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GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF ELECTRICAL ENGINEERING 

ATLANTA, GEORGIA 30332 

TELEPHONE: (404) 894.2901 

June 4, 1976 

National Science Foundation 
Washington, D. C. 20550 

Attn: Dr. Elias Schutzman 
Program Director 
Electrical and Optical Communications Program 
Electrical Sciences and Analysis Section 
Division of Engineering 

Subject: Change of Principal Investigator on Research Grant ENG75-04992, 
"Image Encoding Subject To A Fidelity Measure" 

Dear Dr. Schutzman: 

This letter is written to inform you of the status of research grant 
ENG75-04992, "Image Encoding Subject To A Fidelity Measure," and to 
formally request that the principal investigator on the grant be changed 
from Dr. Barry M. Leiner of Georgia Tech to Drs. Thomas P. Barnwell III 
and Russell M. Mersereau as co-principal investigators. This request is 
made since Dr. Leiner has resigned from Georgia Tech to accept a position 
in industry. Drs. Barnwell and Mersereau are both currently Assistant . 

Professors in the School of Electrical Engineering at the Georgia Institute 
of Technology, and both have research interests in this area. This grant 
was initiated in May 1975, and it is scheduled to terminate on November 30, 
1977. 

A. Progress of the Research 

The original proposal for this grant outlined three basic tasks. The first 
task was to find a fidelity measure for coded images which will allow one 
number to be associated with each image. This single number is to describe 
the quality of the image and thereby the quality of the coding scheme by 
which it was encoded. This fidelity measure must be readily computable from 
the coded image and must correlate well with human perception. The second 
task proposed was a theoretical analysis of data compression with this fidelity 
measure using the methods of rate distortion theory. This analysis was to 
include a determination of the properties of the distortion-rate function 
and its relation to other easily calculable distortion-rate functions. The 
third task was to calculate the effectiveness of various existing image 
compression techniques. It was expected that this combination of tasks would 
produce better image compression techniques which have lower data rates than 
existing techniques, adequate fidelity, and straightforward implementations. 
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In line with these tasks, a candidate for a fidelity measure has been 
proposed. This technique takes the supremum over all the components 
of a vector distortion measure, the components being the weighted mean-
squared error in various spatial frequency channels. This measure was 
chosen on the basis of a model of the human visual system, so there is 
reason to believe that it should correlate well with human perception. 
The problem of optimal data compression with this fidelity measure has 
been extensively analysed and the results have been submitted for publi-
cation by Dr. Leiner. Copies of these publications are attached in 
Appendix B. Thus, the second task outlined above has been completed. 
Work remains to be done on the remaining two tasks. The fidelity measure 
must still be correlated with human performance and values for its several 
parameters must be found to maximize that correlation. Further, if it 
correlates fairly well, other coding schemes still need to be evaluated. 
To aid in this regard, considerable software has been developed by Dr. Leiner 
and a graduate student working with him. 

B. The Proposed Principal Investigators 

It is proposed that the remainder of this work be completed by Drs. T. P. 
Barnwell III and R. M. Mersereau of the School of Electrical Engineering. 
Bio-sketches of these men are included in Appendix A. Dr. Barnwell's 
recent interests include the efficient coding of speech and the correlation 
of objective speech quality measures with human evaluations. In this regard' 
an elaborate quality testing facility, consisting of both hardware and 
software, has been developed. Much of this system can be utilized in the 
evaluation of images. He has also been involved recently in the problem of 
displaying visual outputs from an interactive computer. He is currently 
receiving some NSF support under grant ENG76-02029, "Engineering Research 
In Very Low Bit Rate Speech Compression Techniques" and also some support 
from the Defense Communications Agency through the Georgia Tech Post-Doctoral 
Program for Research on Speech Coding. Dr. Mersereau's primary research 
interest is in multidimensional digital signal processing and its applications, 
and the reconstruction of multidimensional signals from their projections. 
He is to receive support from the Army Research Office for some of this work. 
The backgrounds and interests of both of these men are well suited to undertake 
this research on image coding. 

C. Facilities 

Up to this time, images have been processed using the campus central computer 
facility. The coded images have then been sent to a commercial firm to be 
transferred to film and then subjective tests have been conducted using 
standard 35 mm film projectors. This process has proven to be unsatisfactory 
in two respects. First, the turn-around time is too long. This discourages 
any attempt, to interactively determine coding parameters, for example. A 
more serious problem, however, is that degradations in image quality are 
introduced by the film processing. In some cases those degradations are 
comparable to the coding errors themselves. 
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In an effort to overcome these difficulties, we propose to move the 
remainder of the research to our own computer facility described in 
Appendix C. This is an interactive facility centered around a NOVA 830 
computer. Independent of this proposal we have acquired. through Institute 
funds a COMTAL video display system which will be connected to the NOVA. 

• This display is capable of displaying a 512x512 b/w image with 6 bits per 
picture element of gray scale resolution. This, we feel, is a better 
facility for the image evaluations which must be performed. The programs 
which have, been written for the central computer can be easily run on the 
interactive facility. Furthermore, connected to this computer are facilities 
for human quality evaluation, which we hope to utilize. 

Included in the budget in the next section is a request to divert most of 
the money currently in a budget for time for the central computer to the 
purchase of additional memory for the COMTAL to increase the gray scale 
resolution to 8 bits. 

D. Budgets 

Below is shown the original budget for the two-year duration of this grant, 
along with the amounts currently spent. 

Item 
Approved 

NSF 
Support 

Approved 
Georgia Tech 

Support 

NSF 
Funds 
Spent 

Georgia Tech 
Funds 
Spent 

4950 1. Personal Services 11475 10775 5418 

2. Staff Benefits: 
Retirement @ 8.936% 
of Salary for 
Barry L. Leiner 

629 945 269 442 

3. Permanent Equipment 600 515 

4. Expendable Equip. 
and Supplies 

837 608 

5. Travel 800 435 

6. Publication Costs 800 0 

7. Computer Costs 3000 166 

8. Indirect Costs 
68% of S & W 7459 7004 3684 3366 

TOTALS 25000 19324 10580 9273 
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Below is shown a proposed budget for the remaining funds for the remainder 
of the contract. 

Item 
NSF 
Funds 

GIT 
Funds 

1. Salaries, & Wages 
1031 

886 

4000 

3052 

2624 

a. Thomas P. Barnwell III 
2 man-months 

b. Russell M. Mersereau 
2 man-months 

c. Graduate Student Asst.* 
1/3 time, 1 year 

2. Staff Benefits 174 517 
Retirement @ 9.1% 

3. Permanent Equipment** 2700 

4. Expendable Equip. 340 
and Supplies 

5. Travel 365 

6. Publication Costs 800 

7. Computer Costs** 100 

8. Indirect Costs 4024 3858 

TOTALS 14420 . 	10051 

Notes: * Subject to our ability to find a capable, interested graduate 
student. The student who has been working on this project has 
since graduated. 

** This represents our desire to transfer most of the original computer 
budget to the purchase of extra memory for our COMTAL image display. 

E. Schedule of Remainder of Work 

Due to earlier commitments for their time, neither of the principal 
investigators will devote extensive effort to this work during this summer 
(1976.) Current plans call for two to three man-months of effort by each 
of the principal investigators during the academic year 1976 - 1977. No 
problem is forseen in meeting the scheduled termination date. 
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Apcerely yours, 

Barry M. Leiner 
Assistant Prof. of E.E. 

0-,* 	 
Russell M. Mersereau 
Assistant Prof. of E.E. 
(404) 894-2917 

Demetrius T. Paris 
Prof. and ;Director 
School of Electrical Eng. 
(404) 894-2902  

Thomas P. Barnwell, III 
Assistant Prof. of E.E. 
(404) 894-2914 

Milton W. Bennet / 
Office of Contract Administration 
(404) 894-4815 

Addressee: Two copies 

Enclosures: Two copies each 
Appendix A - Biographical Sketches 

Thomas P. Barnwell, III 
Russell M. Mersereau 

Appendix B - Publications 
Appendix C - Facility Description 
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I. 	INTRODUCTION 

A. 	Goals of this Research  

This research was motivated by a desire to identify a fidelity mea-

sure for coded images which can be computed objectively and which will re-

flect the evaluations of human subjects. There are many benefits to be 

derived from having such a measure. First it would allow the subjectively 

meaningful comparison of algorithms for image coding without the need for 

extensive subjective tests which are expensive, time-consuming, and generally 

tedious for the subjects involved. Subjective tests can also be easily 

biased if they are not carefully administered and it is difficult to relate 

results from one subjective experiment to another. Objective measures, on 

the other hand, offer the promise of being cheaper, faster, and free of the 

human failings of subject and administrator. Furthermore, if a common ob-

jective measure is used, the numerical results of one study could readily 

be compared to those of another. The difficulty of the task is due to the 

fact that the manner by which humans evaluate distortion in images (or 

other structured media, such as speech) is not well understood and, as a 

result, early attempts at finding a fidelity measure have resulted in cri-

teria which do not correlate well with human experience. 

As the research began, however, it became evident that we first had 

to address the question: How can different objective quality measures be 

compared? This can be restated as the problem of finding a quality measure 

for the quality measures. Seeking an answer to this problem occupied a 

major fraction of the total research effort, but having a means to meaning-

fully compare proposed quality measures was invaluable. We regard the 
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development of means for comparing quality measures to be a major innova-

tion of this research. 

The next research goal was to compare several of the existing quality 

measures and to see how well each correlated with human observations. Among 

the measures compared was one proposed in this research which we have called 

the Gray-Leiner metric. 

Another task which was mentioned in the original research proposal, 

which we did not pursue but which would make a logical follow-on study, is 

a comparison of existing image coding techniques based on the most promising 

of the distortion measures. 

One peripheral task which was accomplished early in the study con-

cerned the development of bounds for the distortion-rate function associated 

with the Gray-Leiner distortion metric. Results from rate-distortion theory 

can be used to determine the minimum number of bits required to reproduce a 

signal within a given level of fidelity measured by an objective fidelity 

measure. This is referred to as the rate-distortion function and its in-

verse is the distortion-rate function. These functions can be used to 

design a "best" coding strategy consistent with a quantitative fidelity mea-

sure. 

In the remainder of this section we summarize some of the history of 

this research project, summarize our major results, and list the publica-

tions which have resulted from this work. In the following section, we 

discuss the problem of correlating subjective and objective quality measures. 

The subjective test which was used is described in Section III, and objec-

tive measures for image evaluation are described in Section IV. Also in 

this section, the Gray-Leiner metric is motivated. Results of comparison 

2 



between the subjective and objective measures are presented in Section V. 

Section VI summarizes work performed on determining a distortion-rate func-

tion for the Gray-Leiner measures and bounds are presented to aid in its 

evaluation. The last section presents a final discussion of the results 

and conclusions reached from the whole research effort. 

B. History of this Research Effort  

The grant for which his document is the final report was proposed 

by Dr. Barry M. Leiner and was awarded in May 1975. The selection of the 

research problem, the Gray-Leiner fidelity measure, and the derivation of 

the distortion-rate functions is solely his. He began processing images for 

the subjective experiments on the Georgia Tech central computing facility 

with the actual photographic reproductions performed by an outside firm. 

This prove& to be unsatisfactory because the delays which occurred resulted 

in reduced flexibility. A better solution proved to be the use of an in-

teractive computer facility where distorted images could be viewed immedi-

ately and the resulting degree of distortion adjusted to design good sub-

jective experiments. At the end of the first year of what was to be a two 

year study, Dr. Leiner left Georgia Tech to accept a position in industry. 

The research program was then assumed by Drs. Barnwell and Mersereau, who 

first rewrote the subjective experiments to operate on the interactive 

Digital Signal Processing Laboratory minicomputer which contained a COMTAL 

image display. At this time, the research emphasis shifted. The means 

for evaluating quality measures, the subjective experiments, and the analysis 

of the data was the responsibility of the latter researchers. 

C. Major Results of this Research  

Although the remainder of this report discusses our research results 
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in detail it is perhaps useful to summarize the highlights of this work 

here. 

(1) A means was developed for evaluating fidelity criteria 

for images. This measure was the correlation coefficient 

between the results of a subjective test and the predic-

tion of subjective quality made on the basis of objective 

measurements. 

(2) A subjective test was developed which gives statistically 

significant measures of image quality even for distorted 

images whose perceived fidelities are rose to one 

another. 

(3) A fidelity criterion for images, the Gray-Leiner metric 

was proposed, evaluated, and compared with other criteria. 

It is based on a model for the human visual system. The 

correlation coefficient between the subjective evaluations 

and the predictions made by this metric using our data set 

is significantly better than that obtained through the use 

of mean-squared error and comparable to the quality measure 

proposed by Mannos and Sakrison [11. This correlation can 

be made still higher if some of the parameters of the 

metric are optimized. 

(4) A distortion-rate function for a vector source with a 

maximum fidelity criterion was developed and bounds were 

derived for its use. The Gray-Leiner metric represents 

a criterion from this class. 

4 



D. 	Publications Resulting from this Effort  

To date, there have been three publications which have resulted 

from this effort. These are attached as Appendices A, B, and C. One of 

them appeared in a referred journal and the other two were prepared to ac-

company conference presentations. One more referred journal paper is 

anticipated. It will consist of the material in Sections II-V of this 

report. 

5 



II. 	TESTING OBJECTIVE QUALITY MEASURES USING THE RESULTS OF SUBJECTIVE 
TESTS 

One of the major goals of this research was to develop techniques 

for efficiently testing the effectiveness of objective quality measures by 

using the results of subjective tests. This procedure involved three dis-

tinct steps. First, a subjective quality test needed to be designed which 

would possess adequate resolving power over an ensemble of distorted images. 

Second, a collection of candidate objective measures had to be developed 

which could estimate image fidelity over the same set of distorted images. 

Finally, the correlation between the subjective and objective estimates of 

image fidelity had to be determined. 

Define a sample space, S2, consisting of all distorted images to be 

evaluated. Denote the members of this set by {w i }. The subjective esti-

mates of image quality can then be interpreted as a random variable S(w i ) 

defined over this sample space. Similarly, for the k
th 

objective (computed) 

distortion measure, we can define another random variable C
k 
 (w.) over the 

same sample space. The correlation coefficient p k  between the random vari-

ables S and C
k 

then provides a measure of the accuracy by which the values 

Ck 
can be used to predict S. If p

k 
= ±1, then the subjective results can 

be predicted exactly from the objective estimates. In this case, the k
th 

objective measure would be equivalent to the subjective test. If p k  = 0, 

then the estimates of the k
th objective measure are uncorrelated with the 

subjective rankings. In this case, the objective measure is worthless. 

For a correlation coefficient p k, the minimum least squares estimate of 

Si  from Cki  is given by 
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a
s
pk 

S i. = 	(C
ki - 6) + S 

a
Ck 

If pk  is negative, then the scope of the estimate is negative, and S i  goes 

down as Cki  get up. This would clearly be the case when C k  is a distortion 

measure and S is a quality measure. Clearly, the closer 1Pk1  is to 1, the 

more valuable the objective estimator of quality. 

If I images are subjectively evaluated, then the minimum variance 

estimate of p k , which we will denote by p k  is given by 

Pk = I 

[ y 	[2[ 	cc 	2  )0 2 % 
i=1 	 i=1  ki k 

Here S and C k denote 
 the means 
	S and Ck' respectively  and Si and  Cki de- 

th . 
note the subjective and objective estimates of quality for the . 

	
image 

under test respectively. 

(c 	) kl k 
	i=1 

(1) 
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III. THE SUBJECTIVE IMAGE EVALUATION TEST 

The subjective test used for this study consisted of a number of 

sessions in which groups of subjects were shown slides of distorted images 

and were then asked to numerically rate the image quality. The images used 

were distorted versions of the two images shown in Figure I. These were 

prepared as 256 x 256 discrete images and were displayed with up to 256 in-

tensity levels. The two images GIRL and RADOME were chosen to have a 

relatively low and high information content respectively. 

A data base of distorted images was produced by applying 120 dis-

tortions to each of the two images. The distortions were divided into 

eight classes or types of distortion each of which was then represented by 

fifteen levels of distortion. Within each class the distortion levels were 

chosen to range from "barely perceivable" to "heavily distorted." 

The distortions used in this study are summarized in Table 1. For 

the first and second classes of distortions, additive white noise was added 

to the images. The noise was uniformly distributed for class 1 and 

gaussian for class 2. The next two classes of distortions represented 

multiplicative noise. For the distortions in class three the distorted 

picture elements were obtained by 

u' (m,n) = u(m,n) [1 + C
k
N(m,n)] 
	

(2) 

where u(m,n) denotes  the undistorted picture element, N(m,n) denotes a 

sample of uniformly distributed white noise whose amplitude varies between 
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Figure 1. The two original images which were used for this study. 
Each contains (256) 2  picture elements and the display 
is capable of accomodating up to 256 intensity levels. 

9 



TABLE 1 

THE DISTORTIONS 

DISTORTION 
	

C
k 

RANGE 

U(m,n) + N(m,n).C
k 

U(m,n) + G(m,n)•C
k 

U(m,n)• [1 + C
k
N(m,n)] 

EXP[knU(m,n) + U(m,n)C
k

] 

U(m,n) + BPF
A [G(m,n)]•C

k 

U(m,n) + BPF
B [G(m,n)] •C

k 

U(m,n) + BPI?
c 	n) ]•Ck 

LPF
k

[U (m, n) ] 

8 - 60.5 

4 - 33.75 

.061 - 1.77 

.04 - 1.16 

24.8 -209 

72.7 - 613 

7.7 - 65.7 

21 - 7 (cycles/degree) 

ADDITIVE UNIFORM NOISE 

ADDITIVE GAUSSIAN NOISE 

MULTIPLICATIVE UNIFORM NOISE 

MULTIPLICATIVE GAUSSIAN NOISE 

BAND LIMITED GAUSSIAN NOISE 

BAND LIMITED GAUSSIAN NOISE 

BAND LIMITED GAUSSIAN NOISE 

BAND PASS FILTER 

N(m,n) = WHITE, UNIFORM NOISE 

G(m,n) = WHITE GAUSSIAN NOISE 

BPF = BAND PASS FILTER 

C = CONSTANT FOR k th DISTORTION 

0 5 U(i,j) 5 255 

LPF = LOW PASS FILTER 



-1 and +1 and C
k 

is a constant which controls the level of distortion. For 

the images in class four, white gaussian noise was added to the logarithm 

of the image and the resulting array was then exponentiated. For distortion 

classes five, six, and seven colored gaussian noise was added to the images. 

The noise was colored by being passed through one of the bandpass filters 

shown in Figure 2. For the eighth distortion class, a low pass filtering 

blur was realized by passing the test images through a two-dimensional 

circularly symmetric low pass filter. The cutoff frequency of the filter 

varied with the degree of the distortion. A complete table of distortion 

parameters is given in Appendix D. No attempt was made to simulate actual 

coding distortions. 

In all cases, the distortions were implemented digitally using a 

NOVA 830 minicomputer and the resulting distorted images were stored on 

digital magnetic tape. 

The subjective test used in this study was a doubly-anchored isome-

tric quality preference test. For each distortion, a black and white slide 

was produced which contained three images arranged as shown in Figure 3. 

In the upper left 'was a "high anchor" which was the original image. In the 

upper right was a "low anchor" which was distorted by a number of distor-

tions and which had been prejudged to be worse than, but roughly comparable 

to, the worst distortion in the test. At the bottom of the slide is the 

image under test. For all of the distorted versions of the image GIRL the 

same high and low anchors were used, similarly for the image RADOME. The 

low anchor for RADOME was produced from the same sequence of distortions as 

the low anchor for the image GIRL. The slides were photographed from the 

screen of a CRT controlled by a COMTAL Image Processing System with 512 x 512 

1 1 



IF 1  = 2.75 CYCLES/DEGREE 

IF2  = 5.5 CYCLES/DEGREE 

IF3  = 11 CYCLES/DEGREE 

Figure 2. The bandpass filters used to bandlimit the Gaussian 
noise added to the test images to produce distortion 
classes V, VI, and VII. 



Figure 3. A test slide from the subjective test. The high anchor 
and low anchor at the top of the slide remained the same. 
The image under test is presented below. 

HIGH ANCHOR 	 LOW ANCHOR 

                 

                 

                 

             

             

             

             

 

// 

        

             

                 

                 

                 

                 

                 

                 

        

                 

                 

TEST IMAGE 
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point resolution and 256 gray levels. The nonlinearities of the CRT and 

film were approximately linearized using the procedure described in Appendix 

E. The images were displayed as negative images on negative film. In this 

fashion the slides could be made directly with only one level of developing. 

In the test, subjects were seated so that the image under test sub-

tended an angle of approximately six degrees. The subjects were asked to 

rate each distorted image on a scale of 0 to 100, and were told that the 

high anchor deserved a score of 80 and the low anchor deserved a score of 

20. In this way, subjects could indicate whether or not a distortion actu-

ally enhanced (in their opinion) the quality of an image. The subjects 

were not trained. For each of the two original pictures, the distortions 

were randomized and presented at fifteen second intervals in groups of 120. 

In all twenty subjects participated in the tests for each of the two images. 

For the statistical analysis of the results, a test similar to the 

Newman-Keul test [2] was used. In this test, first the mean across subjects 

for each distortion is computed. 

Si 
	L 
= 1 — L S..  3_3 

3=1 
(3) 

	

th 	
ith i 

. 
where S.. is the response of the 3 	subject to the 	image and L is the 

ij 

number of subjects (in this case twenty). The quantity S i  was then used as 

th i 
the subjective estimate of quality for the image. In addition, the 

quantities 

1 

	

S = — L SiM . 	1 
1=1 

(4)  
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are computed where M is the number of distortions (120 for our experiment) 

and 

2 	M-1 ^ 2 	M(L-1 )  ^ 2 Q - 
LM-1 

a
SYS LM-1 

a
ERROR 

The average distortions S
i are then ranked in descending order. When this 

is done the statistic q can be defined where 

S.
1
-S. 
 1' q 	

1 
aERROR 

(9) 

and 	Due to the ranking of the distortions it follows that qn. In 

fact, q is distributed with the Studentized probability distribution func-

tion, Q
a,R,f

(q).  In this distribution, as it is commonly tabulated, R de- 

notes the difference in estimated quality of the two distortions being 

compared plus one (thus 2125.14); f = M(L-1), the number of degrees of freedom 

for 
;ERROR   

and a denotes the desired quantile point. (We have used a =.01 

and a =.05 for our study.) Thus using the q statistic we can determine 

whether a distortion was perceived to be significantly more objectionable 

(5) 

(6) 

(7) 

(8)  
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than another with a statistical significance at the a level. By consider-

ing all of the distortion in pairs, we can determine the resolving power 

of the test. 

The results of the subjective statistical analysis for the class 2 

distortions (additive white gaussian noise) is shown in Table 2. The com-

plete set of subjective results is given in Appendix F. In these tables 

the matrix of l's and 5's gives the significance levels for the various 

differences in quality score. For example, a 1 appearing in row i and 

column i' says that the difference of quality scores on distortions i and 

i' is statistically significant at the .01 level. Had there been a 5 there 

instead of a 1, the scores would have been statistically significant at the 

.05 level, but not at the .01 level. If a blank appears at any location, 

then the difference in scores is not significant at either level. 

Several points can be made about the results of these subjective 

tests. First note that, in the case of the additive noises, the noise 

amplitude increased linearly with the index of the distortion level. The 

subjective results showed clearly that equal steps in noise amplitude did 

not result in equal steps in perceived image quality. It would appear that 

the perceived image quality is more nearly proportional to the logarithm 

of the signal to noise ratio. 

Another interesting result comes from the lowpass blur distortion 

results (distortion class 8). Here the distortion on GIRL was not perceived 

to be significant until the bandwidth of the lowpass filter became less than 

10 cycles per degree after which perceived quality dropped sharply as the 

bandwidth was reduced. This might simply say that GIRL does not have sig-

nificant energy at frequencies above 10 cycles/degree but that it has 
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SUBJECTIVE RESULTS 

STORTION 
Jt r 

DISTORTION 
SNR 

AVERAGE 
QUALITY SCORE 1 2 3 4 5 6 

DISTORTION # 

7 	8 	9 	10 13 11 	12 
1 24.9 69.5 -- 

2  21.5 61.2 1 - 

3 19.1 54.2 1 5 - 

4 17.3 50.7 1 1 

5 15.7 50.2 1 1 - 

6 14.4 47.1 1 1 - 

7 13.3 44.4 1 1 5 - 

8 12.3 39.0 - 1 1 1 1 1 5 - 

9 11.4 38.8 1 1 1 1 1 5 -- 

10  10.5 38.5 1 1 1 1 1 5 

13 8.48 34.0 1 1 1 1 1 1 1 OM. 

11 9.80 33.8 1 1 1 1 1 1 1 5 5 

12 9.12 30.3 1 1 1 1 1 1 1 5 5 5 •■• 

14 7.89 29.6 1 1 1 1 1 1 1 5 5 5 

15 7.33 29.2 1 1 1 1 1 1 1 5 5 5 

Table 2. Results of the subjective quality test for 
additive white Gaussian noise. If a "1" appears 
at the intersection of two distortion levels this 
means that the difference in their quality scores 
is significant at the .01 level. Similarly a "5" 
means that the difference is significant at the 
.05 level. 

14 
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significant energy at frequencies just below this level. 

On the whole, the subjective quality test used in this study was 

judged to be a good test for these correlation studies. The results in 

Appendix F show that the test consistently found significant differences 

in perceived quality even for distortion levels which were very close. 

Furthermore, the corresponding results for the two different images were 

very similar and all of the quality averages within a distortion class 

showed monotonic or near monotonic behavior with distortion level. The 

standard error, given by a/✓E, where a is the sample standard deviation 

for one distortion and L is the number of subjects, ranged from 2.9 to 1.25 

corresponding to an average resolving power of about four quality points at 

the .01 level. 

18 



IV. 	OBJECTIVE QUALITY MEASURES 

A. 	Fidelity Measures for Images  

Finding a fidelity measure for images which is both in good accord with 

subjective evaluations and which is simultaneously mathematically tractable, 

is a difficult task. While it is generally agreed that mean squared error 

correlates poorly with subjective evaluations [3,4] much of the previous 

work on image data compression has used this criterion [5-9] because of its 

mathematical convenience. A frequency-weighted mean-squared error criterion 

has also been used [10]. 

For imagery which is to be viewed by human observers, a logical can-

didate for a better fidelity measure would be one which is based on a model 

for the human visual system. Such a measure would be expected to correlate 

more closely with subjective measures of image fidelity, although it would 

most certainly not possess the computational simplicity of mean-squared 

error. Recent psychophysical testing experiments [11-15] seem to indicate 

that the eye responds to imagery by filtering the scene through a set of 

spatial channels and then responds if the response on any one of these 

channels exceeds a certain threshold. There is also evidence that the re-

sponse of these receptors is pointwise non-linear [1,3,4]. Stockham [4] 

argues for a nonlinearity of the form f(x) =logx. Mannos and Sakrison [1], 

in developing a fidelity criterion based on the results of subjective ex-

periments, preferred the nonlinearity f(x) =x .33 . Actually, for the range 

of intensities encountered in images, the distinction between these operators 

is slight. A phenomenological model for the front-end of the human visual 
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system is thus shown in Figure 4. This model is intended only to crudely 

represent the response function of the visual system and the components of 

this model do not represent physiological entities. 

Given such a model for the visual system, it can be seen why mean-

squared error might not correlate well with subjective measures of distor-

tion. Two images with the same energy could evoke contrary responses from 

the model. If the energy is distributed throughout the spatial channels, 

the response would be quite different from the case when all of the energy 

is concentrated in a single channel. Similarly, two images which are iden-

tical except for a moderate difference in intensity between them would, in 

general, have a large mean-squared error but subjectively would be regarded 

nearly equivalent. The pointwise nonlinearity in the model along with the 

thresholds would make the responses equal unless the amplitude of one picture 

brought the signal energy below its thresholds. 

What is therefore desired is a fidelity criterion which, when its 

value is low, guarantees that the distortion measured by each channel is 

low. One approach that can be followed is to use a vector-valued fidelity 

measure [16]. A vector-valued distortion measure in this case would imply 

the minimization of the error on each of the disjoint spatial-frequency 

channels. Such a measure, while theoretically mathematically tractable, in 

practice can be very difficult to use and does not have the physical mean-

ing that we can associate with a scalar measure, e.g. it is difficult to 

rank images which are evaluated using a vector measure. 

In an attempt to develop a scalar measure which nonetheless reflected 

the structure of the channelized vision model, Mannos and Sakrison [1] used 

the average weighted distortion over the spatial frequency channels. The 
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frequency weighting which they derived on the basis of subjective experi-

ments was of the form 

k
1 	

k
2 

A(f) = [c + (f/f
o
) lexp[-(f/f0 ) ] (10) 

with fo  = 8.77 cycles/degree, k J. = 1, k2 = 1.1, and c=.019. They also used 

a cube root nonlinearity for the pointwise operator. Unfortunately, when 

the Mannos and Sakrison error is small, this does not guarantee that the 

error will be small on each of the channels of the vision model. 

The criterion developed for this research effort, which represents 

an innovation of this project and which we have referred to as the Gray-

Leiner metric selects the maximum weighted distortion over a series of 

disjoint spatial frequency channels. It thus overcomes the potential de-

ficiency of the Mannos-Sakrison measure while still providing a scalar 

value. 

B. 	Implementation of the Objective Quality Measures  

The calculations involved in evaluating the error energies which were 

used for the objective fidelity measures are summarized in Figure 5. Let 

u(m,n) denote the intensity pattern of the original image and u(m,n) denote 

the intensity pattern of the reproduced (distorted) image. A cube-root 

transformation is first applied to both the image and its reproduction 

giving w(m,n) = u
1/3

(m,n) and w(m,n) = ;
1/3

(m,n). The mean squared errors 

between u and u and between w and w are also computed. These errors are 

denoted EMS  and %I. , respectively. They are not used in either the Mannos 

and Sakrison or the Gray-Leiner measures but are used for comparison pur-

poses since they serve as measures (albeit subjectively poor ones) of 
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image distortion. 

The signals w and w are then subtracted to produce the error signal 

e(m,n). The energyof e(m,n) in disjoint frequency bands is then computed 

by passing e(m,n) through a filter bank and measuring the energies in the 

resulting waveforms. These energies are denoted by Ei , i=1,2,...,N. The 

filter bank was designed so as to completely cover the spatial frequency 

spectrum up to a frequency of about 25 cycles/degree. (The human visual 

system can detect frequencies up to approximately 40 cycles/degree. Our 

lower cutoff was limited by our computer and display requirements.) The 

frequency response of one of the filters in the filter bank is shown in 

Figure 6. For our arrangement, 30 filters were used. They were chosen to 

be very nearly disjoint so that quality measures employing smaller numbers 

of filters could be simulated without the need to re-evaluate the error 

energies. The impulse response of the filters was 256x 256 points. They 

were designed by the window method using a separable Hanning window. The 

filters were implemented in the frequency domain using the discrete Fourier 

transform. The accumulations of error energy were also performed in the 

frequency domain through the use of Parseval's relation. 

All of the quality measures which were simulated utilized linear and 

nonlinear combinations of these thirty-two error values. Since these quan-

tities were precomputed and stored for the 240 test images, the total data 

base for evaluating an objective quality measure involved a data base of 

only 240x 32=10,880 data values. This is in contrast to the 15 x 106  values 

required to represent the complete set of distorted images. 

It was also possible to realize computational savings in the imple-

mentation of the filter bank. In the frequency domain, we can express the 
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energy in the ith channel of the filter bank as: 

1 

255 255 
1 	 121 

1 
E. - 	2 X 	X 1E ( k , -0 1 	 . 

(256) k=o k=o 
 

Since all of the filters in the filter bank possess the eight-fold symmetry 

implied by: 

1-1.1 (kM=1-1.1 (td0=1-1.
1
(256-k,i) = H(k,256-k) 

itfollowsthat.E.
1 
 can be computed from 

128 k 
E. = 	2  X 	y 1  
1 	

la(k,i) I
2
1H 

(256) k=o 2,=o 	
1(k,i)12 

where 

(12) 

(13) 

a(0,0) = E i (0,0) 

a(k,0) = E i (k,O) + Ei (256-k,0) 

+ E.(0,256-k). 
1 

a(k,k) = Ei (k,k) + E i (256-k,k) 

+ E.
1
(k,256-k) + E i (256-k,256-k). 

a(k,Z)=E
1
(k,k) + E.(256-k,R) + E.(k,256-k) 

1 

+ E.(256-k,256-Z) +E. (R.,k) +E. (256-k,k) 
1 	 1 	1 

+ E.(2,256-k) + E i (256-2,256-k) . 
1 

k=1,...,128 

k=1,...,128 

0<k<128 

0<t<k 

(14) 
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The array a(k,k) is independent of i. Thus from the array e(m,n), a(k,2,) 

can be computed and then the error energies E i  can be computed through an 

inner product calculation with the thirty prestored arrays 1H (k,k) 12 - 

The distortion measures studied differed in the manner in which they 

used the error energies. For the Mannos and Sakrison measure an estimate 

of distortion was produced fro: a linear combination of the E,. Specifi- 
c 

cally, if Dms  denotes the Mannos and Sakrison distortion, then 

D
MS 	 i 1 

= X A
2
(f)E. 

1=1 

. 30 
	

(15) 

whereA(f.
1
)was defined in Eq. (10) and f.1  is the center frequency of the 

i
th 

filter band (f. = 0 for filter number 0). 

With the Gray-Leiner distortion measure the distortion is chosen to 

equal the maximum of the weighted filter energies. If the full set of 

filters is used, it would take the form 

D
GL 

= max[W.E.] 
	

(16) 

wheretheweightsW.1  are parameters. If a smaller number of frequency 

bands are used, the E. would be replaced by energies in those bands. 
1 

A third distortion measure studied, like the Mannos and Sakrison 

measure, formed a distortion estimate from a linear combination of the 

error energies. Here, however, the weighting coefficients were allowed to 

be free parameters and were chosen to maximize the correlation coefficient 

IP' 1 between the quality estimated from the measure and the results of the 

subjective experiment. If we assume that B bands are used (B may be less 
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than 30), then an estimate of image quality can be formed as 

B 
C. = 	a.E

i
. + a

o 1 j 
i=1 

where C. denotes the quality estimate for test image j and the E.. denote 
ij 

. 
the filter bank energy values for the j

th 
 lmage.IfS.denotes the mean 

subjective response for this test image, then the total prediction error 

is given by 

240 	, 	240 2 
E = X 	(C.-S.) -  = X 	(S.- 1 a.E. -a ) 

j=1 	3 3 	j=1 	
3 J. 	

1 ij o 
(18) 

If we define E 0 . =1 for all j and further define 

T 
0 •- 1  

P T  = [P ' 	• • 0 0 PI l r 	B i  

(19a) 

(19b) 

(17) 

and 

R = ER ] 
mn 

(19c) 

where 

and 

240 

	

Pi 
	S E.

k  

	

1 	P., i 
k=1 

( 19d) 
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k 
R
mn 

= X 1 E
mg,

E 
 ni 

= 

then Equation (18) can be rewritten as 

240 
L E = ATRA - 2pTA+ L S2  

1=1 

Taking partial derivatives with respect to each of the unknown coefficients 

{a.
1 } and setting each of them to zero gives the result 

-2p + 2RA = 0 . 	 (21) 

Thus the vector A which minimizes E is given by 

-1 
A = R p 
— — — ' (22) 

If this is viewed as a linear regression analysis, the estimate ob-

tained using Equation (17) with the coefficients determined according to 

(22) gives the maximum correlation possible for a linear estimator. Hence, 

this technique represents a bound on the performance of any "linear" dis-

tortion measure. (The quotes are due to the fact that the prediction is 

linear in the E.., although it must be remembered that the E.. are not 
ij 	 1J 

linear in the original error (u(m,n)-u(m,n)). Since the Mannos and Sakrison 

error is a member of this class, its correlation with subjective results 

must necessarily be less than the prediction obtained from (17). On the 

other hand, the prediction of (17) may not be robust. Since the quality 

predictor is "tuned" on a specific data set, we cannot guarantee that 

10 (20) 
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its predictions will be optimal (or even decent) when used on other dis-

torted images. Also, we cannot draw any physiological conclusions about 

the coefficients {a.}; they represent the solution of a set of linear 

equations and nothing more. 
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V. 	RESULTS OF THE CORRELATION STUDIES 

In this section the correlation coefficients between candidate dis-

tortion measures and the results of subjective tests are presented. The 

methods by which these figures were calculated have been described in the 

previous sections. Two preliminary experiments were run in order to gene-

rate a feeling for what correlation values should be considered good and 

what values should be considered a poor correlation. The correlation co-

efficient between subjective estimates of quality and a mean-squared error 

estimate of distortion, E ms , was -.16425. Similarly, the correlation co-

efficient with the nonlinear error, E NL , was -.18979. These results suggest 

that neither of these measures used alone represents a good measure for 

image quality. On the other hand, both of these measures are easy to com-

pute and can be readily used in the design of digital coding systems. Thus 

any proposed quality measures whose correlation values come close to these 

values is unacceptable as a fidelity measure. At the other extreme, it is 

to be expected that the best correlation with subjective results would come 

from the subjective results themselves. Thus the following experiment was 

performed. The quality evaluations of one subject were used as an "objec-

tive" quality measure and the results of the other nineteen subjects were 

averaged to produce the subjective estimate. This was then repeated three 

times to assure statistical regularity. The measured correlations were 

A 

p
1 
= .954, p  = .889, and p

3 
= .876. Thus a single human subject could be 

expected to have a correlation of .906 with the mean subjective result. 

Any quality measure which could approach this value would have to be 
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considered very good since it would then be equivalent to a human observer. 

Using the Mannos and Sakrison distortion measure of Equations (10) 

and (15) with their parameters (C = .019, fo  = 8.77 cycles/degree, k i = 1, 

k
2
=1.1) , we observed a subjective correlation coefficient of -.658. Their 

model was based on the results of some subjective experiments (quite dif-

ferent from ours) to determine a model for the human visual system. Since 

our goal was simply to generate a quality measure which would correlate well 

with subjective responses, we felt no need to have a physiologically justi-

fiable amplitude weighting function A(f). Thus, we considered the possi-

bility of changing A(f) to maximize the correlation coefficient between the 

subjective and objective evaluations. We preserved the functional form Of 

(10) since it would allow the shape of the weighting function to be controlled 

by four parameters and since the Mannos and Sakrison values could be used 

as initial values for an optimization. The four parameters of (10) were 

varied one at a time in an iterative fashion until a (possibly local) maxi-

mum value of the correlation coefficient was found. This optimization was 

performed two times resulting in "optimized" correlation coefficients of 

-.735 and -.732, respectively. The final parameter values for the two runs 

were fo
=13.3, C = .001, k 1  = 2.7, k 2  = 9.5, and fo 

= 14.4, C = -.009, 1( 1 =1.7, 

k2
=9.20, respectively. Although these two parameter sets would appear to 

be quite different if the amplitude weighting functions A(f) are plotted 

the shapes of the two curves are seen to be virtually identical, but sig-

nificantly different from the Mannos and Sakrison distribution. These 

amplitude weighting functions are shown in Figure,  7. At this point, two 

things should be stated. First, the optimized amplitude weighting function 

is not consistent with most vision models which have been developed [1). 
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Figure 7. The amplitude weighting functions A(f) for the Mannos and 
Sakrison quality measure with (a) the first set of optimized 
parameters, (b) the second set of optimized parameters, (c) 
the original M&S parameters. 
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Secondly, the functional form chosen from (10) was chosen for convenience. 

Other skeleton amplitude weighting functions might have demonstrated higher 

correlation with subjective results. 

It will be recalled that the Gray-Leiner metric estimates image dis-

tortion according to 

DGL 
= max[W.E.] 

There are a number of free parameters in this model, among them being the 

number of filter bands B, the bandwidths, and the weighting coefficients 

w.. Due to the inherent nonlinearity of the metric, the determination of 

the optimum parameter set for the measure is a difficult and, from the 

point of view of this research project, unsolved problem. If the full 

thirty filters in the filter bank are used with equal bandwidths for the 

filters, and weighting coefficients chosen according to the Mannos and 

Sakrison formula (10), the resulting correlation coefficient was -.45715. 

This is worse than the Mannos and Sakrison metric with the same parameters. 

To try to improve on this figure an iterative search was made for an 

"optimal" parameter set. The Mannos and Sakrison skeleton was used again 

and the maximum correlation which resulted using 30 filters was -.708. 

In another study, a Monte Carlo approach was used to determine the 

effect of using fewer than 30 filter bands. The bandlimits  for the reduced 

number of filters were determined according to the following algorithm. 

To clarify the discussion let us denote each of the thirty original bands 

as subbands. They will be clustered into larger bands which we will simply 

call bands. The innermost subband is automatically assigned to the first 

34 



band. Working out from the center at each subband we can ask a simple 

question--Should this subband be added to the current band or should it 

become the first subband in a new band? The decision was made using a 

simple, binary random process. At each subband the subband would form a 

new band with probability p and would be added to the current band with 

probability 1-p. On the average, the number of bands which results will 

be 30p. With the value p=.2, using the optimized Mannos and Sakrison 

weighting coefficients, the results contained in Table 3 were obtained. 

The data set was not large and the weighting coefficients used were not 

optimized. Despite these facts, two conclusions are evident. Performance 

can be improved by reducing the number of bands somewhat and the Gray- 

Leiner metric yields slightly higher correlations than the optimized Mannos 

and Sakrison measure. These results are quite encouraging and strongly 

suggest that this metric is worthy of further study, particularly with 

respect to the question of parameter determination. 

The last quality measure studied was the optimal linear measure des-

cribed in the preceding section with Equation (17). Using all thirty bands 

a correlation coefficient of .924 was obtained. As described in that sec-

tion, this value can be considered to be a limit for all "linear" distortion 

measures. This is a truly remarkable result for the correlation is higher 

than when a single subject is used to estimate quality. 

One possible defect with this measure might be its lack of robust-

ness. That is, since it is optimized for a particular data set, the 

resulting measure might not perform well on other distorted images. In 

order to generate a feeling for the robustness of the metric the following 

experiment was performed. An optimal set of weighting parameters was 
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B Bandedges (Subband Index) Correlation 

3 1,2,4 -.731 

4 1,3,20,29 -.732 

5 1,5,11,12,20 -.734 

6 1,6,10,18,24,30 -.726 

7 1,5,10,21,24,25,27 -.733 

8 1,3,7,9,10,15,18,27 -.720 

9 1,4,6,10,17,18,21,27,28 -.680 

30 all -.708 

Table 3 

Some subjective correlations using the Gray-Leiner 
metric with differing numbers of filters,B 
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determined for the image GIRL and then the resulting fidelity measure was 

used to estimate the quality of distorted versions of the image RADOME. 

The correlation coefficient with subjective estimates of RADOME was .882. 

This is still comparable to using a single human observer and suggests 

that robustness may not be a problem. Such a conclusions cannot be 

definitely made, however, without a larger data base. 

In order to investigate the effect of varying the number of spatial 

frequency bands on the fidelity measure, the Monte Carlo algorithm descri-

bed earlier was used. These results are summarized in Table 4. The number 

of bands can be reduced considerably without a substantial penalty. 
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B Bandedges (Subband Index) Correlation 

4 1,13,23,28 .801 

5 1,4,8,9,21 .807 

6 1,4,6,7,21,27 .831 

7 1,9,11,12,24,28,29 .842 

8 1,5,6,10,18,21,26,29 .872 

10 1,3,9,10,13,17,21,22,28,29 .893 

13 1,3,7,8,10,11,12,15,20,22, .895 
28,29,30 

17 1,5,6,7,8,10,12,14,16,17, .902 
19,20,21,23,27,28,30 

19 1,2,3,4,5,6,7,9,13,14,15, .903 
16,19,22,23,24,25,28,30 

20 1,2,4,5,6,7,8,9,13,14,15, .912 
16,18,20,22,24,25,27,28,29 

30 all .924 

Table 4 

Some subjective correlations using the optimal 
linear metric with differing numbers of filters, B 
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VI. 	DISTORTION-RATE FUNCTIONS FOR VECTOR SOURCES AND A MAXIMUM FIDELITY 
CRITERION 

Rate--distortion theory is concerned with the problem of encoding a 

signal in as few bits as possible subject to a requirement that the distor-

tion in the reproduced signal be less than some maximum amount. The number 

of bits depends upon the measure used to evaluate distortion and the sta-

tistics of the signal encoded. In this section, we will summarize some 

results obtained during this research on bounds for distortion-rate functions 

using a fidelity measure similar to the Gray-Leiner measure. First, how-

ever, some preliminaries are in order to lead up to these results. 

Let us assume that we have a representation for an image u(x,y) 

which completely specifies that image. We shall further assume that this 

representation implies a data rate for transmission which is too high for 

the channel over which the transmission is to occur, since this is the only 

interesting case from a source coding point of view. Let the encoded ver-

sion of the signal be denoted as ul (x,y). Since are interested in errors 

due to the source encoding and not those due to channel errors, we shall 

assume a simplified form for the communications channel, namely that it has 

a fixed capacity but for transmissions at rates lower than capacity it is 

error-free. At the receiver the received signal is then decoded to yield 

an estimate of the original image u(x,y). We thus desire that the distor-

tion between u and u be as small as possible given that the data rate of 

the encoded image is less than the maximum data rate of the channel. 

This may be stated precisely as follows. We are given a set of 

possible images, 	along with a probability measure, q, for those images. 
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The source produces uncorrelated images from S which need to be transmitted 

at the same rate at which they are produced. We are also given a set of 

possible reproduction images S which are available at the receiver, along 

with a measure of the distortion between source and reproduction d(u,u)0 

defined on S x S. We desire to reproduce the images at the receiver with 

as small an average distortion as possible while keeping the data rate below 

R. To accomplish this we could use a block coding technique. Let u = 

(uu
2'

...,u
n) define a set of n images with a similar definition for u. 

The distortion between the image n-tuples then becomes just the average 

distortion, i.e. 

d(u ,u ) = n
-1 

1 d(u.,u.) 
-n -n 

i=1 
(23) 

A code of block length n, Cn , is simply a collection of a finite number of 

reproduction image n-tuples. The size of the code 1Cn I is just the number 

of code words (n-tuples) in Cn. The encoding technique is simply to choose 

the code word in C
n that has minimum distortion with the source word, i.e. 

u is encoded into u (u ) if 
-n 	 -n -n 

d(u ,u,u 
n n 

( 1 )) = min d(u ,u ) -n -n 
u EC 
-n n 

The code, therefore, has an average distortion 

d(C
n
) = E min d(u ,u-n 

 ) 
-n  

u EC 
-n n 

(24) 

(25) 
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where the expectation is taken with respect to the probability measure on 

. 
Sn given by 

n 
q(un) = II 	 . 

i=1 

We note that, if the channel is capable of transmitting R bits per 

second, then the encoded version of the images can be transmitted over the 

channel as long as the rate of the code R(Cn)=n
-1

logIC
n 

is less than R. 

The minimum distortion at rate R for codes of block length n is then given 

by choosing the best code. Thus 

d
n
(R) = 	min 	d(C

n) 	. 
Cn :R(Cn

)12 
(27) 

Since we are not restricted to any particular length code, the minimum 

distortion achievable at rate R is just d(R) = inf d n (R). 

This minimum distortion is usually impossible to calculate directly 

as the class of codes is large and the computations are difficult. 

Shannon [17], however, showed that d(R) may be related to a well-defined 

information theoretic minimization in certain circumstances which is amenable 

to fast computer programming techniques [18]. This famous result, the 

coding theorem for sources subject to a fidelity criterion, may be stated 

as follows :Eor memoryless sources. Let p(ulu) be a conditional probability 

measure (test channel) of reproduction images given source images. This 

test channel may be thought of as a random coding device. Let I(u,U) be 

the average mutual information between u and u under the joint probability 

measure induced by q and p and let D(q,p) be the average distortion, i.e. 

(26) 

41 



D(q,p) = E[d(u,i1)]. The minimum value for this average distortion is given 

by the (marginal) distortion-rate function S u (R) defined by 

S (R) = 	inf  „ 	E[d(u,u)] 	. 	 (28) 
P(ulu):I(u,u):5_R 

The marginal distortion-rate function gives the minimum distortion at a 

given rate when a scalar source is transmitted with no auxiliary informa-

tion available. Thus S (R) is obtained under a random encoding rule while 

d(R) is the minimum distortion under a deterministic code. The source 

coding theorem [19] provides further meaning for the distortion-rate func-

tion. 

Source Coding Theorem: Let U be a discrete-time memory-

less source as defined above and assume there exists a 

finitesetofreproductionimages{u}such that 

E[min d(u,u.)]<co. Then d(R) = Su (R). 

The source coding theorem, therefore, guarantees that, as long as 

there is any finite code having finite average distortion, for long code 

blocklengths, we can come close to the distortion--rate function. Thus, 

the distortion-rate function provides a tight lower bound on the average 

distortion which is achievable by any coding system. 

While the distortion-rate function which corresponds to the fidelity 

measure proposed in Section II is well-defined and can, in theory, be cal-

culated, the size of the possible input and output alphabets makes this 

effectively an impossible task. Thus, it is desirable to develop bounds 

to the distortion-rate function which are more easily calculated. These 
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bounds can then be used to bound the performance of any actual data com-

pression technique. Due to the form of our fidelity measure, we may simply 

restrict ourselves to the problem of transmitting an image which has been 

transformed by the pointwise nonlinearity at the front-end of the distor-

tion measure. By determining the statistics of the transformed image, the 

problem may be restated as simply the determination of the distortion-rate 

function for a vector source with a distortion measure given by the 

supremum of the distortion for the individual frequency channels. 

The bounds developed here are in the form of inequalities relating 

the distortion-rate function for a vector source with a supremum-type 

fidelity measure to that of scalar sources with and without side informa-

tion. Since the latter distortion-rate functions may be calculated using 

numerical techniques [18], the resulting bounds may also be calculated and 

are, therefore, usable bounds. 

For simplicity, consider the distortion-rate function for a vector 

source of dimension 2. When both the source encoder and decoder are allowed 

to observe a second sequence of information, the minimum distortion attain-

able is given by the conditional distortion-rate function. Let U = (x,Y) 

be a memoryless vector source having joint probability density functions 

qu (u), marginal densities qx (x) and qy (y) and conditional density qx l y (xly). 

The conditional distortion-rate function of the source X given Y is then 

defined by 

5 	(R) = XIY 	
inf 	 E[d(X;X)] 	. 

p(xlx,y):I(X;XIY)R 
(29) 
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The conditional distortion-rate function is no more difficult to calculate 

than the marginal distortion-rate functions. 

Now consider the transmission of a vector source when the user has a 

fidelity criterion on each component of the source. If an additive scalar 

fidelity criterion d(u,u)_):0 is defined for the set of source and decoded 

images, the fact that the source and reproduction data are vectors is im-

material and the distortion-rate function is still defined by (28). 

Let the distortion for the vector source be expressed as d(u,u) = 

max[ad
X
(x,x),bd (y,y)] and the distortion-rate function for the source U, 

du (R), be defined by (28). Then, if we denote by V(R) the distortion-rate 

function corresponding to the distortion measure d(u,u) = ad
X
(x,x) + bd (y,y), 

we have shown the following relations [20]. 

6u  (R) 	inf max[ac30(aR),b5y ((1-0R)] 	 (30a) 
ac [0,1] 

u (R) s V(R) 	aSx (aR) + b6 ((l-a)R), aE[0,1] 	(30b) 

Furthermore, if we define the distortion-rate function
a
(R) for a -.1 to be 

the distortion-rate function for X using the criterion (dX (x,x)) a  and 

likewise for Y, we have that 

a 
u (R) 	(a

0 
 S
x
( R) + b(3((l-a)R))

1/a
, ac [0,1] 	 (31) 

For identically distributed sources these results may be simplified as 
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6 (R) 5 26
X 
 (R/2) 	. 	 (32) 

If in addition X and Y are independent, then 

6 (R) 	
X
(R/2) 	. 	 (33) 

The calculation of the lower bound of (30a) is simplified by noting 

that, when an ac[0,1] exists such that a6 x l y (aR) = b6y ((l-a)R), the infimum 

is achieved by that a. Otherwise, it is achieved by one of the endpoints. 

While these bounds are not as tight as we might desire, neither are they so 

weak as to be useless as Leiner [20] has shown in some examples (See 

Appendix B). 
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VII. 	DISCUSSION 

An important point to bear in mind in evaluting the results of this 

study is that there were several issues being studied simultaneously. A 

subjective test was designed and evaluated. The correlation technique for 

evaluating objective quality measures was developed, and a number of pro-

posed image quality measures were implemented, compared, and refined. These 

distinct studies impacted upon one another in both obvious. and subtle ways. 

The doubly anchored subjective test was designed to prevent the 

"floating bias" effect often noticed when complex, highly structured signals 

are being judged. With tests which are not anchored, the internal standards 

by which a subject makes his judgements vary with time and the subjective 

response for an image depends not only on the distortion of the current im-

age but also on the quality of the immediately preceding images. This 

phenomenon can be referred to as interdistortion interference. To test for 

inter-distortion interference, the correlation coefficient for adjacent 

judgements (in time) was computed and found to be only -.02. Thus, for 

the doubly anchored test, successive responses are virtually uncorrelated. 

The resolving power of the subjective test also appeared to be very 

good, although no explicit attempt was made to compare this test with 

others. This test was, however, able to resolve (significantly) distortions 

which were difficult for a single subject to resolve while viewing both 

distortions simultaneously. 

The clear utility of the correlation method for the comparison of 

image fidelity measures lies in its ability to study many objective 
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distortion measures with relative computational ease once the set of error 

energies E. are known. Unfortunately, the amount of computation necessary 

to compute error energies was extensive, as was the effort to obtain sub-

jective results. As a result we tended to squeeze as much data as possible 

from a small data base. Ideally, the data base would have been larger. 

Two sample images are clearly not enough and the sample distortions did not 

cover anywhere near all of the distortions possible with image coding tech-

niques. Image quality perception is an immensely complex process, related 

not only to the distortions themselves but also to the highly structured 

nature of the images themselves. Thus, the perception of a distortion de-

pends not only on its numerical measure but also on such factors as whether 

or not it is localized or spread over the whole picture, whether it affects 

high-information areas of the image or low information ones, etc. A some-

what similar situation occurs in the perception of speech. Thus, in the 

long run it may be somewhat simplistic to expect any relatively simple 

objective measure to be highly correlated with subjective results for all 

classes of images and distortions. 

Some of these issues could have been addressed by increasing the 

size of the sample under study--by using more images and more distortions. 

However, although the actual correlation studies are quite compact, the 

development of the underlying data base is not, and the inclusion of a 

larger sample set was simply beyond the resources of this study. Similarly, 

we would have liked to be able to include a comparison with the use of 

pointwise nonlinearities other than the cube root but this would have in-

creased the amount of computation considerably. 

Some comments should also be made concerning the Mannos and Sakrison 
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distortion measure [1]. First, it should be noted that there were several 

basic differences between their study and ours. Their images were displayed 

with a bandwidth of 44 cycles per degree while our bandwidth was 22 cycles 

per degree. Further, their distortions were all coding distortions which 

were judged to be barely perceivable. Our were not induced by coding and 

were on several occasions much more severe. That their measure which was 

determined by other means could achieve a correlation of -.65 would imply 

that their measure was a relatively good one, although it may be questioned 

whether or not this value for the correlation coefficient is high enough 

for all of the purposes for which an objective measure is needed. 

A fourth area of interest in this study was the evaluation of the 

Gray-Leiner distortion measure. Although the evaluation of this measure was 

one of the primary goals of the original study, it must be stated that the 

results obtained can only show trends in the effectiveness of this measure. 

For example, the results suggest that a relatively small number of bands 

work best. Further, for the Mannos and Sakrison weighting function, better 

results can sometimes be obtained with this measure than with the linear 

measure. A difficulty is that there is no simple method for finding a 

weighting function which will result in the optimal behavior for this 

measure. Iterative techniques are unattractive since the correlation co-

efficient surface as a function of the weighting function will not be a 

smooth curve. Exhaustive methods are unattractive since the number of 

cases is prohibitively large. Hence, the results of this study do not 

represent data on the absolute effectiveness of this measure. 

The :Last area: of interest in this study was the optimal linear pre-

dictors which gave a correlation of .922. This is an impressive number, 
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but since this number is obtained from reapplication of the measure to its 

own training set, the robustness of the measure must still be proven. The 

weighting function obtained by this method contains both positive and nega-

tive values, and its high correlation coefficient can be thought of as the 

result of subtle effects of the numerical analysis. However, it should be 

pointed out that when the GIRL was used as the training set, and the RADOME 

was used as the test set, a correlation coefficient of .88213 was obtained. 

This suggests that, at least for similar distortions, this may be a rela-

tively robust measure comparable to the .90 obtained from the single subject 

tests, and a set of weights produced from a larger data base might have a 

more general application. 

A. 	Open Research Questions  

There are several intriguing questions to be answered which would 

make interesting follow-on studies. First is the question of whether these 

results would remain the same when applied to a larger base with more test 

images and more types of distortions, particularly real coding distortions. 

Of particular interest here is the performance of the optimal linear pre-

dictor. Another open question is the assignment of weights for the Gray-

Leiner metric. Initial results obtained with this fidelity measure were 

very encouraging. Finally, the most important open questions associated 

with objective fidelity measures concern their use. What do these measures 

say about optimal image coding? How do existing easy to use coding schemes 

compare? Finally, what does a fidelity measure say about image processing 

and image restoration( 
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IMAGE ENCODING WITH A FIDELITY CRITERION 

BARRY H. LEINER 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

ABSTRACT 

The problem of compressing pictorial data for transmission is 
investigated. It is seen that the classic measures of distortion such as 
mean-squared error are not indicative of the quality of the picture. A new 
measure is suggested and some of the theoretical properties related to the 

_ optimum coding (i.e., rate-distortion function) are considered. 

INTRODUCTION 

In transmitting images, the capacity of the channel is often not 
sufficient to allow perfect reproduction of the image at the receiver with-
out taking an inordinately long time for transmission. One solution to this 
problem is to encode the images to remove any redundancy, allowing accurate 
reproduction of the image at a lower bit rate. This bit stream then requires 

- a lower capacity channel cr alternatively, less tine to transmit each image. 
The capacity nay still, however, not be adequate. 

Requiring perfect reproduction is often unrealistic. In a black and 
white picture, for instance, relative intensity of each point is often more 
important than the exact intensity. When the statistics of the image are 
known as well as a quantitative fidelity measure, the minimum number of bits 
required to reproduce the image within a given fidelity May be calculated 
using the techniques of rate-distortion theory. We can then try to find 
various encoding schemes which would hopefully come close to this lower 
bound. 

Unfortunately, the application of rate-distortion theory requires 
knowledge of both the source (image) statistics and an adequate fidelity 
measure. While an estimate of the statistics of the image may be obtained 
using histogram techniques on a large sample of images of the type concerned 
with, determining the appropriate fidelity measure is a more difficult pro-
blem. Classically, the fidelity measure used is a mean-squared error 
criterion. Although this measure is analytically "nice," it does noE 
correlate well with human perception of the characteristics for a good 
reproduction. 

In this paper, fidelity criteria are discussed for images that are 
computationally tractable. The distortion measure chosen is motivated in 
part by recent psychophysical tests and in part by the desire for a trac-
-table measure for images. It is seen that, while this measure leads to a 
well-defined and theoretically computable distortion-rate function, in 
practice its computation is difficult. The remainder of the paper deals 
with the development of bounds to this distortion-rate function, thereby 

This work was partially supported by the National Science Foundation under 
=Grant No. ENG75-04992. 
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developing hounds to the performance of any data compression technique with 
the cbn:),, ne fidelity criterion. 

DATA COMPRESSION FOP IMAGES 

The problem of the tcnn::mission of iutrt;eo may be stated as follows. 
A sender has an image which he would like reproduced for the receiver. The 
sender has available to him a communication link which operates at some 
rate. If we allow the sender and rtceivor to install coding and decoding 
equipment, what is the beat reproduction of the image available to the 
receiver after some fixed amount of time? 

Figure 1 shows the type of system envisioned. The imago is first 
converted to an electrical signal. This would typically be accomplished 
by a scanning device whose output depends on the pointwise intensity of 
the image. At the converter output, we then have a signal, U, that 
completely represents the image. This signal has a data rate which is too 
high for the channel and must be encoded, giving the signal U 1 . To transmit 

this signal over the channel reliably, it must also be encoded giving the 
signal U

2 
which is sent over the channel. The received signal is then 

decoded to give 	an electrical representation of the image. This repre- 
sentation can then be converted to a reproduction of the image. If the 
channel capacity is not sufficient to transmit a perfect: reproduction of the 
image, the receiver will view a distorted version of the original image. 
Before proceeding, it should be noted that, in general, the image encoder 
and channel encoder (and likewise for the decoders) should be shown as a 
single block. The fact that, under a wide variety of circumstances 
including the present, the source (image) encoding may be done independent 
of the channel encoding is a major result of Information Theory [I, p. 3]. 
Since the interest here is in the required data rate for image reproduction, 
we shall not be concerned with the channel coding. It will be assumed that 
the channel has some fixed maximum data rate and never makes any errors. 
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Figure 1. Image Transmission Systems 
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The synrc'm to i.e analyzed may be redrawn as shown in Figure 2, lha 
representation of the image U is encoded and decoded into a reproduction 
0. Wu de!;lre that the distortion between U and 0 be as small nit possible 
given that the data rate of the encoded image is less -  than the maximum dat 
rate of the channel. 

U 
SOURCE ENCODER 

U
1  

CHANNEL DECODER 
U > 

USER 

   

Figure 2. Image Coding System 

This may be stated precisely as follows. We are given a set of 
possible images, S, along with a probability measure, q, for the images. 
The source produces images from the set S at some rate, say one per secon 
Each image is produced independently of the other images according to the 
given probability measure. The set of images may be all possible pages o 
ter.t, all possible pictures, etc. The probability measure may be'allowed 
to determine the likely images. We may, therefore, take S to be the set 
gilt possible intensity patterns on the square [0, L] x [0, U. We are 
envisioning a source which produces a set of uncorrelated images that nee( 
to be transmitted at some rate. It should be noted that, by allowing the 
imsgcs to be correlated, we may consider the problem of television trans-
mission in the same framework. 

We are also given a set of possible reproduction images S which are 
available at the receiver, along with a measure of the distortion between 
source and reproduction d(U, 0) 2 0 defined on SX g. We desire to reprod 
the images at the receiver with as small an average distortion as possibl 
while keeping the data rate below R. To accomplish this, we will use a 
block coding technique. Let U =(U1,U2 , ..., Un), i.e., a 

set of n ima 

and similarly for P. Define the distortion between the image n-tuples a 

Just the average distortion, i.e., 

d(U , 	) 	 .-1 	d(U 	0 ) 
i=1 

A code of block length n, Cn, is simply a collection of a finite number o 

reproduction image n-tuplcs. The size of the code 1Cn 1 is just the 

number of code words (n-tuples) in Cn . The encoding technique is simply 

to choose the code word in C
n 

that has minimum distortion with the source 

	

word, i.e., u
n 
 is encoded into 	(u 

ft
) if 

^ 	 - 

d(u 	(u n)) = min d(u
n 
 , u ) 

11 EC 	• n 
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The cod,2, therefore, has an average distortion 

d(e. 11 ) - E min 	d(LI , 	) 

	

• 	1 

where the expectation is taken wtth reqpect to the proliohility measure on 

S
n 
 given, by 

q(tt) = 	 . 

1=1 	. 

We note that, if the channel is capable of 
then the encoded version of the images can 

as long as the rate of the code, R(C n) = n 

The minimum distortion at rate R for codes 
by choosing the , best code so that 

transmitting R bits per second, 
be transmitted over the channel 
-1 

log ICn 1, is less thnn R. 

of block length it is then given 

dn(R) = min d(Cn) 

C
n
:R(Cn) s  R . 

Since we are not restricted to any particular length code, the minimum 
distortion achievable at rate R is just d(R) = inf d n (R). 

This minimum distortion is usually impossible to calculate directly as 
the class of codes is large and the competations very difficult [2]. 
Shannon [3] showed that d(R) may be related to a well-defined information 
theoretic minimization in certain circumstances which is amenable to fast 
computer programming techniques [4]. This famous result:, the coding theorem 
for sources subject to a fidelity criterion, has been generalized several 
times [1,5,6] and may be stated as follows for memoryless sources (the 
generalization to sources with correlated images may be found in the 
references). Let p(alu) be a conditional probability measure (test channel) 
of reproduction images given sources images. This test channel may be 
thought of as a random coding device. Let 1(q, p) be the average mutual 
information between U and C [1] under the joint probability measure induced 
by q and p and let D(q, p) be the average distortion, i.e., D(q, p) 
E d(U, 13). The distortion-rate function for the source with alphabet S, 
probability measure q, and fidelity measure d is then defined by 

8(R) 	inf rgq. p) 

p:I(q, p) s R . 

Thus, 6(R) is the minimum distortion under a random encoding rule with rate 
replaced by mutual information while d(R) is the minimum distortion under a 
deterministic code. The source coding theorem provides the meaning of the 
distortion-rate function [1,3,5]. 

Source Coding Theorem: Let U be a discrete time memoryless source as 
defined above and assume there exists a finite set of reproduction images 
[(1 ) such that E min d(U, ) < .. Then d(R) = 6(R), 
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The source coding theorem therefore guarantees us that, as long as 
then,  is any finite code having finite average distortion, we can for long 
code blocklengths, come close to the distortion-rate function. Thus, the 
distortion-rate function provides a tight lower bound on the average dis-
tortion which is achievable by any real coding system. 

Unfortunately, to apply the theory outlined above, it is necessary to 
have both a probability measure for the source and a fidelity measure which 
agrees with human perception. By considering histograms of images and 
calculating various moments, such as the autocorrelation function for the 
image, we can obtain a reasonable statistical model for the class of images 
of concern. Fortunately, it is not necessary that the statistical model be 
perfect as the coding technique once chosen has a rate independent of the 
source and the difference between the average distortion for the model and 
the real source may be bounded [24]. Alternately, the distortion for a 
clns3 of sources having the given statistics may be considered [23]. Thus, 
an analysis based just on a model derived from first and second order 
statistics will provide a great deal of useful information. 

FIDELITY CRITERIA FOR IMAGES 

Finding a meaningful fidelity measure is a more difficult problem. 
Much of the previous work on image data compression has used either a mean , 

 squared error criterion [7,8,9,10,11] or a frequency-weighted mean-squared 
error [12,16]; While it was recognized that mean-squared error is a poor 
criterion for images [13,14], its simplicity of calculation plus a lack of 
a better criterion has made it popular. 

The search for a better criterion must be carried out by turning to 
models of the visual system. Recent psychophysical testing [20,21,22,25: 
seems to indicate that the eve detects information by passing the scene 
through a set of spatial channels and then performs an "or" operation on 
the output of the channels. There is also evidence [13,16] that prior to 
channeiizing, a pointwise nonlinear operation of the form f(x) = x. 3  is 
performed. A model of the visual detection system that would include thes, 
results in shown in Figure 3. Given this model, it is easily seen why a 
mean-squared criterion, weighted or not, would not correlate with a human 
perception of distortion. A given level of mean-squared error could be 
achieved by having a low level of distortion for each channel or a high 
level of distortion for one channel. The first may not be detected by any 
channel and would therefore be perceived as a good reproduction while the 
second would be detected on the one channel and be perceived ts a poor 
reproduction, 

What therefore is desired is a criterion that, when its value is low, 
guarantees that the distortion on each channel is low. Taking the maximum 
distortion over the given channels would achieve this goal. A class of 
candidate distortion measures for images is therefore the following. Let 
U(x,y) be the intensity pattern of the original image and let U(x,y) be th 
intensity pattern of the reproduction image, where x and y vary from 0 to 
the size of the image. A nonlinear point by point transformation is first 
performed on both the image and its reproduction, giving W(x,y) = f(U(x,y) 
and W(x,y) = f(U(x,y)). The transformed images are then passed through a 

of ideal two -dimensional bandpass filters, (11 (f
x 

f
y
))

.1=1
, giving outputs 

V (x,y) and i (x y) for each filter. These filters are chosen so as to 
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completely cover the spatial frequencies up to the human resolution of 
40 cycles/del. [13]. The squared error in each channel, 

d(Vi , 1/ 1 ) 	1 j (yx,y) - Vi ( x,y)) 2  dxdy 
0 0 

is then calculated. The distortion between the original image and its 
reproduction is then given by d(U, 0) = sup (ai  d (V

1!
)) where the a 

i 
are positive constants. Work is currently underway by the author to 
verify this distortion measure and determine its associated parameters. 

Figure 3. Visual Detection System Model 
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BOMMOS TO TIE DISTCaTION RAU FUNCTION 

While the distortion-rate function corresponding to theclossoffidcli! 
measures discussed above is well-defined and can in theory be•calculated, 
the r.1.•4(2 of the possible input and uitput alphabets make this a formidable 
if not impossible task. It is ther ,afore desirable to develop bounds to th 
distortion-rate function that are more easily calculated. These bounds ma 
then he used to hound the performance of any actual data compression 
technique. Since both the linear and non-linear transformations are one-t 
one, there is no distortion introduced in the transfonlations. We may 
therefore concern ourselves with the transmission of the transformed image 
By determining the statistics of the transformed image, the problem may be 
restated as simply the determination of the distortion-rate function for a' 
vector source with a distortion measure given by the supremum of the dist( 
tion for the individual components. 

The bounds developed here are in the form of inequalities relating tl 
distortion-rate function for a vector source with a supremum-type fidelit3 
measure to that of scalar sources with and without side information. Sin( 
the latter distortion-rate functions may be calculated using numerical 
techniques [4], the resulting bounds may also be calculated and are there-
fore usable bounds. 

For simplicity here, consider the distortion-rate function for a vect 
source of dimension 2. This would correspond to having two bandpass filtt 
The extension to arbitrary finite dimension is direct, but would result it 
unnecessary complexity here. Let (X, Y) be a vector source having pmf q() 
and marginal pmf's q(x) and q(y), -.:here the per-letter alphabets are 
Ax , Ay , and Axy  respectively. Let the available reproduction alphabets b( 

AR, 21;2, and A. Let the distortion between x and iZ be given by d(x, ;;) 

and the distortion between y and y be d(y, ;). The distortion between a 
vector source letter (x,y) and a vector reproduction letter (s"., g) is th e : 
given by 

d((x, y), 	;)) 	sup (ad(x, ;),bd(y, ;)) 

where a and b are some arbitrary positive weighting constants. Define th 
distortion-rate functions 4,K (R), ya), 61x.y (R), and 6 ty (R) to be the usu 

marginal and conditional distortion-rate function [1,5, 1 17], e,g., 

6x (R) 	inf E d(X, 
p C P 

P " (p(; 	E log (p(Xlx)/14(x)) s rt) 

w(Pc) a E q (x) p(iZ 

and expectation is taken with respect to the joint pmf q(x) p(Zlx). rote 
that the standard coding theorem holds for all four distortion-rate 
functions [1,5,15,17]. 

Although the distortion-rate function 8 vv (R) 'nay be calculated 

directly using numerical techniques [4], the size of the joint alphabet 

tip 



AXY often mikes thin calculation prohibitive. It is, therefore, useful to 

conlider hounding the distortion-rate function by functions which are more 
readily 	 Prime candidates for these functions are the marginal 
distortion-rat,• innctIonu

X 
 (8) and 8Y • ( 	and the conditional distortion- 8) 

rate function &Kly (a). By ,,Inv, teuhuilues similar to those used in 

deriving the relations between the joint, marginal, and conditional rate-
distortion functions [15,18 see. 3], the followim; upper and lower bounds 
to the joint distortion-rate function for the class of distortion measure 
considered here may be shown to hold. 

Theorem: Let &(R), &(R), 6yr (R), and oxy(R) be the distortion-rate 

functions as defined above. Then 

ort (R) 2 inf 	(sup (a Elsx iy (cyR), b 61, ( (1 - cy)R))) 

aE[0,1] 

6XY (R1 + R2 )  "X (R1 )  "Y (112 )  

Furthermore, if we define the distortion-rate function 6x (9)  (R) to be the 

distortion-rate function for the source and reproduction as above using a 
.•• 

distortion measure d
s
(x,X) = (d(x,x))

s 
 , we have the upper bound for all 

s z 1 

foxy (Ri  + R2) 5 (a
s 6,x (s) (R1 ) + b

s by
(s) 

(R2 ))
1/s 

. 

CONCLUSION 

In this paper, the problem of compressing the data representation of 
an image was considered. A fidelity measure was suggested that has the 
tightness of a vector measure and also leads to a well-defined distortion- 
rate function. Bounds to this distortion-rate function that are more easily 
computable were developed. It is hoped that psychophysical testing of the 
proposed distortion measure will verify that it is indeed a criterion that 
reflects human perception and thus may be used in the evaluation of image 
compression systems. 
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Distortion-Rate Functions for Vector Sources and a Maximum 

Fidelity Criterion 

BARRY M. LEINER, NIEMBER, IEEE 

Abstract—The problem of distortion-rate functions for vector 
sources is considered. Two fidelity criteria are treated. The first 
considers the maximum of the weighted component distortions and 
then takes the per-letter average. The second takes the maximum 
of the weighted component per-letter averages. In either case, a 
well-defined distortion-rate function results, giving the minimum 

possible distortion achievable at a given rate of transmission. Upper 
and lower bounds to these distortion-rate functions are derived in 
terms of more easily calculated functions. 

I. INTRODUCTION 

ATE-DISTORTION functions have been defined 
for vector sources under a vector fidelity criterion 

and a weighted average fidelity criterion [1]. The rate- 
distortion function answers the following question, "What 
is the minimum rate required to transmit a data stream so 
that the average distortion of the reproduction is less than 
some specified amount?" When a vector fidelity criterion 
is used, each component of the average distortion is con- 
strained, while for a weighted average distortion measure, 
only the average of the components is considered. 

The fidelity requirement of a user is often not the 
specified quantity. In many situations, the user has a 
channel available to him of some fixed capacity and would 
like to know the best reproduction available while main-
taining a rate less than capacity. The answer to this ques-
tion lies in the inverse to the rate-distortion function, the 
distortion-rate function. While this fun'ction is well-de-
fined for a scalar source and for a vector source with a 
weighted average distortion measure, in the case of a vector 
fidelity criterion it yields a set of distortion vectors and 
does not answer the user's question. 

A weighted average distortion measure is often too weak 
a fidelity criterion. For example, recent psychophysical 
testing for images [2]—[5] seems to indicate that a reason-
able criterion for image reproduction fidelity might be the 
maximum of the distortion over disjoint spatial frequency 
channels, a stronger requirement than a weighted aver-
age. 

In this paper, such a maximum fidelity criterion is 
considered, leading to a well-defined distortion-rate 
function for vector sources. Bounds to this distortion-rate 
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nications Conference, San Francisco, CA, June 1975. This work was 
supported in part by the National Science Foundation under Grant 
E NG75-04992. 

The author was with the School of Electrical Engineering, Georgia 
Institute of Technology, Atlanta, GA 30332. He is currently with Probe 
Systems, Inc., Sunnyvale, CA 940S6.  

function are developed in terms of more easily calculable 
distortion-rate functions, namely, the distortion-rate 
function for a scalar source with and without side infor-
mation. These bounds are similar in appearance to the 
relationships derived for rate-distortion functions of vector 
sources with vector and weighted average distortion 
measures [1]. Unlike those relationships, however, the 
bounds in this paper do not seem to have'simple conditions 
for them to hold with equality. This does not mean that 
they are so weak as to be useless, as two simple examples 
will show. 

A criterion which seeks to retain the character of a vector 
fidelity criterion, while still leading to a well-defined dis-
tortion-rate function for a vector source, is also considered. 
This criterion seeks to minimize the maximum of the av- 

erage distortion, in contrast to the criterion discussed 
above which considers the average of the maximum dis-
tortion. In the case of data streams used by different users, 
this may be the more meaningful criterion and yet still 
yields a minimum distortion at a given rate. This distor-
tion-rate function is related to the rate-distortion function 
of a vector source with vector fidelity criterion. Inequalities 
relating this distortion-rate function to that for sources 
with and without side information are also developed. 

IL MARGINAL AND CONDITIONAL DISTORTION-RATE 
FUNCTIONS 

Let U be a scalar mem oryless source producing symbols 
from a source alphabet At; according to the probability 
mass function (pmf) qu(u). It is desired to transmit an 
encoded version of the source at a rate less than R nats per 
second, obtaining a reproduction from alphabet A in such 
a way that the average per-letter distortion d(u;a) between 
source and reproduction is minimized. The minimum value 
for this average distortion is given by the (marginal) dis-
tortion-rate function 6 /7 (R) defined by 

`a (R) = 	inf 	Ed(U;(1). 	(1) 
rcu; C)R 

By noting that both mutual information and the average 
distortion are convex functions of the test channel 
probabilities P(6  IU), it is readily seen that the distor-
tion-rate function is just the inverse to the rate-distortion 
function and the appropriate source coding theorems hold 
[7]-[9]. Thus the marginal distortion-rate function gives 
the minimum distortion attainable at a given rate when a 
scalar source is transmitted with no auxiliary information 
available. 

11! 
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DISTORTION-RATE FUNCTIONS 

When both the source encoder and decoder are allowed 
observe side information in the form of a sequence Fe-

ted to the one being transmitted, the minimum distortion 
tainable is given by the conditional distortion-rate 
nction [11]. Let U = (X ,Y) be a memoryless vector 
urce having joint pmf q, (u), marginal pmt.'s 	(x) and 
-(y), and conditional pmf 	y(x ly). The conditional 
stortion-rate function of the source X given Y is then 
.fined by 

x/Y (R) = 	inf 	Ed(X.,,k). 	(2) 
p(ilx,y): 1(X;A11'):5ft 

:ain, noting that both the average distortion and condi-
,nal mutual information are convex functions of the test 
annel p(.r ix ,y), the conditional distortion-rate function 
the inverse to the conditional rate-distortion function 
, [9], [10], and therefore the appropriate coding theorems 
Id. 
In what follows, the distortion-rate function of a vector 
irce with various types of fidelity criteria will be related 
the marginal and conditional distortion-rate functions 
the component sources. The utility of these relations 
lows from the ease of computing the marginal and 
iditional distortion-rate functions, and the difficulty 
:omputing the vector distortion-rate function. Although 

not obvious from (2) that the conditional distortion-
s,  function is easily computed, it may be written as the 
ghted sum of the marginal distortion rate functions for 
sources qxi y( • I y), denoted as 6x 1 ),(R), as 

x 11 - (R) = 	q ,„(y)ax i ,.(R),), 
y 

R = i y(y 

the IRy l are chosen such that dldR xl y (R)1 R=R s  = s 

each y [10], [11]. Since the slope is usually the param-
used in the calculation of the distortion-rate function, 
er analytically through a form of Lagrange minimiza-
[6], [7], or numerically [12], the conditional distor-

-rate function is no more difficult to calculate than the 
ginal distortion-rate function. 

III. JOINT DISTORTION-RATE FUNCTIONS 

'e now consider the transmission of a vector source 
n the user has a fidelity criterion on each component 
le source and it is to be transmitted over a single 
inel. Let U = (U 1, Li 2, • • • UN) be a memoryless vector 
ce having pmf q•(ti), source alphabet A te  = Au, X Av e  

• X Au N , and available reproduction alphabet Ac; = 
X • • - X A 	Note that some elements of the source 
abet may have q u (u) = 0. If an additive scalar fidelity 
rion d(u;t2) 0 is defined on Au X A0, the fact that 
ource and reproduction data are vectors is immaterial 
the distortion-rate function is defined by (1). 
is natural to define the distortion for the vector in 
s of the distortion for the component data streams. 

There are several choices for this distortion criterion. Let 
di  (a ;t2 i ) be the additive fidelity criterion for the ith data 
stream. The distortion between vectors could be defined 

	

to he the vector d(101) = (d )(LI 	• 	• • ,dN(IN;t7N)). 

Thus we are trying to minimize the vector distortion 
subject to a rate constraint. Although this approach will 
work in defining the rate-distortion function [1] resulting 
in the minimization of a scalar (the rate) subject to a vector 
constraint, it does not lead to a well-defined distortion-rate 
function in the following sense. We would like to have the 
distortion-rate function tell us the minimum achievable 
distortion at a given rate. If we use a vector distortion 
measure, we will find a set of distortion vectors rather than 
a single number characterizing the optimum system. 

A scalar distortion measure for the vector source 11 can 
be defined by taking the weighted average of the compo-
nent data streams, 

	

d(u;a) = j a idi(ui ;(4). 	 (4) 

The problem with the weighted average distortion measure 
is that it is often too weak a criterion for the source of in-
terest. For example, recent psychophysical testing [2]—[4] 
seems to indicate that the human eye processes images 
through independent spatial frequency channels. One 
might then hypothesize that all the channels must pass an 
adequate version of their signal for the image to be.useful. 
The weighted average distortion measure would not 
guarantee this, as a particular average distortion could be 
achieved by one component having a large distortion with 
the rest being zero or, alternatively, by all the components 
having a moderate distortion. We therefore would like to 
find a scalar distortion measure for the vector source that 
guarantees the distortion for each component is mini-
mized, as it is for a vector distortion measure. Such a fi-
delity criterion may be achieved by considering the max-
imum distortion over all the components. Since some 
components may he more important than others, we allow 
a weighting of the component distortions, leading to the 
distortion measure [5] 

	

d(u;a) = max aidi (ui;z2i). 	 (5) 

Thus we have a criterion which is stronger than the 
weighted average distortion measure, yet leads to a well-
defined distortion-rate function as a minimum achievable 
distortion at the given rate. The appropriate source coding 
theorem therefore holds. 

IV. DISTORTION-RATE RELATIONS FOR TWO- 
DIMENSIONAL SOURCES 

Although we now have a well-defined distortion-rate 
function, its computation can be quite tedious. This is a 
direct result of the source and reproduction letters being 
vectors and the size of the alphabets therefore growing 
geometrically with the dimension of the vector. Since the 
minimization in the definition of the distortion-rate 
function involves the determination of the minimum 

(3a) 

(3b) 
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function defined on the joint alphabet A u  X Ac, the . 
computations can become difficult, even using Blahut's 
algorithm [121, for even moderate size component alpha-
bets and dimension. It is therefore useful to determine 
upper and lower bounds to the joint distortion-rate func-
tion in terms of more easily calculable functions. 

In this section, bounds to the distortion-rate function 
of a two-dimensional source are developed in terms of the 
marginal and conditional distortion-rate functions of the 
component subsources. Although these bounds may be 
generalized immediately to arbitrary finite dimension, 
considering the two-dimensional case simplifies both the 
notation arid proofs. The relations derived here are similar 
in appearance to those derived in [1] for the joint rate-
distortion function. Proofs for these relations may be found 
in the Appendix. 

Let U = (X,Y) be a two-dimensional vector source as 
defined above having distortion measures for the compo-
nents given by dx(x;.i) and dy(y-,S), marginal distor-
tion-rate functions 6 ;010 and b y (R), and conditional 
distortion-rate function i5x/ 1 -(R). Let the distortion for the 
vector source and its reproduction be given by d(u;ii) =- 
max [adx (x;.f),bc/ 3., (y;S)[, and let the distortion-rate 
function for the source U, bu(R), be defined by (1). Let the 
distortion-rate function calculated using distortion mea-
sure d(u;12) = adx (x;.i) + bd y (yS) be denoted Cu(R). We 
then have the following relations. 

Theorem 1: The distortion-rate function for the vector 
source U is related to the marginal and conditional dis-
tortion-rate functions of its component subsources by 

OL - (R) inf max [a bx/y(aR),bby((1 - a)R)] (6a) 

bu(R) <bU(R) < abx(aR) 

+ b3y1;(1 - a)R), 	a E [0,1]. ..(6b) 

Furthermore, if we define the distortion-rate function 
61-(R) for cr ?: 1 to be the distortion-rate function for X 
using the criterion (dx  (x;X')) 6  and likewise for Y, we have 
that 

6u(R) < (arrVx (aR) + 1)66;((1 	a)R)) 1 la", 	a  E [0,1]. 
(6c) 

For identically distributed sources, Theorem 1 may be 
simplified as follows. 

Corollary: Let X and Y be identically distributed (not 
necessarily independent) with the same distortion measure 
(i.e., d x  (r;1-) = dy (r;0), and let a = b = 1. Then 

bu(R) 5 2bx(0.5R). (7a) 

If, in addition, X and Y are independent, then 

bu(R) bx(0.5R). 	 (7b) 

The calculation of the lower bound of (6a) is simplified 
by noting that, when an a E [0,1] exists such that 
a bx 1 y(aR) = bby((1 - a)R), the infimum is achieved by 
that a. Otherwise, it is achieved by one of the endpoints. 

While the bounds (6) and (7) are not tight, neither are 
they so weak as to be useless as can be seen from the fol-
lowing examples. 

Example: Two-Dimensional Binary Source, Hamming 
Distortion 

Let X and Y be dependent, identically distributed bi-
nary sources having qx (1) = 0.5 and qu(1,0) = 0.5p, so that 
cp , (x,y) is given by 

10.5p, 	x 	y, 
qu(x,Y) 0.5(1 - p), 	x y. 

Let dx (x;.0 and dy(y;5') be the probability of error crite-
rion 

clx (r;1-) = dy(r;P) = 1 - 

and let a = b = 1. It is easy to see that., for this case, U is a 
source having alphabet size equal to four and a probability 
of error criterion, since du (u;(1) = 1 unless x = and y 
S. The distortion-rate function for the source U is then, 
from Berger [6, sect. 2.91, given parametically as 

Dt  =- 1 - St  -I- t(Nt  - I) 

R, = - E Pi  log pi  

+(1 - Dt ) log (1 - Dt ) + (Nt  - 1) t log t, 

where 

Vt  = U:P;  > t 

-S, 	> P1 
jEV t  

Nt= i 1 , 
i6 Vt  

the {/3,} are the four probabilities qu (u), and t is a pa-
rameter that varies from 0 to the second largest of the 

The lower bound to u(R) is given by (6a) as 

OLB(R) = inf max NI y(aR),(5Y(1 - 
610,11 

From Berger [2, example 2.7.1], the distortion-rate func-
tion for the conditioned sources qx1 y( • y) may be cal-
culated for each y parametically as a function of the slope 
s. Applying (3) arid combining terms yields the conditional 
distortion-rate function 

oxiy(R) = h - l(h(p) - R), 

where h( ) is the binary entropy function, 

h(x) = --x log x - (1 x) log (1 - x), 

and h - I( ) is its inverse function defined to have range 
equal to 10,0.51. 
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. 1. Distortion-rate function and bounds: binary vector source, 
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Fig. 2. Bounds to distortion-rate function: Gaussian vector source, 
mean-squared error, p = 0.5. 

Example: Two-Dimensional Gaussian Source, Mean-
Squared Error 

As a second example, consider X and Y to be joint 
Gaussian random variables each having zero-mean and 
unit variance, and having correlation coefficient p. Let the 
component distortion measures be squared error so that 

d(u;Ci) = max ((x - 1) 2, (y — 9) 2) . 

This distortion measure has the following geometric in-
terpretation. Average mean-squared error results in re-
production points on a circle about the source vector 
having the same distortion. Maximum mean-squared error 
causes reproduction points on a square about the source 
vector to have the same distortion. 

The lower bound of (6a) is calculated as follows, Given 
a value for y, the distribution for X is Gaussian with mean 
py and variance (1- p 2). The conditioned distortion-rate 
function for each y is therefore [2, p. 99) 

	

(R) , (1 	p 2) €, 

and, from (3), we therefore have 

xiy (R) 	(1. 	p 2) e. —2R.  

Since we also have 

b y (R) = e  —21 I 

:IN•R: DISTORTION-RATE FUNCTIONS 

>imilarly, the distortion-rate function for Y is given 

6y(R) = 12 -1 (1-1(Y) R) = h -1 (h(0.5) - R). 

e lower bound is then given by 

(R) = inf 
.E[o,i] 

max [11 -1 (h(p) - aR), h - l(h (0.5) - (1 - a)R)]. 

:'he upper bound of (6b), 61(R), may be easily calcu- 
d [2, example 2.7.21 noting that the distortion matrix 
e is just twice that given in the example. The bound is 
:n implicitly as 

1 — 	 — 2p '5_ n D frlaX .1 

re f (x) = -x log x. 
this case, the corollary also applies giving the simple 

er bound 

6 E/B (R) 	1 (h (0.5) - 0.5R). 

ig. 1 shows the distortion-rate function and its bounds 
he case p = 0.2. 
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the lower bound is given by 

S L R(R) = inf max [(1 p2) e -2aR, e --2(1—iy)R1 .  

a.e_ [am 

The upper bound of (6 1o), S'u (R), is readily calculated [2, 
sect 4.5.2] by noting that the eigenvalues of the correlation 
matrix for (X, Y) are A l  = 1 — p and A2 = 1+ p, and there-
fore we have the upper bound parametrically as 

2 
R6 = 	max (0,0.5 log (&X  

k =1 	

2 
Do -= 	min (0,Xh) 

as 0 varies from 0 to Amax. 

The upper bound of the corollary is given by 

(51113(R) = 2e — R. 

Fig. 2 shows the upper and lower bounds for p = 0.5. 
It is.seen from the above two examples that while the 

bounds are not tight, they still provide useful information. 
For more complex sources where the joint distortion rate 
function cannot be computed due to large alphabet sizes, 
the relationships at least provide simple upper and lower 
bounds to the function. 

V. JOINT DISTORTION-RATE FUNCTIONS FOR 
SEPARATE USERS 

The joint distortion-rate function discussed in Section 
III implies that the receiver is interested in both data 
streams at the same time, as we consider the maximum 
distortion on a per-letter basis. Another case of interest is 
the transmission of correlated data streams to be provided 
to separate users at the receiver. In this case, each user is 
interested in the quality of only the data stream provided 
him. We therefore are led again to a vector-valued distor-
tion measure, giving the average distortion of reproduction 
provided to each user. The system designer, however, again 
needs a single number telling him the performance of his 
system. 

The average value of distortion, averaged over the var-
ious users, is one possibility for a criterion. Again, as above, 
this is sometimes too weak as it does not guarantee each 
user a value of average distortion for his particular data 
stream. We can guarantee the user a value of average dis-
tortion by considering the maximum of the average dis 
tortions, weighted according to the importance of each data 
stream. We again have a well-defined distortion-rate 
function describing the performance of the optimum sys-
tem as follows. 

Consider the memoryless vector source U as described 
in Section H with its associated reproduction alphabet and 
component distortion measures di  (u i ;ai). The average 
distortion associated with a particular test channel p (c2 I u) 
is given by 

	

Di = Edi(Ui;C1i). 	 (8) 

The distortion-rate function of the source U having a cri- 
terion which minimizes the maximum of the average dis- 

tortion is then given by 

A u (R) = 	inf 	max Eaidi(Ui;Cli). 	(9) 
p(ellu): I (U;(1).1? 	i 

Choosing flic.1-1 a criterion guarantees us that the opti-
mum system can provide each user with an average dis-
tortion level less than Au(R), and no system can do better 
on all the data streams as can be seen from the. following 
reasoning. Let Ru(D) be the rate-distortion function for 
the vector source U subject to the vector constraint D, i.e., 
Ec/ i  (Ui ;r_Ji  ) < Di  for each i: [1]. For the moment, assume 
that a,- = 1 for each i. Then the test channel that achieves 
Au(R*) = D* satisfies the criterion in the definition for 
Rt(D) for D having D i  = D* for each i, and thus R11(D) 

R. The coding theorem for R u (D) then guarantees that 
there exists a code having rate less than R* + e and average 
distortion for each data stream less than D*. The converse 
holds using similar reasoning, and the generalization to 
arbitrary ai follows trivially. 

The distortion-rate function, Au(R), Of the source U 
with the constraint that the maximum of the average 
values of the component distortion be minimized may be 
defined in terms of the rate-distortion function RU (D) of 
the source U subject to the vector constraint Edi(Ui ;l)i ) 
.75Di  as follows. Let F(r) be a set of vector distortion points 
defined by 

	

F(r) = {D: Ru(D) 	 (10) 

and let B(.- ) be the lower boundary to F(r), i.e., 

B(r) = 	E F(r): D C F(r) implies Di  
IX for some 	(11) 

We then see that, by the minimization involved, 

Au(r) = inf max a1D7. 	(12) 
D.En(r) 

Thus in the sense described above, Au(R) is an "inverse" 
function to the rate-distortion function Ru(D), just as the 
distortion-rate function is the inverse to the rate-distortion 
function in the scalar case with a scalar distortion measure. 
While (12) appears complicated to calculate, we note that, 
if there is a D* E B(r) having all equal components, i.e., 
aiD7 = Do  for each i, then by definition we see that Au (r) 
= Do . Furthermore, if this is true, then Ru(D*) = r, sub-
stantiating the interpretation of an inverse to the rate-
distortion function. 
. Again, as in Section IV, it is desirable to bound the dis-
tortion-rate function u(R) by distortion-rate functions 
which are easier to calculate. As a first step, we note that 
considering the average of the maximum per-letter com-
ponent distortion (as in Section III) is a stronger condition 
than considering the maximum of the average per-letter 
component distortion (as is done in this section), and we 
therefore have the relation 

Su(R) 	At; (R), 	 (13) 

where S t;  (R) is the distortion-rate function defined by (1) 
and (5). The upper bounds to S u (R) of Theorem 1 and its 
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corollary may then be immediately applied to obtain upper 
bounds to Au(R). 

A lower bound to Au(R) may be derived for a two-
dimensional source U = (X, Y) as in Theorem 1, resulting 
in the same bound as (6a). We therefore have the following 
theorem. 

Theorem 2: The distortion-rate function for the two-
dimensional vector source U = (X, Y) considering a crite-
rion which minimizes the maximum of the average com-
ponent distortions is related to the distortion-rate func-
tions of its component sources by 

AL(I?) 	inf max [nom y(an), bby((1 — a)R)] (14a) 
ne[0,11 

bu(R) 5 abx(aR) 

b5y((1 	a)R), a E [0,1]. (14b) 
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APPENDIX 

PROOFS 

Theorem 1 

Proof of (6a): Standard information-theoretic techniques 
based on In x x — 1 yields /(XY;fCk) /(X;g I Y) + ./( Y; 
Consider any test channel p(191xy) having./(XY;n) S R. We 
have that 

d(u;(1) = d(xy;:eD= max Indx(x;:e), bd y  (y;9)] 

For each source reproduction pair, and therefore 

Ed(U;U) --= E max ladx(X;g ), bciv(Y;f 7)1 

max jaEdx(X;g), bEdy(Y;). 

Letting R I .= I(X;gIY), R2 = I(Y;i7), and minimizing both sides 
Df the equation gives 

Su(R) max laxly- MO, b6 Y(R2)It 

Since Sxly(R) and y(R) are monotonically decreasing, we then 
Dave 

Su(R) ?_ max fabxiy(aR), t5y((1 — 0)1)[ 

:-or some a E [0,1] proving (6a). 

Proof of (6b): Let p(X-.9 I xy) achieve (cu(R). Then, since d(u;t1) 

= max [adx(x;i) + bd y (y;y')] 5 ad x(x;.i) + bdy(y;SI), we 
lave 

45u(R) 5 E[d(U;U)] :5 E'u(R), 

)roving the left inequality. The right inequality follows from Gray 
1, p. 482]. 

Proof of (6c): Let ■55`,, (R) and (51, (R) be the distortion-rate 
unctions for the sources X and Y and fidelity criteria (dx(x;- .E))° 
Ind (d y (y;P)', respectively. Let p(ilx) and p(Ay) be test  

channels such that 1()Z;X) 5 aR and 1(1);Y) 5 (1. — a)R, and 
consider p(.“1.,:y) 	p(xIx)1 1 (.)-i[.0. Again we have that 

/ ( X 17; cz) 1(X;5) + 1(Y;V). 

AIsa 

(E[max frid x (X;'), bri y (Y; 
E[(max 1 ,7d.;(A' ;g), bd y (Y;V)1)1 
Ela' (c1 x (X .  ;.? ())' + V(dy(Y;1'))1, 

where the first inequality follows from Gallager [8, p. 523, prob. 
4.15d] and the second from the fact that, for any two positive 
numbers e and I and a 1, 

el + f 	(max 

Since ou(R) is monotonically decreasing and since raising both 
sides of the equation to the 1/a power preserves the order of the 
inequality, we have that 

Sc(R) < E[max ladx(X;g), bd y ( Y;)))] • 
(E[a'(dx(X;g))' + frr(dy(Y;1>))1) 1 /rr 

= '71:[(cl x (X;g))1+ VE[(d y (Y;V))1) 1 /". 

NIinimizing the right side yields the desired result. 
Corollary: Equations (7a) and (7h) follow immediately from 

Theorem 1 upon making the appropriate minimization and 
substitution. 

Theorem 2 

Proof of (14a): Consider any test channel p(RSIxy) having 
1(X Y;g 5_ R. Letting R 1  = /(X;,ZI Y) and R2 = / (Y; c7), we 
have 

max laEdx(X)Z), bEdy(Y; ft)] max la5xiy(R 1), bby(R2)). 

I‘Iinimizing both sides of the equation as in the proof of (6a) 
yields the desired result. 

Equation (14h) follows from (13) and (6b). 
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A COMPARISON OF SOME SUBJECTIVE AND OBJECTIVE 
MEASURES FOR IMAGE QUALITY* 

Thomas P. Barnwell, III 
Russell M. Mersereau .  

School of Electrical Engineering 
Georgia Institute of Technology 

Atlanta, Georgia, 30332 

In the design of image processorg or image coders 
which operate upon monochrome still images that will 
ultimately be viewed by human observers, it is impor-
tant to have a numerical measure of image quality or 
distortion. Such a quality measure must be readily 
computable from the original and distorted images and 
it should correlate well with the results of subjec-
tive tests. In this study a.comparison is made between 
several objective distortion measures and the results 
of subjective tests for several different classes of 
distortions. None of the objective measures perform 
as well as we might like. 

I. Introduction  

Finding a well-defined, objective distortion mea-
sure for images which is highly correlated with the 
results of subjective image quality tests is a diffi-
cult task due to the complexity of the visual per-
ception process. Such a measure would be Important 
in the design of image processors or image coders where 
the final image is presented to human observers. The 
purpose of this study was to compare several measures 
for image distortion with the results of a subjective 
image quality test. The distortion measures considered 
were motivated by earlier work by Mannos and Sakrisoa 
[1] and Leiner [2], but the present work represents an 
entirely different approach toward measuring the effec-
tiveness of the distortion measures. 

The distortion measures were compared by esti-
mating the correlation coefficient betweeh the results 
of the subjective test and the predictions of the 
distortion measures: The minimum variance estimate of 
the correlation coefficient for a particular distortion 
measure is given by 

Pc 	(SpIJE)(0pk
-5) 

(1) 
A A 
G
O 

O
s 

where 
P X 

A2 	1 	 u-g)2 as PK-1 L  
p 

T 

 =1 k=1 (S P 

and 
P K 

- 

a 	
P 

2  =, 1 	1 (0pk-0) 0 	K-1 pea ke.1 

In these expressions P represents the number of distor-
tions considered, K represents the number of different 
images used, and S pk and Opk represent respectively 
the average subjective response and the objective mea-
sure for the pth distortion applied to the kt h  image. 
S and 0 are the average subjective and objective mea-
sures. 

*This work was supported in part by the National Science 
Foundetion under Grant ENG75-04992. 

II. The Distortions Used 

The test set for this study consisted of the two 
(256 x 256) sampled images which are shown in Figure 1. 
To each of these images 120 distortions were applied. 
These distortions could be subdivided into eight 
classes - two additive white noises (uniform and 
Gaussian), two multiplicative noises, 3 additive 
bandpass noises, and a lowpass filtering blur. In 
each class fifteen levels of distortion were used which 
ranged from "barely perceptable" to heavily distorted 
(but still recognizable)". 

1//. The Subjective Test  

A doubly-anchored isometric quality preference 
test was chosen as the subjective test in this study. 
For each distortion, a slide was produced containing 
three images arranged as shown in Figure 2 - a "high 
anchor," which was the original 256 x 256 picture; a 
"low anchor," which was a combination of distortions 
which had been prejudged to be worse than, but com-
parable to, the worst distortion in the test; and the 
distorted test picture. The slides were taken from 
the screen of a CRT controlled by a Comtal Image 
processing system with 512 x 512 point resolution 
and 256 gray levels. The intensities were mapped such 
that the log energy vs. film density plot had a slope 
of -I. 

Figure 1 

The two test images used for this study. 

A 	1 	p=1 kel 
PK-2 

(2)  

(3)  
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3 

4 

5 

6 

7 

8 

9 

10 

13 

11 

12 

14 

15 

HIGH ANCHOR 	 LOW ANCHOR 

24.9 69.5 
4  4 7 0 1 o 7 1V 	1J 	11 	11 	i, 

21.5 61.2 1 - 

19.1 54.2 1 5 - 

17.3 50.7 1 1 - 

15.7 50.2 1 1 

14.4 47.1 1 1 

13.3 44.4 1 1 5 

12.3 39.0 1 1 1 1 1 5 

11.4 38.8 1 1 1 1 1 5 

10.5 38.5 1 1 1 1 1 5 

9.80 34.0 1 1 1 1 1 1 1 

9.12 33.8 1 1 1 1 1 1 1 5 5 

8.48 30.3 1 1 1 1 1 1 1 5 5 5 

7.89 29.6 - 1 1 . 1 1 1 1 1. 5 5 5 

7.33 29.2 1 1 1 1 1 1 1 5 5 5 

Table I: Results of the subjective quality test for 
additive white Gaussian noise. If a "1" appears 
at the intersection of two distortion levels this 
means that the difference in their quality scores 
is significant at the .01 level. Similarly a "5" 

• means that the difference is significant at the 
.05 level. 

TEST IMAGE 

Figure 2: The format of the doubly-anchored subjective 
test. In the upper left is the original undis-
torted image ("high anchor"), in the upper right 
is a badly distorted image ("low anchor") and 
below is the image under test. All three images 
were made from the same undistorted image. 

degrees. The subjects were asked to rate each distort-
ed picture on a scale of 0 to 100, and were told that 

' the high anchor should get a score of 80 while the low 
anchor should be scored as 20. For each of the two 
pictures, the distortions were randomized and presented 
at 15 second intervals in groups of 120. In all, 20 
subjects participated in the test for each of the two 
pictures. 

A Newman-Keul [3] test was applied to the sub-
jective results. In this statistical analysis, the 
average results for the different distorted images are 
first ranked, then the Studentized Range Test is • 
applied to these results in pairs to determine whether 
the differences in ratings are significant. A sample 
set of results for one class of distortions is shown 
in Table 1. 

r..r. 	 A 
3. The standard error, given by 

A 
 aim , where a is 

the sample standard deviation and M is the number of 
subjects, ranged from 2.9 to 1.25, corresponding to an 
average resolving power of about 4 points at the .01 
level. 

The results of this subjective test can be sum-
marized as follows: 

1. The test consistently gave significant differ-
ences in perceived quality even for distortion levels 
which were clog_ (2 or 3 levels apart). 

2. The corresponding results for the two differ-
ent original images were very similar. 

4. The lowpass filtering distortion on the girl 
picture showed almost no distortion until the band limit 
became less than about 10 cycles per degree. 

5. All of the other distortions showed fairly 
linear behavior with distortion level. 

In the test, subjects were seated so that the 
pictures subtended an angle of approximately six 
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,BER OF BANDS, N CORRELATION 

.34388 

5 .46665 

6 .50093 

7 .50575 

8 .50645 

9 .52730 

10 .52731 

11 .53454 

12 .55033 

13 .54531 

14 .54609 

15 .55410 

16 .55903 

17 .56424 

18 .56488 

19 .57054 

20 .57969 

21 .57937 

22 .57561 

23 .58836 

24 .59033 

25 .58899 

26 .5898]. 

"30 .60153 

Table II: The correlation obtainable with a distor-
tion measure which forms the best linear estimate 
from the outputs of N bandpass filters vs. N. 
The filters differed in both bandwidth and 
center frequency. 

IV. Objective Distortion Measures  

All of the distortion measures considered in this 
study can be understood by reference to Fig. 3. The 
original and distorted images are passed through cube 
root nonlinearities and then an error sequence-e(m,n) 
was computed. This error was then filtered by a bank 
of 30 two-dimensional band-pass filters and the energy 
in each band was computed. The filters in the bank 
Caere circularly symmetric and each had a bandwidth of 
approximately .75 cycles per degree. 

The distortion measures differed in the manner by 
which the image quality was estimated from the filter 
band outputs. Three different algorithms were used. 
The first was motivated by the work of Mannos and 
Sakrison El]. They filtered their error with a filter 
whose frequency response is 

A(f) = Cc + (f/f ) 17exp[-(f/f )
k2] (4) 

where f is the radial frequency variable. This func, 
tion can be closely approximated by a series of 
weighting functions applied to the filter bank outputs. 

A second distortion measure, suggested by Leiner 
C2] calls for weighting the error energy from disjoint 
bands and using as a distortion measure the maximum of 
those weighted errors. One question to be addressed 
is whether a weighting function and band selection  

can be found such that cru. 	......  
highly correlated with the subjective results than the 
Mannos-Sakrison measure. 

The third distortion measure was a linear com-
bination of the filter bank error energies where the 
weighting coefficients were selected to minimize the 
mean squared error between the estimate and the average 
subjective response. This final distortion measure is 
of interest for two reasons. First it represents the 
best linear estimate for the subjective results whieh 
can be obtained from the energy measurements of Figure 
3. Hence it represents a bound on the.  expected per-
formance of any "linear" distortion measure. (It is 
not truly linear, of course, due to the initial non-
linear processing of the images.) Secondly, by com-
bining adjacent bands into larger bands, and again 
finding the optimum•inear predictor, information can 
be gained on how many bands are necessary for good 
correlation. 

V. The Experimental Study  

In the experimental study the same 240 images 
used in the subjective quality testa were processed 
using the system of Figure 3. For each distortion, 
the energy in the individual bands was computed and 
stored for later analysis. This processing consumed 
more than 100 hours of computer time on the Nova 830 
computer in the Georgia Tech digital signal processing 
facility. 

Four basic experiments were performed. First, 
the Mannos and Sakrison. measure was evaluated with 
the parameters specified by them C1], (fo = 8 cycles/ 
degree, c = .019, ki = 1, k2 a  1.1) and the correlation 
coefficient of (L) was estimated. Second, an automated 
iterative technique was used to find values for the 
Mannos-Sakrison parameters which had a higher corre-
lation than their original values. Third, systematic 
and random groupings of the bands were made and optimal 
linear fits were made on these groupings. Finally, 
the Leiner metric was applied to individual bands and 
groups of bands. 

VI. Results 

The results of the comparison between the ob-
jective and subjective distortion measurements are 
summarized below. 

1. The correlation coefficient between the 
average subjective response and the mean squared 
error between the original and distorted images was 
.174. This result was obtained by averaging the 
results from. all 120 distortions for both images. 

2. The, mean squared error between the cube roots 
of the original and distorted images produced a 
correlation coefficient of .245. 

3. Using the objective measure of Mannos and 
Sakrison of eq. (4) with their parameter values 
(f0  = 8 cy ardeg., C = .019, ki = 1.0, k2 = 1.1) the 
average correlation was only .115. By assuming a 
weighting function of the same functional form as (4) 
but selecting the parameters to maximize the corre-
lation between the objective and subjective measures 
a correlation of .243 was obtained for the parameter 
set f0 

 = 6 cy./deg., C = .266, lel = 11.31, k2 = 3.68. 
The normalized weighting curves for the original and 
perturbed Nannos and Sakrison parameters are shown 
in Fig. 4. 

4. Using Leiner's measure with thirty filters 
and the original Mannos and Sakrison weighting function 
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Figure 3: A block diagram which includes several 
image quality measures. The nonlinear operator 
was a cube root, and the filters in the bank 
were circular bandpasses (disjoint in frequency). 
The estimator either took a weighted sum of its 
inputs or selected the maximum  of the weighted 
inputs. 

FREQUENCY 
	

22 CY/ DEG 

Figure 4: The amplitude weighting functions for the 
Hancos and Sakrison quality measure. The solid 
line represents their original function and the 
dashed curve has been optimized to maximize 
the correlation with subjective results.  

a correlation of 7t.30 was obtained. Although again 
not a high value this result was felt to be encouraging 
since with optimization it can hopefully be made higher. 
No effort has been made to optimize the set of filter 
bands used or to optimize the weighting coefficients. 
The later problem can hopefully be solved as a latter 
program. 

5. The final measure used formed a best linear 
estimate of image quality using as inputs the outputs 
of the filters in the filter bank (refer to Fig. 3). 
In this fashion a correlation of .602 can be obtained 
from the thirty filters used. If fewer filters are 
used the correlation will decrease but even with as 
few as six filters a correlation of .50 is possible. 
These results are summarized in Table 2. Once again 
these results were obtained by averaging over two 
pictures. 

A possible reason for the discrepancy between our 
results and those of Mannos and Sakrison is that their 
tests were performed over a total bandwidth of 44 
cycles/degree, while ours were performed over a band-
width of 22 cycles/degree, and due to the nature of the 
coding distortion used by Mannos and Sakrison, their 
tests had noise energy in the higher frequencies. 

VII.  Conclusions  

Although it can certainly be argued that an en-
semble of two images is a small one and that the dist-
ortions used were limited, the fact remains that a good 
and robust measure should have produced high corre-
lations. The subjective results showed statistically 
significant measures of quality even for quality scores 
which were reasonably close together ( 4 points out of 



.) T"us the performance of all of these measures is 
_sappAnting and the important problem of finding an 

obje;_tive quality measure which correlates well with 
human perceptual results remains unsolved. 
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APPENDIX D 

THE PICTURE DISTORTIONS 
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DISTORTION #1 

ADDITIVE WHITE UNIFORM NOISE 

U(m,n) + N(m,n) = C
k 
	 (N=0, 	= 1/111]2) 

DISTORTION 
LEVEL 

1 

C
k 

8 

SNR 

26.6 
2 11.75 23.3 
3 14.4 21.6 
4 19.25 19.0 
5 23 17.5 
6 26.75 16.2 

7 30.5 15.0 
8 34.25 14.0 

9 38 13.1 
10 41.75 12.3 

11 45.5 11.6 
12 49.25 10.87 

13 53 10.24 

14 56.75 9.64 

15 60.5 9.09 
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DISTORTION #2 

ADDITIVE WHITE GAUSSIAN NOISE 

U(m,n) + G(m,n)•C
k 	

(a=0, 	a
G 

= 1) 

DISTORTION 
LEVEL 

C
k 

SNR 

1 4 24,9 
2 6.125 21.2 
3 8.25 19.1 
4 10.375 17.3 
5 12.5 15.7 
6 14.625 14.4 
7 16.75 13.3 
8 18.875 12.3 
9 21 11.4 

10 23.125 10.5 
11 25.25 9.80 
12 27.375 9.12 
13 29.5 8.48 
14 31.625 7.89 
15 33.75 7.33 
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DISTORTION #3 

MULTIPLICATIVE UNIFORM NOISE 

U(m,n)[1 + C
k
N(m

'
n)] 	(N=0 a = 	Iii) 

N 	'
1/ 

 

DISTORTION 
LEVEL 

C
k 

kg(au)/(log[HCO-logil-Ckl) 

1 .061 81.0 
2 .183 26.9 
3 .305 16.1 
4 .427 11.4 
5 .549 8.8 
6 .671 7.1 
7 .793 5.9 
8 .916 5.0 
9 1.038 4.3 

10 1.160 3.7 
11 1.282 3.3 
12 1.404 2.8 
13 1.526 2.5 
14 1.648 2.1 
15 1.770 1.8 
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DISTORTION #4 

MULTIPLICATIVE WHITE GAUSSIAN NOISE 

EXP[ZnU(m,n) + G(m,n)•C
k ] 	(G=0, a =1) 

DISTORTION 
LEVEL 

Ck 	
log(au)/2Cklog(e) 

1 .04 61.8 
2 .12 20.6 
3 .20 12.4 
4 .28 8.8 
5 .36 6.9 
6 .44 5.6 
7 .52 4.8 
8 .60 4.1 
9 .68 3.6 

10 .76 3.3 
11 .84 2.9 
12 .92 2.7 
13 1.0 2.5 
14 1.08 2.3 
15 1.16 2.1 
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DISTORTION #5 

ADDITIVE COLORED GAUSSIAN NOISE 

U(m,n) + BPF
1  (G(m,n))*C 	

(G=0, G
G
=1) 

(BPF = 0 - 2.75) 

DISTORTION 
LEVEL 

C 
k 

SNR 

1 24.8 39.8 
2 38.0 36.1 
3 51.3 33.5 
4 64.5 31.5 
5 77.7 29.9 
6 90.9 28.5 
7 104 27.3 
8 117 26.3 
9 130 25.3 

10 143 24.5 
11 157 23.7 
12 170 23.0 
13 183 22.4 
14 196 21.8 
15 209 21.2 
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DISTORTION #6 

ADDITIVE COLORED GAUSSIAN NOISE 

U(m,n) + BPF2 (G(m,n))•Ck 
	(G=0, (1G=1) 

(BPF=2.75 -- 5.5) 

DISTORTION 
LEVEL 

C
k 

SNR 

1 72.7 20.9 
2 111 17.2 
3 150 14.6 
4 188 12.6 
5 277 11.0 
6 265 9.6 
7 304 8.5 
8 343 7.4 
9 381 6.5 

10 420 5.7 
11 459 4.9 
12 497 4.2 
13 536 3.5 
14 575 2.9 
15 613 2.4 
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DISTORTION #7 

ADDITIVE COLORED GAUSSIAN NOISE 

U(m,n) + BPF
3
(G(m,n))•C

k 
	(G=0, 0G=1) 

(BPF=5.5 	11.0) 

DISTORTION 

LEVEL 

C
k 	

SNR 

1 7.7 27.6 

2 11.9 23.9 
3 16.0 21.3 
4 20.2 19.3 
5 24.3 17.7 

6 28.4 16.3 
7 32.6 15.1 
8 36.7 14.1 
9 40.9 13.2 

10 45.0 12.3 

11 49.1 11.6 
12 53.3 10.9 

13 57.4 10.2 
14 61.6 9.7 

15 65.7 9.0 
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DISTORTION #8 

LOW PASS FILTER 

DISTORTION 
	

BANDLIMIT 
LEVEL 
	

(cycles/degree) 

	

1 	 21 

	

2 	 20 

	

3 	 19 

	

4 	 18 

	

5 	 17 

	

6 	 16 

	

7 	 15 
8 	 14 

	

9 	 13 

	

10 	 12 

	

11 	 11 

	

12 	 10 

	

13 	 9 

	

14 	 8 

	

15 	 7 
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APPENDIX E 

IMAGE REPRODUCTION PROCEDURES 

This appendix contains two parts. The first part describes the pro-
cedure used, to determine the mapping function between intensity values 
stored in DIGITAL IMAGE REPRESENTATIONS and the (different) intensity values 
necessary to cause the black and white slides to give correct intensities 
when viewed by subjects. The second part is a copy of a document entitled 
"SET-UP PROCEDURE FOR THE COMTAL MONITOR," which describes the procedure 
used to make the pictures used in the subjective tests from the COMTAL IMAGE 
PROCESSING SYSTEM. 

E.1 	The Film Density Correction Procedure  

The following procedure was used to determine the correct intensity 
correction function for the COMTAL IMAGE PROCESSING SYSTEM. 

(a) The CRT controls (brightness and contrast) were set 
so that all intensities were recordable on film; 
neither end of the scale was in the saturation region 
of the CRT, and no blooming occurred at high intensity 
levels. The final values for the control settings 
were determined iteratively using test pictures con-
sisting of 9 squares (3x 3) of fixed intensities. 

(b) Once an acceptable setting of the controls was found, 
the following method was used to recreate the same 
control settings at a later time: 

i. Completely darken the room. 

ii. Place a constant 512 x512 image on 
the screen with all image values set 
to 255 (the highest intensity). 

iii. Record the intensity at the center of 
the screen (a United Detector Technology, 
Inc. 40X Opto-Meter is used). 

iv. Turn the contrast full counter clockwise, 
and record the intensity at the center of 
the screen again. 

To recreate the settings later, do the following 
steps: 
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i. Completely darken the room. 

ii. Place a constant 512 x 512 image on the 
screen with all image intensities set 
to 255. 

iii. With the contrast set full counter 
clockwise, turn the brightness up un-
til the light intensity reading from 
(ii) above is obtained at the center 
of the screen. 

iv. Turn the contrast up until the inten-
sity from (iii) above is obtained at 
the center of the screen. 

(c) 	Once an acceptable value for contrast and brightness 
were found, a group of 36 pictures of the CRT screen 
for images of constant intensity were taken. The in-
tensities were chosen such that the steps in log(I), 
where I is the intensity, were approximately constant. 
The film was developed, and a densitometer was used to 
measure the film density's corresponding to the 36 in-
tensity values. A density vs. LOG(I) function for all 
256 intensity values was then approximated using an 
8th order polynomial fit. From this function, correc- 
tion factors were calculated for each of the 256 
possible intensities so that the density vs log(I) 
curve was linear with a scope of -1. 
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E.2 Set-up Procedure for Comtal Monitor 

The procedure given will describe all of the steps necessary to 

make calibrated slides from the Comtal monitor. The procedure is divided 

into three parts: wiring, exposure, and processing. 

1. 	Wiring 

Connections are made between the Nova and the Comtal memory in the 

Nova Lab and the Comtal display, camera and terminal in the Optical Infor-

mation Processing Lab through the wall panels provided for this purpose. 

In the Nova Lab this panel is located on the west wall about 8 feet from 

the south wall. At this box the cable connector labeled "Camera Control 

Pins 2 + 3" should be connected to the box connector labeled "Optics Lab 

(2,3)" in the right column of connectors. If it: is desired to use the 

terminal in the Optics Lab, an extension must be run from the mini-box on 

the back of the Nova, or the cable to the other terminal, to the bottom con-

nector marked "Optics" in the left column of the flat connectors in the 

wall box. Finally, check to see that three coaxial connectors are connected 

to channels 1, 2, 3 of the Optics Lab column of coaxial connectors. The 

other ends of these cables should be located on the floor behind the Comtal 

memory. They should have double male adaptors on them. These are connected 

to the coaxial cables coming from the back of the Comtal memory being care-

ful to match the labels. Check to see that the remote control cables are 

unplugged from both tape decks. This completes the necessary wiring in the 

Nova Lab. 
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In the Optics Lab the wall box is located on the east wall about 

ten feet from the north wall. The camera control cable should be connected 

to the third flat connector from the top in the wall box and the other end 

plugged into the side of the motor drive on the camera. The first three 

coaxial channels should be connected to the three coaxial extension cables, 

the other ends of which are connected to the Comtal monitor at the connector 

identified by the tag on the cable. 

If you are using the CRT terminal in the Optics Lab, it must be 

connected to the Nova by plugging the connector labeled "Nova Lab" into 

the back of the terminal at the plug labeled "Modem." The proper baud 

rate must be selected at the front right of the terminal. The correct 

rates are 9600 Baud at the mini-box in the Nova Lab or 1200 Baud at the 

cable to the other terminal. Other switches should be set at PAR-ODD,HaX. 

The terminal should now be prepared for the Nova. At the end of the 

picture session, return all connections and switches to their previous 

positions. 

2. 	Exposure 

The following procedures must be carried out very carefully to en-

sure that the film is exposed properly. The camera must be set up so that 

the film plane is parallel to the plane of the Comtal monitor screen. I 

have accomplished this in the past by using the floor tiles as a guide. 

The height of the camera can be adjusted by centering the monitor in the 

viewfinder when the camera is far from the monitor, then bring the camera 

up to the monitor and adjust the height so that the lens is pointing at the 

center of the screen. Now the camera must be set up 2 yards 27 inches ± 

inch in front of the monitor screen measured from the front edge of the 



monitor cabinet to the front edge of the camera lens. A plumb line may 

be useful in making this measurement. This measurement is made with the 

camera focused on the monitor since focusing the lens changes its length. 

The Comtal monitor controls are set as follows: On the rear of the 

monitor the EXT-INT switch should be set on EXT, and the HI-75D switch on 

On the front of the monitor, the HEIGHT should be set for a square 

picture, the FOCUS for the sharpest raster, and the H + V HOLD controls 

midway in the range where the picture is locked in sync (not critical). 

The setting of the BRIGHT and CONTRAST controls is very critical and should 

be done only after the monitor has been on for about 20 minutes. The fol-

lowing adjustments must be made with the Function Memory OFF. To be sure 

it is off proceed to the Comtal Memory Control Panel and switch the REMOTE 

switch off (light off). Then switch white toggle switch number 14 "Funct. 

Mem Enable" off (down) and press the red SYSTEM RESET and then TRANSFER 

switches. Return the Comtal to the remote mode by depressing the REMOTE 

switch (light on). Now run the program COM9GRAY which is located in 

directory SAVE. It will ask you for nine numbers one at a time. Enter 255 

for each number. After it asks for N1 the second time, use CTL A to stop 

the program. Proceed with the following adjustments in a dark room making 

the measurements with the United Detector Technology, Inc. 40X Opto-Meter 

located in the Optical Information Processing Lab. Use the Radiometric 

Filter with the meter. A spotlight located in the lab may be used to il-

luminate the meter scale, but be sure to shade the Comtal screen from the 

small amount of light that is radiated outside of the center spot area. 

With CONTRAST set fully CCW slowly adjust BRIGHT to obtain a reading of 

0.0144W at the center of the screen. Then adjust CONTRAST to obtain a 

reading of 22.5.4,W at the center of the screen. The display is now set up 
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properly. The Function Memory should now be turned on by proceeding to the 

Comtal Memory Control Panel and switching the REMOTE switch off. Now switch 

the white toggle switch number 14 "Funct Mem Enable" on (up) and press the 

red SYSTEM RESET and then TRANSFER switches. Return the Comtal to the 

remote mode. Now load the Function Memory with the correction data by 

running the following line from directory SAVE: FUNC FUNC3/I. It is now 

necessary to load the good and bad reference pictures. The program that 

accomplishes this is called PICDIR. It and all of the following picture 

handling programs are located on the disc labeled "2D Filtering & Image 

Processing MERSEREAU" in the directory IMCODE. The format for running 

PICDIR is as follows: 

PICDIR (GOOD,BAD)/I (1,2)/N 

where GOOD is the file name of the good reference picture and BAD is the 

file name of the bad reference picture. 

You. should now set the camera aperture to f5.6 and the shutter 

speed to T. Film is loaded into cassettes by means of the bulk loader in 

the Optics Lab. It is necessary to load 38 frames to take 30 pictures to 

allow for leader and a tail. After the camera is loaded be sure to set 

the frame counter on the motor drive to 36 so that the motor drive will 

advance through all of the frames. Now if the camera is focused and the 

film is advanced to frame 1,you are ready to take a series of pictures. 

The program PIC60 in directory SAVE can now be run. This program 

will take the first thirty pictures on a tape and pause for you to reload 

the camera. Then thirty more pictures will be taken. After running PIC60 

it will be necessary to type "RELEASE MT(" which will rewind the tape. A 

new tape may then be loaded and more pictures taken. 



If individual frames must be taken, the following procedure may be 

used. First load the tape. Type "INIT MT(" at your terminal. Then type 

"PICIN/B MTQ:X" where X denotes the position of the frame on the tape. For 

example, picture number 3 of the second run would correspond to X=17, if 

there are 15 pictures per run. Exposures made in this manner must be timed 

manually. The proper exposure length is 16 seconds. 

3. 	Processing 

The exposed film is developed in D-76 stock solution for twelve 

minutes at a temperature of 68 °F. The rest of the procedure is as recom-

mended by Kodak. The processing chemicals and equipment are located in the 

darkroom in a wooden cabinet next to the west wall. The developer is used 

once and then disposed of, other chemicals may be reused until they are no 

longer effective. 

The result of the procedure should be rolls of positive slides which 

are cut and mounted in GEPE TV slide binders (2]. x 28 mm) which are avail-

able from Crown Camera Exchange. When mounting the slides, use care to keep 

them free of fingerprints and dust. Dust-Off is helpful in removing dust 

and is available in the Optics Lab. When mounting the slides, center the 

picture area inside the mask so that an equal amount of excess picture is 

removed from each edge. The mounts are assembled with the cover rotated 
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2 
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2 
3 

5 
6 
7 
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10 
11 
13 
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1 
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RESULTS OF THE STATISTICAL ANALYSIS 

FMR THE uRADOME" 
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8. 824 
7. 327 

11. 433 
11. 132 
10. 790 
10. 743 
11. 249 

7. '=152 
11. 987 
a 459 

10. 165 
1P, 125 

7. 438 
10. 572 
7. 567 

---5 5555555555 
-155555555555 
-15 555555555 
-5555555555 
1555555555 
-5555555 
-5555555 
1555555 
----15 
-- -15 

SIGNIFICANCE 

- 55555 55555555 
155 5555555555 
155 555555555 
- -555555555 
-555555555 
555:555555 
-----15 
--- 1115 

7. 352 
/2. 738 
3.646 

12. 296 
11, 180 
11. 212 
10. 666 
8. 964 
8. 391 

10. 071 
11. 207 

ci. 238 
10. 477 
11. '244 
9. 148 

5 

1 

01ST LEVEL AVF-- R.A .C.;E: A NI.^r7. 
1,-iP4L) SIONIFICANCE 

3 

tit 

3 

74. 742 
74. 524 

7 	71. 6, 67 
4 	64. 905 

64. 04E1 
57. 221 
53. 333 

	

3 	51. 1'70 
43. 333 

	

10 	42. 143 

	

11 	39. 762 

	

12 	37. 524 

	

13 	35. 714 

	

15 	 095 
30. 000 

DIST LEVEL AVERAGE 

76. 429 
2 	71. 905 
3 	44. 284 
4 	57. 143 

52. 143 

	

6 	51. 667 

	

9 	42. 301 

	

7 	42. ;14R1 

	

10 	40. 238 

	

8 	39. 049 

	

11 	34. 667 
33. 810 
3:3. 333 

	

14 	32. 762 

	

15 	23. 810 

5 	 72 .  619 
5 	5 	71. 190 

	

5 	3 	71. 190 

	

5 	4 	7n .  233 

	

5 	2 	70. 0(10 

	

5 	6 	69. 286 

	

5 	7 	69. 190 

	

5 	9 	68. 573 

	

5 	8 	57. 619 

	

5 	13 	67. 143 

	

.; 	
11 	456 429 , 

	

5 	10 	66. 429 

	

5 	12 	56. 190 

	

5 	14 	62. 357 

	

5 	15 	60. 223 

53. 650 

4R. 332? 
16).-. 

114. 043 
104. 043 
133. 323 

34. 762 
130. 325 
137. 929 
96. 190 

116. 162 
83. 214 

161. 190 
35. 000 

VARIANCE 

77. 857 
53. 690 

1 30. 714 
123. 929 
116. 429 
115. 333 
126. 543 

54. 043 
143. 690 
71. 548 

147. 262 

118. 190 
57. 262 

54. 0.48 

162. 262 
74. 742 

151. 19t' 
125. 000 
125. 714 
1 13. 762 
80. 357 
79. 048 

101. 429 
127. 857 
47. 857 

109. 762 
1 -7 6. 429 
Eo .  690. 

4 

4 
4 
4 
4 

4 
4 
4 

4 

4 
4 

5 

1 

DIST LEVEL AVERAGE 	VARIANCE STAND D. 	SIGNIFICANCE 
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01ST LE8L 	VERGE 	VAR I ANC.: 
	

I IFIC ANC,' E 

C- 

1 

6 	4 

• 7 

1.;-) 
11 

• 10 
4 	12 
kt 	 14 
3 	19 

7 

7 	4 
7 	00 

7 	3 

7 	7 
7 

7 	; 

7 	12 
13 

7 	15 
7 	14 

000 
71. 095 
67. 857 

i ;5;0 

35. 952 
41. 190 
59, 234 
50. 095 
53, 190 
52. 619 
52. 619 
52. 143 
49. 524-
49. 524 
47. 957 

72. 714 

61. 667 
952 

. 233 
54. 524 

571 
5o. 030 

f.-)Iva 
47. 381 
46. 905 
'T1 8. 332. 
41. 429 
41, 429 
40. 952 

85, 000 

148. 929 
72. 

75-4 -;---1 
109. 742 
95. '714 

103. 690 
127. 262 
126. 548 

251. 429 
217. 262 

97. 262 
83. 929 

VAR I ANC E 

68. 214 

105. 8373 
V4. 248 

111. 190 
124. 762 
95. 357 
EV). 000 

114. 048 
81, 549 
11 . 190 

110, 8:32 
95. 357 
77. 357 
84. 042  

9. 220 
602 

12. 20 4 

8. 501 
9. 826 

10. 477 
9. 783 

1C). 183 
11 231 
11. 
11. 469 
15. 853 
14. 740 
9.362 
9. 141 

:3TAND 

8. 
9 299 

10, 288 
9.499 

10. 543 
11. 170 

9. f'2, 39 
3. 944 

10. 679 
9. 030 
4. 418 

10. 528 
9, 765 
3. 324 
9. 168 

STAND D. 

DIST 	 AVERAE 

D137 LEVEL AVERAGE 	VARIANCE 

---1.555555:555 
---115559555 
----1555559 

-1555555 
---155555 
-----115 
	1 

SIGNIFICANCE 

-5555555555555 
1155555555555 
----50555555 
---55555555 
	5555 
	5555 
-----1555 

SIGNIFICANCE 

8 	1 
5 
9 

5' 
3 

10 
• 4 

13 

S 11 
• 14 

77. 143 
7.4+, 667 
76. 333 
75. 952 
75. 952 
75. 714 
74. 762 
74. 524 
74. 236 
74. 048 
73. 335 

-433 
71. 647 
49. 348 
$4. 429 

91 429 
30. ;7437 
37. 333 
54. 048 
49 043 

105.'71,4 
36. 190 
57. 

112. .490 
fl' 54B 
90. :T3.3 

100 
1.00, 633 
104. ,5 ,43 
117. 857 

9. 542 
5, 553 
6. 110 
7. 7:5 7' 
7. 003 

10. 282 
6. 
I. 537 

10, 616 
5. 152 
9. 531 

10. 042 
10. 042 
10. 200 
10. 356 

1 
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