, demonstrating the long-lived products of ligation. D)  Fraction of P1>p ligated to P2 
vs time of incubation at -20 ⁰C (kobs,ligate ~ .066/min).  
 

Figure 3.7: Cleavage of the full length substrate by the Schist26 hammerhead in frozen 
NTE buffer.  A) 12% PAGE 7M Urea separating 32P-labeled full length substrate from 
the 32P-P1>p in a cleavage experiment, incubated at -20 ⁰C.  Individual lanes represent 10 
µL aliquots that had been thawed with a formamide stopping buffer after being frozen to 
initiate the reaction.  B) Plot of the fraction of full length P1•P2 remaining at different 
time points, starting from 100%. 
 
  
 The above experiments were carried out in the absence of divalent cations. If 10 

mM MgCl2 was added to the NTE solvent prior to freezing, little ligated product was 

observed after 24 hrs (~ 1%). This might be due to the high Mg2+ concentration in the 

liquid phase of the eutectic ice-liquid system, and its influence on the 2’3’ cyclic 

phosphate of P1>p. High concentrations of Mg2+ have been observed to enhance 

32P-P1•P2 
 
32P-P1>p 



 38

hydrolysis of the 2’3’ cyclic phosphate of P1>p at room temperature with the presence of 

the Schist26 complex (Roy 2008).        

 

Influence of dehydration on hammerhead ribozyme ligation 

Reduced water activity is one of effects that freezing imposes on the solutes concentrated 

in the interstitial liquid phase within the crystalline ice.  The majority of the water 

molecules are incorporated into the ice reducing the amount of water available as liquid.  

Studies on the hairpin ribozyme indicated that dehydration can also promote Mg2+ 

independent ligation (Kazakov et al. 2006). To assess whether dehydration without 

freezing can induce hammerhead ribozyme ligation, 10 uL aliquots of nM amounts of 
32P-labeled P1>p, 0.5 uM of ribozyme, and 2.5 uM of P2 in NTE solvent was centrifuged 

under vacuum for two hours at 25 ⁰C.  The residue was dissolved in stopping buffer and 

run on a 12% denaturing polyacrylamide gel.  A ligation yield of 7% was obtained.  

Allowing the residue to remain at 25 ⁰C for 20 hours prior to adding stopping buffer did 

not change this value, but some of the P1>p substrate appears to have lost the cyclic 

phosphate (Figure 3.8). The rate of evaporation also appears to be important; allowing a 

sample to dry slowly overnight at room temperature by opening the tube cap gave less 

than 1% ligated product, along with the appearance of the shifted band which may 

represent the loss of a single phosphate. 

 

 

1        2         3         4 
32P-P1•P2 
 
 
 
32P-P1 
32P-P1>p 
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Figure 3.8: 12% PAGE of dehydration-induced ligation of 32P-P1•P2.  Lane 1 shows 32P- 

P1>p as control.  Lane 2 is a typical freeze-induced ligation in NTE buffer for 24 hours in 
-20 ⁰C.  Lane 3 is a 10 uL aliquot that had been speed vacuumed for 2 hours before 
quenching formamide buffer was added.  The last lane is a sample that had also been 
speed vacuumed for 2 hours, but was left at 25 ⁰C for 24 hours before it was quenched. 
 

 While dehydration increases the concentration of all solutes, we next examined 

the ligation reaction at 25 ⁰C in the absence of Mg2+ but in the presence of increased 

monovalent salt concentration.  Hammerhead ribozyme cleavage is known to occur in 

high monovalent cation concentrations in the absence of Mg2+ (O'Rear et al. 2001, 

Murray et al. 1998).  A recent crystal structure reveals at least two sites involved in the 

hammerhead ribozyme catalysis, previously known to only bind to divalent cations, are 

occupied instead by Na+ ions (Anderson et al. 2013). These two sites are important for 

the coordination of phosphate groups and may be involved in the general acid/base 

chemistry occurring during hammerhead ribozymecatalysis. With this in mind, we 

examined the ligation reaction at 25 ⁰C in the presence of high monovalent salt 

concentration. Using 4M NaCl instead of the 100 mM NaCl enables ligation at room 

temperature (Figure 3.9A).  The ligation proceeds at kobs,ligate ~ 1.1/min at 25 ⁰C (Figure 

3.9B), slower than Mg2+ induced ligation at kobs,ligate ~ 26/min at 25 ⁰C. Na+ cations can 

apparently replace the Mg2+ in the hammerhead RNA. The lower ligation rate with 4M 

NaCl, implies Na+ is not as effective at establishing the conditions for the general 

acid/base chemistry of ligation.  
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Figure 3.9: Single turnover ligation reaction of the Schist26 hammerhead in 4M NaCl at 
25 ⁰C.  A) 12% denaturing PAGE separating 32P-P1>p substrate from ligation product 
32P-P1•P2.  10 µL aliquots were taken out at different times and quenched with 
formamide quenching buffer.  Reaction was initiated with the addition of 32P-P1>p. B) 
Graph of percent ligated at different time points, with a kobs,ligate of ~1.1 min-1. 
 

Effect of various solutes in ice 

 The influence of substituting different cations or anions for Na+ or Cl- in the 

reaction solvent was examined. We note that no freeze-induced ligation was observed if 

100 mM NaCl was omitted from the frozen solvent (data not shown). Figure 3.10A 

shows that substituting Li+ for Na+ resulted in a slight increase in ligation yield, while K+ 

or NH4+ gave a lower yield. The replacement of the chloride anion with other anions 

produced a range of effects. NaF, NaBr, NaI, and NaNO3 produced lower yields in the 



 41

ligation reaction when compared to NaCl (Figure 3.10B).  However several anions gave 

significantly higher yields than chloride.   

  

Figure 3.10: Effects of substituting different cations (A) and sodium salt anions (B) for 
the 100 mM NaCl of the standard NTE solution on the fraction of ligated P1>p.  10 uL 
samples were quick-frozen and incubated at -20 ⁰C for 24 hrs. Stopping solution was 
added and samples loaded into lanes of a 12% denaturing urea-polyacrylamide gel.  Bars 
show average values and standard deviation of three replicate experiments. 
 
 
 The sodium salts of citrate, acetate, formate, and glutamate, all with one or more 

carboxylate groups, and thiosulfate had ligation yields higher than sodium chloride at -20 

⁰C (Figure 3.10B).  Sodium citrate produced the highest yield, 43%, in the overnight 

reaction.  Although 100 mM of sodium chloride and sodium citrate do not provide the 
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same concentration of sodium, varying the concentration of sodium citrate between 50 

mM to 300 mM had no observable effect on its yield. When the different anions were 

compared at -15 ⁰C, where sodium chloride produced its highest ligation yield, the 

carboxylate anions still had higher yields although by smaller margins than at -20 ⁰C. 

When sodium citrate was substituted for sodium chloride in the Mg2+-induced ligation 

reaction at 25 ⁰C, no ligation was observed (data not shown). This outcome is likely due 

to citrate’s ability to chelate Mg2+ (Adamala and Szostak 2013) which is needed for 

ligation in solution at moderate ionic strength.  

 Since osmolytes, polyamines, and amino acids have been shown to influence 

RNA structure (Lambert and Draper 2007; Higashi et al. 2008; Serganov and Patel 2009), 

we examined the effect of members of these solute classes on freezing-induced ligation.  

Solutes added to the canonical NTE solvent were simple sugars (50 mM of glucose, 

lactose, sucrose, or trehalose); osmolytes (1% glycerol or 100 mM trimethylamine N-

oxide), and polyamines (10 mM spermine or spermidine).  Freezing-induced ligation 

yields in the 24 hr reaction were comparable to the control reaction.  Except for 

isoleucine and tryptophan, which reduced ligation yield to about 10%, the addition of the 

20 common amino acids at 10 mM did not have a significant effect on ligation.   

        

Thermal cycling increases ligation yield 

 Periodic freeze-thaw cycling is a plausible scenario for a prebiotic environment. 

In principle this could enhance the amount of the ribozyme ligated product by promoting 

turnover of product and substrate and/or refolding of inactive complexes to active 

complexes. Cycles of freezing and thawing increased the ligation yield of the hairpin 

ribozyme (Vlassov et al. 2004).  Samples were frozen and incubated at -20 ⁰C for 24 hrs, 

heated to 70 ⁰C for 2 min, monotonically cooled to 25 ⁰C over 15-30 min, and then 

frozen and incubated again at -20 ⁰C (Figure 3.11A).  After four cycles, ligated product in 



 43

the standard NTE solution reached a maximum of 38%, an increase of 13% above one 

freeze-thaw cycle (Figure 3.11B).   If 100 mM sodium chloride was replaced with 100 

mM sodium citrate the ligation yield was 43% after the first freeze-thaw cycle, and 

plateaued at 60% after four cycles. The increase in product with thermal cycling implies 

that active ribozymes were able to release P1•P2 and bind and ligate other P1>p and P2 

substrates. The inability of the ligation yield to approach 100% even with a high ratio of 

enzyme and P2 strands to P1>p may reflect long-lived inactive ribozymes (Canny et al. 

2007).  It may also involve the slow rate of opening the 2’3’cyclic phosphate of P1>p as a 

side reaction of the Schist26 ribozyme strand bound to P1>p, however if this is the case 

one could expect the ligation yield to decrease upon additional cycling.  

 

Figure 3.11. A) Schematic of the thermal cycling experiment.  Samples were heated to 70 
⁰C for 2 min, cooled for 15-30 min at 25 ⁰C, then quick-frozen and incubated at -20 ⁰C 
for 24 hrs.  Cycle was repeated.  B)  Results of ligation reaction after increasing rounds of 
thermal cycling.  The diagonal cross hatch bars are with samples in the standard NTE 
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solution. The black bars are results with 100 mM sodium citrate replacing 100 mM 
sodium chloride of NTE solution. 
 
 
Effect of pH on hammerhead ligation  

      The influence of the solvent pH (measured at 25 ⁰C) on the freezing-induced 

ligation yield was also examined.  The pH of the NTE solvent from 7.0 to 9.0 did not 

have a significant effect on ligation, probably due to how the pH of Tris buffer increases 

when the solution is frozen (Figure 3.12).  An alternative method to generating the P1>p 

without the use of the hammerhead ribozyme, is the use of carbodiimide in a MES buffer 

pH 5.5 (Hertel 1994). To assess ligation at pH 5.5 and 8.0 in the same buffer, the 50 mM 

Tris buffer of the NTE solvent was replaced with 50 mM sodium phosphate. Virtually no 

ligation product was detected at pH 5.5 at any tested temperature while the yield was 

highest at 24% for the phosphate buffer at pH 8.0 in -15 ⁰C (data not shown).  

   

Changes in buffer pH in ice 

 The pH of a solution does not stay the same at all temperatures.  Although the pH 

of our Tris starts out as 8.0, freezing the solution will change that initial pH.  Even 

lowering the temperature will raise the pH; a 50 mM pH 8.0 Tris buffer at 37 ⁰C, will rise 

to pH 8.3 at 25 ⁰C, and then continue to increase to pH 8.9 at 5 ⁰C (Sambrooks and 

Russell 2001)).  No data for pH of Tris in ice was found, but it would be reasonable to 

think that the indirect relationship between temperature and Tris pH is maintained even in 

frozen conditions.  We tested the pH by freezing pH strips from J.T. Baker, Germany in 

various frozen buffers (Figure 3.12).  As expected, a pH 8.0 Tris buffer increases in pH 

by one or two.  In contrast, the pH of PIPES remains stable in ice and did not change. 
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Figure 3.12: pH measurement of various buffers before and during freezing at -20 ⁰C.  A) 
Top panel of twelve cells filled with buffers and pH strips. Bottom panel is the same 
twelve cells after being frozen at -20 ⁰C for three hours. Color change of the pH strips in 
frozen solution indicate a pH change. B) Table of cells and the buffers tested.  Tris buffer 
shows an increase in pH when frozen. Cell numbers 1 to 6 represent the top row of cells 
in the tray and 7 to 12 refer to the bottom row. 
 

 

Cell Solution
1 pH standard 7.0 ~7/~6
2 pH standard 8.0 ~8/~8
3 pH standard 10.0 ~10/~10
4 50 mM Tris pH 8.0, 100 mM NaCl ~8/~9
5 50 mM Tris pH 8.0, 100 mM NaBr ~8/~9
6 50 mM Tris pH 8.0, 100 mM NaFl ~8/~10
7 50 mM Tris pH 8.0, 100 mM NaI ~8/~10
8 50 mM PIPES pH 8.0, 100 mM NaCl ~8/~8
9 50 mM PIPES pH 8.0, 100 mM NaBr ~8/~8
10 50 mM PIPES pH 8.0, 100 mM NaFl ~8/~8
11 50 mM PIPES pH 8.0, 100 mM NaI ~8/~8
12 Millipore filtered water ~6/~6

25 oC/ -20 oC

A 

B 
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Discussion 
 
 

 The results presented in this study demonstrate that the Schistosoma hammerhead 

can efficiently ligate RNA oligomers in frozen solution in the absence of Mg2+. Under 

single turnover conditions, freezing induced ligation produced yields up to 43% after one 

freeze-thaw cycle, and 60% if several freeze-thaw cycles were employed to denature and 

refold the ribozyme-substrates complex. These values are significantly higher than the 

maximum ligation yield of 23% reported for this ribozyme in solution. 

 The increase in ligation over several days of freeze-thaw cycles also indicates that 

the 2’3’ cyclic phosphate group on P1>p is relatively stable under the conditions 

employed. This was not the case for the Mg2+-induced ligation reaction at 25 ⁰C (Figure 

3.4), or when 10 mM Mg2+ was present in the frozen solution. At 25 ⁰C the ligated 

product slowly decreased after reaching a maximum in ~20 seconds, and in frozen 

solution no product was observed after an incubation of 24 hrs. These observations may 

be due to the slow opening of the 2’3’cyclic phosphate as a side reaction of HHR ligation 

in the presence of high concentrations of Mg2+ (Roy 2008 ). 

 Freezing-induced ligation in the absence of Mg2+ is much slower than ligation in 

solution with Mg2+, but the product was more stable.  The ligation activity of the HHR in 

the eutectic ice-liquid environment appears to result from the high concentration of 

monovalent salts in the liquid phase. When NaCl was removed from the NTE solvent, 

freezing-induced ligation was not observed. Freezing a solution crystallizes the majority 

of the water, concentrating the RNA and other solutes in the remaining liquid phase and 

reducing the water activity of this environment (Kanavarioti et al. 2001; Trinks et al. 

2005). The hammerhead ribozyme is known to cleave in high monovalent salt 

concentrations in aqueous solution (Murray et al. 1998; Curtis and Bartel 2001) and here 

we show that it can ligate with high salt concentrations in the absence of divalent cations.  
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Although lowering solution temperature shifts hammerhead cleavage-ligation equilibrium 

toward ligation when Mg2+ is present (Stage-Zimmermann and Uhlenbeck 2001), 

incubating reaction samples below 0 ⁰C without ice formation produced very little 

ligation (Figure 3.5A). 

 Experiments with the hairpin ribozyme suggested that dehydration of RNA by the 

concentrated salts is a major factor in this ribozyme’s ligation activity in ice (Kazakov et 

al. 2006).  For the hammerhead ribozyme we observed that dehydrating and 

concentrating a reaction sample by vacuum centrifugation at 25 ⁰C produced ligated 

products in support of this interpretation.  However the rate of dehydration was 

important.  When a similar sample was allowed to slowly evaporate overnight at 25 ⁰C 

the amount of ligated product was negligible. 

 Ligation by the hammerhead in frozen solution was observed using a variety of 

solvent conditions with generally similar yields.  Notable exceptions were the higher 

product yields obtained when sodium chloride was replaced with sodium salts of formate, 

acetate, and citrate, anions with carboxylate groups, and with sodium thiosulfate.  The 

favorable effects of the above anions in the eutectic system may be due to a combination 

of factors.   

 It has been demonstrated that hydrolysis of the RNA backbone by a ligand can be 

influenced by a carboxylate ion acting as a general base (Endo et al. 1996). In the 

generally accepted model of the cleavage reaction by the hammerhead, the 2’-OH of the 

G8 nucleoside acts as a general acid interacting with the oxygen on the scissile phosphate 

P1.1, while N1 of the G12 base acts as a general base abstracting the hydrogen from the 

2’-OH of the C17 nucleoside to generate an oxygen nucleophile (Han and Burke 2005).  

Similarly, the ligation reaction would require a general acid and a general base but in a 

different sequence of events.  Thiosulfate and the three carboxylate anions; formate, 

acetate, and citrate all have pKa values well below the pH 8.0 of the Tris buffer.  All of 

these anions would be expected to be deprotonated.  If anions bind to an appropriate 
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RNA site (Auffinger et al. 2011), they may serve as a general base and enhance the 

ligation reaction (Figure S3.2). 

The above anions may also favor ligation activity by binding water molecules in the 

vicinity of the HHR and promote ligation through dehydration.  Formate, acetate and 

citrate have positive Jones-Dole viscosity B coefficients (0.052, 0.250, 0.75) a measure of 

the strength of ion-water interactions relative to water-water interaction in solution 

(Collins 2006) .  Thiosulfate, which also enhanced ligation yield, also has a positive B 

coefficient of .170 (Figure S3.3) (Wolf 1966).  Most anions that did not enhance ligation 

have negative B coefficients ( I, Br, NO3) (Collins 2006). 

 Two anions that did not follow the above trend were fluoride and sulfate.  

Fluoride has a positive B coefficient of 0.10 but its ligation yield was only 9%. Sulfate is 

a strongly hydrated anion with B= 0.210, but it gave a very low ligation yield (Figure 

3.9B).  However the outcomes with sodium fluoride and sodium sulfate may be related to 

their relatively low solubility compared to the sodium salts that enhanced ligation.  The 

sodium salts of chloride, citrate, acetate, formate and thiosulfate at 0 ⁰C have solubility 

values per 100 g water ≥ 32 g, while sodium sulfate is 4.9g and sodium fluoride is 3.6g 

(Gao et al. 2012, Haynes 2013, Seidell and Linke 1958).  Sodium fluoride and sodium 

sulfate may precipitate in the liquid phase of the frozen solution. Figure S3.3 plots the 

anion B coefficients vs. ligation yields obtained in Figure 3.10. The correlation between 

the hydration strength and solubility characteristics of the anions and their influence on 

ligation suggests that these two factors are important in freezing-induced ligation by the 

HHR. 
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Supplementary 

 

Figure S3.1: Reaction scheme of the Schist26 HHR reversible cleavage and ligation 
reaction with a branching irreversible side reaction for P1-p (Adapted from Canny et al. 
2007). 
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Figure S3.2: Proposed mechanism for hammerhead ligation with a carboxylate 
participating in the acid/base chemistry during catalysis (Adapted from Chi et al. 2008). 
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Figure S3.3: Plot Percent Ligated by Schist26 hammerhead versus Jones-Dole viscosity B 
coefficients. 
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CHAPTER 4 

EFFECT OF MUTANT P1 AND P2 ON HAMMERHEAD 

RIBOZYME LIGATION IN ICE 

 

Introduction 
 
 The hammerhead enzyme is a catalytic RNA first found in the tobacco ringspot 

virus (Prody et al. 1986) and then later, among other organisms, in schistosomes 

(Chartrand et al. 1995).  It is a motif with a conserved catalytic core with three stems. The 

hammerhead ribozyme being tested is the Schist26 from the parasite Schistosoma 

mansoni; it has longer stems than the minimal ribozyme to include the hairpin loop in 

Stem II and the internal loop at Stem 1 (Canny et al. 2007) (Figure 4.1).  The 

hammerhead ribozyme can catalyze reversible transesterification reaction which produces 

two cleavage products: P1 with a 2'3' -cyclic phosphate and a P2 with a 5' OH.  For 

efficient catalysis, both ligation and cleavage, the loop-loop interactions between Stems I 

and II is crucial and is supported by the stable basepairing of those helices (De la Pena et 

al. 2003, Khorova et al. 2003). It was three years later when the three-dimensional 

structure of a natural hammerhead ribozyme showed that the terminal loop of Stem II 

non-canonically base pairs with Stem I's internal loop (Martick and Scott 2006).  While 

Stem III requires no loops, it does require a minimum of four base pairs for efficient 

cleavage activity (Canny et al. 2007).   

 The results presented in the last chapter demonstrate that the Schistosoma 

Schist26 can efficiently ligate RNA oligomers in frozen solution in the absence of Mg2+. 

Under single turnover conditions, freezing induced ligation produced yields up to 43% 

after one freeze-thaw cycle, and 60% if several freeze-thaw cycles were employed to 
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denature and refold the ribozyme-substrates complex. These values are significantly 

higher than the maximum ligation yield of 23% reported for this ribozyme in solution. 

The increase in ligation over several days of freeze-thaw cycles also indicates that the 

2’3’ cyclic phosphate group on P1>p is relatively stable under the conditions employed. 

This was not the case for the Mg2+-induced ligation reaction at 25 ⁰C (Fig.2), or when 10 

mM Mg2+ was present in the frozen solution. At 25 ⁰C the ligated product slowly 

decreased after reaching a maximum in ~20 seconds, and in frozen solution no product 

was observed after an incubation of 24 hrs. These observations may be due to the slow 

opening of the 2’3’cyclic phosphate as a side reaction of Schist26 ligation in the presence 

of high concentrations of Mg2+ (Roy 2008). 

 Freezing-induced ligation in the absence of Mg2+ is much slower than ligation in 

solution with Mg2+, but the product was more stable.   

 Mutant P1 and P2 fragments were designed to test the base pairing requirement of 

the Schist26 hammerhead ligation in ice.  Three P1 mutant sequences were examined. 

The P1-M mutant has one guanine switched to an adenine and the P1-7 mutant is missing 

three nucleotides from the 5' end (Figure 4.1).  Of the three P1 mutants examined, P1-5 

provides the most stringent assessment of the base pairing requirements in ice versus in 

liquid.  Although a minimum of four base pairs in Stem III was sufficient for efficient 

cleavage of the P1•P2 substrate at 25 ⁰C with Mg2+, the ligation reaction required more 

than five base pairs between the P1 and E strand.  Canny et al (2007) showed that P1-5 is 

unable to ligate to P2 at 25 ⁰C and 10 mM MgCl2 due to the high dissociation rate of P1-

5 compared to the ribozyme's ligation rate (Canny et al. 2007).  The P2-5N mutants 

consisted of a pool of P2 fragments with a mixture of all four bases at five positions that 

normally form Watson Crick base pairs of Stem I.  Mismatches at these positions could 

also possibly affect the tertiary interactions between Stems I and II (Figure 4.1). 
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Figure 4.1: Secondary structure of the Schist26 hammerhead ribozyme from Schistosoma 
mansoni with its ligation substrates P1 and P2.  Black symbolizes the ribozyme or E 
strand and red letters indicate substrates, both wild type and mutants.  Blue letters 
represent the base substitutions with N = A,G,C, or U (Adapted from Canny et al. 2007). 
 
 

Materials and Methods 

 

RNA oligomers and modification   

 The 49-nt S. mansoni hammerhead ribozyme strand (E) was generated by in vitro 

transcription of a 68 bp DNA containing the template sequence joined to a T7 promoter. 

The DNA template strands (IDTDNA) were characterized by denaturing gel 

electrophoresis to verify purity.  They were heated to 90 ⁰C for two min and slowly 

cooled to form a duplex before being transcribed with an Ambion MEGAscript T7 kit.  

The resulting RNA was gel purified. Other RNA oligomers were chemically synthesized 

(IDTDNA), characterized by denaturing gel electrophoresis and modified if necessary as 

described below. They were P1: 5’GGAGGGCAUCp3’, P2: 

5’CUGGAUUCCACUCGCC3’, P1•P2: 
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5’GGAGGGCAUCCUGGAUUCCACUCGCC3’, P1-7: 5’GGGCAUCp3’, P1-5: 

5’GCAUCp3’, P1-M: 5’GGAGAGCAUCp3’, pP1: 5’pGGAGGGAUCp3’, and P2-5N: 

5’CUGNNUUCCACNNNCC3’ where N represents a mixture of the four bases A,C,G. 

U.  Figure 4.1 displays the E and P1•P2 strands assembled as the S. mansoni hammerhead 

ribozyme, and some of the other oligomers.    

 The P1>p strand, which is the P1 sequence with a 2’3’ cyclic phosphate at its 3’ 

end, was generated either from hammerhead ribozyme-facilitated cleavage of P1•P2, or 

by treatment of P1 with 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC).  

Cleavage of 10 pmoles of P1•P2 followed after it was 5’ 32P-end labeled using T4 

polynucleotide kinase (3’phosphatase minus) and 32P-γATP in a 50 ul reaction. 100 

pmoles of the E strand was added to 5’ end-labeled P1•P2 in kinase buffer, and the 

reaction cycled four times for  2 min at 70 ⁰C and 20 min at 25 ⁰C.  To generate a 2’3’ 

cyclic phosphate at the 3’ end of P1 and its mutant derivatives, the RNA was incubated 

with 50 mM EDC, 100 mM MES buffer pH 5.5 for 1 hr at 37 ⁰C (Hertel et al. 1994).  

P1>p and its mutant derivatives were purified from their unmodified substrates by 20% 

denaturing PAGE, excised, and ethanol precipitated with glycogen.   

 

Ligation reactions 

 A typical master mix contained 0.5 µM ribozyme strand, 2.5 µM P2 fragment, 

and trace amounts of 32P-labeled P1>p in a 100 uL solution of 50 mM Tris pH 8.0, 100 

mM NaCl, and 0.1 mM EDTA (NTE buffer).  Sodium mesh chelating resin (Sigma) was 

used to remove trace amounts of Mg2+ in buffers and reaction mixtures.   The chelating 

resin was included in the RNA annealing step in which the reaction mixture was heated 

to 80 ⁰C for 2 min and then allowed to cool at 25 ⁰C for 30 min. The resin was removed 

by filter centrifugation. Freezing-induced ligation was initiated by freezing 10 uL aliquots 

in a -80 ⁰C ethanol bath for 1 min and rapidly transferring the reaction to a temperature 

controlled polyethylene glycol-water bath.  The quick freezing step avoided variations in 
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the rate of freezing for timed reactions. Samples placed directly in the bath gave the same 

results in overnight reactions.  Ligation reactions in solution at 25 ⁰C were initiated by 

adding MgCl2 to the master mix to give a final concentration of 5 mM.  Reactions were 

halted by adding cold stopping solution of deionized formamide and 20 mM EDTA with 

bromophenol blue and xylene cyanol in a 4:1 ratio to the sample.  Products were run on a 

12% denaturing polyacrylamide gel (7 M urea) and analyzed with a GE Typhoon Imager 

and Fuji Multi Gauge Imaging software. 

 

Sequencing of ligation products using P2-5N substrate 

 A 200 uL reaction with 1µM of pP1>p, 5 µM of hammerhead ribozyme strand, 

and 25 µM of P2-5N in 100 mM sodium citrate, 0.1 mM EDTA, and 50 mM Tris (pH 

8.0), was heated to 70 ⁰C for 1 min and subsequently cooled for 15-30 min at 25 ⁰C 

before being frozen at -20 ⁰C for 24 hrs.  The reaction was heated and then quick-frozen 

3 additional times.  The ribozyme strand was removed by heating the reaction at 80 ⁰C 

for 1 min with 100 uL of a 5’ biotinylated complementary DNA strand (5’-

AGGGCATTTCGTCCTATTTGGGACTCGTCAGCTGGATGTACCTCGCC -3’) at 50 

µM and cooled to 25 ⁰C prior to adding streptavidin beads to remove the ribozyme 

strand-DNA hybrid. Residual DNA was removed by digesting the sample with DNase 

(Ambion TURBO DNase).  The 26nt RNA ligation products were gel purified and 

precipitated with EdgeBio Quick-Precip Plus solution.  

 A cDNA library was prepared for Illumina sequencing from the 26 nt RNAs with 

the NEBNext Small RNA Library Preparation Kit (NEB Inc).  The amplified cDNA was 

gel purified and verified for purity by observing only a single band in a 5% native PAGE, 

correct length of ~145bp, and concentration using an Agilent model 2100 Bioanalyzer. 

Single read sequence data was obtained by LCSciences Inc.  A Q score of 30 or higher 

was observed for 97% of base reads. Sequencing was also carried out with Georgia 

Tech’s Illumina HiSeq2000.  Data from each run were filtered and sorted and both gave 
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essentially the same hierarchy of RNA sequences.  The Perl script used to analyze the 

sequence data, and the 100 most frequently encountered sequences are given in 

Supplementary Figure S4.1 and Table S4.1.   

 

Results 
 

The effect of mutations in P1 and P2 on ligation in frozen solution   

 Efficient ligation is dependent on low dissociation rates compared to the ligation 

rate, and freezing the hammerhead complex may lower the dissociation rates to allow 

ligation of short substrates. To explore how the stability of the Stem III duplex influences 

ligation, three P1 homologs were synthesized and treated with EDC to generate 

2’3’cyclic phosphates at their 3’ ends.  All three of the modified P1 sequences could be 

ligated to P2 in frozen solution (Figure 4.2).  P1-7 and P1-M gave similar ligation yields, 

averaging 24% for the five solvents employed.  P1-5 ligated to P2 with an average 

ligation yield of 14% over all tested solvents.  
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Figure 4.2. Hammerhead ribozyme ligation using various P1 constructs.  Each has the 
2’3’ cyclic phosphate at their 3’ ends. Average values of fraction ligated and standard 
deviations are based on three to four replicate experiments. All samples were incubated at 
-20 ⁰C for 24 hrs prior to 12% denaturing PAGE analysis.  Effects of various sodium 
salts at 100 mM in 50 mM Tris (8.0) + 0.1 mM EDTA solution are shown. 
 
    
   We next examined the influence of mismatches in the duplex formed by the 

ribozyme strand and P2.  Freezing induced ligation of P1>p with P2-5N in NTE solvent 

gave a yield of ~12% in a 24 hr reaction at -20 ⁰C.  Since 1024 different sequences are 

expected in the pool of P2-5N oligomers, more than just the wild type P2 was ligated to 

P1. The P1•P2-5N ligation product was prepared for sequencing as described in Material 

and Methods, purified by gel electrophoresis and a cDNA library prepared for Illumina 

sequencing.  70 out of the 1024 possible P2 sequences were represented in ligated 

products at greater than 1000 read counts per million. The 100 most frequently 

encountered sequences (Table S4.1) displayed a consensus sequence that differed at three 

of the five randomized positions from the wild type GA-UCG sequence. The consensus 

bases and the percentages at which they appeared were GG-U(G/U)U with percentages of 
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58%, 42%, 58%, 38%, and 36% respectively (position 23 had 38% G and 38% U and is 

thus designated G/U) (Figure 4.3).   

 

Figure 4.3: Letters are scaled to how much that base is represented in the Hiseq runs.  
The dominant bases appear to be G in the fourth position of the P2-5N (fourteenth base 
on the full length product), G in the fifth (fifteenth), U in the eleventh (21st), U or G on 
the twelfth (22nd), and finally U on the thirteenth (23rd).   
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Fig 4.4:  Fraction of P1>p ligated to wild type P2 (filled bars) or P2-GG-UGU (diagonal 
hatch bars) induced by freezing to -20 ⁰C with sodium citrate, after multiple thermal 
cycles as described in Figure 3.10.   

Figure 4.5: Comparison of Mg2+ induced ligation reaction at 25 ⁰C in NTE solution with 
5 mM Mg2+ as described in Materials and Methods. Dashed line corresponds to P1>p and 
P2, while solid line corresponds to P1>p and P2-GG-UGU.  
 

The wild type P2 sequence was surprisingly not the most frequently encountered 

sequence among the ligated products (see Discussion). The most frequently encountered 

sequence, P2-GG-UGU (Figure 4.1) is consistent with the above consensus sequence.  It 

was tested individually in a freezing-induced ligation reaction. This sequence was less 

efficiently ligated than the wild type P2 sequence, but gave substantial yields of ~30% in 

24 hrs, and ~45% after four thermal cycles (Figure 4.4). A point worth noting with regard 

to the P2-GG-UGU oligomer was its behavior in the Mg2+ induced ligation reaction at 25 

⁰C.  Unlike P2, which reached a plateau within 20 seconds, P2-GG-UGU ligated to P1>p 

at a much slower rate, but reached a slightly higher maximum in 30 min at 25 ⁰C (Figure 

4.5).  A fit to a single exponential equation for data obtained for times between 0 and 30 
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minutes gave a value of kobs ~ 0.13 min-1 for P2-GG-UGU. For the P2 sequence kobs at 25 

⁰C was in the range of 10 to 40 min-1 for times between 0 and 5 minutes. With its 1000+ 

mutants, P2-5N kobs between 0-10 min is about 0.09 min-1 at 25 ⁰C.  

Discussion 
 

The ability of the HHR to ligate mutated P1 and P2 substrates in frozen solution 

indicates that this environment has a reduced requirement for ribozyme-substrate 

Watson-Crick base pair stability compared to ambient temperatures.  The five-nucleotide 

substrate P1-5, which showed no ligation at 25 ⁰C (Canny et al. 2007) was ligated to P2 

in  frozen solution.  70 out of the 1024 possible P2 sequences were represented by 103 or 

more read counts per million.  The observation that the wild type P2 sequence was not 

the most highly represented sequence in the ligated P1•P2-5N ensemble (Table S4.1) was 

unexpected.  When assessed individually in the eutectic environment, the wild type P2 

sequence ligated more efficiently to P1 than the P2 sequence with the highest read 

counts, P2-GG-UGU (Figure 4.4).  Several factors, in addition to ribozyme-substrate 

stability, are likely to have contributed to the order of the P1•P2-5N oligomers found by 

read counts.  The five randomized positions of P2-5N may not have had equal molar 

amounts of the four bases due to different coupling efficiencies of the RNA bases (A. 

Conklin, Integrated DNA Technologies, personal communication).  A less likely factor is 

PCR amplification bias. Hairpin-like structures predicted by RNA Structure (Reuter and 

Mathews 2010) for some P1•P2-5N sequences linked to the 5’ adapter of the library kit 

could contribute to this.  Another factor is the pool of P2-5N itself.  The only difference 

in protocol between the ligation reaction used for library preparation and the reactions for 

Figure 4.4 is the concentration of RNA.  P2-5N makes up the bulk of the total RNA 
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concentration with 25 µM.  The wild type P2 may have bound to mutant P2s instead of 

the ribozyme, resulting in reduced read counts. 

Supplementary 
 
Table S4.1: Top 100 most frequent sequences pulled from the Hiseq runs of Schist26 
ligation with P2-5N.  The numbers associated with each sequence is the number of counts 
per million. 
364712.8 GGAGGGCATCCTGGGTTCCACTGTCC 

170857 GGAGGGCATCCTGGGTTCCACTGGCC 

61995.38 GGAGGGCATCCTGGGTTCCACTGACC 

44902 GGAGGGCATCCTGAGTTCCACTGTCC 

38530.5 GGAGGGCATCCTGGGTTCCACGTTCC 

36783.75 GGAGGGCATCCTGTGTTCCACTGTCC 

20198.88 GGAGGGCATCCTGTATTCCACTGTCC 

17827.5 GGAGGGCATCCTGGTTTCCACTGTCC 

17551.88 GGAGGGCATCCTGTTTTCCACTGTCC 

13461.38 GGAGGGCATCCTGAGTTCCACTGGCC 

11252 GGAGGGCATCCTGGGTTCCACTTGCC 

10499.5 GGAGGGCATCCTGGGTTCCACGTACC 

8918.75 GGAGGGCATCCTGGATTCCACTGGCC 

8409.75 GGAGGGCATCCTGGGTTCCACTTTCC 

7428.5 GGAGGGCATCCTGGGTTCCACGCGCC 

7141.125 GGAGGGCATCCTGGATTCCACTGTCC 

6833.75 GGAGGGCATCCTGAATTCCACTGTCC 

6478.625 GGAGGGCATCCTGAGTTCCACTGACC 

6429.125 GGAGGGCATCCTGGTTTCCACTGGCC 

5880.75 GGAGGGCATCCTGGGTTCCACGTGCC 
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Table S4.1 continued 
  
5302.375 GGAGGGCATCCTGGTTTCCACGTTCC 

5276 GGAGGGCATCCTGGGTTCCACGCTCC 

4978.75 GGAGGGCATCCTGTTTTCCACTGGCC 

4758.75 GGAGGGCATCCTGGGTTCCACGGTCC 

4739.5 GGAGGGCATCCTGGGTTCCACTCGCC 

4428.375 GGAGGGCATCCTGGGTTCCACTGCCC 

3979.5 GGAGGGCATCCTGGTTTCCACTGACC 

3735.625 GGAGGGCATCCTGGGTTCCACGCACC 

3595.625 GGAGGGCATCCTGGTTTCCACTCGCC 

3586.125 GGAGGGCATCCTGTTTTCCACTGACC 

3527.375 GGAGGGCATCCTGGTTTCCACTTTCC 

3083.125 GGAGGGCATCCTGTGTTCCACTGGCC 

3052.25 GGAGGGCATCCTGGGTTCCACCTGCC 

2853.5 GGAGGGCATCCTGGGTTCCACTCTCC 

2799.375 GGAGGGCATCCTGGATTCCACGCGCC 

2799.25 GGAGGGCATCCTGAATTCCACTGGCC 

2783.5 GGAGGGCATCCTGGGTTCCACTAGCC 

2623.625 GGAGGGCATCCTGAATTCCACTGACC 

2473.75 GGAGGGCATCCTGTATTCCACTGGCC 

2311.125 GGAGGGCATCCTGATTTCCACTGACC 

2265.375 GGAGGGCATCCTGTATTCCACTTTCC 

2060 GGAGGGCATCCTGGGTTCCACCTTCC 

2027.875 GGAGGGCATCCTGATTTCCACTGTCC 

2001.25 GGAGGGCATCCTGGATTCCACGTTCC 

1973.625 GGAGGGCATCCTGGGTTCCACGTCCC 
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Table S4.1 continued  

1957.75 GGAGGGCATCCTGGGTTCCACCGTCC 

1933.125 GGAGGGCATCCTGGATTCCACTGACC 

1791.875 GGAGGGCATCCTGATTTCCACTGGCC 

1744.5 GGAGGGCATCCTGGTTTCCACGCTCC 

1656.875 GGAGGGCATCCTGGTTTCCACTTGCC 

1621.625 GGAGGGCATCCTGTGTTCCACTGACC 

1574.75 GGAGGGCATCCTGGGTTCCACTTACC 

1468.75 GGAGGGCATCCTGGGTTCCACGGGCC 

1409 GGAGGGCATCCTGAGTTCCACGTTCC 

1391.375 GGAGGGCATCCTGGTTTCCACGCGCC 

1385 GGAGGGCATCCTGGGTTCCACTATCC 

1382.75 GGAGGGCATCCTGGATTCCACGTACC 

1380.625 GGAGGGCATCCTGAATTCCACGTACC 

1353.375 GGAGGGCATCCTGGTTTCCACTGCCC 

1308.25 GGAGGGCATCCTGGATTCCACTTGCC 

1245.25 GGAGGGCATCCTGAATTCCACTTTCC 

1201.25 GGAGGGCATCCTGGATTCCACGCACC 

1141.875 GGAGGGCATCCTGGTTTCCACGTACC 

1135.375 GGAGGGCATCCTGAATTCCACGCACC 

1127.375 GGAGGGCATCCTGGGTTCCACCGGCC 

1106.125 GGAGGGCATCCTGAATTCCACTTGCC 

1067.5 GGAGGGCATCCTGAATTCCACTTACC 

1061.25 GGAGGGCATCCTGGATTCCACGCTCC 

1060 GGAGGGCATCCTGTGTTCCACGTTCC 

1046.75 GGAGGGCATCCTGAATTCCACGCGCC 
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Table S4.1 continued  

1041.875 GGAGGGCATCCTGATTTCCACGTTCC 

1041.75 GGAGGGCATCCTGAATTCCACGTTCC 

1018.5 GGAGGGCATCCTGGTTTCCACGCACC 

989.125 GGAGGGCATCCTGGTTTCCACGTCCC 

968.875 GGAGGGCATCCTGGGTTCCACACGCC 

965.75 GGAGGGCATCCTGGTTTCCACTTACC 

921.125 GGAGGGCATCCTGGGTTCCACTTCCC 

915.25 GGAGGGCATCCTGGTTTCCACGTGCC 

883.5 GGAGGGCATCCTGAGTTCCACTTGCC 

856.625 GGAGGGCATCCTGTGTTCCACTTTCC 

853 GGAGGGCATCCTGAATTCCACTTCCC 

849.125 GGAGGGCATCCTGAGTTCCACTTTCC 

834.25 GGAGGGCATCCTGGGTTCCACAGTCC 

822.625 GGAGGGCATCCTGAATTCCACGTCCC 

788.5 GGAGGGCATCCTGTATTCCACTCACC 

786.625 GGAGGGCATCCTGTATTCCACGTTCC 

784.625 GGAGGGCATCCTGAATTCCACGAACC 

784.125 GGAGGGCATCCTGGTTTCCACTCTCC 

757.75 GGAGGGCATCCTGTATTCCACTGACC 

752.375 GGAGGGCATCCTGGATTCCACTCGCC 

737 GGAGGGCATCCTGGGTTCCACATGCC 

697.25 GGAGGGCATCCTGTATTCCACTCTCC 

685 GGAGGGCATCCTGTTTTCCACTCTCC 

675.5 GGAGGGCATCCTGGCTTCCACTGTCC 

673.25 GGAGGGCATCCTGGATTCCACTGCCC 
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Table S4.1 continued  

650.875 GGAGGGCATCCTGAGTTCCACTGCCC 

616.125 GGAGGGCATCCTGGGTTCCACGGACC 

610.625 GGAGGGCATCCTGAGTTCCACCTGCC 

610.5 GGAGGGCATCCTGGATTCCACGTGCC 

599 GGAGGGCATCCTGGTTTCCACCTTCC 

 

 
#!/usr/bin/perl -w 
#use strict; 
 
 
my $infilename = $ARGV[0]; 
my $outfilename = $ARGV[1]; 
 
my $lookfor = "GGAGGGCATCCTG..TTCCAC...CC"; 
 
# Open the file. 
open(INFILE, $infilename) or die "Cannot open $ARGV[0]: $!.\n"; 
open(OUTFILE, '>', $outfilename) or die "no out file input. $!.\n"; 
 
# read every line 
while(my $line = <INFILE>) { 
 $match = false; 
 my $i = 0; 
 my $ii = 0; 
 my $iii = 0; 
 my $match = false; 
 
 
 for($i = 0; $i < length($line);$i++){ 
  $outline = ""; 
  $ii = 0; 
  my $match1 = substr($line,$i,1); 
  my $match2 = substr($lookfor,$ii,1); 
   
 
Figure S4.1: Perl script used to search for P1•P2-5N from the Hiseq runs.  Raw data 
had to be filtered and sequences put into a single column before the script was run. 
 
 



 67

  if($match1 eq $match2){ 
    
   for($i;$i < length($line); $i++){  
    $iii = $i; 
     
    $match1 = substr($line,$i,1); 
    $match2 = substr($lookfor,$ii,1); 
     
    if($match2 eq "."){$outline .= substr($line,$i,1);} 
    else { 
      
     if($match1 eq $match2) { $outline .= 
substr($line,$i,1);}  
     else { $match = false;$i = $iii; last;} 
    } 
     
    if($ii >= length($lookfor)) {$match = false; last;} 
    if(substr($lookfor,length($lookfor) - 1,1) eq 
substr($line,$i,1)){ 
     if( $ii == length($lookfor) - 1) {$match = true; 
print OUTFILE "$outline\n";last;} 
    } 
     
    $ii++; 
   } 
  } 
   
 } 
} 
 
close INFILE; 
close OUTFILE; 
 

Figure S4.1 continued 
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CHAPTER 5 

DNAZYME LIGATION IN ICE 

 

 

 Ribozymes have had a longer history compared to DNAzymes (DNA enzymes).  

The first ribozymes were first discovered in the early 1980’s, by Altman’s group working 

on RNase P in E. coli, and Cech’s group working on rRNA splicing in Tetrahymena 

thermophila (Kruger et al. 1982, Guerrier-Takada et al. 1983).  The work on these 

ribozymes would later lead to the Nobel Prize in Chemistry for being the first to discover 

the catalytic properties of RNA. Since then there have been many examples of natural 

catalytic RNAs: the hammerhead ribozyme (Prody et al. 1986, Hutchins et al. 1986), 

hairpin ribozyme from the tobacco ringspot virus (Hampel and Tritz 1989, Feldstein et al. 

1989), self-splicing Group I introns (Cech 1990), and the glmS ribozyme that can both 

catalyze the production of glucosamine-6-phosphate and self-cleavage (Winkler et al. 

2004) among several.  In contrast, the first DNAzyme was first found in 1994 and only 

through in vitro selection.  It could cleave a single RNA linkage embedded in the DNA 

sequence, with Pb2+ as cofactor, and claiming a 105 fold rate over spontaneous RNA 

cleavage (Breaker and Joyce 1994) (Figure 5.1). Since this first discovery, there have 

been more RNA-cleaving DNAzymes from in vitro selection experiments with varying 

functions including a biosensor for lead ions (Li and Lu 2000), repair enzyme for 

thymine dimers in DNA (Daniel and Dipankar 2004), and even as a nanomaterial for use 

in nanowires, nanoarchitectures and computing (Ito and Fukusaki 2004).  The metal 

cofactor requirements for these have a wide range from Mg2+ (Breaker and Joyce 1995), 

Zn2+ (Li et al. 2000), Mn2+ (Cruz et al. 2004), Cu2+ (Liu and Lu 2007), the amino acid 

histidine (Roth and Breaker 1998), to no cofactor (Geyer and Sen 1997).     
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Figure 5.1 Cleavage of RNA catalyzed by both ribozymes and DNAzymes.  The cleavage 
products is 2'3' -cyclic phosphate and a 5' -OH (Reprinted from Tram et al. 2012) 
 

 Although all known DNAzymes were artificially selected and have yet to be 

found in nature, this does not preclude DNA from being a contender as a biomolecule in 

a self-replicating system on early Earth.  There are many examples of cleaving 

DNAzymes, but what about ligation?  DNAzymes can ligate both RNA and DNA 

(Cuenoud and Szostak 1995, Sreedhara et al. 2004, Liu and Lu 2007, Purtha et al. 2005).  

One type of DNA ligase forms a new phosphodiester bond between a 5' -OH and a 3' -

phosphorimidazolide (Cuenoud and Szostak 1995) and another DNAzyme requires an 

AppDNA oligo and a 3'OH on the other oligo (Sreedhara et al. 2004). As for RNA 

ligation, In vitro selection has generated many DNA sequences that can form a 3'-5' 

linkage between two RNA substrates possessing a 2'3' -diol on one and a 5' triphosphate 

on the other (Figure 5.2).  The requirement for a high energy nucleoside triphosphate 

makes this reaction unlikely for early Earth (Keefe and Miller 1995).   
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Figure 5.2: RNA-ligating DNAzyme with a 40nt core region with binding arms for the 
two RNA substrates.  One RNA substrate must possess a 2'3' -diol, the other a 5' 
triphosphate (Reprinted from Purtha et al. 2005) 

 

 Both RNA cleavage reactions of the DNAzyme and the ribozyme generate a 2'3'-

cyclic phosphate and a 5'-OH (Figure 5.1).  Cleaved products can ligate back to full 

length RNA substrate by increasing the ligation rate in frozen solution, perhaps this is 

true for the RNA cleaving DNAzymes as well.  The DNAzymes tested are variants of 

two motifs: the 8-17 and the 10-23 (Figure 5.3).  These motifs have different secondary 

structure, cleavage/ligation site requirements, and solution condition requirements for 

efficient cleavage (Santoro and Joyce 1997, Cruz et al. 2004). 

 

 

Figure 5.3: Secondary structures of 8-17 and 10-23 DNAzyme motifs with substrate 
requirements.  8-17 requires A and G in the dinucleotide junction for efficient cleavage.  
10-23 cleaves between an R (purine A or G) and Y (pyrimidine U or C) (Reprinted from 
Santoro and Joyce 1997). 
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Methods and Materials 
 
RNAs and DNAs 
 

All RNAs and DNAs were ordered from Integrated DNA Technologies (IDT), 

Iowa.  Each pair of DNAzyme/RNA substrate with an attached 6-fluorescein amidite 

targeted a specific dinucleotide junction cleavage site (Table 5.1).  A*A: 5'- GAA ACT 

TGC TTA AGC AAG AAG CAT GTC AGT GAC TCG AA A AAA AAT TCG TTA 3'/ 

5’ UAA CGA AUU UUU UA*A GUG CUU CUU GCU UAA GCA AGU UUC -6-FAM 

3’; A*C: 5'- AAA TTC G GGCTAGCTACAACGA T ACA CCA GGA AAT CTG ATG 

TGT T -3'/ 5’ AAC ACA UCA GAU UUC CUG GUG UAA CGA AUU U -6-FAM 3’; 

A*G: 5'- GAA ACT TGC TTA AGC AAG AAG CA T GTC AGC GAC ACG AA TA 

AAA AAT TCG TTA -3'/ 5’ UAA CGA AUU UUU UAA* GUG CUU CUU GCU UAA 

GCA AGU UUC -6-FAM 3’; A*U: 5’ GGC GAG TGG AAG GCT AGC TAC AAC 

GAC CAG GAT GCC CTC C 3’/ 5’GGA GGG CAU CCU GGA* UUC CAC UCG CC 

-8-FAM 3’;  C*A: 5'- AAA TTC GTT ACA CCA GGA AAT C GTC AGCT GAC 

TCGAA ATG TGT T -3'/ 5’ AAC ACA UC*A GAU UUC CUG GUG UAA CGA AUU 

U -6-FAM 3’; C*C: 5'- AAA TTC GTT ACA CCA T GTC AGC GAC ACG AA A AAT 

CTG ATG TGT T -3'/ 5’ AAC ACA UCA GAU UUC* CUG GUG UAA CGA AUU U -

6-FAM 3’; C*G: 5'- AAA TT T GTC AGC GAC ACG AA TT ACA CCA GGA AAT 

CTG ATG TGT T -3'/ 5’ AAC ACA UCA GAU UUC CUG GUG UAA C*GA AUU U -

6-FAM 3’; C*U: 5'- AAA TTC GTT ACA CCA GGCTAGCTACAACGA GA AAT 

CTG ATG TGT T -3'/ 5’ AAC ACA UCA GAU UUC C*UG GUG UAA CGA AUU U -

6-FAM 3’. 
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DNAzyme Ligation 

1 µM of each DNAzyme that contains the 10-23 core region was annealed to 1 µL 

of substrate RNA by heating to 90 ⁰C in 100 µL of 50 mM Tris pH 7.5, 150 mM NaCl 

for 2 min before MgCl2 was added to a final concentration of 10 mM and then incubated 

at 37 ⁰C for 1 hour.  Similarly for the 8-17 variants, 1 µM DNAzyme and 1 µM of the 

appropriate RNA substrate was heated to 90 ⁰C in 100 µL of 50 mM HEPES pH 7.0, 100 

mM KCl, 400 mM NaCl for 2 min, before the addition of 7.5 mM MgCl2 and 7.5 mM 

MnCl2 and subsequent incubation at 23 ⁰C for 1 hour.  

This heating and cooling was repeated five more times for complete cleavage.  10 

µL aliquots were removed, quick-frozen with a -80 ⁰C ethanol bath, and incubated at the 

indicated temperatures. Reactions were halted by adding a stopping solution of deionized 

formamide and 20 mM EDTA with bromophenol blue and xylene cyanol in a 4:1 volume 

ratio to the sample.  Products were run on a 12% denaturing polyacrylamide gel (7 M 

urea) and analyzed with an Alpha Imager and Fuji Multi Gauge Imaging software. 

Results 
 
DNAzyme Ligation of P1 and P2 
 

We tested RNA-cleaving DNAzymes on eight of the 16 possible dinucleotide 

junctions.  The DNAzyme motif chosen for each junction is based on a DNAzyme's 

observed preferences on a cleavage site. The substrates are all natural sequences with the 

designated dinucleotide in the RNA. Of the eight DNAzyme/RNA pair, only one 

demonstrated ligation (Table 5.1). 
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Table 5.1: Dinucleotide junctions with associated DNAzyme/RNA substrate pair.  Only 
one of the 8 pairs showed successful ligation. 

 
 
 
 
 
 
 
 The 10-23 DNAzyme motif is able to ligate the dinucleotide junction A*U using 

its own cleavage reaction buffer, with only one difference: a different incubation 

temperature.  The incubation temperature used for cleavage is 37 °C, but cooling the 

solution changes the equilibrium constant, increasing the ligation rate compared to the 

cleavage rate (Figure 5.4A).  Freezing the solution achieves the highest ligation yield of 

31% at both -10 °C and -15 °C, but ice formation is not strictly necessary since some 

ligation occurs even if the solution remains in liquid phase at -10 °C (Figure 5.4B). 

A        B 

 

 
 
 
 
 
Figure 5.4: DNAzyme motif 10-23 ligating the P1•P2 RNA of the Schist26 hammerhead 
ribozyme. A) 12% PAGE 7M Urea separating the full length FAM6-labeled P1•P2 (+) 
from the cleaved product (-).  B) Graph of ligation yield at different temperatures. 
Freezing does not appear to be necessary, but it does enhance ligation (31% at -10 °C) 
compared to supercooled (7% at -10 °C). Data represents at least three replicates with 
standard deviation as error bars. 
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Effect of buffer and pH 

The standard cleavage/ligation buffer includes 50 mM Tris pH 7.5 with 150 mM 

NaCl.  If the pH deviates from 7.5, the ligation yield (31%) suffers and drops to less than 

20% at pH 7.0 and about 25% at pH 8.0 (Figure 5.5). Carboxylates have been shown to 

increase the freeze-induced ligation yield of the Schist26 hammerhead ribozyme (Chapter 

3), and we wondered if this may be true for the 10-23 DNAzyme. Replacing 150 mM 

NaCl with tri-sodium citrate did not show ligation products at pH 7.0, but increasing the 

pH eventually brought its ligation yield to comparable numbers to the standard solution. 

We replaced Tris with another common buffer: HEPES.  There was no significant 

difference in ligation yield between pH 7.0 and 8.0, but overall it did better than Tris, 

reaching 40% (Figure 5.5).  Percent yield for the three conditions tested appears to 

increase as the buffer approaches pH 8.0, if Tris’s pH is adjusted for low temperatures.  In 

Chapter 3, Tris at pH 8.0 at 25 ⁰C, increases by 1 at -20 ⁰C.  The temperatures are not the 

same here, but it does indicate that pH 8.0 in Figure 5.5 has a higher value at -15 ⁰C. 

 

Figure 5.5: Plot of 10-23 DNAzyme ligation at different buffer conditions, frozen at -15 
°C.  Blue line is the standard 50 mM Tris with 150 NaCl.  Orange uses 50 mM Tris with 
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150 tri-sodium citrate and the gray line is 50 mM HEPES with 150 NaCl. 

 

Discussion 
 
 
 The RNA World hypothesis has had many decades to accumulate functional 

ribozymes, providing more and more support that RNA, not DNA or protein, was the key 

biomolecule for a self-replicating system. Catalytic RNAs have many functions, but 

among them is cleavage and ligation of RNA substrates, important processes for 

generating complexity and diversity in RNA sequences.  

 As for DNAzymes, the first ones to be discovered were RNA-cleaving and 

generated a 5’-OH and 2’3’-cyclic phosphate, similar products to many RNA-cleaving 

ribozymes (Breaker and Joyce 1994). RNA-ligating DNAzymes were eventually 

discovered, but required a 5’-triphosphate and a 2’3’-diol.  The work presented here 

demonstrates a simpler system for ligation, without the high-energy polyphosphate as a 

substrate requirement.  Because the RNA-cleaving DNAzymes generate similar products 

like the hairpin and hammerhead ribozymes, they may ligate these two cleaved substrates 

back together. This ligation reaction was achieved in ice for the hairpin ribozyme by 

Vlassov et al. in 2004 and for the hammerhead ribozyme in Chapter 3. 

 Of all the DNAzymes tested, only one showed observable ligation (Table 5.1).  

The 10-23 DNAzyme ligated well in a 1:1:1 ratio of enzyme to both substrates, up to 

40%.  Although the other DNAzyme/RNA substrate pairs did not show observable 

ligation, does not mean they are incapable of ligation.  The protocol requires almost 

complete cleavage of the full length RNA substrates by the DNAzyme to generate the 

cleaved RNA products needed for ligation.  Many of the enzymes could not cleave half of 

the RNA despite repeated cycles of heating and annealing.  If ligation occurred, it was 

indistinguishable from the uncleaved full length RNA substrate. 
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CHAPTER 6 

CONCLUSION 

 

 We can never know how life started, but we can always propose ideas on how it 

may have started.  One of these is the RNA World Hypothesis.  It suggests that RNA is 

the likeliest candidate in early self-replicating systems (Woese 1967, Orgel 1968, and 

Crick 1968).  Chapter 2 widens the RNA World to include the possibility of Fe2+ in RNA 

catalysis.  Chapters 3 and 4 argue for a cold and dry RNA World.  Chapter 5 is meant to 

expand the RNA World, not challenge it.  DNAzymes and ribozymes may have 

coexisted, cleaving and ligating themselves and each other. 

 Most of the chapters have no clear practical application, except for Chapter 5.  

The DNAzymes tested can potentially be base paired to any RNA sequence and cleave at 

specific sites, like using a restriction enzyme for specific DNA sequences.  The only 

requirement is choosing the right DNAzyme motif and designing the DNAzyme binding 

arms to be complementary to the target RNA. Ligation, the other side of the reversible 

cleavage reaction, also holds that potential.  This can allow the ligation of specific RNAs 

in a pool of other RNAs, eliminating the need for extraction and purification beforehand. 

Growing the Ribosomal RNA 
 
 Both cleavage and ligation reactions on RNA is important for the RNA World, 

this back and forth process can generate new and diverse sequences.  Here we combine 

the major themes of this thesis to propose how the complexity in ribosomal RNA may 

have evolved. 
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Figure 6.1: Model of the a-PTC.  A) The 3-D model of the ~ 60 Å in diameter a-PTC 
over the watermark of the LSU. B) Secondary structure of the a-PTC as proposed by 
SHAPE and RNAse H digestion assay (Adapted from Hsiao et al. 2013). 
 
 
 The ribosome is one of biology’s most important processes, responsible for 

translating RNA to proteins.  The large subunit (LSU) of the ribosome contains the 

peptidyl transferase center (PTC), the site of catalysis for peptide bonds, and is believed 

to be the oldest part of the ribosome.  A model for a truncated LSU with sections of the 

23S rRNA, ribosomal peptides, and divalent cations was designed to preserve the 

catalytic activity and then called the ancestral (a-PTC) (Hsiao et al. 2013).  This model 

reduced the ~3000 nucleotide 23S rRNA to 615 nucleotides (Figure 6.1).  Although this 

was a considerable reduction in size, the rRNA can be further broken down into phases, 

each composed of a set of insertion fingerprints and ancestral expansion segments (AES). 

As the oldest region of the rRNA, Phase 1 and 2 represented the PTC with AES 1 to 5 

(Petrov et al. 2014). Figure 6.2 exhibits the insertion fingerprint site on the AES 1 where 

it will be expanded by AES 2. Although this model provides a step by step series of 

rRNA insertions and expansions, it does not show how the rRNA acquired them. 
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Figure 6.2: Ribosomal RNA evolution with insertion fingerprints and ancestral expansion 
segments (AES).  A) Peptidyl transferase center color coded into AES 1 to 5. B) AES 1 is 
expanded by AES 2 from the insertion fingerprint site (Adapted from Petrov et al. 2014). 
 
 
 Lutay et al. demonstrated in 2007 the non-enzymatic recombination of RNA using 

simple RNA oligos O1 and O2.  Dangling non-base paired poly(A) ends of the O1 RNA 

can be degraded by metal-induced cleavage, leaving a 2’3’-cyclic phosphate available for 

ligation to the neighboring RNA strand possessing a 5’ –OH, leading to the product O1-

O1 without the poly(A) tail (Figure 6.3). Replication of this non-enzymatic 

recombination produced two ligation products: one band about 26 nt, presumably the O1-

O1 product with a tail of AAAA, and another about 22 nt with no poly(A) tails (Figure 

6.4).  This recombination is inefficient even after 7 days of incubation with 5 mM MgCl2.    
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Figure 6.3: Predicted duplex formation of O1 and O2 RNA oligos. A) Nonenzymatic 
recombination of RNA occurs when the poly(A) tail of O1 is degraded, leaving a 2’3’-
cyclic phosphate at the end of seq2 and then ligation between the seq2 and seq1. B) The 
26nt product is the result of the ligation of two O1 oligos with one poly(A) tail (Reprinted 
from Lutay et al. 2007).   
 
 

 

Figure 6.4: 12% PAGE replicating the non-enzymatic recombination of RNA oligos done 
by Lutay et al. 2007.  Lane 1 is 32P-labeled 26nt and 10nt RNA. Lane 2 contains the 32P-
labeled 16nt O1 RNA oligo.  Lane 3 contains the 32P-labeled O1 and non-labeled O2 in 
bis-tris-propane pH 9.0, 5 mM MgCl2, at 37 ⁰C for 7 days. 
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Figure 6.5: Non-enzymatic RNA recombination of AES 1 to include AES 2.  Poly(A) tail 
will degrade, leaving a 2’3’ –cyclic phosphate to ligate to the 5’ –OH of the adjacent 
strand. 
 
 
 This non-enzymatic RNA recombination can be applied to ribosomal evolution.  

A spontaneous nick in AES 1 can open the area for AES 2 to base pair (Figure 6.5).  

Ligation of AES 2 into AES 1 completes the recombination.  The divalent metal cation 

used to induce cleavage is Mg2+, but perhaps using Fe2+ will enhance the recombination 

yield. 

 A second method for recombination is through DNAzymes (Figure 6.6).  

DNAzymes can cleave at specific sites on the AES 1, generating a 2’3’-cyclic phosphate 

and 5’OH.  AES 2 can insert into the nicked AES 1 and be ligated by other DNAzymes.  

If recombination is done with freeze-induced ligation, the DNAzymes that cleaved AES 1 

can be the same ones that ligate, if DNAzymes demonstrate similar reduced sequence 

requirements observed for Schist26 hammerhead enzyme in Chapter 4. 
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Figure 6.6: AES 2 ligating into AES 1 by DNAzymes.  Ligation can be preceded by 
cleavage by DNAzymes as well. 
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