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SUMMARY 

To enhance the current materials design paradigm, a vastly improved 

understanding of structure-property relationships across a wide range of material systems 

is required. Recent initiatives have highlighted the importance of using a synthesized 

approach of experiment and modeling to further elucidate these relationships. Numerical 

models should aim to robustly predict the effect of different microstructural features on 

material response, but certainly require validation against relevant experimental data, 

ideally on several different length scales. 

With this in mind, experimental in-plane deformation maps as a tool for 

mesoscale calibration is presented. First, an investigation of the errors associated with 

experimental strain maps from Digital Image Correlation (DIC) and methods for 

optimizing experimental and numerical protocols to reduce uncertainty are presented. 

Second, a method to employ in-plane strain maps in calibrating a high-order numerical 

model is presented, highlighting the ability of the experimental dataset to further reduce 

the parameter space determined from experimental macroscopic load-displacement data. 

Lastly, a new, microstructurally-sensitive creep damage model is proposed and employed 

in a finite-element framework, and shows excellent agreement with experimental data, 

especially in the tertiary creep regime. 
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CHAPTER 1. INTRODUCTION 

1.1 Materials Science by Design 

Critical advancements in medicine, energy, transportation, and virtually all other 

fields of technology are enabled by the discovery and development of new materials with 

innovative and unique property combinations. However, the current materials design 

paradigm is one based mostly on a trial-and-error approach, where materials are 

iteratively generated and tested against their application requirements. This strategy is 

inefficient and expensive, which makes material innovation the limiting factor in the 

design of new technologies. 

Ideally, materials could be designed for their applications from the start, in a 

process where different ingredients of materials science are aggregated to produce 

desired functionality. Projects like the Materials Genome Initiative (MGI) have 

recognized this potential for an improved materials design infrastructure. MGI proposes 

changing the current, disjointed linear materials development continuum in favor of a 

more iterative cycle where different stages of design are mixed, therefore acknowledging 

their codependence. The overall goal of MGI is to reduce by half, for a given material, 

the time from laboratory concept to wide-scale market adoption [1, 2]. 

Vital to the success of this goal are robust models that can predict material 

behavior based on a wide range of inputs. Multiscale modeling efforts, such as Integrated 

Computational Materials Engineering (ICME), aim to explicitly describe the physical 

processes occurring on different length scales and how they aggregate to a bulk response 
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[3, 4]. Intuitively, only physically-justified descriptions of material response will provide 

accurate predictions of behavior across many applications, when compared to empirical 

relations alone.  

In order to validate such models, comparison with experimental data is of course 

necessary, and should be accomplished on several different length scales. Indeed, it has 

been shown that bulk response characterization is not sufficient in identifying the unique 

set of parameters for a numerical model. Therefore, a co-design approach to 

experimentation is encouraged, where domains of theory and experiment are in direct 

communication so that they will iteratively produce datasets which are considered 

valuable to both sides [5]. 

1.2 Thesis Plan 

With these objectives in mind, this thesis demonstrates a synthesized approach to 

experiment design. First, in Chapter 2, the experimental approach is described, where 

digital image correlation (DIC) is studied for its accuracy in measuring the heterogeneous 

strain fields from a polycrystalline material system. Several sources of uncertainty are 

thoroughly investigated, and a tool for determining the instrument resolution of DIC is 

presented. 

In Chapter 3, the role of DIC-measured strain in parameterizing a high-order 

numerical model is studied. The model is implemented in a finite-element framework, 

allowing for a full-field material response prediction. Since it is shown that comparison 

with experiment on the bulk-scale alone can “validate” several varying parameter 
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combinations, it is postulated that comparison on the mesoscale, using DIC-measured 

strain fields, can further reduce the parameter space. 

In Chapter 4, a new microstructurally-sensitive damage model for the creep 

behavior of polycrystalline materials is presented. The model is founded on physical 

descriptions of local porosity evolution and is implemented in the same finite-element 

framework as Chapter 3. Numerical predictions of material response show excellent 

agreement with experimental data, especially in the tertiary creep regime. 
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CHAPTER 2. TOWARDS QUANTITATIVE CRYSTAL 

PLASTICITY MODEL VALIDATION USING EXPERIMENTAL 

IN-PLANE DEFORMATION MAPS 

2.1 Abstract 

In this chapter, a crystal plasticity based constitutive model implemented in a 

high-resolution full-field Fast Fourier Transform (FFT) mechanical solver is used to 

perform a numerical experiment in an aluminum polycrystal subjected to uniaxial tension 

up to one percent strain. These FFT simulations provide for the ‘true/reference’ 

displacement and strain fields everywhere in the system. In parallel, images of 

experimentally generated DIC patterns are collected. The digitized patterns are then 

numerically displaced as dictated from the local reference displacements fields obtained 

from the polycrystal plasticity simulations. Comparing deformed and original patterns, 

DIC strain maps are generated with NCorr DIC software. Those DIC maps are then 

directly compared with the references strain maps obtained from the FFT simulations. 

Using this approach, it is shown that inexpensive DIC experiments can result in strain 

measurements of high enough quality to be quantitatively compared to models. 

2.2 Background 

Typically, constitutive models are calibrated against stress-relaxation, uniaxial, or 

multi-axial tests where the texture evolution is also monitored [6]. Further, it has been 

proposed to use either the dislocation content extracted from diffraction peak profile 

analysis [7] or the breadth of diffraction lines as metrics for calibrating constitutive 
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models. However, the aforementioned characterization methods produce metrics lacking 

spatial resolution. Digital Image Correlation (DIC) is a scale agnostic, in-situ 

experimental mapping technique that tracks displacement of patterned surface features 

during loading. DIC may be used to obtain full-field surface strain maps from the 

measured displacement fields, but it should be noted that highly inhomogeneous 

deformation fields of polycrystalline metals pose significant challenges for DIC. Several 

approaches have been proposed to address these issues. This includes use of high-

resolution optics and patterns [8-10], and development of DIC algorithms achieving sub-

pixel resolution. Following this idea, researchers were able to obtain integrated 

crystallographic and deformation data by coupling DIC with Electron Backscattering 

Detection (EBSD) [11-13].  

Clearly, the prospect of automating model validation and rejection by using 

objective error functions is greatly appealing, and some attempts have been proposed in 

the literature [14], but a crucial step still remains in quantifying the limits in accuracy 

offered by DIC. A typical DIC experiment has several sources of error including, those 

associated with image acquisition, pattern quality and DIC algorithm limitations. This 

chapter aims to quantify the error from pattern quality and DIC parameter selection, and 

the context of these two factors is briefly discussed here. 

First, in order to track surface feature displacement with high fidelity, a sample 

must have a low correlation between groups of pixels (i.e. be as randomized as possible), 

and as such, random “patterns” are applied often to a sample. The quality (randomness) 

of an applied pattern is therefore important. If separate groups of pixels within a pattern 

are quantitatively similar to one another, then a given subset can be “identified” at the 
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wrong coordinate location in a loaded image. Clearly, this will cause erroneous 

displacement and strain measurements. 

For similar reasons, poor subset window size selection by the user can produce 

error in strain measurements. Since displacements are averaged within local subsets, it is 

intuitive that minimizing the subset radius will produce higher resolution strain mapping, 

especially for regions were deformation is highly localized. However, smaller subsets are 

more likely to be quantitatively similar in features, and therefore can produce errors of 

the same type described just above. Therefore selection of subset size is a balance 

between resolution and “noise” from erroneous subset identification. 

2.3 Experimental Protocol 

2.3.1 Pattern Generation and Classification 

Pattern quality plays a crucial role in obtaining reliable measurements of strain 

and displacement from DIC. In this work, considerations are deliberately limited to 

patterns that can be realistically generated using an airbrush and applied on a metallic 

surface. Thirty-two speckle patterns were generated on an aluminum alloy surface using 

an Iwata CM-B 0.18 mm airbrush. The airbrush deposits paint particles on the surface as 

spherical globules in the ~5-30 µm range, with size and concentration depending on the 

paint viscosity, air pressure, distance between airbrush and sample, and spray aperture. A 

wide array of patterns was generated by varying these application techniques. In order to 

enhance the dynamic grey scale range, paints of different colors were used. Prior to 

pattern application, the sample was painted with a base white coat to conceal features 

inherent to the sample surface.  The samples were imaged using an 8-bit Edmund Optics 
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camera with an image size of 1920 x 2560 pixels corresponding to a field of view of 2.1 x 

2.7 mm. Lighting was maintained to minimize glare and shadow effects, and translated 

image pairs of each pattern were acquired during the process. For this work, four 

representative patterns are selected for focus, based a visual inspection of the dataset. 

Patterns were characterized using several complementary techniques. First, a two-

point correlation function is computed. It is defined as the following: 

 〈 〉 (1) 

where  denotes the image intensity at material position , and 〈… 〉 denotes averaging 

over all positions . The patterns thus generated were found to be isotropic and therefore 

the correlation function only depends on the distance r =|r|. The two-point correlation 

function can be used to estimate typical feature sizing, and overall image density [15, 16]. 

In a more qualitative sense, the correlation function reveals the probability that two points 

of an image, separated by distance r, will both be of the same feature type. The two-point 

correlation analysis was performed for patterns whose images were thresholded with the 

Otsu method using Image J [17]. 

Additionally, a cluster analysis of the binary patterns was used to obtain the 

diameter, centroid coordinates and population density of the speckles. The cluster 

analysis relied on a Hough Transformation method for locating imperfect instances on a 

particular shape in an image [18, 19]. With this method, circles of varying radii could be 

fit to speckles for each pattern. Additionally, fitted circles whose areal density was less 
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than 80% black were considered false positives and removed from analysis. Finally, 

normalized histograms of the patterns were examined. 

2.3.2 In-plane Displacement and Strain from Digital Image Correlation 

This work uses the open source 2D, subset-based DIC code, NCorr [20]. Subset-

based DIC algorithms split a patterned image into smaller regions (subsets) and track 

where subsets move in subsequent images obtained during loading. For the case of 

NCorr, subsets are circular in shape, and are defined on the reference image at integer 

locations. Both the subset radius, , as well as the subset spacing can be varied. The 

deformation in each subset is assumed to be a linear, first order transformation so that:  

 

		 , ∈   (2) 

where  and  are the x and y coordinates of a deformed reference subset point. 

The " " subscript in Equation 2 is to delineate a transformation between two different 

coordinate systems in the reference image and subscript “ ” denotes the center of the 

subset [20]. The location of the subset in the deformed configuration is found from the 

extrema of a correlation function defined from the convolution of gray scale values of the 

reference and subsequent images. For NCorr, a nonlinear optimizer, e.g. Inverse 

Compositional Gauss-Newton (ICGN), is further used to obtain subset displacements 

with sub-pixel resolution through interpolation with biquintic B-splines of the gray scale 

images. The above analysis procedure provides in-plane displacements u and v with sub-

pixel resolution for each subset center, “ ”. NCorr obtains in-plane strains from the 
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gradients of a least-square plane fit of a group of points in the displacement field. From 

the above discussion, each DIC analysis can give displacements for a given subset 

window size and subset window overlap. The strain field can be obtained by performing 

a least-square plane fit over a group of points of size we from the displacement field. In 

this work an examination of the difference in strain fields as a function of subset window 

radius, , are conducted for a polycrystalline metal with a highly heterogeneous 

deformation field. 

2.3.3 Rigid-Body Translation 

Quality assessment of patterns and image acquisition is often done by DIC 

analysis of the pattern after a simple translation without imposing a load. Rigid body 

translation (RBT) of an object does not cause deformation and therefore under such a 

transformation the strain fields should be zero. Any measured strain field values set an 

effective low limit of the resolution of DIC. Effectively, this is the minimal error in the 

analysis and is irreducible. Images of the generated patterns were obtained 

experimentally before and after the sample was translated by approximately 10 µm 

without any load applied. In addition, an image from each pattern was digitally translated 

by similar magnitude using interpolation functions, whose uncertainty is quantified in 

Section 2.5.3. Both experimentally and numerically translated image pairs were analyzed 

using NCorr [20, 21] and the resulting displacements ,  were obtained for different 

subset window radii of  = 15, 25, and 50 pixels (~16.1, 26.8, and 53.5 µm) and an 

overlap of 1 pixel (~1.07 µm). The strains were calculated from the displacement fields 

using a strain window of 5 pixels (~5.4 µm). In the case of RBT, the average of absolute 
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measured strain, 〈 〉 , for each component  and across every analysis site, , is 

studied in subsequent analysis for each pattern and subset size.  

2.4 Numerical Protocol 

2.4.1 Crystal Plasticity Model 

The constitutive model and calibration parameters used were originally proposed 

by Richeton et al. in [22]. The main elements of the model are therefore summarized in 

what follows. The plastic deformation and strain hardening induced by the slip of 

dislocations is accounted for by a conventional crystal plasticity framework rendering the 

evolution of mobile and sessile dislocation densities on slip systems as well  as latent 

hardening  [22]. The plastic slip rate tensor, , is: 

 1 2⁄ 	 	 , (3) 

where  is the plastic slip rate on slip plane  of slip direction  and normal 

. The mobile dislocation density  in system  moves at an average velocity . The 

magnitude of the Burgers vector of all 12 fcc slip systems is , and 	1/2

 is the symmetrized orientation Schmid tensor.  By denoting the Cauchy stress 

tensor , plastic slip on system  is activated by the resolved shear stress 	 :  

through the velocity power law  

 | |
sign . (4) 
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In the above,  and  are respectively reference velocity and power law exponent. The 

term  represents forest hardening on slip systems due to forest dislocation densities. 

Latent hardening is assumed in the following form [23]: 

 
, (5) 

where the latent hardening coefficient  provides the contribution  of the forest density 

 on system  to hardening of system . A mean value  is taken for all these 

coefficients, except for collinear interactions, i.e. interactions involving the same Burgers 

vector, where the value  is used. Such reaction is known to lead strong latent 

hardening effects. Starting from the initial values  and , the evolution of slip 

system mobile and forest dislocation densities with plastic straining is given by the 

following rate laws: 

 
| |, (6) 

 
| | (7) 

In the above,  and  reflect mobile and forest dislocation source terms, , , and  

account respectively for the contribution of forest dislocation to mobile dislocation 

sources, the arrest of mobile dislocations due to interactions with forest dislocations, and 



12 
 

dynamic recovery. All material parameters, listed in Table 1, were obtained from [22] by 

fitting against experimental results.  

Table 1. Constants used in FFT numerical model 

Parameter  Al alloy [22] 
  Power-law exponent 20  
  Reference velocity 5 10 	m/s  

  Initial mobile dislocation density 22 10 m   
  Initial forest dislocation density 22 10 m   

  Non-collinear dislocation hardening term  0.12  
  Collinear dislocation hardening term 1.265  

  Burgers vector 2.862 10 m  
  Mobile dislocation source term 2.8 10   

  Forest dislocation source term 1.4 10   
  Forest-mobile dislocation contribution term 2.2 10   
  Arrest of mobile dislocations term 80  
  Dynamic recovery term 500  

  Lamé constant 62	GPa  
  Shear modulus 23	GPa  

In order to obtain numerically the full field solution for the response of the 

medium, a Fast Fourier Transform approach is used. In a small strain framework, there is 

consideration of the elastic-plastic deformation of a body B subjected to external 

displacements  and tractions  on its external boundaries  and . In the absence 

of body forces and inertia effects, the balance of the Cauchy stress tensor is: 

 	 0 (8) 

Homogeneous linear isotropic elasticity is reasonably assumed in the case of aluminum: 

 2 . (9) 
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In the above,  and μ are the Lamé constants. The tensor 	  is the elastic strain 

tensor,  and  are the total and plastic strain tensors. Using Equation 8 together with the 

strain decomposition 	 	 	 	 , one can obtain: 

 ∗ : ∗ :  (10) 

where  is the applied mean strain and  is the modified Green operator. Here, 

3 2  is the 4th order stiffness tensor, and 	 	 	 	 ,  with    a fictitious 

stiffness tensor of a numerical reference medium. I is the fourth order identity tensor 

while K is the fourth order tensor extracting the dilatational component of any second 

order tensor. Validation of the model is shown in Figure 1, where a comparison between 

predictions of the mechanical response of single crystals subjected to monotonic and 

uniaxial loading along the [001], [112] and [123] directions are compared to experimental 

data [24]. 
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Figure 1. Model calibration parameters using single crystal testing under uniaxial 
loading along [001], [112] and [123] directions. Solid lines show the numerical 

prediction as compared to the experimental data. 

2.4.2 Virtual Pattern Deformation 

To provide a reference data set against which the accuracy of DIC approach can 

be quantified, the model is exercised to simulate plastic flow in a polycrystalline sample. 

To this end, a discretized grid of 1024x1024 voxels is employed, representing a total 

domain size of approximately 2.1mm x 2.1mm (to match the field-of-view of the camera 

used to image samples). A two-dimensional polycrystal, made of 100 grains, is generated 

by a standard Poisson-Voronoi procedure, with random grain orientation. This virtual 

sample is then subjected to a macroscopic mean strain with value 	 	0.01, 

, and using a strain rate of 1 10 	s .  The loading is discretized into 

fixed time steps of 0.02 seconds, and the time integration of the crystal plasticity law 

made using a standard theta-method with 	 	0.5. 

An image from each speckle pattern was digitally strained using displacement 

fields from the two-dimensional (2D) polycrystalline aluminum alloy simulation. The 
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simulation field was mapped onto the image using high-order interpolation with all the 

associated interpolation errors carefully quantified (see Section 2.5.3). In addition, a 

reasonable size of 200 µm for Al grains, corresponding to an ASTM grain size of 2, was 

chosen for the simulation. 

In the case of polycrystalline deformation simulation, the local of absolute 

difference, , between the in-plane strains measured from DIC and the simulation 

at each analysis site, , is studied and defined as: 

 . (11) 

2.5 Results and Discussion 

2.5.1 Pattern Classification 

Figure 2 shows the grayscale images of four patterns selected for further analysis 

based on a visual examination. The four chosen patterns represent the greatest variation 

of features such as speckle areal density, speckle size and speckle spacing. P1 was 

created using four different colors (black, red, blue, and yellow), with a narrow spray 

aperture, at a distance far from the sample (7 inches). P2 was produced using black and 

yellow paint, with a wide aperture, applied very close to the sample (4 inches). P3 was 

produced using all four colors, with a wide aperture, applied very close to the sample. P4 

was created using all four colors, with a wide aperture, at a distance far from the sample. 

P1 and P4 images can be used to examine the effect of spray aperture width on the 

pattern, P2 and P3 can be used to understand effect of using multiple colors, and P3 and 

P4 can be used to understand the effect of application distance.   
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Figure 2. Four patterns (P1, P2, P3, and P4) created using airbrush painting 
techniques that vary in number of colors applied, spray aperture width, and 

distance between airbrush and sample. 

Characterization by means of two-point correlation is presented in Figure 3(a). As 

the distance, r, increases, the correlation coefficient of each pattern decays rapidly until it 

reaches a plateau, which eventually approaches the relative area fraction of speckles in 

each image. The dashed horizontal lines, are the relative areal density. The function 

decreases most quickly for P1, indicating that the correlation between two points in the 

image rapidly decreases as distance between points, r, increases. The decrease for P4 and 

P3 is more gradual, while P2 maintains a high correlation for a larger magnitude of r. The 

characteristic length scale of each pattern is defined as the midpoint of the correlation 

coefficient of the plateau and the peak correlation coefficient value of 1. For each pattern, 

the midpoint is marked on Figure 3(a) by an asterisk.  Using this technique, the smallest 
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characteristic scale is 17.3 µm for P1; followed by 21.0 µm for P4, 22.1 µm for P3 and 

26.3 µm for P2.  

 

Figure 3. (a) Two-point correlation of the patterns P1-P4 as a function of 
characteristic scale (solid lines). (b) Calculated pattern area fraction and number of 

speckle clusters. 

From the cluster analysis, Figure 3(b) shows the total speckle count as a function 

of the relative density of each pattern. P1 has a very high speckle count with low area 

fraction of dark speckles, while P2 and P3 have much lower speckle counts with high 

area fractions. P4 has a relatively medium speckle count and area fraction when 

compared to the other patterns.  

Figure 4 shows histograms of the speckle size diameter and nearest speckle 

spacing for each pattern using cluster analysis of each thresholded image. The most 

frequently occurring speckle diameter for each pattern is found to be in close agreement 

with the size and ranking from the two point correlation calculation. Intricacies of the 

speckles are revealed from the cluster analysis histograms. For example, Figure 4(a) 

shows that P1 and P4 mainly consist of fine speckles with size 18.4 µm, with P4 also 
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having a 2% fraction of larger, ~55 µm, speckles. In contrast, P2 and P3 contain bimodal 

speckle sizes with equal frequency of sizes 18.4 µm and 55 µm respectively. Figure 4(b) 

shows the nearest speckle spacing histogram for each image. For P1 and P4, the speckles 

are at a fairly consistent distance of 30-33 µm as ascertained from the most frequently 

occurring distance and by the narrow distribution (within 50 µm). In contrast, P2 and P3 

have a wider speckle distance distribution, within 80 µm. 

 

Figure 4. (a) Speckle diameter histogram from cluster analysis. (b) Center-to-center 
speckle spacing from cluster analysis. 

Figure 5 presents the histograms of grayscale intensity for each pattern, which 

span the range from 0 to 255, where 0 corresponds to black and 255 to white. It can be 

seen that P1 and P2 have an average grayscale value of 138, with P1 having a narrower 

distribution than P2. Patterns P3 and P4 have a grayscale average value of 130 with a 

distribution closer to P2.  
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Figure 5. Normalized histograms of grayscale intensity for four patterns (P1, P2, P3, 
and P4). 

2.5.2 Pattern Performance in Digital Image Correlation 

2.5.2.1 Rigid Body Translation 

Results from RBT analysis are presented in Figure 6, where the mean of absolute 

in-plane DIC calculated strains, 〈 〉 , for each  strain component is plotted 

from the numerical RBT analysis (top row) and the experimental RBT analysis (bottom 

row) of the four patterns. 
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Figure 6. Mean absolute difference in strain components, εxx (first column), εyy 
(second column), εxy (third column), as a function of subset window radius measured 

using numerical RBT (top row) and experimental RBT (bottom row), for each 
pattern. 

It can be seen that as the subset window size increases, the deviations in DIC 

measurements decrease by nearly one order of magnitude for all numerically translated 

patterned samples. Numerical RBT results are similar between axial, , and transverse, 

, strains, where P1 has the largest deviation from zero, which decreases from 2.6

10  to 3.5 10  when increasing the subset window from ~15 to 50 µm. Numerical 

data from P4 always have the smallest deviation from zero, decreasing from 1.5 10  

to 1.9 10  for axial and transverse strains, when increasing from the smallest subset 

window size to the largest. DIC deviation from zero for shear strain, , is slightly 

lower: P1 decreases from 1.6 10  to 2.2 10  and P4 from 1.0 10  to 1.2
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10 . The ranking in terms of accuracy for patterns based on numerical RBT is 

consistently P4, P3, P2, P1. When rs~15 µm, the RBT estimated uncertainty for the 

worst pattern (P1) is 70% greater than the best (P4). When rs~15 µm, difference between 

the best (P4) and worst pattern (P1) is 50%.  

The pattern ranking using the RBT analysis is not the same between the numerical 

and experimental dataset.  From the experimental RBT dataset, the largest deviation is 

seen in P2 and it reduces from 2.2 10  to 2 10  as subset window radius increases 

from ~15 μm to ~50 μm for both , . For P1, the RBT deviation reduces from  1.2

10  to 1 10  as subset window radius increases from ~15 μm to ~50 μm for both 

, . The reduction in deviation for P3 is similar to P2, and for P4 it is 8 10  to 

5 10  as subset window radius increases from ~15 μm to ~50 μm. The ranking 

therefore based on experimental RBT is P4, P1, P3, P2. 

From both experimental and numerical RBT analysis, it can be seen that, for the 

case of uniform deformation, there is a substantial reduction in the error when a larger 

subset is used. This is intuitive since a larger region on which to perform analysis allows 

one to remove small perturbations stemming from low correlation sites.  

Additionally, it can be seen DIC deviations from experimental RBT data are 

consistently greater than numerical by a factor of approximately 5. Such increased 

deviation is likely rooted in the image acquisition system, where uneven lighting gradient 

(glare and shadow), lens distortion, or inherent camera quality can introduce uncertainty 

into the system. While important to note for application purposes, the discussion of these 

variables is not within the scope of this study. 
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Regardless, both numerical and experimental RBT analyses give a measure of the 

irreducible error in system and show that even with all additional concerns from 

experimental imaging sources, the differences in strain are of the order of 10-3 when 

using a high quality pattern. Demonstrated in the proceeding text, this DIC technique is 

used to measure strains on the order of 10-2, to map heterogeneous deformation within 

polycrystalline metals. To place this into context, the elastic range for most metals is 

within 10-3, so most of the surface mapping analysis cannot be used to distinguish elastic 

strains but could be well suited to distinguish localized deformation. 

2.5.2.2 Simulated Polycrystalline Deformation 

Results from the FFT polycrystalline simulation are given in the first column of 

Figure 7, where the non-uniform maps for in-plane strain components, , , , are 

shown. The middle column shows the corresponding in-plane strain maps as measured 

from DIC analysis for pattern P4 with a subset window radius of ~25 µm, subset spacing 

of ~1 µm, and strain window width of ~5 µm. The imaging resolution of, 

1.07 ⁄  and grain resolution of 0.005 ⁄  means that this subset 

window diameter occupies ~1/4 the size of each grain. Pattern P4 is selected for viewing 

given its performance in the RBT analysis.  The third column shows the absolute 

difference between the simulation and DIC strain, for axial, transverse and shear 

components, at each image coordinate, , as defined in Equation 11. As shown in the 

middle and right column of Figure 6, DIC is able to reproduce the heterogeneous strain 

fields quite well, and at most locations the difference between DIC measurements and 

simulated (true) strain is at least one order of magnitude smaller than true strain. This is 
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not true, however, at locations where strain is highly localized, such as near the grain 

boundaries of the polycrystalline material. At these locations deviation in measured strain 

tends to exceed	4 10 , which is much greater than the RBT estimated error. 

 

Figure 7. In plane strains (εxx , εyy, εxy) from numerical simulation (first column), 
calculated DIC strains (middle column) using pattern P4 with a subset size window 

of ~25 µm. Absolute deviation between the simulation and DIC strains (last column). 

Accuracy of DIC measurements relies on a proper selection of subset window 

size, and this dependency is presented in Figure 8 which shows the absolute difference 

per Equation 11, for patterns P4 axial (top row) and transverse (bottom row) component 

as the subset window size is increased. For the smallest subset window size, random 

noise appears to produce deviations with high magnitude (greater than 4 10 ). As the 

subset radius increases from ~15 µm to ~25 µm, the random deviations are reduced and 

fewer points, mainly close to the grain boundaries, appear to have deviations with such 
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large magnitude. For the ~50 µm subset radius, there are high deviations near the grain 

boundaries to the extent that the microstructure of the material becomes apparent in the 

error map plot. There appears to be very little difference between P4 and P1 error map 

especially for the largest subset radius. 

 

Figure 8. Absolute difference in the axial εxx (top row) and εyy (bottom row) strain 
components for pattern P4 for different subset window radii: ~15 µm, ~25 µm, and 

~50 µm (first, second and third columns respectively). 

The difference between DIC measured strain and true strain is more quantitatively 

analyzed in Figure 9, where the difference in DIC and simulation strains for the three in-

plane strain components , , and  are plotted as a function of each respective true 

strain component’s local magnitude for pattern P1 (top row) and P4 (bottom row). The 

local absolute difference is calculated for every voxel (using Equation 11), and the data is 

discretized into 10 evenly spaced bins between the minimum and maximum bounds of 

the independent variable studied on the x-axis, and the median deviation of each bin is 
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plotted. The shaded region represents the spread of data within one standard deviation 

from the median value. A careful selection of the maximum strain bin is accomplished by 

examining each strain map to determine the cut-off where high bins transition from 

meaningful information to isolated data points. 

 

Figure 9. Absolute difference in strains between DIC and simulation as a function of 
simulated strains for P1 (top row) and P4 (bottom row). 

In general, the deviation in strain as a function of simulation strain is nearly 

constant when the simulation strain is near macroscopic applied strain but rapidly grows 

when local simulation strains are greater than or less than the macroscopically applied 

strain. For example, near the 1% strain level, the deviation in  is nearly constant with a 

magnitude of 1.9 10  for P4 and 3.1 10  for P1 when the subset radius is ~15 µm, 

which is an order of magnitude smaller than the simulated strain. As the subset radius 
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increases from ~15 µm to ~50 µm the deviation in  reduces by a factor of 3 near 1% 

strain. This trend of decreasing deviation with increasing subset radius is consistent with 

the RBT analysis. The difference in strain deviation in  are 20% higher than the 

numerical RBT error for P1 with 15 µm window radius and 4 times smaller for P1 with 

50 µm radius. Away from the macroscopic strain level, the deviation substantially 

increases for all strain components, rapidly approaching the same order as the simulated 

strain levels. In the case of , the deviation for P1 for 15 µm radius is ~3 times smaller 

than the simulated strain of 2% and only 2 times smaller than the simulated strain of 3%.  

Moreover, above the 1% strain, in regions of higher strain gradients the smaller window 

radii tend to produce the least error. Deviation in , at 2% simulated strain is 4.2

10  for P1 with 15 µm radius and increases by 70% to 7.2 10  for P1 when the 

subset radius is 50 µm. Qualitatively from Figure 7, it could be seen that higher strain 

levels tend to occur near regions of highly localized strain gradient. Averaging across a 

larger window would certainly “blur” these high gradient areas more than a smaller 

window would.  

The above analysis is similar for other strain components and imply the same 

conclusion: where strains are near average and their variations are low (for instance, at 

locations well within grains) the difference between DIC measurements and true data is 

reduced to within a reasonable margin, nearly an order of magnitude smaller than applied 

strains depending on pattern quality, and best captured with a large subset window. 

However, where strains vary greatly and have magnitudes much higher or lower than 

average (likely at grain boundary locations) DIC measurements incur a much larger 

deviation from true data, and a higher quality pattern must be used reduce this 
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uncertainty. Additionally, at locations with such localized deformation gradient, DIC 

results are most accurate when using a smaller subset window. 

From Figure 9, a quantitative link between RBT analysis and polycrystalline 

deformation can also be established. This is accomplished by examining the DIC 

deviations in transverse and shear strain components at their mean location (where low 

strain and minimal variation best replicate RBT conditions). As the subset window 

increases from ~15, to ~25, and ~50 µm in radius, deviation in transverse strain 

measurements decrease from 2.3 10 , to 1.1 10 , and 5.2 10  for P1 and 

1.4 10 , to 6.3 10 , and 4.1 10  for P4. For shear measurements, deviations 

decrease from 1.5 10 , to 7.1 10 , and 3.8 10  for P1 and 9.8 10 , to 

4.5 10 , and 3.0 10  for P4, as the subset window is increased. Note that these 

values were obtained by increasing the number of bins so that a more accurate DIC 

deviation near mean strain could be examined. When compared to numerical RBT data, 

these values are consistently within 13% of the ~15 and ~25 µm radius subset window 

data, and well within the same order of magnitude for the ~50 µm data. This shows that 

RBT can indeed provide an expected baseline deviation for a pattern under low strain and 

low gradient conditions. 

2.5.3 Uncertainty Analysis from Image Interpolation 

The deformed pattern images studied in this work, for numerical RBT and 

polycrystalline deformation analysis, were obtained by digitally transforming the 

reference images using simulation deformation fields  and , according to the following 

equation: 
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 , , , (12) 

 where  is the deformed image,  is the reference image, and  and  are as follows: 

 , , (13) 

 , . (14) 

Interpolation is accomplished using a two-step procedure: 

1. The deformation field from simulations is interpolated onto a grid corresponding 

to the resolution of the reference image. This is accomplished by assuming a 

certain length-scale for the simulation domain, which in this case is gathered from 

the average grain size of the microstructure. 

2. The reference image is interpolated from a set of points ,  defined by 

Equations 13 and 14, to a regular grid , . Interpolation is performed using the 

interp2 function provided by MATLAB, using PCHIP (Piecewise Cubic Hermite 

Interpolation Polynomial). 

In order to quantify the uncertainty resulting from interpolation, an additional 

analysis was preformed of synthetic patterns, which could be deformed exactly according 

to a prescribed field. Since the interpolated simulation displacement fields could be 

considered a prescribed mapping of arbitrary resolution, focus is on quantifying the 

uncertainty resulting from step 2 of the interpolation procedure. 

The synthetic pattern was generated as a collection of randomly place Gaussian 

speckles, given by the formula: 
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, 	 , , (15) 

where  is given by: 

 
exp , (16) 

and  and  are the coordinates of speckle , and  is characteristic length scale 

chosen to be close that that in patterns described in Section 2.5.1. Since here the reference 

image is given by an analytical function, it can be deformed “exactly” (in a numerical 

sense) under a given displacement field. Figure 10 shows the synthetic pattern used in the 

tests. The strain fields obtained by DIC analysis from interpolated and “exactly” 

deformed images are compared in Figure 11.  It can be readily seen that the difference 

between the two fields is within the noise level of DIC analysis. Thus it is concluded that 

the interpolation procedure does not introduce significant additional errors in the analysis. 

 

Figure 10. Synthetic image used for uncertainty analysis. 
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Figure 11. (a) Difference between DIC strains from analytically shifted and 
interpolated image, (b) strain field obtained from analytically shifted pattern, (c) 
relative error in DIC measurements between interpolated and analytically shifted 

image. 

2.6 Instrument Resolution of Digital Image Correlation 

At this point it has been demonstrated that the difference in DIC strains and 

simulations depends on the local strain magnitude. To determine an instrument resolution 

of DIC, based on pattern quality and subset selection, it is useful to fit a trend to the data 

presented in Figure 9 for the difference in strain between DIC and simulation as a 

function of simulation strain. Considering the previous discussion on where these 

deviations are minimized, and to what magnitude, several terms are predetermined to 

inform this curve-fitting. First, it was shown that deviation in strain measurements is 

constant, when local strains are close to the macroscopically applied strain. Second, at 

average applied strain this deviation is very close to numerical RBT analysis predictions. 

With these points in mind, the following equation is proposed: 

 
∆ 〈 〉 1 erf

̅ ̅

∙ ̅
 (17) 
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where ∆  is the deviation, between true strain and DIC-measured strain, 〈 〉  is the 

difference in strains from numerical RBT analysis, ̅  is the average strain applied,  

is a constant governing range in deviation, and  and  are constants governing the 

variance in DIC measurement deviation in relation to average strain. Constants 	

,	 , and  are dependent on the pattern quality and subset window size selection. 

Essentially, Equation 17 enforces a cumulative density function that is symmetric about 

the location of applied strain. The constants determined for pattern P1 and P4, for the 

axial strain component, , using each subset window size, are listed in Table 2. 

Table 2. DIC resolution constants a and b for P1 and P4 

Pattern Subset Radius    

P1 

~15 µm 1.04 10 	 7.88 10 	 7.41 10 	

~25 µm 9.46 10 	 5.08 10 	 7.77 10 	

~50 µm 9.26 10 	 3.32 10 	 7.73 10 	

P4 

~15 µm 1.29 10 	 9.80 10 	 9.89 10 	

~25 µm 7.90 10 	 3.87 10 	 7.15 10 	

~50 µm 9.72 10 	 3.64 10 	 8.07 10 	

Figure 12 shows the proposed fit to the DIC deviations shown in Figure 9. The fit is the 

solid line, and the data points represent the median of the difference in strain between 

simulation and DIC for each of the 10 bins. 
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Figure 12. Data fit to the medians of the strain error for different subset window 
sizes for pattern (a) P1 and (b) P4. 

From Figure 12, it can be seen that Equation 17 provides a very good fit to the 

accuracy in DIC measurements, essentially giving an instrument resolution in DIC based 

on pattern quality and subset window selection. Based on the material system of study, 

and expected strain gradients, one can use the data provided here to adjust and improve 

their DIC process so that strains are captured with the greatest accuracy. This information 

could assist in measuring strains across many different levels of the mesoscale, in turn 

validating physics-based numerical models with a well-predicted level of accuracy. 

2.7 Summary and Conclusions 

In summary, this chapter examined the accuracy of strain measurements in 

polycrystalline materials using DIC. Random patterns were generated using airbrush on a 

metallic surface. Patterns were characterized and both experimental and numerical RBT 

datasets were analyzed to obtain a baseline of the deviation from true strains. Images of 

each pattern were deformed according to a polycrystalline simulation. The deviations in 
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the strain fields from DIC were compared with those of the numerical polycrystalline 

simulations. The conclusions of the work are as follows: 

1. Two point correlation and cluster analyses of patterns highlight features desirable 

in high quality patterns. For example, suitable patterns appear to have a rapid 

correlation function descent with a balanced area fraction. Cluster analysis 

indicates that a high population of finely dispersed, randomly arranged, closely 

spaced speckles is favorable. 

2. Experimental and numerical RBT analyses suggest that the baseline deviation 

between DIC measurements and true data is substantially reduced when a larger 

subset window radius is used.  

3. Since there are substantial deformation gradients in polycrystalline metals, 

subsequent analysis of the deviation in DIC measurements reveals that within a 

certain range, where local strains are near average bulk magnitude and local 

variations are low, DIC measurements will match RBT results and have greater 

accuracy as the subset window size is increased. For strains far from the mean 

value however, the opposite is true and error rapidly increases as subset window 

radius increases. 

4. Finally, an instrument resolution for DIC was established, which is based on 

pattern quality and subset window size. This allows one to optimize their DIC 

process based on strain gradients which are expected in the material, and produce 

heterogeneous strain fields with improved accuracy. 

In conclusion, recent works, e.g. [25], have demonstrated the weakness of using 

solely macroscopic load displacement curves in model calibration, where several 
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parameters cannot be uniquely defined. The work presented here can be used to calibrate 

models with reliable mesoscopic data, in the form of experimentally obtained 

deformation maps that have reasonable and predictable levels of uncertainty. Considering 

that microstructure evolution is an important ingredient in calibrating models, the 

integration of simulations and experiments at an early stage in the design cycle can allow 

us to extract quantitative information that has not been typically available. 
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CHAPTER 3. USING EXPERIMENTAL IN-PLANE STRAIN 

MAPS TO CALIBRATE HIGHER ORDER NUMERICAL 

MODELS 

3.1 Abstract 

In this chapter, a physics-based polycrystalline plasticity model, originally 

proposed by Wen et al. [26], is described and employed in a finite element framework to 

simulate a uniaxial tensile test of a Grade 91 Fe-9Cr-1Mo alloy. The constitutive law 

explicitly describes the mobility of dislocations via glide and climb mechanisms, the 

effect on latent hardening, and the distribution of internal stresses at the sub-material 

point level. The influence of microstructural features, precipitates, grain and sub-grain 

boundaries, on material response is also accounted for in the constitutive law. The model 

is parameterized against an experimental load-displacement curve, where it is shown that 

an adequate fitting to experimental data can be accomplished using several, therefore 

non-unique, parameter combinations. With consideration to the uncertainty levels 

described in Chapter 2, the role of digital image correlation (DIC) in further reducing the 

parameter space is investigated, through an examination of the heterogeneous strain 

responses from the finite element simulation. 

3.2 Background and Motivation 

Over the past several decades, a large body of work has focused on deriving 

mechanistically based constitutive models that can simultaneously predict microstructure 

evolution and mechanical response of metals with varying crystal structure, texture, grain 
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size distribution, etc. [27, 28]. These complex models typically rely on crystal plasticity 

formulations and describe the effective contribution of each dissipative process activated 

during deformation that typically depends on the system’s microstructure (i.e. grain size, 

precipitates, lathe phase etc.). Naturally, the number of calibration parameters increases 

with the number of deformation modes considered; such that model validation and 

parameterization is increasingly becoming more difficult. Despite challenges, such 

mechanistically founded models, as opposed to empirical fits, are expected to improve 

understanding of plasticity and accelerate material design. 

 

Figure 13. Matching stress-strain response from simulation [25], using different 
descriptions (a-d) of dislocation interaction hardening. 

A common discrepancy with such high-order numerical models is the difficulty in 

determining the unique set of parameters that mathematically govern the material 

response. Indeed, it was shown by Bertin et al. [25] that several different combinations of 

parameters, which describe theoretically different dislocation interaction hardening 

modes, could give the same stress-strain response in their numerical simulations. These 
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matching bulk-outputs are shown in Figure 13. For the case of [25], clearly dislocation 

mobility has not been uniquely described and therefore this model cannot be expected to 

perform accurately outside of the conditions of the current validation. 

Further bulk scale calibration can perhaps aid in the reduction of the parameter 

set, but this assumes access to a wide range of experimental test data (stress-strain, creep, 

fatigue, etc.) for many different environments. Perhaps more efficient would be the 

calibration of these terms on lower length scales. Given the minimized uncertainty 

presented in Chapter 2, this chapter aims to demonstrate this potential for lower length 

scale validation, using in-plane strain maps measured using DIC. 

3.3 Numerical Modeling 

3.3.1 Microstructure 

The microstructural makeup of the Grade 91 steel alloy, studied in this chapter, 

leads to a complex series of interactions which will greatly contribute to hardening across 

the polycrystalline network. As such, it is important that these features are described, and 

their effects accounted for. The thermomechanical forming/processing of the alloy 

produces a stable martensite lath microstructure within packets (sub-grains), which make 

up the prior austenite grain boundaries. A high initial content of dislocations is found 

within grains after forming processes, and their mobility and interactions during loading 

will lead to hardening within grains and at sub-grain boundaries where they are arrested. 

Further, second-phase particles which result from the forming process, namely M23C6 (M 

= Cr) carbides and MX (M = V or Nb, X = C or N) precipitates, will obstruct the motion 

of dislocations. The M23C6 carbides lie mostly along sub-grain boundaries, and as a result 
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they prevent dislocation annihilation along these cell walls, which helps stabilize and 

slow the growth of sub-grains. MX precipitates will hinder the motion of dislocations 

within sub-grains. By limiting the flow of dislocations, both particle types will lead to a 

combined, enhanced hardening [29]. 

As suggested in Ashby’s deformation map [30], the main mechanism of creep 

deformation can be determined by the temperature and stress state experienced in the 

material matrix. In high temperature conditions, diffusional flow driven by vacancy 

formation and migration, will dominate the creep behavior. At lower temperatures and 

higher stresses, dislocation flow and interactions will dominate the creep behavior. While 

a dominant creep mechanism can be discerned based on the environment, regimes will 

often occur simultaneously and therefore both must be accounted for. 

3.3.2 Constitutive Law 

The constitutive law considered here is the same as from Wen et al. [26], and 

considers the effects of dissipative processes of several different length scales, which are 

homogenized when appropriate. Dislocation mobility, precipitate interactions, and the 

resultant effects on latent hardening are explicitly described in a physical manner on the 

local material point scale. Those equations which are synonymous to ones from the FFT 

model in Section 2.4.1 will be rewritten here for ease of discussion. 

3.3.2.1 Crystal Plasticity Model 

The plastic strain rate at a material point is defined as the sum of all slip rates, 

multiplied by their orientation with respect to normal axes, as follows: 
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 ̅ , (18) 

where  is the local plastic strain rate, ̅  is the mean slip rate of a slip system , and 

 is the Schmid tensor, which is written symmetrically: 

 1
2

, (19) 

where  is the normal vector of the slip system, and  is the Burgers vector. Wang et 

al. [7, 31] consider the mean slip rate at a material point as the sum of the slip rates at 

sub-material points, each weighted by their volume fraction. The relationship is depicted 

by following: 

 ̅ ̅ , (20) 

where  is the slip rate at a sub-material point, which is a function of the resolved shear 

stress at each sub-material point, , and  is the probability distribution function that 

gives volumetric weight to each sub-material point, which is a function of the resolved 

shear stress and the mean resolved shear stress at a material point, ̅ . The mean resolved 

shear stress is determined simply by the tensor product of the local Cauchy stress tensor, 

 and Schmid tensor at a material point: 

 ̅ 	 	 : . (21) 
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 can be written as a normal distribution centered about the mean resolved shear 

stress at a material point, with variance  as follows: 

 
̅

1

2
exp

̅
2

. (22) 

The slip rate is described by Orowan’s equation, which is based on dislocation 

density, , Burgers vector magnitude,	 , and the mean velocity of dislocations on the 

slip system, , with sign determined by mean resolved shear stress as follows: 

 ∙ sign ̅  (23) 

3.3.2.2 Dislocation Mobility  

The mean velocity of a dislocation depends on , the mean-free path between 

obstacles, and , the duration that a dislocation spends between them. This relationship 

is defined on each slip system, and given in the following equation: 

 
. (24) 

The two main obstacles considered are MX precipitates and other dislocations. Their 

aggregate effect on total mean-free spacing is given in the following equation: 

 1

,

1
 (25) 
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where ,  and  are the mean-free paths between dislocations and MX precipitates, 

respectively. The mean-free path between dislocations can be considered inversely 

proportional to the dislocation hardening within grains. Latent hardening from 

dislocations is due to interactions between dislocations among different slip planes and 

will evolve based on the present dislocation density at a material point [32]. The effect of 

dislocation self-interactions on latent hardening within the cell can described by the 

following relationship: 

 
,  (26) 

where  is the effective latent hardening matrix, which varies depending on whether or 

not dislocation interactions are collinear ( ). This expression proposed in [32] has 

been shown statistically accurate by discrete dislocation dynamic simulations [25]. The 

mean-free path between dislocations is therefore given by: 

 
,

,
 (27) 

Spacing between MX precipitates is given by [33-35]: 

  (28) 

where  is the number density of MX precipitates,  is their average size, and  

is the trapping coefficient for a precipitate. 
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The duration that a dislocation spends between obstacles is the sum of the time 

spent waiting at an obstacle, , and the time spent actually traveling between obstacles, 

, [36-38]: 

  (29) 

The time spent travelling between obstacles is short and can be approximated by 

assuming travel velocity is equal to the shear wave velocity, , given below [39, 40]: 

 
	, (30) 

where  is the shear modulus, and  is the mass density of the material. Therefore travel 

time is given by: 

 
 (31) 

The waiting time will depend on which type of obstacle is encountered, either 

another dislocation or a precipitate, and therefore is the dependent upon the following 

equation: 

 , ,  (32) 

where  and  are the probabilities of encountering another dislocation and MX 

precipitate, respectively, and ,  and ,  are the waiting times associated with each 

obstacle. Note that since dislocations and MX are the only obstacles considered in this 
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context: 1 . The probability of encountering either another dislocation or MX 

precipitate can be determined by the ratio of an obstacle’s mean free spacing with the 

total interspacing from Equation 25. The probability of encountering another dislocation 

is therefore given by the following: 

 

,

∑

∑
 (33) 

The time which a dislocation spends waiting at each obstacle is determined by the time it 

spends scaling the obstacle via either a dislocation climb process, , or glide process, , 

which can occur simultaneous to one another. The time spent for each process can be 

summed to give the total waiting time as follows: 

 
,

1

,

1

,
 (34) 

where  denotes the obstacle type;  or MX. 

The dislocation glide process here refers to obstacle bypass via junction unzipping 

and the Orowan mechanism for dislocation bowing around large particles. These 

processes are considered thermally activated and therefore their waiting times can be 

described by the Kocks-type enthalpy activation law [37, 39, 41]: 

 

,

exp
∆

,
 (35) 
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where ∆  is the activation energy,  is the Boltzmann constant,  is absolute 

temperature, and ,  is the effective attempt frequency for overcoming an MX 

precipitate. The attempt frequency is assumed constant, and is considered equal to the 

travelling velocity, , divided by the length of vibrating dislocation segments, , 

multiplied by an entropy factor,  [7, 42], 

 
, 	. (36) 

The activation energy depends on the ratio of resolved shear stress to critical resolved 

shear stress, , and is given below: 

 

∆
∆ , 1 	

0
	  
if	

if	 					
   (37) 

where ∆ ,  is the activation energy in the absence of any applied stress, and  and  are 

empirical terms which govern the stress dependence. 

The critical shear stress on each slip system evolves over time based on 

contributions from different latent hardening mechanisms. Hardening effects from 

different sources can be added in superposition, in the following form: 

  (38) 
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where  denotes the hardening source,  is an exponent for combining hardening sources, 

and  is the total combined hardening from all processes. In this work, hardening effects 

from dislocation self-interactions and from the presence of precipitates are considered. 

Overall hardening due to dislocation self-interactions, ,  is similar to Equation 

26 but with dislocation density at the cell wall, , also included: 

 
	. (39) 

Hardening effects from MX and M23C6 precipitates are lumped together in this work, and 

given by . Therefore, using Equation 38, overall critical resolved shear stress is given 

by the following equation, 

 /
 (40) 

where  is an inherent frictional stress, which can be simply added to the overall 

hardening [35, 43, 44]. 

The dislocation climb process here refers to the ability of an edge dislocation to 

scale an obstacle, by means of point defect absorption and emission, in the direction 

perpendicular to its slip plane. The waiting time can be given by the magnitude of climb 

velocity, , the distance a dislocation needs to climb to bypass an obstacle, , and  

[45] which is the proportion of dislocations that are edge dislocations: 
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, ,

| |
 (41) 

For non-irradiated materials, the climb process is considered diffusion-controlled and can 

be described by a net vacancy flux through the gradient of vacancy concentration [46]. 

Climb velocity is given by: 

 
b

 (42) 

where  is the net current of vacancies for a given slip system and  is the atomic 

volume. The net current vacancy is given in the following equation [40, 46-50]: 

 2 exp

ln /
 (43) 

where  is vacancy diffusivity within the grain volume,  is the equilibrium vacancy 

concentration of the material,  is the current vacancy concentration (assumed equal to 

 in this model),  is the climb component of the Peach-Kohler force,  and  

denote the inner and outer radii of the cylindrical control volume around the dislocation 

line. The climb component of the Peach-Kohler force can be computed from the dot 

product of the Peach-Kohler force, , with the unit normal of the slip plane: 

 ∙  (44) 

 where the Peach-Kohler force is defined as follows [51-53]: 
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 ∙ . (45) 

In the above equation,  is the deviatoric stress tensor at a material point, and  is the 

unit tangent vector to the dislocation line, which is equal to the cross product of the 

normal and Burgers vector of a slip system [54, 55]: 

 . (46) 

The equilibrium vacancy concentration is given by [46]: 

 
exp exp  (47) 

where  and  are the vacancy formation enthalpy and energy, respectively. 

Expressions for vacancy formation terms and diffusivity, determined by the molecular 

dynamics simulations of Mendelev and Mishin [56], are given below: 

 2  (48) 

 2 3  (49) 

where , , , and  are phenomenological coefficients governing the effect of 

temperature on vacancy formation. Diffusivity is calculated by:  

 
exp  (50) 

where  is a diffusion constant, and  is the vacancy migration energy [56]. 
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3.3.2.3 Dislocation Density Evolution 

It can be seen in previous equations that dislocation density is important in 

governing the slip rate and the critical shear stress on each slip system. As such, it is 

necessary to incorporate the evolution of dislocation density within grains and at grain 

boundaries. The net change in dislocation density within in a sub-grain can be given by 

the sum of generated dislocations , , minus those which have been annihilated, 

, , and trapped at cell walls,	 , : 

 , , , . (51) 

Dislocation generation is given by the typical expression for area swept by 

moving dislocations [57-59]: 

 
, | ̅ | (52) 

where  is an empirical material constant for dislocation generation. Annihilation of 

dislocations is due to a collision of two dislocations with opposite Burgers vectors, 

mostly occurring during cross-slip and climb [60, 61]. This dynamic recovery can be 

written using Kocks-Mecking law [60, 62, 63]: 

 , | ̅ | (53) 

where  is the recovery parameter, which Estrin concluded is mostly sensitive to the 

strain rate using the general expression below [60]: 
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 /

 (54) 

where  is a material constant,  is a reference strain rate, and  is a strain rate 

sensitivity parameter. 

Dislocations will become immobilized after they have swept a certain area [34, 

38, 64], which in the case of cell wall trapping can be considered the sub-grain size, . 

The dislocation evolution change due to trapping at cell walls is therefore given by the 

following equation: 

 
, | ̅ | (55) 

where  is a material constant. Dislocation density evolution at cell walls is given by the 

net effect of trapping at cell walls and the annihilation of dislocations within them, 

, , given below: 

 , ,  (56) 

Dislocations within the cell wall cannot glide [65]. Therefore annihilation of 

dislocations with opposing Burgers within cell walls must be due to climb, which Nes 

[61] proposed is proportional to dislocation climb velocity and dislocation density, and 

inversely proportional to average dipole separation, . Additionally, average dipole 

separation is inversely proportional the square root of dislocation density in the cell wall. 
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Therefore the family of formulas which describe dislocation density evolution are as 

follows: 

 
, ∝

| |
 (57) 

 
∝

1
 (58) 

 
, | |  (59) 

where  is an empirical constant which quantifies the effects of dipole separation, 

dislocation density, and climb velocity. 

3.4 Modeling Framework 

3.4.1 Finite Element Modeling 

The constitutive law compiled above is implemented in a finite element 

framework. This full-field approach allows for local material point description of each 

dissipative process defined in the model. Further, the polycrystalline microstructure 

(grain size, crystallographic orientation, etc.) is permitted to properly influence local 

material behavior. As with any finite element model, heterogeneous material response is 

outputted, which can be used to validate the model with experimental data on lower 

length scales and even provide further insight into local material reactions. 

The finite element software used is FreeFem++ [66]. FreeFem++ is an open-

source, partial differential equation solver, with enhanced functionality for finite element 
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framework formulation. The software allows the user to completely define the 

constitutive law, governing balance equation, and iterative problem description, all within 

a C++ style coding environment. Additionally, the software can be configured to solve 

using parallel processing, which allows for efficient operation in high performance 

computing (HPC) environments.  

Within this framework, a thin plate made up of a 5x5 columnar grain structure 

was modelled with 499x499x1 grid of tetrahedral elements, using quadratic interpolations 

of displacement between nodes. The front of the polycrystalline structure considered is 

shown in Figure 14(a), and the cross-section showing the side-view is in Figure 14(b). 

 

Figure 14. (a) Front view of polycrystalline structure from numerical model, (b) 
side-view of polycrystal. 

To simulate uniaxial tension, for either increasing displacement (stress-strain 

testing) or constant load (creep testing), the boundary conditions given in Equation 60 

were enforced. Zero displacement in the horizontal axis was prescribed for the left face of 

the plate, zero displacement in the vertical direction was prescribed for the top face, and 
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zero displacement in the out-of-plane direction was prescribed for the back face. For the 

case of load-displacement testing, a displacement on the right face was enforced, and 

increased over time according to an applied strain rate. For the case of creep, a two-

dimensional surface integral of macroscopic stress traction was applied to the right face, 

and maintained at a constant magnitude throughout simulation. 

 On	face	1:  0 

On	face	3:	 		
	

	
displacement	input

stress	input 								
 

On	face	4:  0 

On	face	5:  0 

(60) 

Considering Cauchy’s first equation of motion, a balance equation can be used in 

variational form to solve for the local displacements of the model. Neglecting body forces 

and assuming the body is at equilibrium, the balance equation with plastic strain addition 

is given as follows, depending upon loading conditions: 

 
	 0 (61) 

 
	 0 (62) 
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where  is the stiffness tensor,  is the strain tensor,  is the plastic strain tensor,  is the 

displacement, and  is a virtual displacement. In the case of creep testing, Equation 62 is 

used in place of Equation 61. 

The constitutive law is computed over time, which must be discretized into 

individual time steps. At the beginning of each time step, the balance law given in 

Equation 61, or 62, is solved giving local displacements at each mesh node. Local strains 

are calculated from a simple differentiation of displacements, as shown in Equation 63.  

 
 (63) 

It is assumed that each time step strain increment is sufficiently small so that 

additive strain decomposition can be used to relate elastic and plastic strains to overall 

strain, as follows: 

  (64) 

which allows solving for stresses from Hooke’s Law in Equation 65 below: 

  (65) 

The stresses at each node are used to solve for the resolved shear stress on each 

slip system, using Equation 21, and the remaining components of the constitutive law 

described above can be solved for directly to compute a final local plastic strain rate for 

the time step in Equation 18. The plastic strain rate is then added to overall plastic strain, 
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with respect to the time step interval, and the next iteration begins again with solving the 

balance equation. 

3.4.2 Computational Efficiency Efforts 

From the constitutive law description given in Section 3.3.2, it can be seen that 

implementation of the model within a finite-element framework requires a substantial 

number of calculations at each mesh node. As a result, it was found that high-resolution 

simulations were subject to total solve-times which were often several orders of 

magnitude longer than the experiments themselves. It is a given that numerical modelling 

efforts should be focused on reproducing experimental data both at lower cost and with 

greater efficiency, and as such, it was necessary to implement several strategies to reduce 

the overall run-time of the simulation. The two most important/effective efficiency 

strategies that were implemented are described here. While these methods are described 

specifically in the context of the present work, the general ideas presented can be applied 

almost ubiquitously to other modelling efforts. As future numerical models aim to 

describe more dissipative processes on different length scales, they will require more 

computations per iteration and therefore potentially longer run times and greater memory 

demands. As such, it is imperative that strategies, like the two presented herein, are 

utilized to reduce computation volume and make use of advancing computer 

technologies. 

3.4.2.1 Parallel Architecture 

First, the script describing the constitutive law and finite element framework was 

rewritten to solve in parallel, so that multiple processors could be used simultaneously to 
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compute local data, instead of computing in series. This entailed partitioning the finite 

element mesh into  number of regions, where  is the total number of processors being 

used to execute the simulation. Partitioning of meshes was accomplished using HPDDM, 

which distributed respective mesh domains to different processors, and METIS [67], a 

multilevel graph partitioning scheme optimized for finite element method. Each 

processor “owned” respective fractions of the mesh, and therefore only needed to 

compute local plastic strain rates at their own mesh nodes. To collect data from each 

processor and solve the overall balance equation, a linear PETSc [68] solver was used, 

which is designed to efficiently handle parallel, distributed arrays of data that are 

combined to compute partial differential equations. 

This method of parallel computing was effective for the obvious reason that each 

processor was only responsible for 1/  fraction of total computations, and as such the 

overall run-time scaled by approximately this factor. Perhaps less obvious, is the benefit 

of having no “global” meshes or “master” processors. Since each processor exclusively 

knows its mesh data, the memory demand from each processor also scales by 1/ , and 

total memory usage is always maintained.  In earlier parallelization attempts the entire, 

“global,” mesh was still defined on every processor, and as a result total memory demand 

would actually scale up by a factor . Additionally, for very fine meshes, passing such 

high volumes of data between processors was simply not possible. So the current 

strategy, in addition to scaling down computation time by 1/ , would scale memory 

usage per processor by this factor as well. Since the model was implemented in a HPC 

environment, where upwards of 100 total processors were often used, this meant 

significant time reduction in overall simulation run-time.  
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To give an idea of the reduction in solve time from using parallel processing, 

Figure 15 shows the decreasing iteration time for a low resolution mesh (49x49x1 

elements) when the number of processors used is increased from 1 to 4. It can be seen 

that the assuming scaling of 1/  is observed, where iteration time reduces from 

approximately 54 seconds to 28 seconds, and eventually to 13 seconds when using 1, 2, 

and 4 processors respectively.  

 

Figure 15. Iteration time-dependence on number of processors used in parallel. 

3.4.2.2 Numerical Integration Scheme 

Computation of the material point integral in Equation 20 required a numerical 

integration scheme, which here is based on a simple Riemann sum approximation of the 

integral: 

 
̅ ̅ ̅  (66) 
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where  is the width of the Gaussian integration bin, and  is the number of integration 

points which are equally spaced between upper and lower bounds of the integral.  

Certainly, the summation cannot be accomplished between the indefinite bounds 

described above, so an approximation of the upper and lower limits was used. The 

criterion chosen, for calculating the bounds of summation, was the minimum probability 

weight, from Equation 22, that would still be considered significant in calculating slip 

rate. This value, , could be used to determine the maximum and minimum sub-material 

stress bounds for use in Equation 66, as follows: 

 
2 2  (67) 

where  is the distance above and below mean stress, governing the range of numerical 

integration. For this work it was determined that any probability weight less that 

1 10  was negligible in calculating overall slip rate. 

From here, the simplest approach would be to use a large number of integration 

points, so that mean slip rate can be calculated with the greatest accuracy. However, 

given that this slip rate is computed for each slip system, at every node, even a small 

difference of 10 integration points will add total 1.2 10  calculations per time-step for 

a high resolution mesh with 500x500x2 nodes. Therefore, limiting the number of 

integration points on each slip system, while maintaining reasonable accuracy, is greatly 

desired. 
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Several strategies were considered for approximating the Gauss integral. The 

simplest and most effective approach was to determine the minimum number of 

integration points necessary to compute slip rate within 0.1% accuracy. This minimum 

number of points was found to vary based on the difference between mean shear stress 

and critical shear stress on a slip system, and this relationship is plotted in Figure 16 

below: 

 

Figure 16. Minimum number of gauss points for slip rate calculation. 

Blue asterisks in Figure 16 represent the minimum number of integration points required 

to determine slip rate with reasonable accuracy, for several different temperatures and 

stress-states. The red line in Figure 16 represents a simple (and conservative) 

approximation of this minimum, and is used to prescribe to the simulation the number of 

integration points to be used in calculating mean slip rate. This line can be described by 

the following formula: 
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 | | ̅ | 5 10 | ∙ 5 10 25 (68) 

where the number of integration points, , is determined for use in Equation 66. Note 

that within the script itself, a minimum of five gauss are used when Equation 68 gives 

	 	5. From implementing this numerical integration approach, iteration times (and 

total solve time) were typically reduced by approximately half when using Equation 68 to 

define the number of integration points, compared to using a constant 25 points. 

The iterative solve of the numerical simulation can be visualized in Figure 17: 

 

Figure 17. Iterative solve description of numerical simulation. 
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3.5 Model Validation and Discussion 

3.5.1 Bulk Scale Validation 

Calibration of a numerical model is often accomplished through a comparison of 

bulk responses between model and experimental data. In this work, the model compiled 

above is parameterized against an experimental load-displacement curve obtained from 

0.3% s-1 strain rate loading of the Grade 91 FeCrMo alloy at 823K, from Dundulis et al. 

[69]. In the original model description, Wen et al. parameterized the constitutive law for 

the same material system against high temperature creep data, within a mean-field 

viscoplastic self-consistent framework. Most parameters can be maintained from the 

original, but slight adjustments are necessary to accommodate the full-field framework 

and slightly lower temperature state in the present work. Namely the variance, V, in sub-

material stresses from Equation 22 is reduced by 10% to prevent constructive interference 

between neighboring finite element nodes, and the hardening from precipitates, , is 

increased since temperature is decreased. The entire list of parameters is shown in Table 

3. 
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Table 3. Parameters for numerical simulation of FeCrMo alloy. 

Parameter  Fe-Cr-Mo [26] 

  Mass density 8000	Kg/m  

  Magnitude of Burgers vector 2.48 10 	m 

  Shear modulus 
103572	MPa	
T ∙ 48	MPa/K 

  Number density of MX precipitates 3 10 m  

  Average diameter of MX precipitates 37	nm 

  Trapping coefficient for MX precipitates 1 

  Friction stress 0	MPa 

  Hardening contribution of MX precipitates 
390	MPa	for	823	K 
315	MPa	for	973	K 

  Superposition hardening exponent 2 

  Dislocation hardening from collinear interaction 0.05 

  Dislocation hardening from non-collinear interaction 0.7 

  Variance of resolved shear stress at material point 1000	MPa  

∆ ,   Zero-stress activation energy for dislocations 2.8	eV 

∆ ,   Zero-stress activation energy for MX precipitates 7	eV 

  Exponent parameter 0.7 

  Exponent parameter 1.4 

,   Attack frequency for MX precipitate obstacles 1.2 10 s  

  Proportion of edge dislocations 10% 

  Entropy factor 1 

  Inner radius of dislocation control volume 4  

  Outer radius of dislocation control volume 200  

,   Initial dislocation density within cells 4 10  

,   Initial dislocation density at cell walls 1 10  

  Average dislocation climb distance 100  

  Dislocation generation term 0.12 

  Dislocation annihilation term 85 

  Dislocation cell wall trapping term 0.5 10  

  Dislocation cell wall annihilation term 0.1 

  Sub-grain size 0.5 10 	m 

  Annihilation strain-rate sensitivity exponent term 3.5 

  Diffusion constant 7.87 10 	m /s 
  Vacancy migration energy 0.6	eV 

  Vacancy energy/entropy term 1.724	eV 

  Vacancy energy/entropy term 1.2 10 	 V/K 

  Vacancy energy/entropy term 2.79 10 	eV/K 

  Vacancy energy/entropy term 5.93 10 	eV/K 
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Figure 18. Stress strain curves from Simulations A and B and comparison with 
experimental data. 

In their study of latent hardening due to dislocation self-interactions, Bertin et al. 

[25] briefly discussed the issue of non-unique parameter combinations with respect to 

bulk material response. Specifically the authors showed that different combinations of 

parameters for dislocation density generation, , and frictional stress, , could produce 

the same bulk response despite theoretically describing different hardening modes. This 

issue is recreated using the present constitutive law, where dislocation generation and 

annihilation terms  and  can be varied by several orders of magnitude from Table 3 

values, and yet still produce matching stress-strain curves. These terms,  and , 

govern the evolution of dislocation density within the sub-grains, which directly 

contributes to latent hardening within the material based on the equations presented 

above. Specifically,  gives weight to the effect of the local mean slip rate on the 
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accumulation of mobile dislocations, while  gives weight to the effect of local strain 

rate on dislocation recovery. The relationship between these two terms drives overall 

hardening, and by simply comparing the slope of hardening in an experimental stress-

strain curve to a simulation, one can fit the ratio of these terms, that is: / . 

Matching outputs from two extremes of dislocation evolution description are 

shown in Figure 18, alongside experimental data from Dundulis et al. [69]. The 

dislocation density evolution terms used to produce each simulation are shown in Table 

4. 

Table 4. Varied dislocation generation and annihilation terms. 

   

Simulation A 1.2 10 	 0.15	

Simulation B 0.12	 150	

Both bulk responses might be considered “valid” against the experimental data, 

and only vary from each other by a maximum of 2%, but an examination of either 

simulation’s sub-grain dislocation density as a function of applied tensile strain in Figure 

19 shows that on the mesoscale, two different phenomena are exhibited. Dislocation 

density in Simulation A rapidly decreases compared to Simulation B, and even after a 

relatively small amount of strain there exists a 14% difference in dislocation population 

between simulations. 
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Figure 19. Dislocation density evolution within cells for Simulation A and B. 

3.5.2 Mesoscale Validation Using Digital Image Correlation 

Individual terms for dislocation density evolution are often numerically quantified 

using discrete dislocation dynamics simulations [25], and while these high order models 

are useful in describing the implications of different hardening modes, their predictions 

must be validated against experimental data. It has been considered that these terms can 

be determined experimentally by studying the results, at different deformation stages, of 

several latent hardening tests designed to induce different forest densities on slip systems 

[70]. In theory, one can use transmission electron microscopy (TEM) to examine the 

resultant dislocation content from each experiment, and determine the individual effects 

of each term on overall dislocation evolution. However, the difficulty in measuring 

dislocation densities with this approach leads to large uncertainties in any experimentally 

determined coefficients. As a result, individual quantities for dislocation generation and 

annihilation are, at best, considered rough estimates, and are often found by simply 
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guessing their values after a determination of their ratio from the slope of hardening in 

the bulk response. The following approach described below considers using a more 

accessible method of characterization; strain fields measured from DIC to calibrate these 

terms and reduce the overall parameter space. 

From the discussion in Chapter 2, DIC will provide strain maps with levels of 

uncertainty which are in part dictated in part by pattern quality and subset window 

selection. Therefore, in order to use experimental in-plane strain maps to limit the 

parameter space, the strain fields outputted from simulations must differ locally from 

each other by magnitudes greater than the DIC uncertainty determined in Chapter 2. This 

means that, at a given coordinate location, the difference in predicted strain between 

Simulation A and Simulation B must be greater than the deviation level of DIC 

measurement at that location. Otherwise, a strain map measured from DIC will be 

considered too erroneous to discern between simulations at that coordinate.  

The axial strain field from Simulation A, and its absolute difference as compared 

to axial strains from Simulation B, are shown in Figure 20(a) and Figure 20(b) 

respectively. Each simulated strain field is produced from respective simulations at 

matching locations of applied strain, approximately 0.34%. It can be seen that there are in 

fact some considerable differences between the two strain fields, especially at the 

locations near the grain boundary junctions where strains are largest. At initial glance, 

these differences look to be well within the levels of uncertainty discussed in Chapter 2. 

As shown in Figure 20(b), the maximum absolute difference between local strains from 

either simulation is 1.1 10 , and is found at coordinate locations near grain 

boundaries, where strain magnitude is furthest from the mean 0.34% applied. 
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Figure 20. (a) Axial strain field from Simulation A at 0.034 applied strain. (b) Local 
difference between Simulation A and B axial strain fields at 0.034 applied strain. 

In a more quantitative analysis, Figure 21 compares the local absolute difference 

between simulation strain fields with the expected deviation in DIC measured strain using 

Equation 17 from Chapter 2. Similar to Figure 9 in Chapter 2, the absolute difference 

between strain is calculated at every voxel, and the data is discretized into 10 evenly-

spaced bins based on the local strains from Simulation A. The median of each bin is 

plotted using black dots with connecting lines and the shaded region represents the spread 

of data within one standard deviation from the median value. The DIC resolution, 

Equation 17, is plotted as a function of the material response in Simulation A, using 

pattern P4 and the largest subset size (~50 um), which in combination produce the lowest 

deviation levels for this strain range. Plotting according to strains experienced Simulation 

A assumes it is the correct simulation, but nearly identical results are achieved when 

plotting according to Simulation B strains.  

It can be seen that the differences between simulated strains are almost always 

less than the expected deviation in DIC measurements. Only between applied strains 

4.5 10  and 6.5 10  does the in-plane strain map uncertainty dip slightly within 
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one standard deviation of simulated strain map differences. This implies that DIC-

measured strain data could perhaps discern these parameter sets in a limited strain range 

across a handful of voxels.  

 

Figure 21. Comparison of DIC uncertainty and local differences in axial strain from 
Simulations A and B. 

 

Figure 22. Areas of sample where local DIC uncertainty is less than local differences 
between Simulation A and B 
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A two dimensional visualization of this DIC ability is plotted in Figure 22. This 

data is generated by calculating the expected DIC deviation at every voxel according to 

strains from Simulation A and Equation 17, then locally comparing this expected 

deviation to the difference between Simulations A and B, Figure 20(b). In Figure 22, 

areas shaded blue are where the local differences between each simulation are less than 

expected DIC deviation. In these regions, it is assumed that uncertainty levels in DIC 

measurements are too large to discern simulations. Areas shaded yellow are those where 

simulated strains differ by a magnitude greater than DIC deviation. These yellow areas 

imply where in-plane strain mapping could in fact be used to differentiate simulations, 

and therefore rule out the parameter combination used to generate Simulation B. 

As shown, in Figure 22 only ~1% on the map from Simulation B can be ruled out 

using in-plane strain maps measured from DIC, when assuming that Simulation A is 

correct. (Once again, accomplishing the same analysis but taking Simulation B as true 

yields similar results). Further, it must be noted that the analysis used to determine error 

in DIC strain fields from Chapter 2 neglects several physical sources of uncertainty (lens 

aberration, lighting gradients, etc.). These errors will certainly exist in any real 

application of DIC, and in the previous chapter these were shown to increase deviation in 

measurement by at least a factor of 3, which would not have permitted parameter set 

reduction in the current example. Regardless, it is shown here that by adjusting 

dislocation evolution terms,  and , the local material response will vary while still 

maintaining the same bulk output. This variance in local material response is in fact 

captured by in plane strain fields, and therefore DIC presents a promising tool for 

elucidating the differences between parameter descriptions. In strain fields not shown 
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here, it was concluded that these local differences are less exaggerated when descriptions 

are more similar in magnitude, as one would expect. As such, the current DIC protocol 

practiced here would only be able to reduce a parameter space for more extreme 

variations in parameter descriptions, like the ones used here. 

Even with the limitations in mind, it is expected that a comparison between 

simulations at a later stage of deformation would amplify the local differences in material 

response while maintaining indistinguishable bulk responses. Beyond the elastic-plastic 

region studied here, and perhaps even towards later stages of damage softening, it is 

postulated that localized plasticity differences will be more apparent among simulations, 

allowing more prevalent discernibility using strain fields from DIC. 

In conclusion, the strategy of using a high-order model in a full-field framework, 

in conjunction with relatively simple mesoscale mapping techniques, such as DIC, 

presents a great opportunity for rapid and unique parameterization of numerical 

modelling. More generally, the close synthesis of experiment and modelling 

accomplished here will drive a process where each respective domain iteratively informs 

the other where improvements in current materials science understanding are necessary. 

As such, the scientific approach to material modelling can be continuously optimized. 
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CHAPTER 4. MICROSTRUCTURALLY SENSITIVE CREEP 

DAMAGE LAW FOR POLYCRYSTALLINE MATERIAL 

SYSTEMS 

4.1 Abstract 

In this chapter, a microstructure-sensitive creep damage law for polycrystalline 

materials is added to the constitutive law by Wen et al. [26], which was described in 

Chapter 3. The law considers the three traditional porosity evolution regimes: void 

nucleation, void growth, and void coalescence which leads to fracture. Using the Gurson-

Tvergaard-Needleman (GTN) model, the effect of porosity on damage is calculated, 

which is applied back to the material using a proper damage term. The model is 

employed in the same finite element framework as in Chapter 3, and as such the porosity 

evolution and resultant damage is calculated locally, allowing for heterogeneous damage 

descriptions and a full-field material response examination. Additionally, a novel method 

for tracking discrete void populations within a material point is presented. The damage 

model is described in detail in the proceeding text, and validation against high-

temperature creep experiments for Grade 91 Fe-9Cr-1Mo steel is presented. 

4.2 Damage Law Description and Background 

The porosity of a material governs the damage softening response, and as such the 

fidelity of any damage model will rely heavily on the accuracy of void evolution 

descriptions. On the continuum level, porosity has been investigated in some detail for 

general plastically deforming materials. But it has been shown that in the case of 
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polycrystalline material systems, localization of plastic flow and porosity occurs at 

microstructurally important features, namely grain boundaries and precipitates [71]. 

Further, different mechanisms for cavitation and growth exist, beyond simple plastic 

dilatation, (e.g. diffusional vacancy transport, viscoplastic dislocation flow, etc.) and 

depend on the thermomechanical loading conditions that the material is subject to. 

Regardless, it has been ubiquitously accepted that voids evolve through a three-stage 

process: nucleation, growth, and finally coalescence. Each regime is described in this 

section, within the context of a creeping polycrystalline structure, and a microstructurally 

sensitive damage model formulated is proposed. 

However, before discussing the origin of these void evolution terms, it is useful to 

describe the method by which porosity at each material point is calculated. In this model, 

a novel strategy for maintaining discrete populations of voids within a material point is 

implemented, so that newly initiated voids can appropriately evolve independently of 

previously initiated voids. A tabular dataset is used to store the void population number 

density, , created at each time step, or iteration , and that population’s collective void 

radius, , which is updated in each subsequent time step. The number density of a 

previously added void population is not modified in later time steps, but rather newly 

initiated voids are added to the end of the table in a new row, and tracked throughout the 

rest of the simulation. A porosity term for a given material point can be calculated by 

simply summing each void population’s product of number density and updated volume, 

as follows: 
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 4
3

 (69) 

where  is the total number of time steps (or current iteration number) and  is a 

geometry factor for relating void radius to volume from [72] which is described later on. 

Mean spacing, , at a material point can approximated based on porosity using the 

following: 

 3
4

/

 (70) 

4.2.1 Void Nucleation 

Void nucleation is the result of an aggregation of vacancies due to a stress- and 

temperature-dependent diffusion process. This process can be initiated at second-phase 

particles, which have either cracked or debonded from the surrounding material matrix 

due to a surpassed interfacial stress. Additionally, void initiation can arise from grain 

boundary sliding, when the diffusional or plastic flow can no longer accommodate the 

movement of neighboring grains with respect to each other. In the case of precipitate-

initiated void nucleation, the process is theoretically stress-dependent, but is often 

modeled using a strain-based criterion for particle cracking and void inception. In studies 

from Gurland [73] it was determined that, in addition to effects of particle size and 

orientation with respect to loading, cracking of particles could be represented by a linear 

relationship with total applied strain. However, Argon [74] later determined that the 

cracking or decohesion of rigid particles favors a criterion based on surpassing a critical 
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stress normal to the matrix-particle interface. In both cases, it was noted that when 

particles are larger in size and/or orientated normal to the maximum tensile loading 

direction, they will break in at an earlier stage of loading. 

Chu and Needleman [75] acknowledged both criteria and postulated that in either 

case the magnitude necessary to initiate voids must have some statistical variance, which 

can be modeled using a simple normal distribution centered about the mean critical 

nucleation term. This approach conveniently accounts for an inherent distribution of 

particle sizes, shapes, and orientations present within the material system, in a 

phenomenological manner. In a later work by Needleman and Tvergaard [76], the stress- 

and strain-based nucleation conditions proposed in [75] were studied for varying 

precipitate sizes. In their work, it was determined that the cracking of large particles 

could be captured most accurately using a critical stress criterion, while smaller particles 

favored a critical strain criterion. 

With these previous investigations in mind, a void nucleation rule is proposed 

here which considers both the stress-based and strain-based nucleation conditions in 

combination. Variance of each nucleation criterion is incorporated in the same manner as 

[75], and each process is weighted to prescribe an effective percentage of stress- and 

strain-based nucleation to total void number density, , at the current time-step,  

 1 ,  (71) 

In the above,  is the saturation number density of voids,  is the number density of 

voids nucleated as a function of strain,	 , which has been adjusted for the porosity,  is 
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the number density of voids nucleated as a function of the updated flow stress,	 , and 

hydrostatic stress, , and  is the proportion of strain-based nucleation on total 

number  density of voids. The strain- and stress-based nucleation criteria are given as 

follows: 

 1
2
1 erf

√2
, (72) 

 

,
1
2
1 erf

1
3
√2

, (73) 

where  and  are the mean critical nucleation strain and stress respectively, and  and 

 govern the variance in nucleation strain and stress.  

The decision to combine both stress and strain criteria was made to capture 

particle cracking behaviors which are best predicted by each respective process Figure 23 

shows an example of the number density of voids nucleated by either process with strain-

dependent voids plotted in Figure 23(a) and stress-dependent voids plotted in Figure 

23(b).  

These two processes are independent of each other, and can be used to 

simultaneously describe two separate populations of particle: one which cracks from a 

surpassed critical strain and one which cracks from a surpassed critical stress. 

Considering the work of Needleman and Tvergaard [76] discussed earlier, this might be 

used to imply a bimodal particle size distribution, but could also describe distributions in 

shape, particle type, and orientation with respect to loading. Further, the variance in both 
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Equations 72 and 73 allow for smooth transition between particle populations when 

appropriate. 

 

Figure 23. Example depictions of void nucleation due to (a) strain per Equation 72 
and (b) stress using Equation 73. 

The decision is made to limit void nucleation to those voxels which lie along the 

grain boundaries. This simplification will certainly neglect potential damage evolution 

within grains, but is in line with experimental and theoretical observations that conclude 

porosity evolution is highly preferential to grain boundaries [71]. 

4.2.2 Void Growth 

To account for creep cavity growth, two main mechanisms are considered in the 

present work: void growth due to viscoplasticity and the flow of dislocations (or creep 

growth), and void growth due to a net flux of vacancies towards a cavity via diffusion (or 

diffusion growth). Given the temperature and stress-state which will be considered in the 

present work, it is inferred from Ashby’s deformation map [30] that these two 

mechanisms of creep will be active and therefore must be accounted for in overall void 

growth calculation. 
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Creep void growth was initially studied by McClintock [77, 78] and Rice and 

Tracey [79], then later extended to the modern formula proposed by Budiansky et al. 

[80]. McClintock [77, 78] considered a single long cylindrical cavity in a non-hardening 

material, subject to remote loading in various axes. In [77], it was determined that 

relative void expansion is exponentially dependent on the magnitude of stress transverse 

to the cylinder axis. Rice and Tracey [79] studied the case a spherical void in a non-

hardening material, and concluded that hydrostatic stresses are responsible for void 

growth and can be considered large enough to overcome shear components so that voids 

will maintain quasi-spherical shape. Budiansky [80] studied both cylindrical and 

spherical cases and extended each void growth model to properly account for large stress 

triaxialities and different hardening behaviors. The resulting formula for void growth 

from Budiansky's [80] investigation was a power-law dependence on stress triaxiality for 

void growth. 

Diffusional void growth was first examined by Hull and Rimmer [81], later 

corrected by Weertman [55], in which a periodic array of spherical voids along a grain 

boundary was modeled to grow by an atom transport process through void surfaces. In 

their descriptions it was assumed that vacancy diffusion within grains is rapid enough, 

when compared to diffusion along grain boundaries, so that voids will grow quickly and 

maintain quasi-spherical shape. Later on, Chuang et al. [82] reconsidered the case of 

spherical void growth, and also one of slower, crack-like void growth due to rapid 

diffusion and void extension along grain boundaries. Both cases examined in Chuang et 

al. [82] resulted in a description of void growth dependent on temperature and the stress 

component resolved in the direction normal to the grain boundary. 
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Both the work of Budiansky [80] and Chuang et al. [82] were revisited and 

combined by Needleman and Rice [72], with slight improvement from Chen and Argon 

[83]. In [72] it was noted that in conditions of creep loading, both viscoplastic dislocation 

flow and diffusional vacancy transport mechanisms are active, which leads to void 

growth rates much greater than if each mechanism was considered independently. The 

coupling of the two mechanisms was shown to reduce the diffusive path length along 

grain boundaries, facilitating matter transport through cavity surfaces, therefore 

accelerating void growth in a quasi-spherical manner. 

The final model chosen to describe void growth is the one developed by 

Needleman and Tvergaard [72], adjusted by Chen and Argon [83]. Rewritten slightly for 

the current framework, the change in radius,	 , for each void population , is the sum of 

void growth due to diffusion, , and the flow of dislocations, , which are all functions 

of the current void population radius, :  

  (74) 
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In the above equations  is a diffusivity term for the grain boundary,  is the local stress 

in the direction normal to the grain boundary,  is an adjusted porosity term,  is the 
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sintering stress,  is the angle of the void with respect to the grain boundary,  is a 

function which adjusts the void volume based on , and  and  are constants based 

on the hardening exponent, . In the above,  and  are as follows: 

 3
2

 (77) 

 1 0.4319
 (78) 

which Budiansky originally derived in his void growth analysis [80]. The void geometry 

function  is given by: 

 1 cos 1
2 cos

sin
 (79) 

where typical value for  is ~70 degrees and therefore 0.61 [82]. 

The sintering stress gives an effective surface tension of the voids, determined by 

the free surface energy of the void, , and the void’s geometry: 

 2 sin
	

 (80) 

Sintering will occur when the surface tension of the void exceeds the normal stress 

applied to the void, i.e. where the numerator of Equation 75 is equal to zero. At initial 

phases of void evolution, when porosity is very low, this implies a critical void radius: 
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 2 sin
 (81) 

above which voids will grow, and below which voids will close-up by diffusion. This 

critical size, which varies based on local stress, is assigned to nucleated void populations 

that are added to the end of the discrete population table described above. 

In Equation 75 Needleman and Rice [72] take the grain boundary diffusivity term 

as the following: 

 
exp  (82) 

where  is the grain boundary diffusion constant,  is the thickness of diffusion layer 

(i.e. the width of high diffusivity centered around the grain boundary), and  is the 

activation energy for a vacancy. Mendelev and Mishin [56] consider the activation 

energy as the sum of vacancy formation and migration energies, as follows: 

  (83) 

The adjusted porosity term for each void population is important for determining the 

balance of diffusion and creep controlled cavity growth, and is given below: 

 
max ,

1.5
 (84) 
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where  is a material length scale term based on the diffusivity, remote equivalent stress, 

and equivalent creep rate: 

 
/  (85) 

Needleman and Rice [72] propose this  term to determine the balance of viscoplastic 

void growth and diffusion void growth. In physical terms, it is considered the grain 

boundary length along which diffusion occurs towards a void, which has been shorted by 

the presence of creep void growth. When /  is small ( / 0.1), voids grow almost 

entirely in the diffusion/viscoplastic regime (governed by Equation 75), and their 

volumetric growth rates are very high. When /  is large ( / 10), voids are thought 

to grow exclusively by creep (governed by Equation 76), matching the formula given by 

Budiansky [80] for high stress triaxialities. Between these values of / , the contribution 

of both void growth mechanisms is significant and each process must be taken into 

account. 

4.2.3 Void Coalescence 

The final stage of void evolution, coalescence, is the least studied regime of 

porosity in plastically deforming materials. This stage is described as the point when 

voids have grown sufficiently with respect to their spacing, and begin to combine and 

form micro-cracks which eventually lead to macro-cracking and bulk material failure. 

Given the preference of voids to nucleate and grow at grain boundaries during primary 

and secondary stages of creep, it has been assumed that void coalescence leads to 
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intergranular cracking and bulk failure which is strongly dependent on the polycrystalline 

layout. 

The proposed criteria for entering this regime of porosity varies from theoretical 

physical descriptions of void interactions, to simple critical porosity threshold approaches 

above which an empirical factor simple scales overall porosity. Physical-based 

descriptions imply that intervoid ligaments will fail upon reaching geometry where their 

material plastic load limit experienced. Others have simply considered that once void 

radius equals void spacing, voids coalesce and material failure is initiated. Both claims 

are intuitively valid, but have not been investigated in great detail, either theoretically or 

experimentally, especially for the case of creeping polycrystalline materials. Therefore 

the simple empirical criterion suggested by Tvergaard and Needleman [84] in their 

modification of Gurson’s damage model is used: 

 ∗ 		if	
		if	  (86) 

where  is the critical porosity above which coalescence begins, and  is a coalescence 

effect factor which scales porosity magnitudes that are above the critical threshold. This 

coalescence factor is given by 

 1/
 (87) 

where  is the porosity of the material at failure. This porosity adjustment is based on the 

experiments from Goods and Brown [85], where it was determined that coalescence 
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begins when porosity reaches approximately 0.15, and Anderson [86] found that that 

failure occurs when the volume fraction of voids is equivalent to 0.25. 

4.2.4 Local Damage Description 

The incorporation of damage and fracture in ductile materials is often based on 

the Gurson-Tvergaard-Needleman (GTN) damage model. In the original work [87] 

Gurson studied the case of a single void in a rigid-plastic, incompressible unit cell, and 

proposed that the evolution of the yield surface can be described based on the stress state 

and the ratio of void size to unit cell size, i.e. porosity. Tvergaard and Needleman later 

modified the model slightly to better fit experimental data for tensile testing of round bars 

with periodic arrays of spherical or cylindrical voids [84]. The final GTN model 

describes the yield function as the following: 

 
2 ∗cosh

2
1 ∗  (88) 

where  is considered the plastic potential,  is the equivalent stress,  is the effective 

stress, or updated yield stress,  is the trace of the stress tensor,  is the porosity, and 

, and  are constants. 

In Equation 88, the updated yield stress is implicitly solved for when 0. This 

new yield stress gives some idea of the damage which the material has accumulated, and 

in this text a damage term, ,  is defined to give a proper measure of the damage based 

on the ratio of new and original yield surfaces: 
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 (89) 

To adjust the constitutive law of Wen et al. described in Chapter 3, local damage 

is applied to the mean resolved shear stress at the material point: 

 ̅ ̅  (90) 

where ̅  is the resolved shear stress, adjusted for damage. This simulates an increase in 

applied load on each slip system locally, which in turn leads to an increased slip rate i.e. 

plastic flow localization. In his derivations Gurson included an important assumption, 

which was that only material volume should transfer loads (i.e. cavities cannot support 

loads). With this in mind, the resultant strain rate at each material point is adjusted based 

on the porosity: 

 1 ∗  (91) 

where  is the adjusted plastic strain rate at a material point.  

The iterative solve of the numerical simulation from Figure 17, including the new 

damage law which is in red, can be visualized in Figure 24. 
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Figure 24. Iterative solve description of numerical model, included new damage law 
steps in red. 

4.3 Results and Discussion 

The material system studied in this chapter is the same Grade 91 Fe-9Cr-1Mo 

alloy considered in Chapter 3. Therefore, the parameters listed in Table 3 will be used to 

describe the same constitutive law that was presented in Chapter 3. Additional parameters 

are added to the model to incorporate the damage law proposed above, and these 

constants are listed in Table 5.  

The model is employed in the FreeFem++ [66] finite element framework 

discussed in Chapter 3, with the same 5x5 polycrystalline grain structure modeling using 

199x199x1 grid of tetrahedral elements with quadratic interpolation between nodes. The 

model is loaded according to the boundary conditions described in Equation 60, using the 

traction surface area integral to apply different creep loads. The creep and creep rates 

from simulation are calibrated against the high-temperature (973 K) creep tests from 
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Basirat et al. at three stresses, 80 MPa, 100 MPa, and 150 MPa [71]. The predicted creep 

and creep rates from simulation are compared to these experimental results in Figure 25. 

Table 5. Damage parameters for FeCrMo alloy. 

Parameter  Fe-Cr-Mo 

  Void geometry factor 70° 
  Weight of strain-based nucleation 0.2 

  Number density of potential nucleation sites 10  

  Critical strain for void nucleation 0.6 

  Variance of nucleation strain 0.168 

  Critical stress for void nucleation 0.27  

  Variance of nucleation stress 1.44  

  Hardening exponent 6.9 

  Free surface energy of void 50	mJ/m 

  Mass density 8000	Kg/m  

  Diffusion constant at grain boundary 50  

  Critical porosity for coalescence  0.10 

  Porosity at failure 0.30 

  GTN equation constant 1.5 

  GTN equation constant 1.0 

 

Figure 25. Creep and creep rate predictions from numerical simulation compared to 
experimental data from Basirat et al. [71] 

From Figure 25, it can be seen that numerical results agree excellently with the 

experimental creep data at each applied loading. Material response predictions are 
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particularly accurate in the secondary and tertiary creep regimes, where sensitivities to 

relatively small variations in loading are appropriately observed by the model. 

 

Figure 26. Axial strain field from tertiary creep regime for 80 MPa, 973 K loading. 

Implementation of the model in a finite element framework allows for a full-field 

examination of material response. Figure 26 shows the axial strain field measured in the 

polycrystal, for the 80 MPa, 973 K loading condition at a location well within the tertiary 

creep regime (2.57 10  seconds or 7.13 hours). At this location of creep testing, the 

average strain in the material is 1.23 10 , but it can be seen that local strains vary 

significantly and can exceed 3 times this mean magnitude, typically near grain boundary 

junctions. 

The local evolution of voids across the material can be investigated in a similar 

manner. In Figure 27 the porosity field of the polycrystal is shown at the three different 

stages of creep, for the 80 MPa, 97K loading condition. In Figure 27(a), local porosities 

predicted by the model after 2 seconds of loading indicate that within the primary regime 

of creep, voids have only just begun to nucleate and maximum porosity is approximately 



87 
 

2.1 10 . In Figure 27(b), porosity in the secondary regime of creep is illustrated, after 

820 seconds (0.2 hours) of loading, and it can be seen that void growth is well underway, 

and local porosities exceed 2.5 10 . Figure 27(c) shows that in the final creep regime, 

at 2.57 10  seconds (7.13 hours) where voids have begun to coalesce, void size-

spacing ratios have reached saturation porosity, 0.3, in many locations, and intergranular 

fracture has perhaps initiated at the grain boundary in the lower right corner of Figure 

27(c). 

Figure 27 illustrates that maximum local porosity is found at grain boundaries 

which are transversely-oriented to the loading direction. This is expected from the theory 

outlined in Equations 74-76, where particularly for diffusional void growth, a larger 

stress-component that is resolved normal to grain boundaries will maximize void growth. 

Further, experiments [71] have shown this void presence dependency on grain boundary 

direction. There is an exception to this rule in Figure 27(a), however, where maximum 

porosities in primary creep are actually found at grain boundaries which lie almost 

parallel to the loading direction. This is due to the minimum void criterion in Equation 

81, which dictates that a smaller normal component of stress will increase the critical 

nucleation radius. Since this model uses void nucleation criteria which are independent of 

this minimum size condition, it is possible for voids to nucleate under a small normal 

stress and therefore initiate with a large radius. This should be considered a discrepancy 

with the current model and implies that more coupled approach to void nucleation and 

growth might be appropriate, perhaps one in which the aggregation of vacancies that 

form minimum void sizes for “nucleation” (and therefore continued growth) is described. 

Regardless, the material response from Figure 27 should ideally inform the next iteration 
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of experiments, so as to validate assumptions and reveal further discrepancies of the 

current model. 

 

Figure 27. Local porosity in the (a) primary creep, (b) secondary, and (c) tertiary 
creep regimes. 

Values which govern the proposed damage law are studied in Figure 28, along 

time normalized with time to rupture, . Rupture is simply considered when the material 

experiences a creep rate increase of 10%. First, mean damage term and porosity across 

the material over time is shown in Figure 28(a) and Figure 28(b). It can be seen that 

damage and porosity evolution follow a trend of exponential increase over time and, 

respectively, are nearly identical between simulations at different applied stresses. The 

mean damage term at rupture is 1.072, 1.060, and 1.067 for 80 MPa, 100 MPa, and 150 
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MPa loading, respectively. Mean porosity at rupture time is 0.032, 0.0257, and 0.0237 for 

80 MPa, 100 MPa, and 150 MPa loading, respectively. These results imply that, at a 

given temperature, porosity evolution and subsequent damage calculation are 

independent of applied stress when studied along normalized time to rupture. 

 

Figure 28. Mean damage and porosity across material over time to rupture. 

In Figure 29(a) and Figure 29(b), respectively, the mean size and number density 

of voids are shown. Unlike Figure 28, these terms have been averaged only over locations 

where void initiation is allowed (at grain boundaries). Additionally, in Figure 29(b) void 

radius calculations are weighted by each respective number density of void population. 

From Figure 29(a), it can be seen that voids nucleate at a slightly increasing rate over 

time, and that void nucleation is at least an order of magnitude greater for the high stress-

state (150 MPa) compared to the lower stresses. Specifically, for this 973K temperature 

state, the number density of voids half-way through each creep test is 2.2 10 , 1.2

10 , 5.5 10  voids per cubic meter for tensile loading at 150 MPa, 100 MPa, and 80 

MPa respectively. These magnitudes for void number density are considered reasonable 
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when compared to the number density of MX precipitates in the current material system, 

3 10  m-3. Since voids often nucleate at these second-phase particles [71], one would 

expect total number density to slightly exceed this magnitude, given the additional, but 

significantly lowered, potential for void nucleation elsewhere. 

 

Figure 29. Mean (a) number density and (b) void radius at potential nucleation sites 
over time to rupture. 

In Figure 29(b) it can be seen that average void size tends to increase at a 

decreasing rate. This is due to the continued increase in void number density shown in 

Figure 29(a), where small initial voids tend to make up a larger percent of the entire 

material point population as each creep test continues. Additionally, while it was seen 

that low stresses will limit the nucleation of voids, it seems that the voids which are 

present will grow faster on average in low stress regimes than in high stress regimes. 

Indeed, final mean void radius increases from 6.4, to 17, to 23 nm when decreasing stress 

from 150 MPa, to 100MPa, to 80 MPa. Note that in this work, the ratios of void radii to 

the diffusion length parameter from [72], for each simulation, are approximately /
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2 10 , which is within the regime of combined creep and diffusion growth described 

earlier. 

The respective contribution of local strain and local stress to void nucleation is 

shown in Figure 30(a) and Figure 30(b), and mean value calculation is again limited to 

material points at grain boundaries. Figure 30(a) shows that at a given temperature, the 

number of voids which have nucleated due to surpassing a critical strain threshold is 

within the same order of magnitude for the three stress-states studied here. This is 

expected considering that for each stress, the axial creep magnitudes given in Figure 

25(a) are similar in magnitude and only shifted by time. The number density of voids 

nucleated by the strain criterion is 2.7 10 , 2.8 10 , and 3.7 10  voids per 

cubic meter for 80 MPa, 100 MPa, and 150 MPa loading respectively at the midpoint of 

each creep test. On the other hand, Figure 30(b) shows that higher applied stresses will 

intuitively initiate more voids when using the stress-based criterion. At the midpoint of 

each creep test, the number density of voids nucleated by stress is 2.9 10 , 9.6

10 , and 2.2 10  voids per cubic meter for 80 MPa, 100 MPa, and 150 MPa loading 

respectively. For both results presented in Figure 30(a) and Figure 30(b), the effect of 

selecting a mean critical value and including some statistical variance is clearly shown. 

While Figure 23 is for a generic selection of variables, and is plotted along different x-

axes than Figure 30(a) and Figure 30(b), it can be used to show that in these creep tests, 

on average, voids have only nucleated according to the lower half of each respective 

cumulative distribution. Without including this variance, void number density would 

have been significantly limited, and while a reduced mean nucleation criteria could have 
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been used to maintain bulk response accuracy, it would have been based on a sort of “all-

or-nothing” approach to void nucleation.  

 

Figure 30. Mean values for (a) strain-based nucleation and (b) stress-based 
nucleation. 

Predictions of bulk material response are most accurate for the current model 

when percent of nucleation due to strain is 20%, implying that perhaps 20% of all second 

phase particles, in this FeCrMo material system, crack according to a critical strain 

criterion. This could be used to imply that this percent population of particles is below a 

critical size, and/or are shaped or oriented in a particular manner that prohibits stress-

based nucleation modeling. In any case, such statistical differences are 

phenomenologically captured in the current work using both nucleation criteria, without 

an explicit description of particle geometry effects. 
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Figure 31. Mean growth rate due to (a) diffusional vacancy transport and (b)  
viscoplastic creep flow of dislocations at potential nucleation sites over time to 

rupture. 

Mean void growth rates due to diffusion and creep are examined in Figure 31(a) 

and Figure 31(b) respectively. First it can be seen that growth rates will increase with 

larger applied stresses, especially for growth due to the viscoplastic creep flow of 

dislocations. In Figure 31(a), the rate of diffusion-controlled void growth rapidly 

increases in the first stage of creep, and eventually reaches a linear rate as the creep 

simulation continues. At the midpoint of each test, the diffusional growth rate for each 

applied load is 5.0 10 , 6.3 10 , and 1 10  m3/s for 80 MPa, 100MPa, and 

150 MPa respectively. Creep-controlled void growth shown in Figure 31(b) reveals a 

similar dependence on stress, but with rates which exponentially increase throughout the 

creep test. At the midpoint of each test, the growth rates due to dislocation flow are 4.1

10 , 5.5 10 , and 2.0 10  m3/s for 80 MPa, 100 MPa, and 150 MPa 

respectively. In each test, it can be seen that creep-controlled cavity growth rates tend to 

randomly flutter around an exponentially increasing mean value. This is attributed to the 
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dependence of creep growth rate on plastic strain rate, which itself flutters slightly based 

on the evolution of dislocation density in the material. 

Void growth rate results from Figure 31(a) and Figure 31(b) seem contradictory to 

void sizes given in Figure 29(b); the stress dependency between void growth and size is 

opposite. This is considered to be a result of the dependency of critical void size on 

applied stress, discussed earlier, where smaller stresses give larger initial void radii. 

While this is an important note of the model limitations, it does not appear to present void 

radii which are of unreasonable magnitude. In the current model, voids grow between the 

in the nanometer and micrometer range, which is similar to void examination of damaged 

Grade 91 Fe-9Cr-1Mo in [71, 88]. 

4.4 Summary and Conclusions 

In this chapter, a new microstructurally-sensitive damage evolution law was 

proposed and employed within a finite-element framework. Model validation against 

experimental data was accomplished on the bulk scale for high temperature creep testing 

of a Grade 91 Fe-9Cr-1Mo alloy, at three magnitudes of applied stress. Excellent 

agreement between experimental data, and numerical predictions was shown for both 

creep and creep rate. Further, implementation of the model in a finite-element framework 

allowed for examination of a full-field material response, giving insight into local 

porosity evolution as well as strain localization.  

Terms which describe the damage law were examined and seen to be within 

physically-reasonable magnitudes, reaffirming that individual components of the law are 

based on sound, physical understandings of porosity evolution. However, the model 
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stands to be improved by using a more coupled description of void nucleation and 

growth, and could be further calibrated against experimental data at different 

temperatures and applied stresses. 

Regardless, the damage law and modeling framework allow one to revisit the 

present understanding of creep damage in a polycrystalline material system. By 

accomplishing a wide range of numerical simulations, including multiaxial loading, 

bending, and other tests which replicate physical application, an improved understanding 

of material lifetime and failure modes can be obtained. One-dimensional predictions for 

material lifetime, from parameters such as Larson-Miller and Monkman-Grant, can 

potentially be redefined for improved accuracy according to further numerical results. 

Obviously gathering this data from simulation is favorable compared to expensive and 

time-consuming creep experimentation, so long as the model has a reasonable basis in 

physical processes occurring on lower length scales. The current model, therefore, 

presents potential for high-fidelity predictions of material response across a wide range of 

creep applications. 
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