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AN INVESTIGATION OF THE EFFECT OF SURFACE FINISH 

ON THE FLEXURE FATIGUE STRENGTH OF 75S-T6 

ALUMINUM ALLOY SHEET 

SUMMARY 

Flexure fatigue tests have been conducted for 

Alclad 75S-T6, 75S-T6 and 24S-T3 sheet of commercial 

thickness 0.040 inches for polished specimens, and 

specimens scratched by various abrasive cloths, 

Curves of applied stress versus number of cycles to 

Tailure have been plotted, and stress concentration 

factors for the individual materials and abrasive 

grits determined. The flexure fatigue strengths of the 

materials have been compared, both in the polished 

and scratched states, and conclusions have been drawn 

concerning the relative merits of the different materials 

with respect to their fatigue qualities. 
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INTRODUCTION 

The study of fatigue has become more important each 

year. The S-N curves, or Wohler curves as they are called 

in the G-erman literature, where the number of cycles to 

failure (N) Is plotted as a function of the stress (S), 

of many different materials have been determined and pub­

lished, More recently, fatigue studies have been carried 

out to determine the effect of certain stress raisers such 

as holes, notches, and fillets on the fatigue strengths of 

certain materials, Por aluminum alloys, with which the 

aeronautical engineer is especially concerned, the data 

are meager and, for the recently developed high strength 

aluminum alloys, are practically non-existent. 

The design of aircraft elements has been based upon 

certain limit loads which are rarely, if ever, encountered, 

To these, a small margin of safety is added to determine 

the design loads. However, as the loads on the structure, 

and consequently the induced stresses, can be considered 

as consisting of a steady, or dead load, and a superimposed 

dynamic load, the opportunities for fatigue failures should 

not be overlooked. 

It has been claimed by some that the fatigue failures 

which have occurred in the past have not been serious in 

nature. Before 1939, there were no cases on record In which 
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a wing spar failure was caused by fatigue. However, it 

seems likely that such failure could possibly have occurred 

without being detected. More recently failures of this 
2 

nature have occurred, and with great loss of life. 

Fatigue failure in propellers and tail assemblies have 
3 

also caused many fatal accidents. 

The factors which contribute to fatigue failures 

have by their nature made the problem more acute each 

year in spite of the more advanced understanding of the 

conditions for failure. Some of the factors are: 

higher speeds, increased wing loadings, increased fire 

power and maneuverability, pressurized cabins, and radical 

4 design changes such as jet and rotary-winged aircraft. 

The use of new material with higher static ultimate 

strength, but not proportional increase in fatigue strength 

1Arnstein, K., Shaw, E.L., "Fatigue Problems in 
the Aircraft Industry", Metals and Alloys, 10:203-9, 
July 1939. 

^Anonymous, "2-0-2 Report," Aviation Week, 
49:26, October 1938. 

3Staff of Battelle Memorial Institute, Prevention 
°^ tne. Fatigue of Metals Under Repeated Stress (New York: 
"John Wiley and Sons^ Inc., 194lT. 

Jackson, L.R., G-rover, H.J., and McMaster, Bat­
telle Memorial Institute, "Advisory Report on Fatigue 
Properties of Aircraft Materials and Structures," War 
Metallurgy Committee, OSRD No. 6600, Serial Number M-
653, March 1, 1946. 
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has also been a contr ibuting f ac to r . This i s pa r t i cu l a r ly 

true in a i r c r a f t since the great majority of par ts are 

designed to operate a t a ce r ta in percentage of the i r 

ul t imate s t rength . Consider the case of two mater ia ls with 

equal endurance s t reng ths , but with unequal u l t imate 

s t r eng ths . A cer ta in percentage of the lower ul t imate 

s t rength for the one material might r e s u l t in a working 

s t r e s s l e s s than the endurance s t rength , while the same 

percentage of the higher ul t imate s t rength of the other 

material could conceivably r e s u l t in a working s t r e s s greater 

than the endurance s t reng th . In a i r c r a f t use, the aluminum 

al loys 75S-T6 and 24S-T3 are mater ials with physical proper­

t i e s s imi lar to the above condit ion. The 75S-T6 is the newer 

of the two al loys and has the higher ul t imate s t reng th . 

The purpose of th i s inves t iga t ion i s to determine 

the effect of surface f in ish on the fat igue s t rength of 

75S-T6 and to compare th i s effect with tha t of s imi lar 

s t r e s s r a i s e r s on 24S-T3. 
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MATERIAL 

The materials used for the fatigue tests were 

Alclad 75S-T6, 75S-T6 and 24S-T3. The Alclad sheet had 

a core material of the specified alloy and a surface 

cladding of practically pure aluminum on each side. For 

this type, the word Alclad has been used as a prefix to 

the alloy designation. The other sheet material had no 

cladding on the surface. This, in some literature, is 

sometimes referred to as "bare". In this report, however, 

the alloy designation with no prefix indicates that the 

material was not of the clad type. This notation has bean 

followed consistently throughout the report, 

The nominal composition of 75S is 1.6 per cent 

copper, 2.5 per cent magnesium, 5.6 per cent zinc, and 

0.3 per cent chromium. The balance is aluminum and 

normal impurities. For the alclad sheet, the core 

is 75S and the cladding material is 72S, which has a 

nominal composition of 1 per cent zinc, with the remainder 

aluminum and normal impurities. Alloy 24S nominally con­

sists of 4.5 per cent copper, 0.6 per cent manganese, 

1.5 per cent magnesium, balance aluminum and normal 

impurities. 

^Anonymous, Alcoa Aluminum and Its Alloys (Pitts­
burgh, Penna: Aluminum Company of America, 1947), p. 85. 
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Following the alloy designation, are the heat-treat 

symbols. The "T" indicates the alloy to be of the heat-

treatable type, and the number indicates the heat-treat 

process. The final properties of the materials are deter­

mined by this process. For 75S-T6, the number six indi­

cates a solution heat-treat followed by artificial aging. 

On 24S-T3, the three indicates a solution heat-treat fol­

lowed by strain hardening, which in the case of sheet, 

comes about in a flattening operation. 

All of the sheet used throughout the tests was of 

the commercial thickness 0.040 inch. The actual average 

thickness varied from 0.0390 inches for the Alclad 75S-T6 

to 0.042 inches for the 75S-T6. Although the thickness 

of the individual sheets varied a few ten thousands of 

an inch from the actual average, all calculations and 

machine settings were made on the basis of a constant 

thickness for each individual sheet. One series of tests 

for polished specimens alone was run on 0.032 inch thick 

Alclad 75S-T6. 

Mechanical properties of the alloys used are shown 

in Table I. These were determined from tension tests on 

standard specimens of two-inch gage length.6 The values 

2Davis, H.E., Troxell, G.E., and Wiskocil, C.T. 
The Testing and Inspection of Engineering Materials, (New 
York! McGraw-Hill book Company, Inc., 1941), p. 80. 
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represent an average of two tests for each material. The 

average stress-strain curves for the materials used are 

shown in Figures 1, 2, and 3. 

THE FATIGUE TESTING MACHINE 

The machine with which the tests were conducted 

was a Sonntag Flexure Fatigue Machine, Model SF-2, shown 

in Figures 4, 5, and 6. It was of the constant repeating 

force type, acting on a cantilever specimen designed to 

give a constant bending stress throughout the test 

section. The varying vertical shear stress was neglected 

as is customary with this type loading. The speed of 

loading was 1800 cycles per minute. 

The operation of the machine has been very well 
7 8 

described in previous theses. ' 

THE FATIGUE SPECIMENS 

The layout of the fatigue test specimen, along 

with mounting details, is shown in Figure 7« The 

specimen was mounted as a cantilever and was designed 

to produce a constant bending stress in the area bounded 

7Bond, A.C. "Fat igue S tud ies of 24S-T and 24S-T 
Alc lad Sheet wi th Various Surface Condi t ions" (unpub­
l i s h e d Mas t e r ' s Thes i s , Georgia I n s t i t u t e of Technology, 
A t l a n t a , Georgia 1948) , p . 5 . 

8Duchacek, Howard, "A Study of the Ef fec t of Thick 
ness on Fa t igue S t r eng th of 24S-T3 Aluminum Alloy Sheet" 
(unpubl ished M a s t e r ' s Thes i s , Georgia I n s t i t u t e of Tech­
nology, A t l a n t a , Georgia 1948) , p . 7 . 
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by the two straight non-parallel lines and their inter­

section with the three-eighths of an inch radii. 

Preparation of Specimens: The aluminum sheet was 

cut into rectangles on a manually operated shear. The 

length of the rectangle was three and one sixteenth inches, 

and the width was two inches. The holes were drilled in 

the jig (shown in Figure 8), and the test section cut out 

on an Onsrud routing machine, as per Figure 7. The long 

dimension of the rectangle was in all cases, in the dir­

ection of rolling for the sheet. The tensile and com­

pressive forces produced by the flexure machine therefore 

acted in the direction of the grain of the material. 

The tool marks on the edges of the straight sides bounding 

the test section and the adjoining radii were removed by 

polishing with 240 grit aluminum oxide cloth, backed 

up by a three-eighths inch diameter wooden dowel. This 

served to keep the edge square and perpendicular to the 

flat surface of the sheet. The edge was then polished 

in the same manner with 400 grit aluminum oxide cloth. 

By first using a new piece of abrasive to polish out 

the major scratches, from the previous abrasive cloth, 

and then a "used" piece of the 400 grit cloth9, the 

edge looked absolutely smooth to the unaided eye. 

SGallaher, E.B. Coated Abrasives, A Handbook and 
Digest of Coated Abrasives Technology (Norwalk, Conn: 
dlover Manufacturing Company, 1945) 36 pp. 
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However, to ensure that the edges were as well polished 

as practical, all specimens were inspected during and 

after the polishing operation under an eight power mag­

nifying glass. Prom this, and the fact that all speci­

mens were polished by the author, it was felt that the 

edges were uniform and contained no major scratches, 

In the course of processing, the surface of the 

alclad specimens became very slightly scratched. Within 

the area of the test section, minor mars were removed by 

buffing in the direction of rolling. No attempt however, 

was made to remove all scratches, and the change in 

thickness due to buffing could in all cases be neglected, 

In instances where a remaining scratch was considered 

important, a note was made of the location. If the 

fatigue fracture occurred at this position, the test 

point was disregarded. The surfaces of the 75S-T6 and 

24S-T3 specimens were also buffed in order to make the 

tests as consistent as possible* 

Application of Scratches; On the Alclad 75S-T6, 

the scratches for the various tests were made with 

crocus cloth and 100 and 60 grit aluminum oxide abrasive 

cloths. Aluminum oxide 60 grit abrasive cloth was used 

for the 75S-T6 and 24S-T3 specimens. 

For all specimens, a strip of abrasive cloth 



approximately one-half inch wide, was held by hand and 

with slight pressure, drawn across the specimen test 

section several times in an attempt to produce a uni­

form number of scratches on the test section. This was 

done to each side of the specimen, using a new piece of 

abrasive cloth for each side and each specimen. All 

scratches were made in a direction perpendicular to the 

center line of the specimen. 

This particular method of imparting the scratches 

to the specimen, and the use of the above mentioned 

abrasive grades, was chosen in order to make a notch 

sensitivity comparison of the two alloys 75S and 24S with 

as few variables as possible. The experimental program 

for 24S has been previously conducted by Bond. 

Depth and Nature of Scratches; In order to 

determine the depth of scratches, the specimen test 

section surface was examined with the aid of a Baush 

and Lomb Research Metallograph. For the specimens 

scratched with the finer grades of abrasive, a magni­

fication of about X2000 was used. For those specimens 

scratched with number 60 grit, a magnification of about 

X1000 was used. This reduction in magnification was 

Bond, o£. clt., pp. 1-30. 
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necessary since a scratch made by 60 grit covered the 

complete field of vision at X2000 and the depth could 

not be measured at the higher magnification without 

moving the specimen, 

The actual measurements were made by first cen­

tering the scratch in the field of vision. The micro­

scope was then focused on the level surface adjacent to 

the scratch. The reading on the focusing knob was noted. 

The microscope was then focused on the bottom of the 

scratch. The reading was again noted. The difference 

between the two readings on the calibrated vertical 

focusing knob gave a direct measure of the depth of 

scratch. 

The actual scratches varied in depth, width and 

cross-section shape. This was expected, since for any 

one abrasive number, the particles vary to some extent 

in size and shape. 

The observed depths ranged from some hardly notice­

able up to a certain measured maximum for each abrasive. 

A determination of average depth over so great a range 

would not give a true picture of the stress concentration 

factor operative in fatigue failure. Further, an average 

of this nature would tend to associate a certain stress 

concentration factor with a certain average depth and 

this average, being composed of many lesser scratches, 



would be a depth smaller than the major scratches which 

are most likely to cause failure, other factors being 

equal. Thus, it would then appear, that a smaller 

depth of scratch possessed a damaging effect more se­

vere than in reality. In view of this, only the maxi­

mum depths observed are recorded in Table II. No 

doubt, some depths were greater than these, and many 

slightly less. The values serve more to establish the 

magnitude than the exact numerical depth in inches. 

TEST PROCEDURE 

The stress applied to each specimen was deter­

mined by the setting of the eccentric mass, shown in 

Figure 4. Sample stress calculations and machine set-

11 12 
ups are given by Bond , Duchacek , and in the oper-

13 
ating instructions for the machine • The eccentric 

mass setting was made before the specimen was placed 

in the machine. This was done to ensure that the 

specimen would not be bent or twisted. The test speci­

men was inserted with its center line perpendicular 

to the fixed mounting, and the movable yoke was set 

H-Bond, 2£. cit., pp. 9-10. 

l^Duchacek, o_£. cit., pp. 10-11. 

l^Anonymous, "Instructions For Installation, 
Operation, and Maintenance of Flexure Fatigue Testing 
Machine, Model SF-2" (Greenwich, Conn: Manual furn­
ished by Sonntag Scientific Co., July 1948) p. 4. 



parallel to the fixed mounting. This eliminated any 

possibility of unsymetrical loading. 

The following tests were conducted: 

: Number Alloy Surface Condit ion 
Thickness 
In Inches 

1 Alclad 75S-T6 Pol ished 0.032 

2 Alclad 75S-T6 Pol ished 0.039 

3 75S-T6 Pol ished 0.042 

4 Alclad 75S-T6 Scra tched by 
Crocus Cloth 0.039 

5 Alclad 75S-T6 Scra tched by 
100 G r i t 0.039 

6 Alclad 75S-T6 Scra tched by 
60 G r i t 0.039 

7 75S-T6 Scra tched by 
60 G r i t 0.042 

8 24S-T3 Pol i shed 0.0395 

9 24S-T3 Scra tched by 
60 G r i t 0.0395 

Since the specimen edges were polished by hand 

and the scratches were applied by hand, it was realized 

that not all specimens for any one test would be exactly 

the same, especially since no more than two or three 

specimens were given the final surface finish each day. 

In order to minimize the effect of this difference in 

specimens from day to day, if there were any such effect, 

the test points were not run in order of increasing or 

decreasing values of stress. In other words, one sped-



men was run at a high stress, the next at a low stress 

and the next perhaps at some intermediate value. This 

procedure gave test points throughout the complete curve 

and any difference in specimens would add to the scatter 

of points on the complete curve rather than establish 

a false trend. 

In general, a maximum stress setting of about 

45,000 pounds per square inch was used to determine the 

lower limit of stress applications, and an upper limit 

of 10 million cycles was arbitrarily taken. With the 

machine running continuously, approximately four days 

were required to complete 10 million cycles of com­

pletely reversed stress. If the specimen remained un­

broken after that number of cvcles, the machine was 

stopped and the point plotted as a horizontal arrow, 

the ordinate of which indicates the stress setting with 

the arrow origin located at the number of cycles actual­

ly completed. 

DISCUSSION OF RESULTS 

Alclad 75S-T6: The S-N curve for polished Al-

clad 75S-T6, 0.032 inches thick is shown in Figure 12. 

Also plotted are the tests points for the polished Al­

clad 75S-T6, 0.039 inches thick. A comparison of these 

data reveals that for the small difference in thickness, 

there is little or no difference in the fatigue strength. 



A similar conclusion for 24S-T3 was drawn by Duchacek 

in his investigation of size effect on that alloy. 

Figure 13 is an S-N plot of Alclad 75S-T6, 0.039 

inches thick, in the polished state and scratched by 

crocus cloth. The curve for the polished specimens is 

repeated on each figure in order to measure the damage 

caused by each of the various abrasive grades. Figures 

14 and 15 show the S-N curves for the Alclad 75S-T6 

scratched by numbers 100 and 60 grit. A comparison of 

results for the various surface conditions is shown in 

Figure 16. 

75S-T6: Figure 17 shows the result of test made 

on 75S-T6 of thickness 0.042 inches. The upper curve 

represents the results from the polished specimens, 

while the lower curve, those of the specimens scratched 

by number 60 grit abrasive cloth. Only this one grade 

of abrasive was used on the 75S-T6. It was originally 

planned to also run curves for the other two abrasives, 

However, in view of the fact that the stress concentra­

tion factors determined were less than those reported 
15 by Bond , it was felt that a rerun of the 24S material 

would be of greater value in forming a comparison of the 

l^Ducbacek, o£. cit., p. 20. 

15Bond, ££. cit., p. 30. 



two mate r i a l s . 

24S-T5: A comparison of two inves t iga t ions on 

24S-T3 i s shown in Figure 18. The S-N curves for 24S-T3 

of thickness 0.0395 inches are shown in Figure 20. Once 

again the upper curve i s for the polished specimens while 

the lower curve i s for those scratched by the number 60 

g r i t abras ive . 

Figure 19 shows a d i r e c t comparison of the mater­

i a l s 24S-T3 and 75S-T6, both in the polished s t a t e . I t 

can be seen that beyond approximately five-hundred-

thousand cycles, the 75S-T6 has the higher fat igue s t rength , 

while a t the lower number of cycles the 24S-T3 seems to 

possess the higher fat igue s t rength . For the data shown 

here, th i s difference a t the lower number of cycles can 

only be given as a trend, since the t e s t s were not ex­

tended beyond a s t r e s s se t t ing of 45,000 pounds per 

square inch for the outside f i be r . However, a conforma-
T 6 

tion of this trend is reported by G. H. Found 

It should be noted that for a loading to failure 

in one-half cycle, the ultimate strength of the material 

is involved, and since the 75S-T6 has the larger ultimate 

strength, it is necessary for the S-N curves of the two 

16Found, G. H., "The Notch Sensitivity in Fatigue 
Loading of Some Magnesium Base and Aluminum Base Alloys" 
A.S.T.M. Proceedings, Vol. 46, 1946, p. 796. 



materials to cross at least twice, in the complete range 

of cycles from one-half cycle to, say five-hundred-

million cycles. This of course, would mean that neither 

material is superior to the other in flexure fatigue 

strength at all numbers of cycles. This cannot be shown 

here, however, since no S-N curve covering the complete 

range of cycles from one-half to five-hundred-million 

is available for the two materials. 

Shape Effect; For fatigue tests of sheet mater­

ial, the values determined are usually less than those 

found for the same material using specimens of a dif­

ferent shape. Tests of the high strength aluminum alloy 

X76S-T indicate a 30 per cent reduction in endurance 

strength for rectangular specimens, as compared with 

17 round specimens run on the same vibratory type machine. 

An even greater reduction was found for square specimens. 

This same effect has been reported by others . The 

surface hardening effect due to rolling and straighten­

ing of sheet material would tend to give it a higher 

endurance strength. While the depth affected by "cold 

1'Dolan, Thomas J. "Effects of Range of Stress 
and of Special Notches on Fatigue Properties of Aluminum 
Alloys Suitable for Airplane Propellers", N.A.C.A. Tech­
nical Note No. 852, pp. 1-20. 

18Moore, H.F. "Report of the Research Committee 
on Fatigue of Metals" A.S.T.M. Proceedings, 41:133, 1941. 



working" of this nature is small, it becomes a sizeable 

factor when compared to a sheet thickness of several 

hundredths of an inch. The same depth of strengthened 

material on a thickness of several inches would be negli 

gible. This fact has been used to improve the fatigue 

19 life of parts by "shot peening." 

The sharp edge of the specimen, however, pro­

vides an effective stress raiser, which is more than 

enough to overcome any strengthening due to surface 

hardening, and accounts for the lower values of endur­

ance strength. 

Stress Concentration Factors: A stress concen­

tration factor may be defined as the ratio of the endur­

ance strength of the material to the endurance strength 

of the specimen with the stress raiser, at the same 
20 number of cycles. For this report, the transverse 

scratches caused by the various abrasive cloths act 

as the stress raisers. The actual values of the stress 

concentration factors are recorded in tables III and 

IV. These were determined by dividing the ordinate of 

the curve for the polished specimens by the ordinate of 

Moore, H.F. "Strengthening Petals Parts by 
Shot Peening" Iron Age, Vol. 158, Nov. 28, 1946, p. 67 
and Dec. 5, 1946, p. 8l. 

20Seely, Fred B. Advanced Mechanics of Materials 
(New York: John Wiley and Sons, Inc., Eighth Printing, 
1947), p. 202. 
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the curve for the scratched specimens. The ordinates 

were taken a t the same number of cycles of s t r e s s app l i ­

ca t ion . This was done a t a number of values of N, and 

these s t r e s s concentration factors averaged together to 

form one represen ta t ive s t r e s s concentration factor for 

each abras ive . For the Alclad 75S-T6 scratched by crocus 

c loth , the factors are p r ac t i ca l l y constant throughout 

the range of cycles. Those determined for the other two 

g r i t s d i f fer from the average by l e s s than four per cent 

for the range of cycles covered. The fac tors determined 

for 75S-T6 and 24S-T3 vary s l i g h t l y more. No explana­

t ion can be given for the fac t tha t the Alclad 75S-T6 

showed the g rea tes t fac tors near the center of the cy­

cle range, while the 75S-T6 and 24S-T3 showed the l a r g ­

es t fac tors on both extremes of the range of cycles 

t e s t ed . 

Prom tables I I I and IV, i t i s seen that for the 

Alclad 75S-T6 and 75S-T6, both scratched by number 60 

g r i t c loth, the s t r e s s concentration fac tors are very 

nearly the same. The average factor for the Alclad 

75S-T6 i s 1.12, while for the 75S-T6 i s 1.13. I t should 

also be observed tha t the maximum and minimum fac tors 

are very nearly the same for the two mate r i a l s , except 

tha t they occur a t a d i f ferent number of cycles as not­

ed above. This would seem to indicate tha t Alclad 



75S-T6 and 75S-T6 are almost equally sensitive in fatigue 

to a group of surface scratches. This same effect was 

found by Bond21 in his investigation on Alclad 24S-T3, 

and 24S-T3 with but one exception, and that was for the 

specimens scratched with grit number 60 abrasive. In 

this case the factor for the unclad material is much 

larger than that for the Alclad material. However, it 

is felt that this one particular value from the work of 

Bond is not in agreement with his other results for the 

following reason. Of the five abrasive grades used by 

Bond on the Alclad and bare material, for three, the 

factors determined for the Alclad and bare material 

were numerically the same to three figures, which are 

all that can be considered significant. For the fourth 

abrasive, the difference was lesp than two per cent, and 

yet for the fifth, grit number 60, the difference is 

greater than 10,5 per cent. In view of this, it is felt 

that the stress concentration factor determined by Bond 

for 24S-T3 scratched by grit number 60 abrasive is too 

large, 

The average concentration factor determined for 

24S-T3 scratched by number 60 abrasive cloth, from table 

IV, is 1.12. This is in close agreement with the 1.13 

determined for 75S-T6 and 1.12 determined for Alclad 

Bond, loc. cit. 



75S-T6, scratched by the same abras ive . I t seems reason­

able to conclude, a t l e a s t as a f i r s t approximation, in 

view of the l imited data , that 24S-T3 and 75S-T6, are 

almost equally notch sens i t ive to s t r e s s r a i s e r s such 

as those used in t h i s inves t iga t ion . 

A further confirmation of almost equal notch 

s e n s i t i v i t y for 24S-T3 and Alclad 75S-T6 i s found in a 
22 repor t for a s ingle notch. The t e s t s were made in 

bending and the thickness of the material was 0.064 

inches. A single transverse surface notch on opposite 

sides of the specimen in the form of a s ix ty degree "V" 

with minimum radius of one-thousandth of an inch, and 

a depth of three-thousandths of an inch was used. At 

f ive hundred thousand cycles, the s t r e s s concentration 

factor for Alclad 75S-T6 was 1.31, and for 24S-T3 was 

1.38. At ten mil l ion cycles, the s t r e s s concentration 

factor for Alclad 75S-T6 was 1.22, and was 1.18 for 

24S-T3. From these r e s u l t s , i t i s noticed that the 

s t r e s s concentration fac tors vary with the number of 

cycles in a manner s imilar to tha t noted for Alclad 

75S-T6 by th i s experimenter. I t should also be ob­

served that a t the lower number of cycles, the Alclad 

75S-T6 was the l e a s t notch sens i t ive while a t the 

higher number of cycles, the 24S-T3 was the l e a s t notch 

22pound, op. c i t . , p . 715. 
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sensitive. The theoretical stress concentration factor 

is 2.0 for the above notch, 

Since, for Alclad 75S-T6, the nominal thickness of 

the 72S cladding on each side is 4,0 per cent of the total 

thickness, the depth of notch must have completely pene­

trated the clad surface. On the tests conducted for this 

report, the scratches in no case were through the clad 

surface, as can be seen from the table of depths, 

A comparison of the stress concentration factors 

for scratched Alclad 75S-T6 with those available for 

24 scratched Alclad 24S-T5 shows a percentage difference of 

from 5 to 10 per cent with those for Alclad 75S-T6 as 

the lower of the two. A further comparison of the Alclad 

24S-T3 values with those reported for a single notch, which 

25 has been shown to be the more damaging of the two cases, 

might indicate the factors reported by Bond for the scratched 
26 

Alclad 24S-T3 to be too large. Andrews found for a trans­
verse surface notch on each side of the sheet made by a 

^Anonymous, Alcoa Aluminum and Its Alloys (Pitts­
burgh, Penna: Aluminum Company of America, 1947;, p. 102. 

2^Bond, o£. cit., p. 29. 

25Moore, R. R. "Effect of Grooves, Threads, and 
Corrosion Upon the Fatigue of Metals", A.S.T.M. Proceed­
ings, Vol. 26, Part II, 1926, p. 255. 

26Andrews, H. J. and Stickley, G.W. "Effect of 
Scratches on Fatigue Strength of Alclad Sheet", Aviation 
June 1943, p. 145. 



tool with a sixty degree "V", and a minimum radius of less 

than one ten-thousandth of an inch, with depth equal to 

85 per cent of the alclad thickness, an average stress 

concentration factor of 1.11 for Alclad 24S-T3. For 

a notch depth of 55 per cent of the alclad thickness, 

a factor of 1.06 is reported. 

One factor which has not been directly evaluated 

is the effect; of the scratch or notch at the edge of 

the specimen. Since a great majority of the fractures 

began at one edge of the specimen and progressed across, 

it was felt that the scratch depth was not the most 

important factor in the determination of the failure. 

In Figure 9, it can be seen that there were many stress 

raisers along the edge of the specimens which did not 

extend across the surface as scratches. The intersection 

of these, with the minute longitudinal scratches which 

remained from the edge polishing operation, could very 

well have been the deciding factor for failure, and more 

important than the depth of scratch on the surface of 

the specimen. The difference in edge surface finish 

might also account for the lower values of stress con­

centration factors found for Alclad 75S-T6 and 75S-T6. 

As was noted under preparation of the specimens, the 

edge was considered to be better polished than those 

specimens used in previous tests. 



One other difference can be mentioned to account 

for the higher stress concentration factors reported 
27 

by Bond. The curve for polished 24S-T3 specimens, 

which was used to determine the stress concentration 

factors, consistantly runs from 3,000 to 4,000 pounds 

per square inch higher, for the same number of cycles, 
28 

than either the similar curve of Duchacek or of the 

present investigation. Figure 16 shows the S-N curve 

determined by Duchacek with the experimental points 

found by the present author superimposed to demon­

strate the extent of similarity of the two curves. No 

reason can be found for this difference, since all work 

was done using the same machine and similar specimens. 

It is possible however, that the first specimens were 

slightly oversize, since they were not made on the 

router as were those of Duchacek and the author. This 

last statement can only be considered as a supposition 

to explain the difference as there is no factual evi­

dence to prove they were either undersize or oversize. 

APPLICATION TO DESIGN 

It should be pointed out that not only the low 

stress (high number of cycles) end of the S-N curve, 

but the whole curve is important in design work. There 

27Bond, loc. cit. 

28Duchacek, op_. cit., p. 34 



are component parts in aircraft structures where the 

number of stress alternations in the lifetime of the 

aircraft may be estimated quite closely. One such 

example is the cycle of stress caused by pressurizing 

and depressurizing the cabin of modern transport and 

military aircraft. As the art of aircraft design and 

analysis progresses, the number of component parts 

whose stress histories can be approximated, will be 

greatly increased. In instances such as these, a much 

higher working stress can be used with no danger of 

fatigue failure, since an Infinite life is not re­

quired. It is therefore, also important to know the 

effect of stress raisers on the material through a 

wide range of cycles. 

In general, the stress concentration factors 

as determined by using laboratory test specimens, are 

not directly applicable to the design or analysis of 

larger parts. One reason is that with models, the 

work hardening effect at, and near, the surface is 

in greater proportion than in full-sized objects. This 

tends to give lov/er stress concentration factors than 

would be experienced in the full-sized part. However, 

the factors determined in this report could in all 

probability be applied with safety to a similarly 

loaded sheet with a similar surface roughness since 

here the thickness of the specimens is the same as that 



for the sheets used in industry. The stress distribu­

tion on a cross-section should then be the same for 

specimen or for a sheet in actual use, 

The stress concentration factors here determined, 

should not be directly applied to parts which are other 

than sheets of the same magnitude of thickness. For 

small stress raisers with high theoretical stress 

concentration factors, tests have shown that with small 

specimens, the actual stress concentration factor is 
29 30 31 

less than that predicted by theory. ' ' However, 

it is believed that on larger specimens, the stress 

concentration factor would approach the theoretical 
32 33 

value. * Therefore, the values usually determined 

^ Brueggeman, W.C. and Mayer, M. "Axial Fatigue 
Tests at Zero Mean Stress of 24S-T and 75S-T Aluminum 
Alloy Strips With A Central Circular Hole", Technical 
Note No. 1611, N.A.C.A. August 1948. 

30Found, OJD. cit., p. 715. 

51Peterson, R.E., "Model Testing as Applied to 
Strength of Materials" A.S.M.E. Transactions, 55:79, 
1933. 

32Peterson, R.E. and Wahl, A.M. "Two and Three 
Dimentional Cases of Stress Concentration, and Compari­
son With Fatigue Tests", American Society of Mechanical 
Engineers, Journal of Applied Mechanics Vol. 3, No. 1, 
1936, pA-15. 

^Timoshenko, S. "Stress Concentration and 
Fatigue Failures" Engineer May 9, 1947, p. 398 and 
May 16, 1947, p. 421. 



on small scale tests have recently been subjected to 
34 

suspicion. 

Regardless of the numerical value of the stress 

concentration factors, the tests conducted here have a 

very definite use in comparing the two different alum­

inum alloys 75S and 24S under a similar surface con­

dition. 

^4Heywood, R.B., "The Relationship Between 
Fatigue and Stress Concentration", Aircraft Engineer, 
March 1947, p. 82. 



.CONCLUSIONS 

As a, r e s u l t of t h e t e s t s conduc t ed and t h e 

p r e v i o u s d i s c u s s i o n i n t h e main body of t h i s p a p e r , 

t h e f o l l o w i n g c o n c l u s i o n s seem w a r r a n t e d : 

1. The materials Alclad 75S-T6 sheet and 

75S-T6 sheet are almost equally notch sens i t ive in 

flexure fat igue to small transverse sc ra tches . 

2. The mater ia ls 75S-T6 sheet and 24S-T3 sheet 

have very nearly the same notch s e n s i t i v i t y to small 

transverse scratches when tested in flexure f a t i gue , 

3 . Stress concentration factors for Alclad 

75S-T6 increase with an increase in depth of sc ra tch . 

4 . Stress concentration fac tors for Alclsd 

75S-T6 and Alclad 24S-T3 are of the same magnitude for 

s imilar surface sc ra tches , 

5. Neither 75S-T6 or 24S-T3 i s superior to the 

other for the complete range of s t r e s s cycles, but 

75S-T6 sheet possesses the higher endurance s t rength 

in the range of cycles above one mi l l ion . 

6. Airplane par ts subjected to repeated loads , 

or steady loads with repeat ing loads superimposed, 

should be designed on a bas is of fat igue s t rength , ra ther 

than ul t imate s t r eng th . 



7, It is suggested that a series of flexure 

fatigue tests be conducted on sheet 75S and 24S material 

with a single stress raiser of a certain known theoreti­

cal stress concentration factor, with the stress raiser 

not extending to the edges of the specimen, 
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•HISTORICAL NOTE 

For many years the subject of fatigue, or progres­

sive failure, in metals has been under study, and each 

passing year has shown it to be of increasing importance. 

In the middle of the nineteenth century when 

wrought iron was beginning to replace stone and brick­

work as a major building material, it was suggested 

by some, that since the principles of design were not 
35 

too well understood, experiments should be carried out. 

It was only then discovered that a repeated load 

could cause failure, and that the failure was due to 

the repeated load rather than due to any reduction of 

the ultimate static strength of the material with age. 

Experiments on built-up wrought iron girders were 

carried out in England in 1864 by Fairbrain. He deter­

mined that in the case of completely reversed stress, 

that Is, from a tensile to an equal compressive value, 

the maximum stress should not be greater than one-

third the ultimate static strength. 

The really outstanding pioneer, in the study of 

fatigue was Herr A. Wohler, Chief Locomotive Super-

°°Gough, H. J., The Fatigue of Metals (London: 
Ernest Benn Limited, 1926)"/ p7 4. 

S^Marin, j . t Mechanical P r o p e r t i e s of M a t e r i a l s and 
Design (New York: McGraw-Hill Book Co77 I n c . , 1942) , p . 117• 



intendent of the Royal Lower Silesian Railway, who in 

1862 undertook to determine the cause of failure of 

axles on railway cars and locomotives. His extensive 

series of tests continued for over ten years and covered 

the various methods of repeated loading with several 

37 
different specimen shapes. In one group of tests, the 

topic of stress concentration in fatigue work was approached. 

A specimen shape with a rapid change of section was tested 

both with and without fillets. The specimen with the 

fillets withstood twelve times the number of load appli­

cations as the one without the fillet. 

This was, in effect an experimental determination 

of a stress concentration factor for that particular 

fillet. 

Since the time of Wohler, much work has been done 

to establish the endurance strengths of various materials 

and some studies made on the effect of certain stress 

raisers on the endurance strength. 
The nature of fatigue has not yet passed the 

T O 

phenomena stage in spite of the work which has been done. 

37An account in English of Wohler*s work can be found 
under "Wohler1s Experiments on the Fatigue of Metals", 
Engineering (London, March 1871), 11:199. 

^Jackson, L.R. and others, "An Evaluation of the 
Fatigue Phenomenia in Aircraft" (New York: A Sherman M. 
Fairchild Publication Fund Paper by the Institute of 
Aeronautical Sciences, July 1946), p. 30. 
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TABLE I 

MECHANICAL PROPERTIES OF THE ALUMINUM ALLOYS USED IN FATIGUE TESTS 

U l t i m a t e T e n s i l e Y i e l d S t r e n g t h Modulus of 
S t r e n g t h , Kips (0 .2% Off s e t ) , K i p s E l a s t i c i t y , Kips 

M a t e r i a l Per Square Inch Per Square I n c h Per Square I n c h 

A l c l a d 75S-T6 7 4 . 2 6 5 . 5 1 0 , 0 0 0 

75S-T6 8 1 . 2 7 2 . 5 1 0 , 2 0 0 

24S-T3 6 9 . 2 5 2 . 8 9 , 8 0 0 

Per Cent 
Elongation 
in 2 Inches 

10.4 

9.9 

16.4 

03 
00 



Mate r i a l 

Alclad 75S-T6 

Alclad 75S-T6 

Alclad 75S-T6 

75S-T6 

24S-T3 

TABLE I I 

MAXIMUM DEPTH OP SCRATCHES 

A b r a s i v e Depth of S c r a t c h i n 

Crocus C l o t h 0 . 0 0 0 1 5 

G r i t No. 100 0 .00042 

G r i t No. 60 0 . 0 0 0 5 5 

G r i t No. 60 0 .00027 

G r i t No. 60 0 .00030 



TABLE I I I 

.VALUES OF FLEXURE FATIGUE STRENGTH AND STRESS CONCENTRATION 
FACTORS FOR ALCLAD 75S-T6 WITH VARIOUS SURFACE CONDITIONS 

Polls hed Crocus Cloth 100 Grit 60 Grit 

Cvcles Stress* Factor Stress-* Factor Stress* Factor Stress-* Factor 

104 45.4 1.00 44.3 1.02 43.5 1.04 41.3 1.10 
5 x 104 29.6 1.00 28.7 1.03 28.2 1.05 26.5 1.12 
105 

24.2 1.00 23.4 1.03 22.8 1.06 21.4 1.13 
5 x 105 15.9 1.00 15.4 1.03 14.5 1.10 13.8 1.15 

106 14.4 1.00 14.0 1.03 13.0 1.11 12.4 1.16 
5 x 106 12.4 1.00 12.2 1.02 11.7 1.06 11.2 1.11 
10? 11.8 1.00 11.6 1.02 11.5 1.03 10.9 1.08 

Average Stress 
Concentration 
Factor 1.00 1.03 1.06 1.12 

-*Note: Values of stress are given in kips per square Inch. 

o 



TABLE IV 

VALUES OF FLEXURE FATIGUE STRENGTH AND STRESS CONCENTRATION 
FACTORS FOR 75S-T6 AND 24S-T3 FOR VARIOUS SURFACE CONDITIONS 

75S-T6 24S-T3 

P o l i s h e d 60 G r i t P o l i s h e d 60 Gr l t 

Cyc le s S t r e s s * S t r e s s i * F a c t o r Cyc les S t r e s s - * S t r e s s !-Ji­ Factor 
2 x 1 0 4 4 7 . 5 4 0 . 7 1 .17 2 x 1 0 4 4 8 . 3 4 0 . 4 1.19 
5 x 1 0 4 3 9 . 0 3 5 . 5 1 .10 5 x 1 0 4 3 9 . 3 3 5 . 0 1.12 

1 0 5 3 3 . 7 3 1 . 2 1 .08 1 0 5 3 3 . 5 3 1 . 1 1.08 

5 x 1 0 5 2 5 . 5 2 3 . 2 1 .10 5 x 1 0 5 2 5 . 6 2 3 . 5 1.09 
1 0 6 2 4 . 3 2 1 . 3 1 .14 1 0 6 2 3 . 7 2 1 . 3 1.12 

5 x 1 0 6 2 3 . 2 1 9 . 6 1 .13 5 x 1 0 6 2 1 . 4 1 9 . 0 1.13 
1 0 7 2 3 . 0 1 9 . 3 1 .19 1 0 7 2 1 . 0 1 8 . 8 1.12 

Average Stress Average Stress 
Concentration Concentration 
Factor 1.13 Factor 1.12 

*Note: Values of s t r e s s are given in kips per square inch. ^ 
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STRAIN, Inches Per Inch 

FIGURE 1. TENSILE STRESS-STRAIN CURVE FOR 0 . 0 3 9 INCH ALCLAD 7 5 S - T 6 
ALUMINUM ALLOY SHEET 
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FIGURE 2. TENSILE STRESS-STRAIN CURVE FOR 0 .042 INCH 75S-T6 ALUMINUM ALLOY SHEET 
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STRAIN, Inches Per Inch 
FIGURE 3. TENSILE STRESS-STRAIN CURVE FOR 0 . 0 3 9 5 INCH 2 4 S - T 3 

ALUMINUM ALLOY SHEET 
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FIGURE 4. SONNTAG FLEXURE FATIGUE MACHINE MODEL SF-2 



FIGURE 5. SONNTAG FLEXURE FATIGUE MACHINE MODEL SF-2 
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FIGURE 6. SONNTAG FLEXURE FATIGUE MACHINE MODEL S F - 2 
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50 

9 

( 
• • • • Q 

TEMPLATE CLAMP 

c 

* M > 
« 1 I 

ROUTER JIG DRILL JIG 

FIGURE 8. PHOTOGRAPH OF DRILL JIG AND ROUTER JIG 



51 

B 

FIGURE 9. FRACTURED ALCLAD 75S-T6 SPECIMENS, SURFACE FINISH: 

A. POLISHED. B. CROCUS CLOTH, C. GRIT NO. 100, D. GRIT NO. 60 . 
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FIGURE 10. FRACTURED 75S-T6 SPECIMENS SURFACE FINISH: A. POLISHED B. GRIT NO. 60 m 
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FIGURE 11. FRACTURED 24S-T3 SPECIMENS. SURFACE FINISH: A. POLISHED, B. GRIT NO. 60 m 
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FIGURE 12. COMPARISON OF FATIGUE FLEXURE STRENGTHS FOR ALCLAD 7 5 S - T 6 

SHEET OF THICKNESS 0 . 0 3 9 AND 0 . 0 3 2 INCHES 
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CYCLES TO FAILURE 

FIGURE 13. FLEXURE FATIGUE STRENGTH FOR 0 . 0 3 9 INCH ALCLAD 7 5 S - T 6 SHEET 
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FIGURE 20. FLEXURE FATIGUE STRENGTH OF 0 . 0 3 9 5 INCH 

-< 
0 



104 10 10' 10' 
CYCLES TO FAILURE 

FIGURE 2 1 . FLEXURE FATIGUE STRENGTH OF 0 . 0 3 9 5 INCH 2 4 S - T 3 SHEET 
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