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SUMMARY 

 Optimal power flow (OPF) is the choice tool for determining the optimal 

operating status of the power system by managing controllable devices. The importance 

of the OPF approach has increased due to increasing energy prices and availability of 

more control devices. Existing OPF approaches exhibit shortcomings. Current OPF 

algorithms can be classified into (a) nonlinear programming, (b) intelligent search 

methods, and (c) sequential algorithms. Nonlinear programming algorithms focus on the 

solution of the Kuhn-Tucker conditions; they require a starting feasible solution and the 

model includes all constraints; these characteristics limit the robustness and efficiency of 

these methods. Intelligent search methods are first-order methods and are totally 

inefficient for large-scale systems. Traditional sequential algorithms require a starting 

feasible solution, a requirement that limits their robustness. Present implementations of 

sequential algorithms use traditional modeling that result in inefficient algorithms. 

 The research described in this thesis has overcome the shortcomings by 

developing a robust and highly efficient algorithm. Robustness is defined as the ability to 

provide a solution for any system; the proposed approach achieves robustness by 

operating on suboptimal points and moving toward feasible, it stops at a suboptimal 

solution if an optimum does not exist. Efficiency is achieved by (a) converting the 

nonlinear OPF problem to a quadratic problem (b) and limiting the size of the model; the 

quadratic model enables fast convergence and the algorithm that identifies the active 

constraints, limits the size of the model by including only the active constraints. 

 A concise description of the method is as follows: The proposed method starts 

from an arbitrary state which may be infeasible; model equations and system constraints 

are satisfied by introducing artificial mismatch variables at each bus. Mathematically this 

is an optimal but infeasible point. At each iteration, the artificial mismatches are reduced 

while the solution point maintains optimality. When mismatches reach zero, the solution 
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becomes feasible and the optimum has been found; otherwise, mismatch residuals are 

converted to load shedding and the algorithm provides a suboptimal but feasible solution. 

Therefore, the algorithm operates on infeasible but optimal points and moves towards 

feasibility. 

 The proposed algorithm maximizes efficiency with two innovations: (a) 

quadratization that converts the nonlinear model to quadratic with excellent convergence 

properties and (b) minimization of model size by identifying active constraints, which are 

the only constraints included in the model. Finally sparsity technique is utilized that 

provide the best computational efficiency for large systems. 

 This dissertation work demonstrates the proposed OPF algorithm using various 

systems up to three hundred buses and compares it with several well-known OPF 

software packages. The results show that the proposed algorithm converges fast and its 

runtime is competitive. 

 Furthermore, the proposed method is extended to a three-phase OPF (TOPF) 

algorithm for unbalanced networks using the quadratized three-phase power system 

model. An example application of TOPF is presented. Specifically, TOPF is utilized to 

address the problem of fault induced delayed voltage recovery (FIDVR) phenomena, 

which lead to unwanted relay operations, stalling of motors and load disruptions. This 

thesis presents a methodology that will optimally enhance the distribution system to 

mitigate/eliminate the onset of FIDVR. The time-domain simulation method has been 

integrated with a TOPF model and a dynamic programming optimization algorithm to 

provide the optimal reinforcing strategy for circuits. 
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CHAPTER 1 

INTRODUCTION AND OBJECTIVES OF RESEARCH 

1.1 Problem Statement 

 Optimal power flow (OPF) computes the optimal operating status of a power 

system with respect to the controllable devices. Since it is highly efficient and accurate, 

OPF is widely used in power system operation and planning. Efficient OPF software 

needs to solve both the operation problem and the planning problem. Operational OPF 

usually runs in energy management systems and is used to solve the optimization 

problem in a time duration of minutes, hours, or up to one day. Therefore, operational 

OPF requires high convergence speed. Planning OPF is a planning tool that is used to 

maximize the capability of the existing system assets [5] for a planning period usually of 

five to twenty years. This planning problem can be separated in stages (e.g., one year) 

and OPF is used to compute the operating costs in each stage, so OPF is a subproblem in 

this planning problem. 

 OPF is formed as an optimization process to minimize or maximize a certain 

objective function of the power system while satisfying system constraints. The 

objectives usually include the minimum thermal unit cost [1], the minimum transmission 

loss [2], the maximum system loadability [3], the maximum reactive reserve margin [4], 

and so on. The system constraints limit transmission flows, bus voltage magnitudes, the 

real and reactive powers of generators, and some other physical quantities of the system. 

All these objective functions and constraints can be functionally represented by the 

control variables and the state variables of the system. 
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1.2 Research Objectives 

 The OPF problem has been studied for more than 40 years. The importance of the 

OPF approach has increased due to increasing energy prices and demand. Since 

Carpentier [10] defined the OPF problem in 1962, many algorithms have been designed 

to solve the base OPF problem and its derivative problems [1]-[4], [6]-[9], [11]-[13]. 

Current OPF algorithms can be classified into the following categories: sequential 

algorithms [2], nonlinear programming algorithms [11], and intelligent search methods 

[29]-[31]. These algorithms still have some shortcomings. Traditional sequential 

algorithms cannot solve for an infeasible system since they need a feasible operating 

point as the initial solution; in addition, they use the traditional power system model that 

results in inefficient algorithms. Nonlinear programming algorithms require a starting 

feasible solution, and the solving model includes all constraints. Therefore, the robustness 

and efficiency of these methods are limited. Intelligent search methods have bloomed in 

recent years; they are first-order methods and are totally inefficient for large-scale power 

systems. 

 The objective of this thesis is to develop a robust and highly efficient algorithm 

for OPF. Robustness is achieved by the capability of handling both feasible and infeasible 

systems. We propose a method that starts from an arbitrary state that may be infeasible by 

introducing artificial mismatch variables at each bus to eliminate the violations in model 

equations and system constraints. This initial operating point is optimal since the 

algorithm can select specific initial values of the variables to minimize the objective 

function. The algorithm reduces artificial mismatches iteratively while maintaining the 

optimal solution point. The optimization problem in each iteration is converted to a linear 

programming (LP) problem using the co-state method. To mitigate the linearization 

errors, a linearization limit constraint is added for each control variable in the LP problem; 

otherwise, the LP solution may not induce a valid power flow solution. In addition, some 

operating constraints in the power flow solution are out of bounds even when they are 
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already included. To solve this issue and ensure artificial feasibility, the algorithm 

updates the b vector in the LP problem according to overshoots, retrieves the previous 

solution, and solves the updated LP problem. When the mismatches are reduced to zero, 

the solution becomes feasible and the optimum has been found; otherwise, the mismatch 

residuals are converted into remedial measures (example: load shedding), and the 

algorithm provides a suboptimal but feasible solution. Sometimes, one or two more 

iterations are needed after mismatches are reduced to zero due to linearization errors in 

the final iteration. Therefore, the algorithm operates on infeasible but optimal points and 

moves towards feasibility. Efficiency is achieved by properly reducing the problem size. 

The algorithm maximizes efficiency with three methods: (a) converts the nonlinear power 

system model to quadratic for excellent convergence properties, (b) identifies active 

constraints and adds only those to the model, and (c) uses sparsity techniques to provide 

the best computational efficiency for large-scale systems. This OPF algorithm has already 

been applied on a three-bus system, several IEEE test systems including the RTS-79 

system [76], the RTS-96 system [77], and several other well-known benchmark systems 

of sizes from six buses to three-hundred buses. The three-bus test example demonstrates 

the algorithm flow using polar power flow and quadratized power flow. 

 Another important task of the proposed work is extending this OPF algorithm to 

three-phase power systems using a three-phase quadratic model. Since smart grid 

technologies are blooming in recent years, more and more research works is focusing on 

unbalanced distribution networks. However, traditional OPF tools do not fit for 

distribution networks since they are designed for balanced transmission networks. This 

work proposed a three-phase OPF (TOPF) algorithm modified from the proposed OPF 

algorithm. TOPF keeps the main flow unchanged since the algorithm structure and device 

structures in the proposed OPF algorithm are independent. However, the software design 

and implementation of TOPF are different from single-phase OPF since the three-phase 

power system model is much more complicated than the symmetric and balanced power 
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system model. TOPF is demonstrated using an eight-bus system, the RTS-79 system, the 

RTS-96 system, and a system for optimal VAR source placement. 

 The third task is applying the proposed TOPF algorithm to an optimal VAR 

source planning problem on a power system with both distribution and transmission 

networks. The objective of the planning problem is to mitigate or eliminate fault induced 

delayed voltage recovery (FIDVR) phenomena by strategically placing static and 

dynamic VAR resources. The costs in the planning problem include the investment cost, 

the installation cost, the operating cost, the voltage deviation penalty, the recovery time 

penalty, the oscillation penalty, and two hard-constraint penalties. The operating cost is 

computed using TOPF. The planning problem is solved via dynamic programming to find 

the VAR allocation at each stage with the minimum optimal trajectory cost from the 

initial stage to the final stage in the planning horizon while satisfying the performance 

criteria. 

1.3 Thesis Outline 

 The outline of the remaining document is as follows: 

 Chapter 2 introduces the history of the OPF problem and presents the origin and 

research branches. The origin and description of the OPF problem are presented at the 

beginning of Chapter 2, followed by a substantial literature survey organized by the 

different problem setups and algorithms. Chapter 2 also gives some reviews on power 

system modeling, three-phase OPF algorithms, and linearization techniques. 

 Chapter 3 describes the quadratic modeling of symmetric and balanced power 

systems represented with per phase equivalents. This model uses quadratized power flow 

with Kirchhoff’s current law (KCL) and the Cartesian coordinate system. Quadratization 

can provide better convergence properties in the proposed algorithm. 

 Chapter 4 elaborates on the quadratized OPF problem formulation with only 

linear and quadratic items. This formulation introduces mismatch variables on every bus 
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in the power system, so the proposed algorithm can start from an arbitrary working point 

whether feasible or infeasible. 

 Chapter 5 shows the design and implementation of the proposed OPF algorithm 

using sequential methods including sequential linear programming (SLP) and sequential 

quadratic programming (SQP). Furthermore, this chapter also describes several related 

topics, such as parallelism, post-solution sensitivity analysis, and the software design. 

 Chapter 6 is a description of TOPF topics including problem definition, modeling, 

algorithm description, and the software design. Since the TOPF algorithm is modified 

from the proposed OPF algorithm, this chapter presents these modifications only. 

 Chapter 7 gives an application to the TOPF algorithm: the optimal VAR planning 

problem solved via the dynamic programming method. TOPF computes the operating 

costs in the planning process. 

 Chapter 8-10 presents examples, solutions, and analysis for OPF, TOPF and the 

optimal VAR planning problem respectively. 

 Finally, Chapter 11 provides the summary of the thesis work and some future 

research orientations. 

 This dissertation has two appendices. Appendix A presents the detailed 

information of a single-phase transformer model. Appendix B presents works related to 

linearization. 
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND INFORMATION 

 

2.1 Introduction 

 OPF includes a class of optimization problems pursuing a specific objective while 

satisfying operating and physical constraints to maintain electric power system operation. 

Since the first OPF has been proposed [10], it has become a crucial topic in power system 

operation, and many derived problems and algorithms have also been developed. As 

computer and computation technologies develop and energy savings become a significant 

issue in the modern and future world, OPF formulation becomes more and more 

complicated, large scale, and realistic. This chapter summarizes up-to-date OPF 

formulations and algorithms. 

2.2 The Development of the OPF Problem 

 As power systems become more complicated and economically sensitive, OPF 

also becomes more complex, realistic, and efficient. These developments are summarized 

in the following paragraphs:  

 Several decades ago, researchers modeled a power system by DC power flow [15] 

for fast computing. Then, they solved OPF using AC power flow, a more accurate and 

complicated model, thanks to developments of computer and computational technologies. 

 Power systems are traditionally modeled in polar coordinates [1], but the 

rectangular model has become more and more important in recent years [17] [18] because 

of its fast convergence speed when solving the power flow. However, it contains more 

power flow equations. 

 The objective function also has many diverse realizations. At the beginning, 

researchers focused on minimizing the loss only [14]. However, the minimum loss does 
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not mean the minimum cost, since different fuels have different rates and efficiencies 

[11]. Nowadays, minimizing the fuel cost is the most popular objective. For different 

purposes, the objective of OPF can also be the loadability of the system, the voltage 

margins at load buses, the reactive power reserve margins [4], etc. In addition, multiple 

objectives are used to balance different goals [6]. Different combined objectives show the 

different importance to each item. For example, incorporating voltage stability or desiring 

larger load margin may result in higher operating cost. 

 The variables in OPF were all continuous in the early years, since continuous 

problems can be solved by high efficient optimization algorithms such as linear 

programming and Newton’s methods. Contrarily, the discrete optimization problem is 

NP-hard and usually is solved by exponential-time algorithms, e.g., dynamic 

programming [16]. One method to improve the computing speed is to use some advanced 

algorithms in the mixed-integer programming category. For example, Gomez et al. 

introduced a new discrete VAR source model to the OPF problem and solved the 

planning algorithm using the decomposition method and the branch and bound algorithm 

[17] in the early 1990s. Although the mixed-integer programming problem is also NP-

hard, these methods can reduce runtime for some special defined problems. 

 A power system has many restrictions on operating states for security purposes, 

such as bus voltage magnitudes, generator active/reactive powers, controllable 

transformer ratios, etc. However, these restrictions cannot ensure safe running when 

contingencies occur. Therefore, OPF is extended to security-constrained optimal power 

flow (SCOPF) to ensure that the power system runs at its safe region when a contingency 

occurs [19], [20]. SCOPF can be classified into preventive mode, corrective mode, and 

preventive/corrective mode. In preventive mode, the solution is secure in both the base 

case and post-contingency cases. Therefore, preventive SCOPF includes constraints in 

both base case OPF and post-contingency OPF, so its constraint set is much larger than 

the constraint set of OPF. In corrective mode, the solution is permitted to adjust after any 
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contingency occurs. Therefore, corrective SCOPF includes fewer constraints than 

preventive SCOPF does but is less secure [7]. The number of constraints in 

preventive/corrective mode is intermediate between the previous two modes. Several 

decomposition methods are proposed to solve SCOPF, and post-contingency OPF is 

usually viewed as a slave problem of the base case OPF [21]. 

 The stability of the power system is usually ensured by operating constraints, such 

as voltage constraints. However, the operating constraints are not a sufficient and 

necessary condition of system stability. There are always some exceptions. Therefore, 

some researchers incorporate stability constraints described by the generator transient 

model into OPF directly [22]. Usually the transient model of generators is described by 

differential equations and transformed into algebra equations via numerical methods, 

such as the Runge-Kutta method [8]. 

2.3 The Algorithm Classification of the OPF Problem 

 Since OPF is nonlinear, nonconvex, large-scale, and possibly discrete, nearly all 

optimization methods have been tried. For example, the interior-point method (IPM) 

developed in the 1950s [24] and 1960s [25] has become a very important method in 

solving OPF since the 1990s [3], [26]-[28]. In addition, once intelligent search algorithms, 

such as the genetic algorithm [29], the particle swarm algorithm [30], and artificial neural 

network [31], were successfully used in other optimization problems, researchers quickly 

introduced those to OPF. This section outlines some significant works in OPF according 

to algorithm types. 

2.3.1 Nonlinear Programming 

 Nonlinear optimization problems are usually transformed into unconstrained 

problems (equations of the Kuhn-Tucker conditions) by a Lagrangian function, the 

Powell method [32], [33], Sequential Unconstrained Minimization Technique (SUMT) 
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[34], the MINOS augmented concept [35], IPM [57], etc. Then, the transformed problem 

can be solved by the gradient method [11], the Newton-Raphson method [36], the 

Fletcher-Powell method [32], [33], etc. IPM and the Newton-Raphson method are the 

most widely used since they have proven to be very efficient [37], [57]. 

 In 1984, Karmarkar started to solve the LP problem via IPM, which is much more 

efficient than the traditional simplex algorithm, especially for large-scale problems. 

Traditionally, the simplex algorithm iterates among the vertices of the feasible region. 

Therefore, if the numbers of the variables and the constraints are both very large, the 

simplex algorithm is inefficient. Many iterations are required to reach the optimal vertex. 

IPM overcomes this drawback by traversing the interior of the feasible region. To 

maintain the feasibility, IPM transforms the problem to an unconstrained problem using 

barrier methods. The new objective function is formed by the sum of the equation 

constraints and the logarithmic barrier functions of the inequality constraints times 

respective multipliers. Then, Newton’s method is used to solve the unconstrained 

problem. Transforming and solving steps continue iteratively until the solution converges. 

 In the early 1990s, IPM was introduced to solve OPF [57]. Several applications 

are listed here. First, IPM has proven to be attractive to deal with optimal reactive 

dispatch (ORD) for identifying active constraints intelligently and solving large-scale 

problems efficiently [27], [58]. However, since ORD is a highly nonlinear OPF problem 

with fixed real power injections and normally applied to networks under severe operating 

conditions, other transformation methods may cause severe numerical instabilities. 

Second, IPM is a good tool for the maximum loadability problem [3], where the objective 

function models the capabilities of load buses via scale factors, and the constraint set 

includes the power flow equations with these factors and the operating constraints. Third, 
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IPM is used for OPF with multiple objectives, where the objective function in IPM is a 

linear combination of all objectives with weighing factors. Fourth, IPM is a popular tool 

for solving the LP problem in successive linear programming algorithms [59]. Fifth, 

Torres and Quintana proposed an IPM-based OPF algorithm using voltage rectangular 

coordinates for better convergence, since the quadratic formulation leads to a constant the 

Hessian matrix [28]. In recent years, Jabr extended the quadratic model and used a 

scaling method in IPM [18]. 

 IPM has several versions, such as the primal-dual [60] algorithm, the predictor-

corrector [61] algorithm, and the multiple-centrality-corrections (MCC) [62] algorithm. 

The primal-dual algorithm performs a linear search within the feasible region. In the 

search space, the primal-dual algorithm determines the moving step and measures the 

desirability of each point. The origins of the searching directions are computed via 

Newton’s method for the nonlinear equations. The predictor-corrector algorithm is a 

famous revision of IPM reported in [61]. In each iteration, the algorithm first estimates 

potential variable changes and then adjusts the estimation according to the values of the 

nonlinear terms. This method converges faster than primal-dual IPM since the quadratic 

items are included in the computation. The MCC algorithm needs a prediction step and a 

correction step and focuses on exploring matrix factorization. The prediction step is the 

same as in the predictor-corrector method but the correction step may have more than one 

term. The aims of correction are enlarging the step length of the current iteration, 

improving the centrality of the next iteration, and increasing the speed reaching 

feasibility. 

 Newton’s method has proven to be the most efficient method in solving 

unconstrained optimization problems. Before Newton’s method was used in OPF, 
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Dommel and Tinny solved OPF using the reduced gradient method with slow astringency 

in 1968 [11], and then Stott introduced secure constraints into their framework [19]. Later 

on, a quasi-Newton method was proven to have a super-linear convergence speed, much 

faster than the gradient method [13]. However, Newton’s method may zigzag in some 

specific conditions [38], especially when approaching the optimal point, so some special 

strategies were designed when updating the variable values. For large-scale problems, 

Newton’s method integrates some decomposition methods to reduce the size of the OPF 

problem [39]. Therefore, the Newton-based algorithm has been successfully applied to 

practical power systems with 1200 to 1500 buses [40]. 

 Quadratic programming (QP) is a special case in nonlinear programming that 

includes only quadratic functions. In early years, Reid and Hasdorff formulated OPF as a 

QP problem using the Lagrange multiplier method and Taylor expansion [89] and solved 

QP via successive linear programming. Then, El-Kady et al. solved QP using Newton’s 

method [42], and Tognola and Bacher designed a QP algorithm with quadratic 

convergence speed using the augmented Lagrangian method [43]. Moreover, the 

quadratic formulation of power systems can be integrated into quadratic programming 

without approximation [44].  

2.3.2 Intelligent Search Algorithms 

 With the development of artificial intelligence, the intelligent search has become a 

very important technique in searching the global or near-global optimal solution. Main 

methods in this category are simulated annealing (SA), the genetic algorithm (GA), the 

evolution algorithm (EA), the particle swarm optimization (PSO), and artificial neural 

network (ANN). If the objective function is nonconvex, the solution may be trapped in a 

local optimum point. The random strategies in these intelligent search algorithms can 

help the solution jump out of the local optimum point. Different types of problems 

require different strategies. Researchers have already proposed several OPF algorithms 
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based on GA, EA, PSO, and ANN [63]. However, intelligent search methods are first-

order methods and are inefficient for large-scale systems. 

 GA requires each possible OPF solution to be coded in chromosomes as a 

member of the population. Chromosomes in each generation are coded using a binary 

chain and ranked by a specific criterion. GA runs from one population to the next 

generation, and the members of the generation improve iteratively [31]. 

 Bakirtzis et al. proposed the first EA-based OPF algorithm [64]. Then, Cai et al. 

solved the transient stability-constrained optimal power flow (TSCOPF) problem using 

modified EA, a differential evolution algorithm (DEA) with strong ability in searching 

for the global optimum. TSCOPF is a nonlinear optimization problem with both algebraic 

and differential equations. DEA solves it by employing both time-domain simulation and 

the transient energy function [29] due to DE’s flexibility. 

 The idea of PSO [65] comes from the social behavior of organisms, such as fish 

schooling and birds flocking. PSO mimics the behaviors of looking for food, determining 

positions and the velocities of organisms back and forth in each iteration since the 

velocities in the next iteration can be represented by a random function of current 

positions and velocities. PSO will keep the best value through the current iteration and 

stop when meeting the preset criteria. Several PSO and modified PSO algorithms are 

proposed for OPF and SCOPF [66]-[70]. In addition, PSO algorithms have been applied 

to OPF with discrete control variables [30]. 

2.3.3 Sequential Algorithms 

 Sequential algorithms usually use LP or QP as tools to improve the solution in 

each iteration. Since Danzig proposed the simplex algorithm in 1947, LP has become a 

very important optimization tool. In the early years, Danzig and Wolfe’s algorithm [51] 

and the revised simplex algorithm [52] were pioneering linear optimization methods for 

OPF. The cost function and the constraints are both linearized and solved via the simplex 
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algorithm or the primal-dual algorithm. Then, Stott and Hobson designed an iterative LP-

based algorithm with a piecewise linear objective function for a power system with 

security constraints [12]. The violated constraint is added into the basis as an equation. 

This algorithm chooses the eligible row whose variable would result in the greatest 

reduction of the incoming constraint violation. Since the objective function is piecewise, 

the algorithm maintains optimality in every piece of linear section and finally reaches the 

global optimum when the solution becomes feasible. A similar algorithm using the 

revised simplex algorithm is then proposed in [53], where the objective function is also 

piecewise. Therefore, the solution will lie on segment boundaries. Segment breakpoints 

are determined according to the curve slope [2] and chosen before each iteration. Larger 

size means a worse solution, but smaller size means more iterations.  

 A typical QP has a quadratic objective function and linear constraints. Therefore, 

sequential algorithms can replace LP by QP especially when the original problem has a 

quadratic objective function. Solving methods to QP usually include IPM [124], the 

augmented Lagrangian method [125], the conjugate gradient method [126], the extended 

simplex method [127], etc. 

 Selecting the penalty function is a very popular topic in sequential algorithms. A 

well-designed penalty function can guarantee moving from infeasibility to feasibility 

since the power system is nonlinear and the initial working point may be infeasible [54]. 

If some constraints are violated initially, penalty factors can be attached to these 

constraints. As the penalty items reduce, system states get close to the feasible region 

[55]. The state moves along the gradient of the penalty function, and the step size is 

determined by infeasible variables and constraints [56]. If the state cannot move into the 

feasible region, the algorithm stops at an infeasible solution with some violated 

constraints. To enhance the usability of the solution of infeasible systems, the proposed 

algorithm returns an infeasible solution with mismatch residuals, and this solution can be 
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translated into a set of remedial actions that is the best possible solution for the problem 

at hand. 

2.3.4 Decomposition Technologies 

 In recent years, researchers have extended OPF research to several advanced 

problems, such as SCOPF, multiple-objective OPF, a combination of OPF and unit 

commitment, etc. Because these problems usually have decomposable structures, 

researchers have proposed several decomposition methods [1], [45] where Benders’ 

decomposition [47] is the most famous one. However, general OPF does not use 

decomposition methods since its problem structure may not be fit for decomposition. 

 For SCOPF, Benders’ decomposition breaks down the original problem into one 

master problem and several slave problems. The master problem determines whether to 

connect devices, such as new generators, VAR sources, and capacitors [17], [21]. A slave 

problem is usually another OPF/SCOPF problem associated with one contingency. The 

master problem is the final solution when each slave problem is feasible [46]. The slave 

problem is solved via LP, and the master problem is solved via integer programming [48]. 

 The problem combining both OPF and unit commitment can be decomposed into 

three levels: the mixed-integer linear decision problem, 24-hour nonlinear programming 

problems, and base OPF problems [49]. For multiple-objective OPF, the master problem 

is a global dispatch problem, and a slave problem is an OPF problem with weighted 

objective functions [4]. In addition, distributed algorithms and ordinal optimization (OO) 

are proposed to solve large-scale power systems, which can be viewed as distributed 

systems composed of several subsystems [23], [50], especially when the system has 

FACT devices enhancing the system security. 
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2.4 Power System Modeling 

 The complex power flow equations at each bus fully describe the configuration of 

a power system. Traditional power flow is a trigonometric form, also referred to as polar 

power flow, which is the most widely-used formulation, whether in power flow, state 

estimation, or OPF. The variables in polar power flow are the real and reactive powers of 

generators, the voltage magnitudes, the phase angles, the transformer tap settings, the 

capacitor bank status, etc. Polar power flow uses sine and cosine functions to describe the 

relationship between voltages and powers, so Newton’s method takes more iterations 

when solving the power flow since the Hessians matrix is not constant [71]. 

 To overcome the drawback of polar power flow, researchers designed a 

rectangular model to improve the convergence property of Newton’s method [72]. 

Several works show its successful applications on the IPM-based OPF algorithms. In 

primal-dual IPM, Newton’s method converges faster since the Jacobian matrix is constant 

only with a few exceptions. In predictor-corrector IPM, since the nonlinear terms of the 

power flow equations and the operating constraints are all quadratic, the corrector step 

estimates those nonlinear terms directly. Otherwise, obtaining the accurate values of 

higher-order terms [72] requires much more computing time. Jabr [18] proposed 

quadratic models for tap-changing transformers and unified power flow controller (UPFC) 

devices. He used primal-dual IPM and the same power flow model as those in [72]. 

 The third type is quadratized power flow with only quadratic functions [73]. 

Different from previous works, quadratized power flow uses current balance instead of 

power balance at each bus. In this model, KCL describes system construction, and 

Thevenin’s theorem gives the internal structures of generators and transformers. Since 

quadratized power flow includes the internal states of devices and all equations are 

quadratic, it has more equations, more state variables, and a larger Jacobian matrix,. A 

larger Jacobian matrix means much more runtime in computing its inverse matrix, but 

this problem can be solved using sparsity techniques. Two successful works using 



 16

quadratized power flow have been reported, one for the steady-state and dynamic 

analysis of induction motors [74] and the other for contingency simulation [75]. 

2.5 Three-Phase Optimal Power Flow 

 Three-phase optimal power flow (TOPF) is a tool to find the optimum of a power 

system with distribution networks via managing controllable devices. After smart grid 

concepts were proposed, researchers paid more and more attention to issues on 

distribution grids, such as three-phase state estimation [91], [92] and TOPF [94]-[102]. 

Optimization on distribution grids previously focused on the reconfiguration of 

distribution systems for loss reduction [104]-[106] and sometimes service restoration 

[107]-[109]. Only a few research works solved distribution optimization via the OPF 

technology, referred to as TOPF. As more and more renewable sources are connected to 

distribution grids, distribution control is not limited to system reconfiguration. 

Controllable devices in distribution grids include generators, capacitor banks, shunt 

compensators, static VAR compensators (SVC), static synchronous compensators 

(STATCOM), plug-in hybrid electric vehicles (PHEV), storage systems, etc. In addition, 

there may be many more types of devices in the future. Therefore, TOPF is important and 

much more complicated than single-phase OPF. 

 Single-phase OPF algorithms model a power system using only one phase since 

they run on balanced transmission grids. However, TOPF algorithms are designed for 

unbalanced three-phase power systems with both transmission grids and distribution grids. 

In addition, TOPF has more types of integer variables, such as switches for capacitor 

banks and PHEVs. In the early 2000s, Hong and Wang proposed a TOPF method using 

Newton’s method with SVCs for off-line use [94]. In recently years, researchers have 

published more TOPF works. Khodr et al. combined network reconfiguration with OPF 

via Benders’ decomposition [96]. Zhu and Tomsovic’s method uses the greedy algorithm 

and the steepest descent algorithm to dispatch small generators and storage resources in 
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distribution grids [97]. Harrison et al. proposed an approach to select optimal distributed 

generation (DG) sources via genetic algorithms and OPF [99]. Dolan et al. applied OPF 

to voltage control, power flow management, and restoration in active distribution 

networks [99]. Ahmadi et al. developed an OPF based algorithm to maximize real power 

outputs of DG sources for radial and meshed distribution networks [101]. Ochoa and 

Harrison’s method focuses on minimizing energy loss with renewable distributed 

generation via multi-period AC OPF [97]. They also offered a method to evaluate the 

maximum capacity of new variable-distributed generation, which can be connected on a 

distribution network with active network management [94]. Bruno et al. proposed an 

unbalanced TOPF algorithm for on-line use in distribution management systems via 

Newton’s method [102] with initial three-phase load flow given by OpenDSS [103]. 

2.6 Linearization Techniques 

 Early OPF works approximated the nonlinear optimization problem via piecewise 

linear functions when using LP methods [12]. However, piecewise linearization 

consumes plenty of computational resources since large-scale power systems have many 

equations and variables. In addition, determining the length of each linear segment is also 

difficult since the objective function and constraints are all nonlinear. The linear 

segments for the objective function may not fit for the constraints due to different 

nonlinearities. These problems limit the performance of piecewise linear algorithms. 

 Another linear approximation is formed via the linear combination of all control 

variables at the current working point. The coefficient of each control variable is its total 

derivative computed according to its definition, an infinitesimal change in the function 

with respect to the control variable. However, this method requires too much computation 

since the updated value of each function is obtained by solving the power flow, which is 

a very time-consuming task. Therefore, this is an inefficient linearization method. 
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 The third method is the sensitivity method, also referred to as the co-state method, 

presented in [2]. This method returns the theoretical derivative values with respect to all 

control variables by the chain rule formula since the state variables are the functions of 

the control variables. The co-state method is efficient for LP-based algorithms since the 

inverse Jacobian matrix in the chain rule formula can be computed using sparsity 

techniques and can also be used in Newton’s method. The proposed algorithm uses the 

co-state method with some modifications to accommodate the system model. 

2.7 Summary 

 This chapter presented a comprehensive literature review of the research topic in 

this dissertation. This work studies the OPF problem on both single- and three-phase 

power systems. The areas of this research also include electric power system modeling, 

linearization techniques, and an OPF application: computing the operating cost in an 

optimal VAR allocation problem. 

 The OPF problem is well known to electric utilities and has been researched for 

several decades. People have developed many models, algorithms, and software packages. 

However, OPF is still a popular topic since it is the choice tool to provide the optimal 

solution to power systems. Researchers and engineers keep focusing on OPF problems 

since power systems are very complicated and continuously growing, and many new 

types of devices are developed and plugged in to the grid. Modeling power systems and 

their connected electric devices is a very important issue in OPF research. The form of 

the power flow equations is highly related to the convergence properties in solving the 

power flow, a major step in OPF. This work uses quadratized single- and three-phase 

power system models since quadratization exhibits fast convergence. 

 Existing OPF algorithms can be classified into three categories: nonlinear 

programming, intelligent search, and sequential algorithms. Nonlinear programming and 

sequential algorithms both perform well in large-scale power systems, while intelligent 
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search is inefficient. Nonlinear programming methods focus on the Kuhn-Tucker 

conditions. Sequential algorithms approach the optimal solution via moving the current 

working point according to optimization methods, such as LP or QP. However, all these 

algorithms require a feasible power flow solution as the starting point. To address this 

issue, this thesis work proposed a sequential algorithm starting from an arbitrary state 

possible infeasible and can therefore provide a solution for both feasible and infeasible 

power systems. 

 In addition, a method is proposed to solve the TOPF problem including both 

transmission grids and distribution grids. Several TOPF formulations and algorithms 

have been studied in the recent years, especially after the community started to pay 

attention to smart-grid technologies. However, no TOPF work has been done via 

quadratized three-phase power system modeling as in this dissertation. Finally, this work 

demonstrates an application to TOPF via an optimal VAR allocation problem. 
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CHAPTER 3 

QUADRATIC POWER SYSTEM MODELING 

 

3.1 Quadratic Power System Modeling 

3.1.1 Overview 

 The traditional power flow formulation is based on the power balance equations 

and the use of polar coordinates for bus voltages. This formulation leads to a set of 

nonlinear equations that contain sine and cosine terms. A better approach, which 

introduces less complex and nonlinear equations, is known as quadratized power flow. 

Specifically, the quadratized power flow formulation is based on Kirchhoff’s current law 

(nodal formulation) and Cartesian coordinates for bus voltages and the nonlinear models 

are converted to quadratic by the introduction of additional variables. The proposed OPF 

algorithm selects quadratized power flow, because quadratization limits the linearization 

error in the SLP method and Newton’s method has quadratic convergence speed in 

solving the quadratized power flow. Although quadratized power flow includes more 

power flow equations which lead to a larger Jacobian matrix, this problem can be solved 

by sparsity technologies. 

 Quadratized power flow equations are sorted according to bus indices. The first 

two equations of each bus are the real and imaginary current conservation equations 

according to Kirchhoff’s current law. They describe that the sum of the current flowing 

from each bus is zero. The remaining equations of each bus describe the internal states of 

some connected devices, such as synchronous generators, constant power loads, and 

single-phase transformers. Some internal state variables are introduced to form quadratic 

equations. In addition, Section 3.1.2 presents the equations of a synchronous generator 
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and a constant power load, and Appendix A shows the details of the quadratic single-

phase transformer model. 

3.1.2 Quadratic General Bus Modeling 

3.1.2.1 Overview 

Figure 3.1 describes a general bus with synchronous generators, mismatch current 

sources, constant power loads, constant impedance loads, capacitor banks, inductors, 

single-phase transformers, and circuit branches. Several constant power loads can be 

viewed as one device in the power flow. Constant impedance loads, capacitor banks, and 

inductors also hold this property. 
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   Figure 3.1 A general power system bus 
 

 In Figure 3.1, M(k) is the number of the generators at Bus k. Bk is the index set of 

the buses adjacent to Bus k. Bkl is the index set of the buses connected to Bus k through a 
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transmission line. Bkt is the index set of the buses connected to Bus k through a 

transformer. It is known that Bk = Bkl + Bkt. 

Mismatch current sources are artificial current sources retaining system status in 

the feasible region. The current flowing into each mismatch current source is mkI , where 

mk gk dk kI I I I     . mkI  is usually nonzero at the beginning of the algorithm and reduces 

iteratively. When mkI  equals zero, the algorithm reaches the optimal solution; otherwise, 

no feasible solution exists. mkI  provides the information for a set of remedial actions, 

such as load shedding. If the general bus is modeled using power conservation, the 

mismatch sources are real and reactive power sources shown in Section 8.2.1. 

3.1.2.2 Frequency-Domain Model 

The frequency-domain model at each bus consists of Kirchhoff’s current law and 

the device equations of that bus. According to the current conservation at Bus k,  

0 gk dk mk kI I I I      ,         (3-1) 

where dk dpk dik ck ikI I I I I         and 
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frequency-domain model of the power system is  
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Generators: (The generators are connected.) 
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Constant power loads: (The constant power loads are connected.) 

2 2

, , 1 , ,0 ( ) ( )dn k dn k k dk dn k dn k k dk dkg jb V u g jb V P jQ       , and     (3-4) 

Transformers: (The transformers are connected and Bus k is at the primary side.)  

   1 20 tkx k tkx kxn kxu tkx x kxn kxu tkx tkxm tkxY V E t t Y V t t E Y E            ,      (3-5) 

where Bktp is the index set of the buses (secondary side) connected to Bus k (primary side) 

through a transformer, and Bkts is the index set of the buses (primary side) connected to 

Bus k (secondary side) through a transformer. The size of Bktp is T(k), and kt ktp ktsB B B  . 

3.1.2.3 Frequency-Domain Quadratic Model 

Decomposed into real and imaginary parts, the frequency model forms the 

frequency-domain quadratic model: gk(x, u, Im) = 0. They are listed as follows:  
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2 2 2:0kV kr ki kmagg V V V   .          (3-8) 

Generators: (# = 2M(k) if the generators are connected.) 

2
, , , , , ,

2
, , , , , ,

: 0

( 1, , ( ))

gk jQ gk j kr gk j kr gk jr gk j kr gk ji

gk j ki gk j ki gk jr gk j ki gk ji gk j

g b V b V E g V E

b V g V E b V E Q j M k

   

     
,     (3-9) 

2
, , , , , ,

2
, , , , , ,

: 0

( 1, , ( ))

gk jP gk j kr gk j kr gk jr gk j kr gk ji

gk j ki gk j ki gk jr gk j ki gk ji gk j

g g V g V E b V E

g V b V E g V E P j M k

  

     
,    (3-10) 

Constant Power Loads: (# = 2 if the constant power loads are connected.) 

If the real power output is nonzero,  

, 1 2 , 2: 0dkP dn k dk dk dn k dk dkg g u u g u P   ,        (3-11) 

If the real power output is zero and the reactive power output is nonzero,  

, 1 2 , 2: 0dkQ dn k dk dk dn k dk dkg b u u b u Q   ,        (3-12) 

2 2
2: 0dkV kr ki dkg V V u   ,          (3-13) 

Transformers: (# = 6T(k) if the transformers are connected. Bus k is at the primary side. 

Bus x is at the secondary side.) 

2 2
3 3

2 2 2 2
4 4

: 0 2 2 2 2

(2 ) 2 (2 ) 2

tki kxn tkx ki kxn tkx kr kxn tkx tkx xi kxn tkx tkx xr

kxn tkx tkxm tkxi kxn tkx tkx tkxi kxn tkx tkxm tkxr kxn tkx tkx tkxr

g t g V t b V t g u V t b u V

t g g E t g u E t b b E t b u E

   

     
,  (3-14) 
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2 2
3 3

2 2 2 2
4 4

: 0 2 2 2 2

(2 ) 2 (2 ) 2

tkr kxn tkx kr kxn tkx ki kxn tkx tkx xr kxn tkx tkx xi

kxn tkx tkxm tkxr kxn tkx tkx tkxr kxn tkx tkxm tkxi kxn tkx tkx tkxi

g t g V t b V t g u V t b u V

t g g E t g u E t b b E t b u E

   

     
,  (3-15) 

2 2
1 1: 0 2 1tk kxu kxu tkxg t t u    ,          (3-16) 

2 2 1 2: 0 1tk tkx tkx tkxg u u u   ,          (3-17) 

3 2 3: 0tk tkx kxu tkxg u t u  , and          (3-18) 

4 3 4: 0tk tkx kxu tkxg u t u  .          (3-19) 

 The number of the quadratized power flow equations of Bus k is 3+2M(k)+2+6T(k) 

if constant power loads are connected. The variable number of Bus k is 3+4M(k)+2+7T(k). 

They are [Vkr, Vki, Vkmag, Egk,jr, Egk,ji, Pgk,j, Qgk,j, udk1, udk2, tkxu, Etkxr, Etkxi, utkx1, utkx2, utkx3, 

utkx4]. (j = 1, … , M(k) and ktpx B .) 

3.1.2.4 Variable Classification 

 The variables are classified into the control variables and the state variables. The 

control variables are obtained in the optimization step and are assumed to be known in 

solving the power flow. The state variables are computed using the power flow equations 

where # the power flow equations = # the state variables. The selection of the control 

variables and the state variables is based on bus mode, including PQ mode, PV mode, and 

slack mode. 

 PQ buses are the most common buses in a power system. Their control variable 

set is [Pgk,j, Qgk,j, tkxu]
T (j = 1, … , M(k), ktpx B ). PV buses are usually the buses with 

large reactive power generation or reactive power compensation. Their control variable 

set is [Vkmag, Pgk,1, Pgk,j, Qgk,j]
T (j = 2, … , M(k)). A system has a unique bus serving as the 

reference bus, sometimes with a zero voltage angle, referred to as the slack bus usually 

with frequency regulation power plant or with maximum adjacent buses. Its control 

variable set is [Vkr, Vki, Pgk,j, Qgk,j, tkxu]
T (j = 2, … , M(k), ktpx B ). 
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3.1.2.5 System-Level Equations 

 This algorithm uses two system-level equations instead of using all of the power 

flow equations in the optimization step since this will reduce the problem size and 

runtime dramatically. The real and reactive power balance equations can be used if the 

system does not consist of transformers. Otherwise, the algorithm will use the sum of real 

and imaginary current conservation equations of all buses since power balance equations 

with the transformer model are fourth-order equations. In this case, the real and reactive 

power balance equations can be used for verification. 

 Power balance equations denote that the total apparent power generated minus the 

total apparent power consumption is zero. That is,  

 
( )

1 1

0
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          .      (3-20) 

 By Separating Equation (3-20) into real and reactive powers and substituting 

device parameters, the following equations are obtained:  
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 Real and imaginary current conservation equations are 
1

0
N

kr
k

g


  and 
1

0
N

ki
k

g


 . 

By representing them explicitly, the following equations are obtained:  

Ir(x, u): 
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Ii(x, u): 
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3.2 Summary 

 This chapter provided the quadratic power system model used in the proposed 

OPF algorithm. At the beginning, a general bus was modeled in the complex form in the 

frequency domain followed by its quadratized model. The general bus model includes 

synchronous generators, constant power loads, constant impedance loads, capacitor banks, 

inductors, transformers, circuit branches, mismatch current sources, etc. Next, the 

variable classification according to bus mode was presented. Finally, this chapter gave 

several quadratic system-level equations, such as the power balance equations and the 

current conservation equations. 
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CHAPTER 4 

OPTIMAL POWER FLOW PROBLEM DEFINITION 

 

4.1 Introduction 

 This chapter describes a quadratic OPF formulation of power systems. Chapter 5 

presents an algorithm to solve OPF iteratively using sequential methods. 

4.2 The Quadratic Problem Formulation 

 The cost function of a power system is the mismatch penalty plus the sum of the 

quadratic cost functions of all generators. Mismatch variables are real and imaginary 

currents injecting to each bus in the quadratic power system model. Therefore, the 

nonlinear optimization problem is  

 
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1 1

min max

min max

min ( , ) ( , )

. . ( , , ) 0
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M kN

m k j
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 

 

  x u I x u

g x u I

h h x u h

u u u

,        (4-1) 

where 

x is the state variable vector,  

u is the control variable vector,  

Im is the mismatch current vector,  

N is the total number of buses in the power system,  

M(k) is the number of generators at Bus k,  

J(x, u) is the objective function with the operation cost of the system and mismatch 

penalties taken into account, 



 30

ck,j(x, u) is the cost function of the jth generator at Bus k, e.g., ck,j(x, u) = ak,j + bk,jPk,j + 

ck,jPk,j
2, where the unit of ak,j, bk,j, and ck,j are $/hour, $/(MW·hour), and $/(MW2·hour) 

respectively,  

g(x, u, Im) = 0 are quadratized power flow equations, represented in Section 3.1.2.3,  

hmin ≤ h(x, u) ≤ hmax are operating constraints, and  

umin ≤ u ≤ umax are control variable constraints, upper and lower bounds of all control 

variables. 

 The variables are sorted according to the bus indices. The variables of Bus k 

include  

Real and imaginary voltages, Vkr and Vki,  

Real and reactive mismatch currents Imkr and Imki,  

Generator real and reactive powers Pgk,j and Qgk,j (The generators are connected.),  

Generator internal electromotive forces Egk,jr and Egk,ji (The generators are connected.),  

Constant power load variables udk1 and udk2 (The constant power loads are connected.), 

and  

Transformer variables tkxu, Etkxr, Etkxi, utkx1, utkx2, utkx3 and utkx4. (The transformers are 

connected.) 

 Operating constraints include  

   2 2min 2 2 max
kmag kr ki kmagV V V V   ,          (4-2) 

where Vkmag is the voltage magnitude at Bus k,  

min max
1,1 1,1 1,1P P P  ,           (4-3) 

where P1,1 is the real power of the slack mode generator,  

min max
, , ,k j k j k jQ Q Q  ,           (4-4) 

where Qk,j is the reactive power of the slack mode generator or PV mode generators,  

 2 2 2 2 2 2
, ,max2 2kn kn kr ki nr ni kr nr ki ni a kng b V V V V V V V V S       ,      (4-5) 
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where Skn is the apparent power transmission through a transmission line between the 

adjacent buses (Bus k and Bus n),  

2 2 2 2 2 2
2 2 2

, ,max

2
2

2 2 2 2 2
kr ki xr xi tkr tki kr xr

kn tk tk a tkx
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t g b S
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  

     
,    (4-6) 

where Stkx is the apparent power transmission through a transformer between adjacent 

buses (Bus k and Bus x). 

 Control variable constraints include the real voltage at the slack bus 

( min max
1 1 1mag r magV V V  ) and transformer taps ( min max

kxu kxu kxut t t  ). 

 The slack bus is an arbitrary bus with generators connected. In order to facilitate 

notation and symbolism, it is assumed that the slack bus is Bus 1 and its first generator 

runs at slack mode. All other buses are PQ buses or PV buses. In a power system with N 

buses and Np constant power loads, the total number of the variables is 

 
1

4 ( ) 7 ( ) 2 2
N

p
k

M k T k N N


   . A transformation is introduced to reduce the number of 

the mismatch variables:  

(1 ) o
mkr mkrI v I   ( [0,1]v ) and         (4-7) 

(1 ) o
mki mkiI v I   ( [0,1]v ).         (4-8) 

After the transformation, the mismatch variables Im are eliminated, and the total number 

of the variables reduces to  
1

4 ( ) 7 ( ) 2 1
N

p
k

M k T k N


   . The variables of Bus k follow 

the rules:  

1. v is selected to be a control variable for the system,  

2. The number of x of Bus k is 3+2M(k)+2+T(k), (The constant power loads are 

connected.)  

3. The number of u of Bus k is 2M(k) + 6T(k). 
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Therefore, the total variable number in x is  
1

2 ( ) 6 ( ) 2
N

p
k

M k T k N


  , and the total 

number variable in u is  
1

2 ( ) ( )
N

k

M k T k


  after the transformation. 

4.3 Summary 

 This section presented the definition of the OPF problem in the quadratic 

formulation including linear and quadratic formulas only. The objective function of the 

OPF problem equals the mismatch penalties plus the fuel costs. Moreover, the constraint 

set includes the power flow equations, the operating constraints, and the control variable 

constraints. Detailed information about how to form the objective function and the 

constraints are also provided. 
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CHAPTER 5 

THE PROPOSED OPTIMAL POWER FLOW ALGORITHM 

 

5.1 Introduction 

 This chapter presents a sequential OPF algorithm with two implementation 

methods: sequential linear programming (SLP) and sequential quadratic programming 

(SQP). While these two implementation methods are similar, SLP linearizes all the 

functions and SQP keeps the objective function quadratic in the optimization step. 

5.2 Algorithm Outline 

 The proposed algorithm starts from an infeasible optimal state of the system and 

maintains the current balance at each bus by introducing an artificial mismatch current 

source. The real and imaginary currents from this mismatch current source form 

mismatch variables. These mismatch variables reduce as iterations progress by 

introducing a unified control variable. If all the mismatch variables reach zero, the 

solution enters the feasible region and is optimal automatically. Otherwise, the algorithm 

provides a suboptimal solution with mismatch residuals. These residuals represent the 

system limitation and can be eliminated by load shedding. Figure 5.1 shows the flow 

chart of the algorithm using the SLP implementation. 
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   Figure 5.1 The flow chart of the SLP algorithm 
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 Using the co-state method in each iteration, the algorithm first converts the OPF 

problem to a linearized optimization problem with the control variables only. The 

constraints consist of the real and imaginary power balance equations and the operating 

constraints violated in the previous iterations. The control variables are limited by their 

physical bounds and linearization limits computed according to the linearization error of 

the current balance equations. The algorithm then obtains the updated values of the 

control variables using LP or QP algorithms and the state variables by solving the power 

flow. If some modeled operation constraints are violated, the b vector will be updated in 

the linearized optimization problem and the previous solution is retrieved. If some other 

constraints are violated, the algorithm adds these constraints, retrieves the previous 

solution, and linearizes new constraints. If the mismatch variables are nonzero, the next 

iteration starts and the variables may be reclassified.  

5.3 SLP Algorithm Implementation 

 This section presents the detailed description of the SLP implementation. The 

SQP implementation will be shown in Section 5.4. 

5.3.1 Initialization 

5.3.1.1 Classify Variables into State Variables x and Control Variables u 

A power system usually has three types of bus mode: slack mode, PQ mode, and 

PV mode. The classification of the control variables and the state variables is listed as 

follows:  

Slack mode:  

x = [V1mag, Eg1,jr, Eg1,ji, Pg1,1, Qg1,1, ud11, ud12, Etkxr, Etkxi, utkx1, utkx2, utkx3, utkx4]  

 (j = 1, … , M(1) , ktpx B ). 

u = [V1r, V1i, Pg1,j, Qg1,j, tkxu] (j = 2, … , M(1) , ktpx B ). 
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PQ mode:  

x = [Vkmag, Vkr, Vki, Egk,jr, Egk,ji, udk1, udk2, Etkxr, Etkxi, utkx1, utkx2, utkx3, utkx4]  

 (j = 1, … , M(k) , ktpx B ). 

u = [Pgk,j, Qgk,j, tkxu] (j = 2, … , M(k) , ktpx B ). 

PV mode:  

x = [Vkr, Vki, Egk,jr, Egk,ji, Qgk,1, udk1, udk2, Etkxr, Etkxi, utkx1, utkx2, utkx3, utkx4]  

 (j = 1, … , M(k) , ktpx B ). 

u = [Vkmag, Pgk,1, Pgk,j, Qgk,j, tkxu] (j = 2, … , M(k) , ktpx B ). 

where k is the index of each bus. Note: at the slack bus, one pair of power variables are 

control variables, and real and imaginary voltage variables are state variables. 

5.3.1.2 Assign Initial Values of x and u to xo and uo 

 The power transmissions between buses are enforced to be zero to avoid violated 

transmission constraints when the algorithm begins. Therefore, the real and imaginary 

voltages at all buses are set to 1.0 and 0.0 respectively. Other control variables and state 

variables are set to some certain values within their physical bounds and the mismatch 

variables are calculated according to the power flow equations.  

 The initial variable values at Bus k are set as follows:  

Bus voltages: Vkr = 1.0, Vki = 0.0, and Vkmag = 1.0. 

Generator powers: Pgk,j = a valid value, where min max
, , ,gk j gk j gk jP P P   (j = 1, … , M(k)), and 

Qgk,j = a valid value, where min max
, , ,gk j gk j gk jQ Q Q   (j = 1, … , M(k)). 

 The internal electromotive force of the jth generator can be derived from Equation 

(3-9) and Equation (3-10):  

2 2
,

2 1 1 2

 
gk jr

b A a B
E

a b a b





 and          (5-1) 
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1 1
,

1 2 2 1

 
gk ji

b A a B
E

a b a b





,           (5-2) 

where 

1 , ,gk j kr gk j kia g V b V  ,  

2 , ,gk j kr gk j kia b V g V   ,  

1 , ,gk j kr gk j kib b V g V  ,  

2 , ,gk j kr gk j kib g V b V  ,  

, ,
2

,
2

g j kr g j ki gk k jkg gA V V P  , and  

, ,
2

,
2

g j kr g j ki gk k jkb bB V V Q  . 

Load variables: udk1 = 0 and udk2 = V2
kmag. 

 The initial variable values of the transformers are tkxu = 1.03, utk1 = 0.03, utk2 = 

0.9708738, utk3 = 1.0, and utk4 = 1.03. 

 The internal electromotive force of the transformer connecting Bus k (primary 

side) and Bus x (secondary side) can be derived from Equation (3-14) and Equation 

(3-15):  

2 2

2 1 1 2
tkxr

b A a B
E

a b a b





 and          (5-3) 

1 1

1 2 2 1
tkxi

b A a B
E

a b a b





,           (5-4) 

where  

2 2
1 42 2kxn tkx tkxm kxn tkx tkxa t g g t g u    ,  

2 2
2 42 2kxn tkx tkxm kxn tkx tkxa t b b t b u   ,  

2 2
1 42 2kxn tkx tkxm kxn tkx tkxb t b b t b u    ,  

2 2
2 42 2kxn tkx tkxm kxn tkx tkxb t g g t g u    ,  

2 2
3 32 2 2 2kxn tkx kr kxn tkx ki kxn tkx tkx xr kxn tkx tkx xiA t g V t b V t g u V t b u V    , and  
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2 2
3 32 2 2 2kxn tkx ki kxn tkx kr kxn tkx tkx xi kxn tkx tkx xrB t g V t b V t g u V t b u V    . 

 The initial variable values can be set to other values if this initial system state is 

feasible. Sometimes this setup can increase the convergence speed since the initial 

working point may be closer to the optimal solution. For example, in the IEEE test cases 

shown in Chapter 8, the initial variable values can be set to the default variable values 

instead of using the proposed initialization method before. 

5.3.1.3 Calculate Mismatch Variables Im
o 

The mismatch values are calculated using the power flow equations: gkr and gki.

 5.3.1.4 Select Initial Operating constraints to the Model 

The initial operating constraints include the real and imaginary current 

conservation equations (Ir(x, u) and Ii(x, u)) and the real and reactive power constraints 

of the slack generator. 

5.3.1.5 Store Operating Point (xo, uo, Io
m) 

 That is xo = x, uo = u, and Io
m = Im. 

5.3.1.6 Replace Im by One Control Variable v 

 To reduce the variable number in the optimization problem, the mismatch 

variables are substituted with one control variable v representing the normal change of 

the mismatch variables. Therefore, all the mismatch variables (a total of 2N) are replaced 

by a single variable v and the optimization problem is converted to  

  ,
1 1

min max

min max

min ( , ) (1 ) ( , )

. . ( , , ) 0

( , )

0 1

N l
o
m k j

k j

f v c

s t v

v


 

  



 

 
 

 x u I x u

g x u

h h x u h

u u u

,       (5-5) 
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where Io
m is the vector restoring the present values of the mismatch currents. The 

algorithm initializes v to 0 and sets that (1 ) o
m mv I I  ( [0,1]v ) before solving each 

converted problem. An upper bound is assigned to v to control the nonlinearity caused by 

mismatch changes. Once v reaches 1, the feasible and optimal solution is achieved. 

5.3.2 Define the Optimization Problem 

 This subsection presents the nonlinear optimization problem simplified from the 

original OPF problem. This problem uses the real and imaginary current balance 

equations instead of the power flow equations. Since there are a large number of the 

power flow equations, LP runtime will highly decrease if those equations are removed. In 

addition, the operating constraints are excluded at the beginning and will be added 

adaptively since only a small part of them will be active in the end. This nonlinear 

optimization problem is defined as follows:  

( )

,
1 1

min max

min max

min (1 ) ( , )

. . ( , , ) 0

( , , ) 0

( , )

M kN
o
m k j

k j

r

i

v c

s t I v

I v


 

 




 

 

  I x u

x u

x u

h h x u h

u u u

,        (5-6)

 

where Ir(x, u, v) = 0 and Ii(x, u, v) = 0 are the real and imaginary current balance 

equations respectively. hmin ≤ h(x, u) ≤ hmax is the set of the operating constraints in the 

present iteration. 

5.3.3 Form the Linearized Optimization Problem 

 The algorithm then eliminates the state variables defined in the problem above 

and the problem is re-casted in terms of only the control variables. This is achieved by 

linearization whereby all functions and quantities are expressed as the linear 

combinations of the control variables. Appendix B.3 shows the discussion of linearization. 
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The following subsections present the formulas to linearize the objective function and the 

operating constraints. 

5.3.3.1 Linearize the Objective Function 

 The linearized form of ck,j(x, u) (k or j ≠ 1) is  

,
, ,

( , , ) 0

( , )
( , ) ( , ) ( )

reduced

o o
k jo o

k j k j

v

c
c c o




    


g x u

x u
x u x u u u

u
,     (5-7) 

where 

1

, , ,

( , , ) 0

( , ) ( , ) ( , ) ( , ) ( , )

reduced

o o o o o o o o o o
k j k j k j reduced reduced

v

c c c




     
        g x u

x u x u x u g x u g x u

u u x x u
. 

5.3.3.2 Linearize the Operating Constraints 

 The linearized form of h(x, u) is  

( , , ) 0 ( , , ) 0

( , )

( , ) ( , )
( , ) ( ) ( )

reduced reduced

o o o o
o o

v v

h

h h
h v o o v

v
 

 
       

 
g x u g x u

x u

x u x u
x u u u

u

,   (5-8) 

where 

1

( , , ) 0

( , , 0) ( , ,0)( , ) ( , ) ( , )

reduced

o o o oo o o o o o
reduced reduced

v

h h h




    
        g x u

g x u g x ux u x u x u

u u x x u
 and  

1

( , , ) 0

( , ,0) ( , ,0)( , ) ( , ) ( , )

reduced

o o o oo o o o o o
reduced reduced

v

h h h

v v v





    
        g x u

g x u g x ux u x u x u

x x
. 

The linearized optimization problem is obtained via substituting these equations into the 

problem in Section 5.3.2 and ignoring the higher order items. 
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5.3.3.3 The Linearized Optimization Problem 

( )
,

,
1 1 1 ( , , ) 0

( , , ) 0 ( , , ) 0

( , )
min (1 ) | | ( , ) ( 1)

( , ,0) ( , ,0)
. . ( , ,0) 0

( ,
( , ,0)

reduced

reduced reduced

o oM kN N
k jo o o

m k j
k k j v

o o o o
o o r r

r

v v

o
o o i

i

c
v c k or j

I I
s t I v

v

I
I


   

 

 
     

  

 
    

 




  
g x u

g x u g x u

x u
I x u u

u

x u x u
x u u

u

x
x u

( , , ) 0 ( , , ) 0

min max

( , , ) 0 ( , , ) 0

min max

max

,0) ( , ,0)
0

( , ) ( , )

0

reduced reduced

reduced reduced

o o o
i

v v

o o o o

v v

I
v

v

v
v

v v

 

 


   

 

 
      

 

    

 

g x u g x u

g x u g x u

u x u
u

u

h x u h x u
h u h

u

u u u

,  

            (5-9)

 

where Δhmin = hmin - h(xo, uo) and Δhmax = hmax - h(xo, uo) are the lower and upper 

bounds of the operating constraints in the linearized problem. The lower and upper 

bounds of the control variables in Δumin and Δumax are determined by linearization limit 

strategies shown in the next step. 

5.3.3.4 Select Limits on Control Variables (v, u) to Ensure Linearized Model is 

Approximately Valid 

 The mismatch variables are set to reduce linearly, so the algorithm selects  

max 1.0

1mismatch now

v
Step Step


 

,         (5-10) 

where Stepmismatch is the iteration number that reduces the mismatch to zero and Stepnow is 

the index of the current iteration. 

 The linearization limits of the other control variables are determined according to 

the linearization error since a larger error may cause an invalid system status. The 

linearization error is much larger for large-scale systems since it increases with the 

number of variables. This algorithm considers the effect of the linearization error on the 
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current conservation equations only, because these two equations guarantee a solution for 

the system and are very time efficient in computing the linearization errors. Furthermore, 

computing the linearization errors based on inequalities needs too much runtime. For 

example, the upper bound of Vkmag is represented by a function with state variables. The 

accurate value of Vkmag after changing a control variable must be computed via solving 

the power flow equations. Therefore, when the allowed error is η, the lower limits on ui 

(ui ∊ u, ui ≠ v) is  

min min ( , , )( , , )
max , / , /o ir

i i i
i i

dI vdI v
u u u

du du
 

 
     

 

x ux u
 and     (5-11) 

the upper limits on ui (ui ∊ u, ui ≠ v) is  

max max ( , , )( , , )
min , / , /o ir

i i i
i i

dI vdI v
u u u

du du
 

 
   

 

x ux u
,      (5-12) 

where η is set according to system topology and parameters. For example, η = 0.07 for 

the RTS-79 system in Section 8.3. 

5.3.4 Solve the System 

5.3.4.1 Solve the Linearized Optimization Problem v, Δu 

 The solution of linearized optimization problem gives v and Δu. 

5.3.4.2 Compute ΔIm 

 The mismatch change ΔIm = -vIm
o. 

5.3.4.3 Compute the New Values of Control Variables u, Imu 

 The updated control variables u = uo + Δu. The updated mismatch variables       

Im = (1-v)Im
o, specifically Imukr = (1-v)Io

mkr and Imuki = (1-v)Io
mki. 
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5.3.4.4 Compute State Variables (Power Flow Solution) x 

 The state variables of the slack bus xslack can be calculated via substituting into the 

power flow equations at the slack bus. The state variables of other buses xreduced can be 

solved by the Newton-Raphson method according to the reduced power flow equations 

shown as follows:  

1. Let w = 0. 

2. Assume an initial guess xo for x. 

3. Compute greduced(x
w

reduced, u). If ||greduced(x
w

reduced, u)|| ≤ ε, xw
reduced is the solution and 

the procedure is terminated. Otherwise, go to step 4. 

4. Compute the Jacobian matrix: 
( , )w

reduced reduced

reduced




g x u

x
. 

5. Compute 
1

1 ( , )
( , )

w
w w wreduced reduced
reduced reduced reduced reduced



  
    

g x u
x x g x u

x
.   (5-13) 

6. w = w + 1. If w ≤ wmax, go to step 2; otherwise, return nonconverage. (wmax = 20 in this 

algorithm.) 

5.3.4.5 New Operating Point (x, u, Im) 

 The values computed in the above two steps form a new operating point. Set Δu = 

0 in this step. 

5.3.5 Eliminate Violations in the Modeled System 

 Some operating constraints, especially those reaching upper or lower bounds in 

the LP problem, are out of their bounds due to the linearization errors. These violations 

are slight since the linearization errors are limited in a small region. To eliminate these 

slight violations, the algorithm retrieves the previous solution and changes the b vector in 

the LP problem. 
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5.3.5.1 Check Violation for the Modeled Constraints 

 This step checks all the constraints already included in the model. It is checked 

whether hmin ≤ h(x, u) ≤ hmax holds at the new operating point. If any modeled constraint 

is not satisfied, the algorithm updates its corresponding constant item in b, retrieves the 

previous solution, and solves the updated problem. Then, the algorithm continues to 

check all other operating constraints. 

5.3.5.2 Update LP Problem, Compute New b Vector 

The detailed explanation of this step is shown in Appendix B.4. Formulas are 

listed as follows:  

The new value of b for an upper bound constraint is  

max max

max max

max

( , , ) 0 ( , , ) 0

max

, ( , ) ;

[ ( , ) ]

( , ) ( , )
.

( , ) .

i reduced reduced

o o o o

i
u v v

h if h h is not violated

h h h

h u v
v

if h h is violated

  

 

  

                    



u g x u g x u

x u

x u

h x u h x u

u

x u

   (5-14) 

The new value of b for a lower bound constraint is  

min min

min min

min

( , , ) 0 ( , , ) 0

min

, ( , ) ;

[ ( , )]

( , ) ( , )
.

( , ) .

i reduced reduced

o o o o

i
u v v

h if h h is not violated

h h h

h u v
v

if h h is violated

  

 

  

                    



u g x u g x u

x u

x u

h x u h x u

u

x u

   (5-15) 

5.3.5.3 Retrieve Operation Point (xo, uo, Im
o) 

 That is x = xo, u = uo, and Im = Io
m. 
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5.3.6 Procedures for Solving the Violation for All Constraints 

Since the linearized problem does not include all the operating constraints, the 

power flow solution may not satisfy some unmodeled operating constraints. Therefore, 

the algorithm adds those violated constraints, retrieves the previous operating point (xo, 

uo, Im
o), linearizes new constraints, and solves the updated linearized optimization 

problem and the power flow. 

5.3.6.1 Check Violation for All Constraints 

This step checks all the operating constraints. If any unmodeled constraint        

hmin ≤ h(x, u) or h(x, u) ≤ hmax is not satisfied, the algorithm continues this procedure; 

otherwise, the algorithm checks whether mismatches are all zero. 

5.3.6.2 Add New Violated Constraints to the Model 

 If h(x, u) is below its lower bound and is not modeled, the algorithm adds        

hmin ≤ h(x, u). If h(x, u) is above its upper bound and is not modeled, the algorithm adds 

h(x, u) ≤ hmax. 

5.3.6.3 Retrieve Operation Point (xo, uo, Im
o) 

That is x = xo, u = uo, and Im = Io
m. 

5.3.6.4 Linearize New Constraints 

This step is the same as the step linearizing operating constraints in Section 

5.3.3.2. 

5.3.7 Procedures for the Next Iteration 

5.3.7.1 Zero Mismatches? 

If all mismatches (Imkr, Imki) are zero, the optimal solution is found. Otherwise, the 

algorithm stores the operating point and processes to the next iteration. 
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5.3.7.2 Store Operating Point (x, u, Im) to (xo, uo, Im
o) 

That is xo = x, uo = u, and Io
m = Im. 

5.3.7.3 Reclassify State and Control Variables 

The power flow may fail to converge after one iteration or give a solution with 

very large violations at some state variables, while the system has a valid power flow 

solution. This usually occurs when the moving ranges of the control variables are too 

large. Using smaller ranges can avoid this circumstance, but will reduce the convergence 

speed of the algorithm. Sometimes reclassifying state and control variables is another 

option to solve these power flow violations. 

If the reactive power output of a generator at a PV bus is far out of its bound, the 

algorithm will change the bus type to PQ mode. That is, Qg becomes a control variable, 

and Vmag becomes a state variable. On the other hand, if the voltage magnitude at a PQ 

bus is far out of its bound, the algorithm will change the bus type to PV mode. That is, 

Vmag becomes a control variable, and Qg becomes a state variable. 

5.4 SQP Algorithm Implementation 

 This section presents the SQP implementation which solves OPF iteratively. QP 

usually can be formulated as  

min f(x) = 1/2 xTQx + cTx 

st.  Ax ≤ b         ,         (5-16) 

 Ex = d 

where Q is a positive semi-definite matrix. Since the cost-driven objective function of the 

OPF problem demonstrated in this thesis is quadratic and the coefficients of the quadratic 

items are positive, Q is positive semi-defined. Therefore, the OPF problem can be solved 

via SQP which needs to linearize the constraints and keep the objective function 

quadratic only. SQP has a similar routine as SLP. 
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 This dissertation work solves QP via the Gurobi solver [123]. Although QP has 

the same objective function as the original nonlinear optimization problem does, SQP 

may not perform better than SLP in solving the OPF problem, because of the following 

reasons: First, both SLP and SQP linearize all the operating constraints and will introduce 

a linearization error. If the benefit from the unchanged objective function cannot 

compensate the linearization error in the final step, SQP cannot lead to a better result than 

SLP. Second, SLP usually needs less runtime since LP solvers are faster than QP solvers. 

Therefore, this work selects SLP as the main implementation and use SQP for 

comparison. 

5.5 Parallelism in OPF 

 Multi-core processors are a major development trend in computer science 

nowadays. A multi-core processor contains several central processing unit (CPU) cores. 

There are usually even numbers of cores in one processor due to manufacture benefits. 

Ideally, a dual-core processor runs twice as fast as a sole-core processor does under the 

same manufacturing and design technologies. However, the performance gain using a 

multi-core processor highly depends on the algorithm design and the software 

implementation. For example, a multi-core processor performs as well as a sole-core 

processor does on the algorithm with no parallelism. Figure 5.4 shows a quad-core 

processor architecture for demonstration [93]. A sequential program will always visit one 

of these four cores during the iterations. If the program runs on Core 1, other cores will 

not be visited since the lines must run in sequence. 
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   Figure 5.2 A generic quad-core processor 

 Parallelism requires different programming styles from traditional sequential 

designs. In this OPF algorithm, most of runtime is consumed in three steps: linearizing 

constraints, solving the LP or QP problem, and solving the power flow. This section 

focuses on paralleling the linearization step. LP and QP are solved via open-source or 

commercial optimization solvers such as GLPK [122] and Gurobi [123]. Here the Gurobi 

optimization solver already includes a parallel barrier solver. The parallel power flow 

solver is left for future development since it is not the key point in this dissertation. 

However, parallelism is important for all these three steps if this algorithm is released for 

practical or commercial use in the future. 

 Although operating constraints are added adaptively, the OPF algorithm may 

include numerous modeled constraints since the whole constraint set is very large. For 

example, a power system including 3,000 buses and 5,000 interconnections (transmission 

lines and transformers) has around 11,000 operating constraints in total if limits are 

applied to bus voltages and power transmissions. A three-phase unbalanced power system 

with the same size has around 33,000 operating constraints three times of the symmetric 

and balanced system. Therefore, paralleling the linearization step is essential and will 

result in significant performance improvement. On the other hand, linearizing one 

constraint will not affect the linearization of other constraints since two constraints are 

independent in the formulation of the optimization problem. Figure 5.3 shows the 

changes in the linearization step in the OPF flow chart with N operating constraints for a 
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computer with n CPU cores. The results in the intermediate steps, such as Ai and Bi (i = 

1, …, n), should be stored separately in the memory. Otherwise, they may overlap each 

other resulting in incorrect linearized coefficients since parallel lines run in random order. 

3.2. Linearize the operating constraints

3.3 Define limit on control variables (v, u) to ensure 
linearized model is approximately valid

3. Form the linearized optimization problem

3.1. Linearize the objective function
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  Figure 5.3 OPF flow chart update for parallelism 

5.6 Post-Solution Sensitivity Analysis 

 This section presents the relationship between the optimal solution and the 

constraints. If the solution satisfies the equation condition of a constraint, it is active, 

otherwise the constraint is inactive. An active constraint means the system is running at 

its boundary and any disturbance may cause the system to collapse. An active constraint 

has a nonzero corresponding dual solution at the final iteration. The dual solution is 
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referred to as the shadow price, the change of the objective value in the optimal solution 

obtained by adjusting the constraint infinitesimally. The shadow price is the maximum 

price that the operator is willing to pay for an extra unit of given limited resource. If a 

constraint is inactive, its shadow price is zero. It means that changing the constraint 

bound does not affect the value of the cost function. If a constraint is active, its shadow 

price is nonzero. 

 The constraints of the control variable ui are ui
min ≤ ui ≤ ui

max, where the shadow 

prices are min
mini
i

dJ

du
   and max

maxi
i

dJ

du
  . The shadow prices tell the system planner 

how to make the new system more profitable by changing constraint bounds. For 

example, it is better to enlarge the limit of a generator with larger μi
max. In addition, the 

bus with these generators is also a better location for new generators if needed. 

 The shadow prices of the operating constraints min min( , )i i ih h h x u  ( min
mini
i

dJ

dh
   

and max
maxi
i

dJ

dh
  ) have the same property as min

i and max
i , although hi(x,u) in the 

power flow solution may not reach the constraint bounds due to system nonlinearity. The 

tighter the limit on a power transmission line, the higher the cost and the smaller the 

feasible region will be. A reasonable min
kmagV  and max

kmagV  help the system to be feasible since 

bus voltages far from 1.0 pu may cause the system to be unstable. 

5.7 The OPF Software Design 

 OPF is a complicated software tool to provide the optimal status based on the 

present status of the system. Since power systems are very large nowadays, OPF software 

should be properly designed to ensure runtime efficiency. According to the symmetric 

and balanced power system structure and the proposed algorithms, The OPF software 

structure is designed as in Figure 5.4. The software has four levels: the device level, the 
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bus level, the system level, and the algorithm level. The device level, the bus level, and 

the algorithm level each have one type of data structures. They are device structures, bus 

structures, and an optimization structure. The system level includes two types of data 

structures: power flow structures and variable structures. A structure communicates with 

the others via functions connected between them. 

Optimization

Bus

Device

Power Flow Variable

Optimal 
control 
variable 
values

Control 
variable values

Solve state 
variables

Linearization

Device 
parameters

Connection 
information 

Initial 
values

Order 
information

Optimal 
solution

Current 
variable 
values

4. Algorithm level

3. System level

2. Bus level

1. Device level
 

Figure 5.4 The OPF software design 

 Device structures store the device parameters and the state values. All the device 

structures are sorted according to their connected buses. The connection information 

between adjacent buses is provided by the transmission lines and the transformers. In the 

system level, the power flow structures and the variables are also sorted according to the 

buses. Power flows are used to compute the Jacobian matrix in solving the state variables 

and linearizing formulas for the optimization structure. The variable structures are the 

core structures in the OPF software. They read the initial values from the device 

structures at the beginning of the algorithm and write the optimal solution to them in the 

end. In each iteration, the variable structures send the present values of the control 
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variables from the power flow structures and obtain the solved values of the state 

variables from them. In the optimization step, variable structures write the present 

variable values to the optimization structure before LP or QP and write the updated 

optimal values of the control variables afterwards. 

 This software design fits for the single-phase OPF problem since the Jacobian 

matrix computed from the power flow equations can be easily ordered with large 

diagonal elements according to the bus order and device types. The Jacobian matrix with 

large diagonal elements can improve the computational efficiency of solving the power 

flow. The power flow equations are sorted according to the bus order. The first two 

power flow equations of a bus are the current balance equations and the device equations 

are listed after those. The order of the device equations should ensure that the abstract 

values of the derivatives at diagonal elements are larger than or equal to the abstract 

values of all other derivatives at the same row and column in the Jacobian matrix. 

Symmetric and balanced power systems are much simpler than three-phase power 

systems which require an automatic algorithm to ensure that the Jacobian matrix has 

large diagonal elements. Therefore, Section 6.6 presents the software design of three-

phase OPF different from the design in Figure 5.4. 

5.8 Summary 

 This chapter presented a robust and high-efficient OPF algorithm using the 

sequential methods to address the shortcomings of present OPF algorithms. They are 

classified into three categories: (a) nonlinear programming (NLP), (b) intelligent search 

methods, and (c) sequential algorithms. Their shortcomings are summarized as follows: 

First, all these algorithms require a feasible power flow solution as the initial working 

point and iteratively optimize the current working point to reach the optimal solution. 

Second, the efficiency of these algorithms needs to be improved. For example, they 

include all power flow equations in the constraint set, while only two system-level power 
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balance equations are needed in the proposed algorithm. In addition, NLP algorithms 

include all the operating constraints in their Karush-Kuhn-Tucker (KKT) conditions. 

Intelligent search methods are first-order methods and inefficient for large-scale systems 

since they have their own strategies which are less relevant to the system structure. 

 Robustness means the algorithm can provide a solution for any problem. This 

algorithm starts from an infeasible optimal state and moves to the feasible region while 

maintaining an optimal status. System feasibility is maintained by introducing artificial 

mismatch current sources at each bus. The mismatches reduce iteratively and the 

optimization method ensures that the solution is optimal at each iteration. If the feasible 

solution is found, it is optimal. Otherwise, the algorithm returns a suboptimal point 

providing the best choice to solve system infeasibility with a set of remedial actions. 

 High efficiency means less runtime. First, the algorithm models OPF as a 

quadratic problem for fast convergence in solving the power flow. Therefore, the 

formulated optimization problem is a quadratic optimization problem. Second, the 

algorithm identifies active constraints and adds them to the modeled constraint set if 

needed. For example, power flow equations are replaced by two current conservation 

equations at the system level, operating constraints are added when they are violated in 

the previous iteration, and the mismatch variables are represented by one control variable. 

Third, a sparsity technology is introduced in the matrix computation for large-scale 

systems. 

 SQP has the same routine as SLP has, while the objective function of SQP is 

quadratic. Although QP preserves more information than LP in the objective function of 

the converted problem, the performance of SQP may be worse. Then, the discussion of 

parallelism showed that parallel programming on multi-core or multi-CPU hardware 

platforms will improve the runtime. Next, this chapter analyzed the sensitivity of 

constraints via the small disturbance method on constraint boundaries. Finally, the 

software design of the proposed algorithm was described. 
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CHAPTER 6 

THREE-PHASE OPTIMAL POWER FLOW 

 

6.1 Introduction 

 A major goal of smart grid technologies is to extend transmission grid analysis 

and control methods to distribution systems. Hence, distribution management systems 

(DMS) for the smart grid need to include functions such as state estimation [91], [92] and 

optimal power flow [94]-[102] which are common in energy management systems (EMS). 

Since distribution systems generally operate in unbalanced conditions, three-phase 

optimal power flow (TOPF) is required rather than traditional single-phase OPF. This 

chapter proposes a TOPF formulation and a solution algorithm that operates in the 

infeasible region and moves the operating point to a feasible and optimal point via 

sequential methods. The proposed TOPF formulation is similar as the single-phase OPF 

formulation. However, they are not exactly the same. There are four complex voltage 

variables at each bus in three-phase unbalanced power systems. In addition, TOPF 

includes both continuous and discrete variables. Therefore, a TOPF algorithm is proposed 

based on the OPF algorithm with some modifications. 

6.2 Three-Phase OPF 

 The cost function of TOPF is similar to that of the single-phase OPF. This cost 

function is the sum of the mismatch penalties of each phase and the quadratic cost 

functions of all the generators. The mismatch variables are the real and imaginary 

currents injected to all phases of each bus in the quadratic three-phase power system 

model. Therefore, the TOPF problem is  
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where 

x is the state variable vector,  

uc is the vector of the continuous control variables,  

ud is the vector of the integer control variables,  (u = [uc
T, ud

T]T)  

Im is the vector of the mismatch currents, 

J(x, u) is the objective function, which takes into account the operation cost of the system 

and mismatch penalties,  

N is the total number of the buses in the power system, 

M(k) is the number of the generators at Bus k,  

ck,j(x, u) is the cost function of the jth generator at Bus k,  

g(x, u, Im) = 0 are the three-phase quadratized power flow equations,  

hmin ≤ h(x, u) ≤ hmax are the operating constraints,  

uc
min ≤ uc ≤ uc

max are the constraints of the continuous control variables, and  

ud = 0 or 1 means the values of the integer control variables are 0 or 1.  

Section 6.3.1 shows the detailed description of the state variables and the control 

variables. Section 6.4 shows the detailed description of the constraints. 

 An application of this TOPF problem is in the measurement of the cost of loss, 

which can be used as the operating cost during system planning. Since the system 

configurations of different planning scenarios for the same loading conditions are 

different, their operating costs are different, such as different VAR source locations. 

Therefore, the operating cost should be considered in system planning which is a cost-

driven optimization problem with fixed planning intervals. The objective of this problem 
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is to find the planning trajectory with minimum cost. A typical method to solve a 

planning problem is dynamic programming since the problem satisfies the principle of 

optimality. All the costs are pre-computed and stored in a table, and then the algorithm 

looks up the table recursively to find the optimal trajectory. The detailed explanation is 

shown in Chapter 7. TOPF is the best choice to compute the operating cost since a system 

usually runs under its optimal conditions. Therefore, TOPF is a subroutine in the 

planning. 

6.3 Three-Phase Quadratic General Bus Modeling 

 Since a distribution system is unbalanced, a three-phase model is required in the 

TOPF algorithm. A three-phase general bus includes (a) synchronous generators, (b) 

mismatch current sources, (c) three-phase constant power loads, (d) three-phase constant 

impedance loads, (e) induction motors, (f) capacitor banks, (g) inductors, (h) static VAR 

compensators, (i) transmission lines, (j) multiphase cables, (k) two-winding three-phase 

transformers, (l) three-winding three-phase transformers, (m) phase shifters, (n) single-

phase transformers, (o) single-phase constant power loads, (p) single-phase constant 

impedance loads, (q) pluggable hybrid electric vehicles, etc. Figure 6.1 shows the one-

line diagram of the general bus in a three-phase power system. The devices connected to 

the bus form bus resources while the interconnections between adjacent buses form 

network. Each bus has four complex current conservation equations, which represent 

phase A, B, C, and N respectively. Power flow equations consist of the current 

conservation equations of each phase and several internal equations for each device with 

internal state variables.  

 The power flow equations of Bus k (a three-phase line) are  
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            (6-2) 
where a, b, c denote the three phases, and n denotes the neutral line. 
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Figure 6.1 The one-line diagram of a general bus in three-phase power systems 
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6.3.1 The Description of OPF State and Control Variables 

 The variables in three-phase OPF are classified into control variables (u) and state 

variables (x). The control variables can be adjusted directly and independently. The state 

variables describe the external and internal states of each device. The following 

subsections show the variable classification of various devices. 

6.3.1.1 Synchronous Generators 

 The variables of a synchronous generator are classified according to their control 

options for operating the generator. This classification is as follows:  

●  PQ mode: 

    u = [P, Q]T,  

    x = [Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, Vni, Er, Ei]
T,  

●  PV mode: 

    u = [P, Vmag]
T,  

    x = [Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, Vni, Er, Ei]
T,  

●  Slack mode: 

    u = [Vmag]
T,  

    x = [Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, Vni, Er, Ei]
T,  

where  

P is the real power output of the generator,  

Q is the reactive power output of the generator,  

Vmag is the line-to-line voltage magnitude, 

Var and Vai are real and imaginary parts of phase A voltage,  

Vbr and Vbi are real and imaginary parts of phase B voltage,  

Vcr and Vc i are real and imaginary parts of phase C voltage,  

Vnr and Vni are real and imaginary parts of neutral line voltage,  

Er and Ei are real and imaginary parts of generator EMF. 
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 Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, and Vni are the external state variables, which are 

also mutually owned by the devices connected to the same bus. Er, Ei are the internal 

state variables, where Ei at the slack bus equals zero. 

6.3.1.2 Constant Power Loads 

 Since constant power loads are not controllable, they have state variables only. 

The state variables of a three-phase constant power load are  

x = [Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, Vni, u1r, u1i, u2r, u2i]
T,  

where u1r, u1i, u2r, u2i are internal variables introduced to quadratize the device model. 

The state variables of a single-phase constant power load are  

x = [Vl1r, Vl1i, Vl2r, Vl2i, u1r, u1i]
T. 

where 

Vl1r and Vl1i are the real and imaginary parts of Terminal 1 voltage,  

Vl2r and Vl2i are the real and imaginary parts of Terminal 2 voltage. 

 A plug-in hybrid electric vehicle (PHEV) is modeled as a single-phase constant 

power load with a switch. Since PHEVs are heavy loads and a power system may contain 

a large number of PHEVs, their charging time should be well scheduled to avoid high 

peak load. 

6.3.1.3 Constant Impedance Loads 

 Since a three-phase constant impedance load is not controllable and does not have 

any internal states, it has only external state variables:  

x = [Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, Vni]
T. 

A single-phase constant impedance load also has only external state variables:  

x = [Vl1r, Vl1i, Vl2r, Vl2i, Vnnr, Vnni]
T. 
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6.3.1.4 Transmission Lines and Multiphase Cables 

 A transmission line is not controllable and does not have any internal variables. 

Its state variables are formed from the voltage variables of its two terminals. The state 

variable set of a transmission line between Bus 1 and Bus 2 is  

x = [Va,1r, Va,1i, Vb,1r, Vb,1i, Vc,1r, Vc,1i, Vn,1r, Vn,1i, Va,2r, Va,2i, Vb,2r, Vb,2i, Vc,2r, Vc,2i, Vn,2r, 

Vn,2i]
T,  

where 1 means primary side and 2 means secondary side. 

 A multiphase cable also has only external state variables formed from the phase 

voltages at the cable terminals. For example, a three-phase cable has the same state 

variable set as a transmission line does.  

6.3.1.5 Transformers 

 Transformers can be classified into three-phase transformers and single-phase 

transformers. They can also be classified into regulated and non-regulated transformers. 

Non-regulated transformers do not have any control variables. They are listed as follows:  

A non-regulated two-winding three-phase transformer:  

x = [Va,1r, Va,1i, Vb,1r, Vb,1i, Vc,1r, Vc,1i, Vn,1r, Vn,1i, Va,2r, Va,2i, Vb,2r, Vb,2i, Vc,2r, Vc,2i, Ea,1r, Ea,1i, 

Eb,1r, Eb,1i, Ec,1r, Ec,1i]
T,  

where  

Ear, Eai, Ebr, Ebi, Ecr, and Eci are the real and imaginary parts of primary side EMFs for 

each phase respectively. 

A non-regulated three-winding three-phase transformer:  

x = [Va,1r, Va,1i, Vb,1r, Vb,1i, Vc,1r, Vc,1i, Vn,1r, Vn,1i, Va,2r, Va,2i, Vb,2r, Vb,2i, Vc,2r, Vc,2i, Ea,1r, Ea,1i, 

Eb,1r, Eb,1i, Ec,1r, Ec,1i]
T. 

A non-regulated two-winding single-phase transformer with a secondary center tap:  

x = [Va,1r, Va,1i, Vn,1r, Vn,1i, Vl1,2r, Vl1,2i, Vnn,2r, Vnn,2i, Vl2,2r, Vl2,2i, E1r, E1i]
T. 
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 A regulated transformer has one more control variable (the tap setting t) compared 

with the corresponding non-regulated transformer. A phase shifter is a three-phase 

transformer with positive or negative phase angle difference between the primary side 

and the secondary side. Therefore, the phase shifter model is the same as the three-phase 

transformer model. 

6.3.1.6 Capacitor Banks 

 A capacitor bank is controlled via a switch. Capacitor banks can be classified into 

controllable and non-controllable. A non-controllable capacitor bank has state variable 

only, while a controllable capacitor bank has one discrete control variable, the switch uc. 

If the capacitor bank is connected to the grid, then uc = 1; otherwise, uc = 0. For a 

controllable capacitor bank,  

u = [uc]
T,  

x = [Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, Vni]
T. 

6.3.1.7 Static VAR Compensators 

 A static VAR compensator (SVC) can be modeled as a capacitor with continuous 

switching. Since the thyristor-controlled reactor in a SVC provides smooth control, a 

SVC has one continuous control variable, the switch usvc (0 ≤ usvc ≤ 1). Therefore,  

u = [usvc]
T,  

x = [Var, Vai, Vbr, Vbi, Vcr, Vci, Vnr, Vni]
T. 

6.3.1.8 Induction Motors 

 Induction motors are viewed as loads and are assumed to be uncontrollable in the 

TOPF problem. They have only state variables.  

A three phase induction motor:  

x = [Var, Vai, Vbr, Vbi, Vcr, Vci, u1r, u1i, …, u14r, u14i]
T,  

A single phase induction motor:  
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x = [Vl1r, Vl1i, Vnnr, Vnni, u1r, u1i, …, u15r, u15i]
T,  

where u1r, u1i, …, u15r, and u15i are the internal variables introduced to quadratize the 

models of the induction motors. 

6.3.2 The Description of OPF Mismatch Variables 

 Mismatch current sources represent current mismatches at each bus. Mismatch 

variables equal current injections into the mismatch current sources. They will be reduced 

in each iteration and finally reach zero if the system has a valid power flow solution. 

There are eight mismatch variables at each bus:  

Im = [Imar, Imai, Imbr, Imbi, Imcr, Imci, Imnr, Imni]
T. 

6.4 TOPF Constraint Description 

 The constraints in the TOPF problem ensure that the three-phase power system 

operates at normal steady-state conditions. They include the power flow equations (g(x, u, 

Im) = 0), the operating constraints (hmin ≤ h(x, u) ≤ hmax), and the control variable 

constraints (umin ≤ u ≤ umax). 

 The state variable values are determined by the three-phase quadratized power 

flow equations. They consist of the current conservation equations at each bus and the 

internal equations of each device. The power flow equations of the whole system are 

combined with the equations of each bus:  

  0
( , , )

gk dpk dik devk ck ik svck motork k mk
km

Internal equations of all devices

           


 I I I I I I I I I I
g x u I

         
,   (6-3) 

where 
T

k ak bk ck nkI I I I   I     . 

 The operating constraints are listed as follows:  

 The constraints of voltage magnitudes (Va,kmag, Vb,kmag, Vc,kmag, Vl1,kmag, Vl2,kmag) at Bus 

k, such as    2 2min 2 2 max
, ,kmag a kr a ki kmagV V V V   ,  
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 The constraints of real power (P) outputs of the slack generator: min maxP P P  ,  

 The constraints of reactive power (Q) outputs of the slack generator and PV mode 

generators: min maxQ Q Q  ,  

 The constraints of current transmission through a transmission line or a multiphase 

cable between adjacent buses (Bus k and Bus n) for each phase (|Ia,kn|, |Ib,kn|, |Ic,kn|, 

|Il1,kn|, |Il2,kn|), such as 
22 2 max

, ,a knr a kni knI I I ,  

 The constraints of the current transmissions through a transformer between adjacent 

buses (Bus k and Bus x) for each phase (|Ia,kx|, |Ib,kx|, |Ic,kx|), such as 

22 2 max
, ,a kxr a kxi kxI I I .  

 The maximum current of a transmission line or a multiphase cable is determined 

according to the type and the size given by its specification. The maximum current of a 

transformer is computed as follows:  

Delta connection: max
kx

MVA rating
I

Primary side line - to - line kV rating
 ,     (6-4) 

Wye connection: max

3
kx

MVA rating
I

Primary side line - to - line kV rating



.    (6-5) 

 The control variable constraints include the upper and lower bounds of all the 

control variables. They are listed as follows:  

 The real power outputs of PQ and PV mode generators : min maxP P P  ,  

 The reactive power outputs of PQ mode generators: min maxQ Q Q  ,  

 The voltage magnitudes of the slack bus and PV buses: min max
mag mag magV V V  ,  

 Transformer taps: min maxt t t  ,  

 Capacitor bank switches: 0 1ct or ,  

 SVC switches: 0 1svct  .  
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6.5 Algorithm Description 

 The TOPF algorithm outline is the same as the OPF algorithm outline shown in 

Figure 5.1, but several detailed steps are different, such as initializing variables and 

solving the linearized optimization problem. This section will describe the major different 

steps in the TOPF algorithm. 

6.5.1 Assign Initial Values of x and u to xo and uo 

6.5.1.1 Assign Initial Values for Control Variables 

 The initial state of a power system should satisfy all the constraints while the 

mismatch variables may be nonzero. Therefore, the initial values of the control variables 

are set to some specific values within their physical limits. 

6.5.1.2 Assign Initial Values for External State Variables 

 The state variables are classified into the external state variables and the internal 

state variables. The external state variables are the terminal voltages which should be 

equal to each other when the devices connected to the same bus. The terminal voltages of 

a device at a three-phase bus are initialized as  

Phase A voltage: 
(cos sin )

3

rated
l l

a

j V
V

  
 ,       (6-6) 

Phase B voltage: 

2 2
cos( ) sin( )

3 3

3

rated
l l

b

j V
V

    
    
  ,     (6-7) 

Phase C voltage: 

2 2
cos( ) sin( )

3 3

3

rated
l l

c

j V
V

    
    
  and,     (6-8) 

Phase N voltage: initial
n neutralV V ,          (6-9) 
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where φ is the initial phase, rated
l lV   is the rated line-to-line voltage, and nominal

neutralV  is the 

initial neutral line voltage. ( nominal
neutralV  is set to 0.0001V in this algorithm.) For example, if φ 

= 0 at the primary side of a standard delta-wye connection transformer (leading phase 

angle), φ = π/6 at the secondary side. 

 The terminal voltages at the secondary side of a single-phase transformer with a 

secondary center tap are initialized as  

Phase L1 voltage: 2
1

(cos sin )

2

rated
side

l

j V
V

 
 ,       (6-10) 

Phase L2 voltage: 2
2

(cos sin )

2

rated
side

l

j V
V

 
 , and       (6-11) 

Phase NN voltage: initial
nn neutralV V ,         (6-12) 

where φ equals the initial phase at the primary side of that transformer and 2
rated

sideV  is the 

secondary side nominal voltage. 

 Terminal voltages of a device at a single-phase bus (branches from the secondary 

side of a single-phase transformer) are initialized as  

Phase L1 voltage: 1 (cos sin ) rated
l deviceV j V    and       (6-13) 

Phase NN voltage: initial
nn neutralV V ,         (6-14) 

where rated
deviceV  is the device nominal voltage. 

6.5.1.3 Assign Initial Values for Internal State Variables 

 After the initial values of the external state variables are obtained, the algorithm 

will assign the initial values of the internal state variables satisfying all the internal power 

flow equations. This section proposes a general assignment method using Newton’s 

method. The reasons why the algorithm does not use some more direct methods are listed 

as follows: First, the internal state variables cannot be assigned to some standard values 

like external state variables since the internal power flow equations do not include 
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mismatch variables. Second, the internal state variables cannot be computed via 

substituting formulas as was done in Section 5.3.1.2 since three-phase power systems 

include various types of devices and some device models have tens of state variables and 

power flow equations. For example, the three-phase inductor model has 28 internal state 

variables and the single-phase inductor model has 30 internal state variables. Therefore, 

the substitution method will have to develop formulas for all these state variables and 

some of them are very complicated. 

 The initial values of the internal state variables of Device k can be solved via 

Newton’s method using a general internal device model as follows:  

_ 1

_ _ _ 2 _ _0

kT k k
eq real

k k kT k k k
eq real internal eq real eq real internal

x f x

Y Y x f x b

 
    
  

,     (6-15) 

where 

Yk is the internal state variable vector,  

Xk is the state variable vector, and  

Yk
eq_real_internal and bk

eq_real_internal represent the linear and constant items of the internal 

power flow equations respectively. This model is generated by removing the external 

power flow equations from the full quadratic model of Device k:  

_ 1

_ _ 2 _
0

kT k k
eq realkk

k kT k k k
eq real eq real eq realk

x f x
VI

Y x f x b
Y

 
          

      
,      (6-16) 

where 

Ik is the through variable vector,  

Vk is the external state variable vector (Xk = [VkT YkT]T), and  

fk
eq_real, Y

k
eq_real, and bk

eq_real represent quadratic, linear, and constant items respectively. 

Since the external power flow equations are all linear, the quadratic items in Equation 
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(6-15) and Equation (6-16) are the same. The initial guess of Xk in Newton’s method can 

be assigned to some standard values. For example, the initial guess of the electromotive 

force (EMF) of a three-phase transformer equals to its terminal voltages: a aE V  , 

b bE V  , and b bE V  . Newton’s method converges within two iterations since the 

internal device model is either linear or quadratic. 

 This assignment method is effective for most of device models since their internal 

device models are solvable and contain all the internal state variables. However, slack 

and PV synchronous generators are the exceptions. For example, the internal model of a 

slack mode generator is  

2 2 2 2 2

0

0 2 2

i

ar ai br bi ar br ai bi mag

E

V V V V V V V V V



      
,       (6-17) 

where Ei is the imaginary part of the generator EMF and Vmag is the line-to-line voltage 

magnitude. Obviously, the real part of the generator EMF (Er) cannot be solved from 

Equation (6-17). Therefore, the algorithm solves Er and Ei in slack and PV generators 

using the real and reactive power equations:  

0

0
ar ar ai ai br br bi bi cr cr ci ci

ar ai ai ar br bi bi br cr ci ci cr

V I V I V I V I V I V I P

V I V I V I V I V I V I Q

      

       
,      (6-18) 

where 

ar ar ai ni nr i rI bV gV gV bV gE bE      ,  

ai ar ai nr ni r iI gV bV gV bV gE bE      ,  

3 1 1 3

2 2 2 2br br bi nr ni r iI bV gV bV gV g b E g b E
   

             
   

,  

1 3 3 1

2 2 2 2bi br bi nr ni r iI gV bV gV bV g b E g b E
   

              
   

,  
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1 3 1 3

2 2 2 2cr cr ci nr ni r iI bV gV bV gV b g E g b E
   

             
   

, and 

1 3 3 1

2 2 2 2ci cr ci nr ni r iI gV bV gV bV g b E g b E
   

             
   

,  

where g + jb is machine admittance. 

6.5.2 Solve the Linearized Optimization Problem v, Δu, ΔIm 

 Since the control variable of a capacitor bank is an integer variable, TOPF is a 

mixed-integer nonlinear programming problem (MINLP). According to the theory of 

computational complexity, MINLP is a NP-complete problem without any polynomial 

time algorithms. Therefore, there is no general time-efficient algorithm theoretically. The 

algorithm to the TOPF problem should be designed according to its characteristics shown 

as follows.  

 The TOPF problem in this chapter is a cost-driven MINLP and the objective 

function does not contain any integer variables, so the algorithm structure is the same as 

single-phase OPF with some minus changes including relaxing integer constraints to 

continuous conditions and rounding LP solutions of integer variables to their closer 

integer number. The reasons for these changes are listed as follows. First, our present 

algorithm framework is very time efficient. Second, the mismatch variables need several 

iterations to reach zero, so the iterations afterwards can reduce the effect of this 

relaxation. Therefore, we add an additional step after obtaining the LP solution: if 0 ≤ tc ≤ 

0.5, then tc = 0; otherwise, tc = 1. This method may need some additional iterations and 

the solution may be suboptimal. 

6.5.3 The Branch and Bound Algorithm to TOPF 

 Another typical method to solve MINLP is the branch and bound algorithm. This 

section presents the branch and bound algorithm to TOPF for comparison. The original 
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TOPF problem can be viewed as selecting the optimal configuration of the discrete 

variables from all possible combinations. The cost of each configuration is obtained via 

solving the associated continuous TOPF problem with determined ud values. The original 

TOPF problem (6-1) is relisted as follows:  

 
( )

,
1 1

min max

min max

min ( , ) ( , )

. . ( , , ) 0

( , )

0 1

M kN

m k j
k j
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
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
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 


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g x u I

h h x u h

u u u

u

.        (6-19) 

 The branch and bound algorithm to this TOPF problem is shown as follows:  

1. Set the problem tree Tp to empty.  

2. Relax all the integer constraints to continuous constraints, that is 0 ≤ ud ≤ 1. Add the 

relaxed problem to Tp as the root and set it as the current subproblem SPc. 

3. Solve SPc to obtain the objective function value J and values of uc and ud.  

4. Set the lower bound of the problem JLower = min (objective function values of all 

subproblems in the problem set) and  

Set the upper bound of the problem JUpper = min (objective function values of all 

solved subproblems (all variables in ud are integer) in the problem set).  

5. If SPc does not have a feasible solution or J ≥ JUpper, remove SPc from Tp. Otherwise, 

if all variables in ud are integer, SPc is marked as solved.  

6. If SPc is removed or solved, go to step 8; otherwise, go to step 7.  

7. If ud does not include any variable with a non-integer value, go to step 8; otherwise, 

select a non-integer variable udi from ud, add two subproblems to Tp, one with 

additional constraint udi = 0 and the other with udi = 1 respectively.  

8. If Tp has unsolved subproblems, Set SPc to the next unsolved subproblem in Tp and go 

to step 3. 
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9. If Tp contains solved subproblems, select the solution of the solved subproblem with 

the minimum objective function as the final solution of TOPF. Otherwise, TOPF has 

no solution. 

 The branch and bound algorithm can obtain the optimal solution theoretically. 

However, it may need to compute all discrete variable combinations in the worst case. 

Therefore, the complexity of the branch and bound method is up to O(2n). That means the 

number of the continuous TOPF problems is 2n in the worst case, where n is the number 

of the discrete variables. For example, the maximum number of continuous TOPF 

subproblems is 1024 if ud has only 10 elements. 

6.6 The TOPF Software Design 

 The algorithm architecture of TOPF is the same as the single-phase version shown 

in Figure 5.1. However, a three-phase unbalanced power system is much more 

complicated than a symmetric and balanced power system. Therefore, TOPF software has 

a different structure with OPF software. Figure 6.2 shows the TOPF software structure 

fitting the property of three-phase power systems. 

Optimization

Device

Net Solver
1. Jacobian

2. Variable order
3. System level base

Variable

Optimal 
control 
variable 
values

Variable 
values

Solve state 
variables

Linearization

Device 
parameters

Connection 
information 

Initial 
values

Current 
variable 
values

3. Algorithm level

2. System level

1. Device level

Order 
information

Mismatch 
variable values

Control 
variable 
values

Variable base 
values

 

Figure 6.2 The TOPF software design 
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 TOPF software has three levels: the device level, the system level, and the 

algorithm level. Since the variables are sorted according to the device types, the bus level 

is not needed. There are four types of data structures in these levels: device structures, a 

net-solver structure, variable structures, and an optimization structure. The variable 

structures store the system status in each iteration. They provide present the variable 

values to the optimization structure and receive the optimal values of the control 

variables after the optimization step. Figure 6.1 shows the device types included in TOPF. 

Although the device types are various, the data communications of the device structures 

are the same. The device structures send the initial variable values to the variable 

structures at the beginning of the algorithm and receive the update variable values from 

them in each iteration. Device structures also send the connection information, the device 

parameters, and the control variable values to Net Solver. It is the core structure 

providing the functions as ordering and solving the state variables, forming the Jacobian 

matrix in the system level, and generating the system-level bases for all variables. Net 

Solver also provides linearization information to the optimization structure and sends the 

solved state variable values, the variable orders, and the variable base values to variable 

structures. The detailed descriptions of Net Solver are listed as follows:  

1. Net Solver orders the state variables according to both the variable types and the bus 

indices at the system level. The order of the state variables should ensure that the 

Jacobian matrix has large diagonal elements. 

2. Each phase line at a bus has three base units: a voltage base, a current base, and a 

power base. Net Solver computes these base units using the average base units of all 

devices connected to that line since the base values of these devices may not be equal. 

3. Since the mismatch current sources in this TOPF algorithm are not zero before the 

optimal solution is obtained, Net Solver solves the state variables with mismatches 

using the equation system:  
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,     (6-20) 

where 
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 is the original quadratic power 

system model,  

Im is the vector of the mismatch variables, (# Im = # V.)  

Y is the vector of the internal state variables,  

X is the vector of the state variables,  

V is the vector of the external state variables (X = [VT YT]T), and  

feq_real, Yeq_real, and beq_real represent quadratic, linear, and constant items respectively.  

6.7 Summary 

 This chapter first described the TOPF formulation including both continuous and 

discrete variables. Since TOPF includes discrete variables, an additional step is added 

after obtaining the updated control variable values in LP. Then, a quadratized model of 

three-phase power systems was presented followed by variable classification. TOPF 

variables are also classified into the state variables and the control variables. The state 

variables consist of the external state variables (terminal voltages) and the internal state 

variables, some of which are introduced to quadratize device models. And then, this 

chapter elaborated on the TOPF algorithm mainly focusing on the modifications 

compared with the proposed OPF algorithm. The modifications are in assigning initial 

variable values and in solving the linearized optimization problem. The TOPF software 

design was described at the end of this chapter. 
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CHAPTER 7 

A TOPF APPLICATION – OPTIMAL VAR ALLOCATION WITH 

DYNAMIC PROGRAMMING 

 

7.1 Introduction 

 This chapter presents the formulation and a solution method of the optimal VAR 

allocation problem, where TOPF is used to evaluate the performance and the cost of each 

decision. In general, dynamic VAR sources can mitigate fault induced delayed voltage 

recovery (FIDVR) phenomena, but their cost is very high. Therefore, they should be 

strategically placed taking into consideration both the reduction of voltage disturbance 

and the minimization of the total cost. Static VAR sources can help to some extent, but 

they cannot be switched fast enough to provide the required response. In this thesis, we 

use both static VAR sources (capacitor banks) and dynamic VAR sources (static VAR 

compensators) to improve the performance of the system under FIDVR conditions. A 

number of candidate locations may be selected for placing static and dynamic VAR 

sources. Therefore, this is a decision problem and we solve it using the dynamic 

programming algorithm. This decision problem has several stages and associated costs at 

each decision stage that can be categorized on a) economic costs and b) performance 

penalties. The economic costs include the annualized equivalent cost of the added 

equipment and the operating cost. The annualized equivalent cost is computed from the 

acquisition cost and the installation cost. The acquisition cost depends on equipment 

prices. The installation cost depends on labor prices and installation time. The operating 

cost cannot be easily evaluated since the actual operating status is unknown. Since a 

system usually runs at its optimal conditions, a good choice is to use the optimal cost 

under a typical operating condition, which can be computed using TOPF. The reason for 
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the selection of TOPF is its high computational efficiency and ability to provide accurate 

optimal costs under different system structures in different decision stages. The 

performance penalties include the penalty items of the voltage deviation at the steady 

state, voltage recovery time and the voltage oscillation magnitude after a fault clearing. 

This chapter provides the description of the planning algorithm. Chapter 10 shows the 

details of the planning algorithm for a power system with two distribution networks and 

gives the computational details of a specific state (State 6 at Stage 19) for demonstration. 

7.2 Cost Definitions 

 Cost components are categorized on economic costs (JEconomicCost), performance 

penalties (JPerformancePenalty), and hard constraints (JHardConstraint). Economic costs are 

defined as the monetary value, which are required to upgrade and operate the system. 

Economic costs consist of the annualized equivalent cost (JAnnualizedEquivalentCost) and the 

operating cost (JOperatingCost). Performance penalties include the voltage deviation penalty 

(JVoltageDeviationPenalty), the voltage recovery time penalty (JVoltageRecoveryTimePenalty), and the 

voltage oscillation penalty (JVoltageOscillationPenalty). They are converted from their 

corresponding performance criteria. In addition, they occur in every planning stage 

recurrently, but they are different for each stage since system parameters may change 

during stages. Hard constraints include the voltage lower bound (JVoltageLowerBound) and the 

voltage recovery time upper bound (JVoltageRecoveryTimeUpperBound). A very high cost is 

assigned when a hard constraint is violated. Figure 7.1 lists the costs discussed in this 

section. 

 In summary, the total cost of a system state is  

C = JAnnualizedEquivalentCost + JOperatingCost  

+ JVoltageDeviationPenalty + JVoltageRecoveryTimePenalty + JVoltageOscillationPenalty  

+ JVoltageLowerBound + JVoltageRecoveryTimeUpperBound                                                                  (7-1) 
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The detailed definition and the computation of these costs are shown in the following 

subsections. 

 

 

Figure 7.1 Cost classification 

7.2.1 The Annualized Equivalent Cost 

 The annualized equivalent cost (AEC) [128] is the cost per year of owning and 

operating an asset over an infinite long time period that may involve replacing of 

equipment at the end of their economic life. AEC is computed as follows,  

/
( )

(1 ) 1AnnualizedEquivalentCost C C m p

r
J A I r

r

 
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,      (7-2) 

where 

AC = the acquisition cost,  

IC = the installation cost,  

r = the interest rate,  

m = the expected economic life time of the asset in years, and  

p = the length of planning stage in years.  
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7.2.2 The Operating Cost 

 The operating cost (JOperatingCost) is used to measure the cost of losses via TOPF 

for the same loading conditions with different VAR source arrangements, which may 

affect the operating cost due to different system configurations. TOPF evaluates the 

operating cost at each state and for each stage of the planning horizon. The operating cost 

is usually represented as a nonlinear function of the real powers generated as follows,  

 
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2
, , , , ,

1 1

M kN

OperatingCost k j k j k j k j k j
k j

J a b P c P
 

    ,       (7-3) 

where 

N is # the buses in the power system,  

M(k) is # the generators at Bus k,  

Pk,j is the real power generated of the jth generator at Bus k, 

ak,j, bk,j, and ck,j are coefficients in the cost function of the jth generator at Bus k. 

 TOPF is the best choice to compute the operating cost since a three-phase power 

system usually operates at its optimal conditions, for which TOPF gives the minimum 

value of the nonlinear objective function under the operating constraints. TOPF is formed 

as follows:  

   
( )

2
, , , , ,

1 1

min max

min max

min ( , )

. . ( , , ) 0

( , )

0 1

M kN

OperatingCost m k j k j k j k j k j
k j

m

c c c

d

J J a b P c P

s t

or


 

    



 

 


  x u I

g x u I

h h x u h

u u u

u

,    (7-4) 

where x is the state variable vector, u = [uc
T, ud

T]T, uc is the vector of continuous control 

variables, ud is the vector of integer control variables, and Im is the vector of mismatch 

currents. J(x, u) is the objective function, which takes into account the operating cost and 

the mismatch penalties. When the optimal solution is found, mismatch penalties are zero 
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and J(x, u) equals the optimal operating cost. Chapter 6 describes the TOPF problem in 

detail. 

7.2.3 The Voltage Deviation Penalty 

 The voltage deviation penalty is a penalty associated to a voltage deviation from 

the nominal value. The penalty is evaluated as follows: first we compute an index that 

quantifies the voltage deviation. Then the index is multiplied with a conversion factor 

that converts the voltage index into penalty. The following formula for the evaluation of 

the voltage deviation penalty is proposed:  

2

1
1 0.05

bN
ti ni

VoltageDeviationPenalty i
i ni

V V
J S

V




 
  

 
 ,        (7-5) 

where 

Si is load rating at Bus i (MW), 

Nb is # the buses,  

Vti is the voltage magnitude of Bus i under normal operating conditions (V),  

Vni is the rated voltage of Bus i (V),  

2

0.05
ti ni

ni

V V

V

 
 
 

 is the voltage deviation index, and  

β1 is the conversion factor of the voltage deviation index into penalty ($/MW). We 

propose the value β1 = 2.0 $/MW. 

7.2.4 The Voltage Recovery Time Penalty 

 The voltage recovery time is the time during which bus voltage remains below 

90% of its nominal value after a fault clearing. The voltage recovery time penalty is 

evaluated as follows: first we compute an index that quantifies voltage recovery time. 

Then the index is multiplied with a conversion factor that converts the time index into 
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penalty. The following formula for the evaluation of the voltage recovery time penalty is 

proposed:  

2

2
1

0 , 0.5

0.5
, 0.5

0.5

b

ri

N
VoltageRecoveryTimePenalty ri
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if t s

J t s
S if t s
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


      

 


,      (7-6) 

where 

Si is load rating at Bus i (MW), 

Nb is # the buses,  

tri is voltage recovery time of Bus i (s),  

2
0.5

0.5
rit s

s

 
 
 

 is the voltage recovery time index, and  

β2 is the conversion factor of the voltage recovery time index into penalty. We propose 

the value β2 = 30.0 $/MW. 

7.2.5 The Voltage Oscillation Penalty 

 The voltage oscillation penalty is a penalty associated with the voltage oscillation 

from the average value after a fault clearing. The penalty is defined as follows: first we 

compute an index that quantifies voltage oscillation. Then the index is multiplied with a 

conversion factor that converts the voltage index into penalty. The following formula for 

the evaluation of the voltage deviation penalty is proposed:  
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,     (7-7) 

where 

Si is load rating at Bus i (MW),  

Vosci is the voltage oscillation magnitude of Bus i voltage (V),  

Vni is the rated voltage of Bus i (V),  
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Nb is # the buses,  

2
0.02

0.02
osci ni

ni

V V

V

 
 
 

 is the voltage oscillation index, and  

β3 is the conversion factor of the voltage oscillation index into penalty. We propose the 

value β3 = 1.0 ($/MW). 

7.2.6 Hard Constraint 1 – The Voltage Lower Bound 

 The voltage at each load bus is not allowed to be lower than 0.9 pu at the steady 

state. This constraint is represented as:  

0, 0.9 (1, , )

, 0.9 (1, , )
ti ni b

VoltageLowerBound
ti ni b

if V V N
J

if V V N


  




,       (7-8) 

where  

Nb is # buses,  

Vti is the voltage magnitude of Bus i under normal operating conditions (V), and  

Vni is the rated voltage of Bus i (V).  

7.2.7 Hard Constraint 2 – The Voltage Recovery Time Upper Bound 

 The voltage recovery time at each bus is not allowed to be larger than 2 seconds 

after fault clearance. This constraint is represented as:  

0, 2 (1, , )

, 2 (1, , )
ri b

VoltageRecoveryTimeUpperBound
ri b

if t s N
J

if t s N


  




,       (7-9) 

where  

Nb is # buses and  

tri is voltage recovery time of Bus i (seconds).  

7.3 Candidate Location Selection 

 A state is defined as a specific VAR source planning configuration. For example, 

the configuration with no additional VAR sources is State 0. This problem has two types 
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of VAR sources: capacitor banks and static VAR compensators (SVC). The number of all 

the states is c SL L
c SN N ,  

where  

Nc = # the standard capacitor banks,  

Lc = # the locations for capacitor bank installation,  

NS = # the standard SVCs, and  

LS = # the locations for SVC installation,  

For example, if Nc = 5, NS = 3, Lc = 12, and LS = 12, the number of all the states is 

1.3×1014 = 512×312. The algorithm selects the most cost efficient states for the planning 

problem to limit the size of the problem. 

 The candidate locations for additional VAR source are selected by the algorithm 

using sensitivity analysis. A voltage performance index is first defined and then the 

sensitivity of this index with respect to additions of VAR sources is computed: 

2

0.05
ti ni

VoltageDeviationPenalty ni

V V
d

dJ V

db db

 
 
  ,         (7-10) 

where 

Vti is the voltage magnitude of Bus i under normal operating conditions (V),  

Vni is the rated voltage of Bus i (V), and  

b is the susceptance of the capacitor bank. 

 A negative sensitivity indicates that the addition of VAR sources at the specific 

bus will improve the voltage profile. The top two locations will be selected as candidate 

locations. The algorithm to select the candidate locations is designed as follows,  

1. Select candidate locations for capacitor banks via sensitivity analysis. 

     1.1. Place a capacitor bank at Bus i. 

     1.2. Simulate the system and record the voltage magnitude at Bus i. 
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     1.3. Compute the voltage performance index 
0.05

ti ni

ni

V V

V


 at Bus i. 

     1.4. Repeat 1.1 to 1.3 for several different sizes of capacitor banks. 

     1.5. Compute the sensitivity of performance index 

2

0.05
ti ni

ni

V V
d

V

db

 
 
  at Bus i. 

     1.6. Repeat 1.1 to 1.5 for all buses. 

     1.7. Select buses with high negative sensitivity as candidate locations. 

     1.8. If two candidate locations are closer than an “electrical distance”, one is removed 

from the list. 

2. Select candidate locations for SVCs via sensitivity analysis (procedures are the same as 

capacitor banks). 

7.4 The Formation of States 

 The list of states is formed from all possible combinations of locations and 

resources. The number of states is c selected S selectedL L
c selected S selectedN N 
  ,  

where  

Nc-selected = # selected standard capacitor banks,  

Lc-selected = # selected locations for capacitor bank installation,  

NS-selected = # selected standard SVCs, and  

LS-selected = # selected locations for SVC installation,  

7.5 The Optimization Problem Definition 

 A decision problem usually has several decision stages defined by the time 

horizon that a decision should be made. A stage usually consists of several states. Figure 

7.2 shows the dynamic programming formulation of a multistage decision problem. Xi,k 

represents State i at Stage k. Using this terminology, the decision process works on the 

matrix of all the possible states at each stage. Specifically, the matrix shows all states in a 
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stage in a vertical arrangement. Decisions taken at State j at Stage k-1 will result in a 

specific state at Stage k. (Additional VAR sources may be installed.) Future decision 

process after Stage k depends on only the states at Stage k and is not affected by the path 

from the starting stage to the states at Stage k. 

 The reactive source planning problem is a decision problem from the initial state 

to the final stage. For example, the decision problem in Figure 7.2 considers a 10-year 

planning horizon, and each stage is assumed to be six months. The total number of stages 

is 20 and there are 16 states defined in each stage.  

X0,0

X0,1

X1,1

X15,1

X0,2

X1,2

X15,2

X0,20

X1,20

X15,20

  

 

Figure 7.2 Decision tree: at each stage, there are 16 states 

 The objective of this decision problem is to minimize the total cost through all the 

planning stages. The planning problem should consider several costs, such as the 

acquisition cost, the installation cost, the operating cost, the voltage deviation penalty, the 

voltage recovery time penalty, the voltage oscillation penalty, the voltage lower bound, 

and the voltage recovery time upper bound. Since a company usually purchases devices 

via deferred payment and the devices will be replaced after their economic life time, the 

acquisition cost and the installation cost are represented by the annualized equivalent cost. 

The operating cost measures the cost of losses which is computed via TOPF. The voltage 

deviation penalty, the voltage recovery time penalty, and the voltage oscillation penalty 

are the components of the performance penalties. They are converted to corresponding 
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soft constraints that have a monetary value. In addition, some severe phenomena are 

prohibited, such as voltage recovery time exceeding upper limit and voltage below lower 

limit. For example, the voltage recovery times in this case cannot be more than two 

seconds and voltage magnitudes cannot be lower than 90% of their nominal values. The 

optimization problem avoids these phenomena by introducing hard constraints, which 

should be necessarily satisfied. Hard constraints are defined as follows:  

Definition 7.1: Hard constraints represent absolute limitations imposed on the problem. 

In this problem, these constraints are the upper bound of voltage recovery time and are 

low bounds of bus voltages in the power system. 

 Dynamic programming is a very efficient method to solve decision problems. For 

a decision with n stages (exclude Stage 0) and m states in each stage, there are mn routes 

from Stage 0 to Stage n. For example, the problem in Figure 7.2 has 20 stages and 16 

states in each stage, so there are 1620 = 1.2089×1024 routes. That means 1.2089×1024 

trials are needed to find the minimum cost if an algorithm traverses all these routes. 

However, dynamic programming needs only m computations for each state at one stage. 

Therefore, the number of the computations is reduced to nm2. For the problem in this 

section, only 20×162 = 5120 computations are needed. The computational burden of 

dynamic programming is reduced to 1/(2.3612×1020) of the trivial method. 

 A decision problem that can be solved by dynamic programming must satisfy two 

properties: optimal substructure and overlapping subproblem. Optimal substructure 

means that the optimal solution to the problem contains the optimal solutions to its 

subproblems. If a problem has the property of overlapping subproblem, a recursive 

algorithm should revisit the same problem repeatly [129]. Therefore, the problem can be 

broken down into several reusable subproblems. 

 C*(Xi,k) denotes the optimal trajectory cost from Stage 0 to State i at Stage k 

represented in Formula (7-12). Under this condition, C*(Xj,k-1) is also optimal, otherwise 

we can replace it by the optimal one and obtain a smaller C*(Xi,k). Therefore, the optimal 
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trajectory cost from Stage 0 to Xi,k is the minimum of the optimal trajectory cost from 

Stage 0 to each state at Stage k-1 plus the cost of Xi,k if there is a feasible transition. 

 According to the definition in Formula (7-12), the problem of computing C*(Xi,k) 

is broken down into computing C*(Xj,k-1) and C(Xi,k), both of which can be pre-computed 

and stored in a table for reuse. Thus, reactive planning problem exhibits overlapping 

subproblems. In Lemma 7-1, we prove that the reactive source planning problem is a 

dynamic programming problem. 

Lemma 7-1: the reactive source planning problem is a dynamic programming problem. 

Proof:  

This proof consists of three parts:  

1. The condition of dynamic programming is the principle of optimality. 

2. Define the reactive source planning problem. 

3. The reactive source planning problem satisfies the principle of optimality. 

Part 1: The condition of dynamic programming is the principle of optimality. 

 Dynamic programming requires a decision problem satisfying the principle of 

optimality proposed by Bellman in 1953: an optimal policy has the property that 

whatever the initial state and the initial decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first decision [130]. 

This definition can be interpreted by Bellman’s recursive equation [131] as follows:  

 For State i at Stage k, the optimal policy is given by  

 
, , 1

, , , 1 , , 1*( ) min ( ) ( ) *( )
i k j k

i k i k j k i k j k
all X X

f X T X X C X f X


 
   ,     (7-11) 

where 

Xi,k = State i at Stage k,  

Xj,k+1 = State j at Stage k+1,  

T(Xi,k→Xj,k+1) = the cost of the decision Xi,k→Xj,k+1 given State i at Stage k (= 1 when 

transition is feasible, = +∞ when transition is infeasible) , 



 85

C(Xi,k) = the cost of State i at Stage k = JAnnualizedEquivalentCost(Xi,k) + JOperatingCost(Xi,k) 

 + JVoltageDeviationPenalty(Xi,k) + JVoltageRecoveryTimePenalty(Xi,k) + JVoltageOscillationPenalty(Xi,k) 

 + JVoltageLowerBound(Xi,k) + JVoltageRecoveryTimeUpperBound(Xi,k),  

JAnnualizedEquivalentCost(Xi,k) = the annualized equivalent cost depending on the installed 

reactive sources and their economic life time,  

JOperatingCost(Xi,k) = the operating cost computed using TOPF,  

JVoltageDeviationPenalty(Xi,k) = the penalty associated with the voltage deviation of load buses 

from their nominal values, at steady state,  

JVoltageRecoveryTimePenalty(Xi,k) = the penalty associated with the time lengths after a fault 

clearance at which load buses reach 90% of their nominal values,  

JVoltageOscillationPenalty(Xi,k) = the penalty associated with the magnitudes of the voltage 

oscillation after a fault clearance,  

JVoltageLowerBound(Xi,k) = the hard constraint that the voltage deviation of load buses larger 

than 90% of their nominal values, at steady state,  

JVoltageRecoveryTimeUpperBound(Xi,k) = the hard constraint that the recovery time lengths are 

smaller than 2 seconds, and  

f*(Xi,k) = the optimal trajectory cost from Xi,k to Stage m, where m = the total number of 

the stages. 

 According to Bellman’s optimal policy and recursive Equation (7-11), a multi-

stage decision problem can be solved by dynamic programming if the accumulated 

optimal trajectory cost from Stage k to Stage m equals the minimum or the maximum of 

the accumulated optimal trajectory cost from Xj,k+1 to Stage m plus the decision cost 

Xi,k→Xj,k+1 among all candidate decisions of initial state Xi,k. 

Part 2: Definition of reactive source planning problem. 

 The reactive source planning problem is defined as follows: the optimal trajectory 

cost from Stage 0 to Stage k equals the minimum of the optimal trajectory cost from 
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Stage 0 to Stage k-1 plus the cost of the decision Xj,k-1→Xi,k among all candidate decisions 

of Xj,k-1. The mathematical definition is as follows:  

, 1
, , 1 , 1 , ,

1
* ( ) min *( ) ( ) ( )

j k
i k j k j k i k i k

all state X in stage k
C X C X T X X C X


 

     ,    (7-12) 

where 

C*(Xi,k) = the optimal trajectory cost from Stage 0 to State i at Stage k,  

C(Xi,k) = the cost of State i at Stage k, and  

T(Xj,k-1→Xi,k) = the transition cost from Xj,k-1 to Xi,k. 

0,k-1

C*(X0,k-1)

C(X0,k-1)

T(X0,k-1 → X2,k) 

T(X1,k-1 → X2,k) 

T(X2,k-1 → X2,k) 

T(Xn,k-1 → X2,k)

1,k-1

C*(X1,k-1)

C(X1,k-1)

2,k-1

C*(X2,k-1)

C(X2,k-1)

n,k-1

C*(Xn,k-1)

C(Xn,k-1)

0,k

C*(X0,k)

C(X0,k)

1,k

C*(X1,k)

C(X1,k)

2,k

C*(X2,k)

C(X2,k)

n,k

C*(Xn,k)

C(Xn,k)

 

Figure 7.3 Transitions from Stage k-1 to Stage k 

 Figure 7.3 illustrates the transition procedure of Formula (7-12). 
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Part 3: Reactive source planning problem satisfies the principle of optimality. 

 We prove Part 3 by contradiction. Without loss of generality, the total number of 

stages is m and the number of states in each stage is n. An additional dummy node with 

the zero state cost after the final stage has been added to the decision tree to simplify the 

proof in Figure 7.4. The transition from any state in Stage m to the dummy node is 

feasible, that is, T(Xi,m→Xdummy,m+) = 1 (i = 0, …, n-1). 

 

X0,0

X0,1

Xi,1

Xn-1,1

X0,k

Xi,k

Xn-1,k

X0,m

Xi,m

Xn-1,m

  

Xdummy,m+

X0,k-1

Xi,k-1

Xn-1,k-1



Xj,1 Xj,k Xj,mXj,k-1

  

  

 

 

Figure 7.4 Decision tree: at each stage, there are n states and m stages 

 For the problem in Figure 7.4, C*(Xdummy m+) obviously equals the optimal 

trajectory cost of the original reactive planning problem in Formula (7-12) at the final 

stage. For an arbitrary state Xj,k-1, assume that the path P(Xj,k-1, Xdummy,m+) is the optimal 

path from Xj,k-1 to Xdummy,m+ and , , 1 ,( , )i k j k dummy mX P X X  . The decision process for 

the evaluation of the path P(Xj,k-1, Xdummy,m+) starts at Xj,k-1. This means that the nodes of 
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Stage 0 to (k-1) are irrelevant to this decision process. Therefore, we assume optimal 

trajectory costs of all nodes before Stage k are zero. That is,  

,* ( ) 0, 0 1p qC X where p n and q k     .      (7-13) 

 If the reactive planning problem is a dynamic programming problem, 

, , , 1 ,( , ) ( , )i k dummy m j k dummy mP X X P X X    is the optimal path from Xi,k to Xdummy,m+; 

otherwise, we assume P’(Xi,k, Xdummy,m+) is the optimal path from Xi,k to Xdummy,m+. 

Since P(Xj,k-1, Xdummy,m+) and P’(Xi,k, Xdummy,m+) are both optimal, we have  

the cost of P(Xj,k-1, Xdummy,m+): f* (Xj,k-1),  

the cost of P’(Xi,k, Xdummy,m+): f*’(Xi,k), and  

the cost of P(Xi,k, Xdummy,m+):  

, , 1 , 1 , ,

, , 1 , 1 , ,
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dummy m j k j k i k i k

dummy m j k i k i k

f X f X T X X C X

C X C X T X X C X

C X T X X C X

 
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 

  

   

  

.    (7-14)
 

Since P’(Xi,k, Xdummy,m+) is optimal, f*’(Xi,k) < f*(Xi,k). That is  

, , , 1 , ,* '( ) * ( ) ( ) ( )i k dummy m j k i k i kf X C X T X X C X    .    (7-15) 

 Then, we can select path P’(Xj,k-1, Xdummy,m+) = Xj,k-1→Xi,k→P’(Xi,k, Xdummy,m+) with 

cost equal to f*’(Xi,k) + T(Xj,k-1→Xi,k) × C(Xi,k) < C*(Xdummy m+) according to (7-15). This 

contradicts with the assumption that P(Xj,k-1, Xdummy,m+) is optimal. Therefore, the reactive 

source planning problem satisfies the principle of optimality.    ■ 

 The state with the lowest cost at the final stage is the optimal final state, and the 

lowest cost route to that state is the optimal planning schedule. That is,  

,
,min *( )

i m
i m

all state X in stage m
C X ,         (7-16) 

where 

m = the number of the stages to be planned (= 20 in the problem in Figure 7.2).  
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7.6 The Algorithm Structure 

 The dynamic programming algorithm traverses all stages and finally obtains the 

optimal trajectory cost from Stage 0 to Stage m. Figure 7.5 shows the architecture of the 

algorithm. 

For each state j in stage k, compute

k = k + 1

Dynamic programming starts: Initialize k = 0

Determine transition costs for all states at all stages:
T(Xj,k-1→Xi,k) =1 if feasible and Xj,k-1 and Xi,k both satisfy hard constraints, otherwise T(Xj,k-1→Xi,k) = +∞

Start

Define stages and states

Have all stages 
been covered?

Pi,k = j, where j is the state in stage k-1 that gives an optimal value for C*(Xi,k)

Determine optimal 
path by backtracking

Stop

Compute JOperatingCost for all states in all stages using TOPF

, 1
, , 1 , 1 , ,1

*( ) min *( ) ( ) ( )
j k

i k j k j k i k i kall state X in stage k
C X C X T X X C X


 

    

Compute hard constraints JVoltageLowerBound and JVoltageRecoveryUpperBound from simulation results

Compute C(Xi,k) = JAnnualizedEquivalentCost(Xi,k) +  JOperatingCost(Xi,k) 

+ JVoltageDeviationPenalty(Xi,k) +  JVoltageRecoveryTimePenalty(Xi,k) +  JVoltageOscillationPenalty(Xi,k)

+  JVoltageLowerBound(Xi,k) +  JVoltageRecoveryUpperBound(Xi,k) for all states at all stages

Compute  JAnnualizedEquivalentCost for all states

Simulate all states in all stages

Compute performance penalties JVoltageDeviationPenalty, 

JVoltageRecoveryTimePenalty, and JVoltageOscillationPenalty from simulation results

Select candidate locations via sensitivity analysis

 

Figure 7.5 The reactive planning algorithm 
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7.7 Summary 

 This chapter introduced the optimal VAR allocation problem and its solution 

method via dynamic programming. Several costs used in the problem are defined at the 

beginning: the annualized equivalent cost, the operating cost, the voltage deviation 

penalty, the voltage recovery penalty, the voltage oscillation penalty, the hard constraint 

of voltage magnitudes, and the hard constraint of voltage recovery time. The annualized 

equivalent cost is computed from the investment cost and the installation cost of the VAR 

devices. The operating cost is computed by TOPF proposed in Chapter 6. Other costs are 

obtained from simulation results. The planning algorithm starts from selecting candidate 

locations via sensitivity analysis on voltage deviation indices. The locations with larger 

negative index slopes are selected. Then, the optimization problem was defined and the 

proof is given that the problem can be solved using dynamic programming. Finally, the 

algorithm structure was presented. 
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CHAPTER 8 

DEMONSTRATION AND EVALUATION OF PROPOSED OPF 

METHOD WITH SEVERAL TEST SYSTEMS 

 

8.1 Introduction 

 This chapter demonstrates the OPF algorithm by several cases: a three-bus system, 

the RTS-79 system, the RTS-96 system, and several other test systems of size up to 300 

buses. We implemented the OPF algorithm using Visual C++ and ran it on an Intel Core2 

Duo CPU SP9400 (6M Cache, 2.40 GHz, 1066 MHz FSB) with 8GB memory. 

8.2 A Three-Bus System Example 

 The three-bus system is illustrated in Figure 8.1 [73]. The unit data for this system 

are given in Table 8-1. 

Table 8-1: Unit parameters in actual units in the three-bus system 

 

 The power base is assumed to be 100MW, and the unit data in the per-unit scale 

are shown in Table 8-2. 

Table 8-2: Unit parameters in per-unit scale in the three-bus system 

 

 
a 

($/h)
b 

($/MW·h) 
c 

($/MW2·h)
Pmax 

(MW) 
Pmin 

(MW) 
Qmax 

(MVar) 
Qmin 

(MVar)
Unit #1 102 12 0.01 100.0 11.0 50.0 -20.0 
Unit #2 180 10 0.02 150.0 15.0 40.0 -25.0 
Unit #3 95 13 0.01 75.0 8.0 30.0 -20.0 

 
a 

($/h)
b ($/pu·h) c ($/pu2·h)

Pmax 
(pu) 

Pmin 
(pu) 

Qmax 
(pu) 

Qmin 
(pu) 

Unit #1 102 1,200 100 1.0 0.11 0.5 -0.2 
Unit #2 180 1,000 200 1.5 0.15 0.4 -0.25 
Unit #3 95 1,300 100 0.75 0.08 0.3 -0.2 
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#3

#1 #2
1.96 - j7.84

j0.03

2.94 - j11.76

j0.06

1.92 - j9.62

j0.05

Pg3+jQg3
Pg2+jQg2

Pg1+jQg1

Pm2+jQm2
Pm1+jQm1

Pm3+jQm3

Pd3+jQd3  
   Figure 8.1 A three-bus power system 

 The electric load at Bus 3 is 2.0 + j0.58 pu. The initial values of the control 

variables are set to: Pg1 = 0.8 pu, Pg2 = 0.9 pu, and Pg3 = 0.3 pu. The initial operating state 

is assumed to be: V1 = V2 = V3 = 1.0 pu and 1 = 2 = 3 = 0.0. The voltage constraints are 

0.99 ≤ V1 ≤ 1.01, 0.97 ≤ V2 ≤ 1.03, and 0.97 ≤ V3 ≤ 1.03. The penalty factor μ is selected 

to be 10,000 $/(pu·hour). No linearization limit is added. 

 Chapter 3 shows the quadratic power system model. In addition, a power system 

can be modeled via the polar model, which uses voltage magnitudes and phases instead 

of real and imaginary voltages. The polar model forms the power flow equations using 

real and reactive power balance equations, while the quadratic model forms the power 

flow equations using the real and reactive power balance equations or the real and 

imaginary current conservation equations. The quadratic model usually uses the current 

conservation equations since their order are equal to or less than the power balance 
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equations. This OPF algorithm works for both models with different mismatch sources, 

where the polar model uses the real and reactive power sources and the quadratic model 

uses the real and imaginary current sources. This three-bus example shows the algorithm 

procedure via both the polar and quadratic models for demonstration. This section gives 

only the nonlinear optimization problem in the first iteration and the final result for 

concision. 

8.2.1 The Solution with Polar Power Flow 

8.2.1.1 The Nonlinear Optimization Problem at the First Iteration 

The objective function: 

Minimize    
( )3 3

2
, , , , ,

1 1 1

(1 )
M k

o o
mk mk k j k j gk j k j gk j

k k j

v P Q a b P c P
  

      .   (8-1) 

Subject to the real power balance equation: 

1,1 2,1 2,2 1 2 3 3

2 2 2
1 2 3

1 2 2 1 3 3 2 3 3 2

( , )

(1 )( )

4.9 3.88 4.86

3.92 cos 5.88 cos 3.84 cos( )

L

o o o
g g g m m m d

P P P q

P P P v P P P P

V V V

VV VV V V   

  

       

  
  

    

x u

,    (8-2) 

The reactive power balance equation: 

1,1 2,1 2,2 1 2 3 3

2 2 2
1 2 3 1 2 2

1 3 3 2 3 3 2

( , )

(1 )( )

19.51 17.38 21.27 15.68 cos

23.52 cos 19.24 cos( )

L

o o o
g g g m m m d

Q Q Q q

Q Q Q v Q Q Q Q

V V V VV

VV V V


  

  

       

    
  

   

x u

,     (8-3)

 

The operating constraints: 

Empty,  

The control variable constraints: 

0 1v  , 10.99 1.01V  , 20.15 1.5gP  , 30.08 0.75gP  , 

 
10.0 0.0  , 20.25 0.4gQ   , 30.2 0.3gQ   ,  
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The control variables: 

1 1 2,1 2,1 2,2 2,2

T

g g g gv and V P Q P Q   u ,  

The state variables: 

1,1 1,1 2 2 3 3

T

g gP Q V V    . 

8.2.1.2 Solution Report and Analysis 

 The potential operating constraints to be added to the model are 0.1 ≤ Pg1,1 ≤ 1.0, -

0.2 ≤ Qg1,1 ≤ 0.5, 0.97 ≤ V2 ≤ 1.03, and 0.97 ≤ V3 ≤ 1.03. In this example, the operating 

constraints V2 ≤ 1.03 and Pg1,1 ≤ 1.0 are added at the second iteration and 0.97 ≤ V3 is add 

at the third iteration. Stepmismatch is set to 3, while the actual steps used are 5 due to the 

linearization error. The final solution is  

 1,1 1,1 0.464 0.21
T To o

g gP Q    , 
 

 2,1 2,1 1.5 0.1738
T To o

g gP Q    , 
 

 2,2 2,2 0.08 0.1213
T To o

g gP Q    , 
 

 1 1 1.01 0.0
T To oV     , 

 

 2 2 1.0221 0.0468
T To oV     , and  

 3 3 0.97 0.0646
T To oV      . 

 The optimal cost is $3018.4628/hour. Figure 8.2 shows that the cost with 

mismatch decreases before the mismatch variables reach zero, while Figure 8.3 shows 

that the cost without mismatch increases. The reason of that is loss and power 

transmission through the transmission lines is small when the mismatch values are large. 

Figure 8.4 presents the iteration steps of the real powers, the reactive powers, the voltage 

magnitudes, the voltage angles, the real power mismatches, and the reactive power 

mismatches. 
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Figure8.2 The cost with mismatches for the three-bus system using the polar power 

flow 

 

Figure 8.3 The cost without mismatches for the three-bus system using the polar 

power flow 
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Figure 8.4 The variables of the three-bus system using the polar power flow 

8.2.2 The Solution with Quadratized Power Flow 

 This example uses the power balance equations in the optimization problem for 

demonstration since they are quadratic when the system does not consist of any 
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transformers. Otherwise, the quadratic model may need more state variables to ensure 

that the power balance equations are quadratized. 

8.2.2.1 Nonlinear Optimization Problem at the First Iteration 

The objective function: 

Minimize    
( )3 3

2
, , , , ,

1 1 1

(1 )
M k

o o
mkr mki k j k j gk j k j gk j

k k j

v I I a b P c P
  

      .   (8-4) 

Subject to the real power balance equation: 

2 2 2 2 2
1,1 2,1 2,2 1 2 2 3 3

1 2 1 3 2 3 2 3 3

1 1 1 1 2 2 2 2 3 3 3 3
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4.9 3.88( ) 3.92( )

3.92 5.88 3.84( )
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o o o o o o
r m r i m i r m r i m i r m r i m i

P P P q
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V V V V V V V V P
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  

       

    

      

x u

,    (8-5) 

The reactive power balance equation: 

2 2 2 2 2
1,1 2,1 2,2 1 2 2 3 3

1 2 1 3 2 3 2 3 3

1 1 1 1 2 2 2 2 3 3 3 3

( , )

19.51 17.38( ) 21.27( )

15.68 23.52 19.24( )

(1 )( )

L

g g g r r i r i

r r r r r r i i d

o o o o o o
r m i i m r r m i i m r r m i i m r

Q Q Q q

Q Q Q V V V V V

V V V V V V V V Q

v V I V I V I V I V I V I

  

       

    

      

x u

,    (8-6)

 

The operating constraints: 

Empty,  

The control variable constraints: 

0 1v  , 10.99 1.01V  , 20.15 1.5gP  , 30.08 0.75gP  , 

 
10.0 0.0  , 20.25 0.4gQ   , 30.2 0.3gQ   ,  

The control variables: 

1 1 2,1 2,1 2,2 2,2

T

r i g g g gv and V V P Q P Q   u ,  

The state variables: 

1,1 1,1 1 1,1 1,1

T

g g mag g r g iP Q V E E   ,  
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2 2 2 2,1 2,1 2,2 2,2

T

r i mag g r g i g r g iV V V E E E E   ,  

3 3 3 31 32

T

r i mag d dV V V u u   . 

8.2.2.2 Solution Report and Analysis 

 The potential operating constraints to be added to the model are 0.1 ≤ Pg1,1 ≤ 1.0, -

0.2 ≤ Qg1,1 ≤ 0.5, 0.97 ≤ V2mag ≤ 1.03, and 0.97 ≤ V3mag ≤ 1.03. In this example, the 

operating constraint V2mag ≤ 1.03 is added at the second iteration and 0.97 ≤ V3mag is add 

at the third iteration. StepMismatch is set to 3, while the actual steps used are 4 due to the 

linearization error. The final solution is:  

 1,1 1,1 0.471 0.0641
T To o

g gP Q    ,  

 2,1 2,1 1.5 0.276
T To o

g gP Q    ,  

 2,2 2,2 0.08 0.1951
T To o

g gP Q    ,  

 1 1 1 1.0042 0.0 1.01
T To o o

r i magV V V    ,  

 2 2 2 1.0277 0.0446 1.0287
T To o o

r i magV V V    , and  

 3 3 3 0.967 0.0642 0.969
T To o o

r i magV V V     . 

 The binding constraints in the solution using the quadratized power flow are 

fewer than the solution using the polar power flow and the variable values in these two 

solutions are slightly different because of linearization differences. In these two solutions, 

the real powers are closer than the reactive powers since they are more related to the cost. 

The final cost using the quadratized power flow is $3018.9908/hour, which is very close 

to the final cost using the polar power flow. Figure 8.5 and Figure 8.6 show the operating 

costs with and without the mismatch penalties respectively. 
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Figure 8.5 The cost with mismatches for the three-bus system using the quadratized 

power flow 

 

Figure 8.6 The cost without mismatches for the three-bus system using the 

quadratized power flow 
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Figure 8.7 Variables for the three-bus system using the quadratized power flow 

 Figure 8.7 presents the iteration steps of the real powers, the reactive powers, the 

real voltages, the imaginary voltages, the real power mismatches, and the reactive power 

mismatches. Since the derivatives of the objective function with respect to the reactive 

powers are very small, the iteration scenarios of the reactive powers are much different 
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from the case using the polar power flow. In addition, the solution with different reactive 

powers can have the same cost. 

8.3 The RTS-79 System Example 

 The RTS-79 system is from [76] and also Zone 1 in [77] shown in Figure 8.8. 

This system has 24 buses and 2 voltage levels 138kV and 230kV connected through tap-

control transformers. 

Bus 18
Bus 21 Bus 22

Bus 23

Bus 16

Bus 17

Bus 19
Bus 20

Bus 15

Bus 14
Synch.
Cond.

Bus 24 Bus 11 Bus 12

Bus 3 Bus 9 Bus 10

cable Bus 6
Bus 4

Bus 5 Bus 8

Bus 1 Bus 2 Bus 7

cable

230kV

138kV

C

AG B

D

E

F

Bus 13

 

Figure 8.8 The IEEE RTS-79 power system 
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 The system parameters are obtained from Table 1, 7, and 12 in [77]. The cost 

function of the jth unit at Bus k is ck,j(x, u) = ak,j + bk,jPk,j + ck,jPk,j
2, where the coefficients 

are computed via linear regression using the data in Table 9 in [77]. The coefficients in 

the cost function are also converted to the per-unit scale from the actual unit MW since 

the algorithm runs at the per-unit scale. Hydro units are irrelevant to the optimization 

process and usually run at maximum possible capacities in a heavy loaded power system 

since their bk,j and ck,j are zero. The formula to compute the cost coefficients for other 

types of units is  

, , ,
1

, , ,

,

( )

0

k j k j OM
T T

k j k j OM

k j

a a

b H H H b b

c



   
       
     

,        (8-7) 

where H is the matrix of heat rate. The number of the columns in H and b equals the 

number of the real power levels in Table 9 in [77]. For a real power level P, the column 

in H is [1 P P2]T and the column in b is its corresponding cost. ak,j,OM and bk,j,OM are the 

coefficients of the operation and maintenance costs respectively [90]. 

 The OPF algorithm plans to reduce the mismatch variables to zero in 5 iterations 

and uses the current conservation equations instead of the power balance equations. The 

penalty factor μ is set to 107. The bus voltages are limited between 0.95pu and 1.05pu and 

the transformer taps are between 0.9pu and 1.1pu. Table 7 in [77] gives the constraints of 

the real and reactive powers. Table 12 in [77] gives the constraints of the transmission 

lines and the transformers. 

 Figure 8.9 and Figure 8.10 show the costs in each iteration. The cost with 

mismatch reduces linearly as the setup, and the one more iteration is used due to 

nonlinearity. Figure 8.11 shows the real power loss in each iteration. Figure 8.11 looks 

similar to Figure 8.10 since the operating cost is positive correlated to the loss. The more 

real power generated, the more loss occurs. 
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Figure 8.9 The cost with mismatches for the RTS-79 system 

 

Figure 8.10 The cost without mismatches for the RTS-79 system 
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Figure 8.11 The real power loss of the RTS-79 system 

 According to the algorithm setup, the model includes six operating constraints 

initially. Table 8-3 shows the operating constraints added from Iteration 1. The number of 

the potential operating constraints is 90, which = 2 × # the buses + # the transmission 

lines + # the transformers + 2 × # the slack mode generators. The actual number of the 

operating constraints added is 33, around 1/3 of the total number. 

 Table 8-4 presents the runtime information without parallelism. The time unit is 

second. PF stands for the number of the power flow iterations. The first column lists the 

loop indices. Three numbers are assigned to three loop layers shown in Figure 5.1. For 

example, 4-2-1 represents the 4th Layer-1 loop, the 2nd Layer-2 loop, and the 1st Layer-3 

loop. Each Layer-3 loop includes three steps: linearization, linear programming, and 

solving the power flow. Their runtime information is shown from the third to the fifth 

columns. The last column shows the iteration numbers used to solve the power flow. The 
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last row of each Layer-1 loop gives its total runtime. The total runtime of the whole 

algorithm is 0.09124 seconds. The following inequities hold:  

the linearization time in Loop 2-1-1 > the linearization time in Loop 2-2-1 > the 

linearization time in Loop 2-2-2.  

The reason is that Loop 2-1-1 linearizes all the operating constraints (# = 31), Loop 2-2-1 

linearizes the additional operating constraints (# = 2), and Loop 2-2-2 updates only 

violated the modeled linearized operating constraints. Loop 1-1-1 has the longest power 

flow runtime and the maximum iteration number since the move lengths of the control 

variables are longer at the beginning of the algorithm. 

Table 8-3: The operating constraints added at each iteration for the RTS-79 system 
 

 

 The contingencies include PV/PQ generator outages, transmission line outages, 

and transformer outages. The number of the contingencies in the RTS-79 system is 71. 

This OPF software is run on each post-contingency case. OPF results show that five of 

those do not have any feasible solution. That means these contingencies are the most 

severe in the system. They are Generator 23 at Bus 18, Generator 24 at Bus 21, Generator 

# Operating constraints 

1 

0.952 ≤ V101r
2+V101i

2, 0.952 ≤ V102r
2+V102i

2, 0.952 ≤ V103r
2+V103i

2,  
0.952 ≤ V104r

2+V104i
2, 0.952 ≤ V105r

2+V105i
2, 0.952 ≤ V106r

2+V106i
2,  

0.952 ≤ V107r
2+V107i

2, 0.952 ≤ V108r
2+V108i

2, 0.952 ≤ V109r
2+V109i

2,  
0.952 ≤ V110r

2+V110i
2, 0.952 ≤ V111r

2+V111i
2, 0.952 ≤ V112r

2+V112i
2,  

0.952 ≤ V114r
2+V114i

2, 0.952 ≤ V115r
2+V115i

2, 0.952 ≤ V116r
2+V116i

2,  
0.952 ≤ V117r

2+V117i
2, 0.952 ≤ V118r

2+V118i
2, 0.952 ≤ V119r

2+V119i
2,  

0.952 ≤ V120r
2+V120i

2, 0.952 ≤ V121r
2+V121i

2, 0.952 ≤ V122r
2+V122i

2,  
0.952 ≤ V123r

2+V123i
2, 0.952 ≤ V124r

2+V124i
2 

2 V101r
2+V101i

2 ≤ 1.052, V102r
2+V102i

2 ≤ 1.052 

3 None 

4 V107r
2+V107i

2 ≤ 1.052 

5 None 

6 V122r
2+V122i

2 ≤ 1.052 
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33 at Bus 23, Transmission Line 10 between Bus 6 and Bus 10, and Transmission Line 

11 between Bus 7 and Bus 8. 

Table 8-4: Runtime information of the RTS-79 system without parallelism 
 

 

 Table 8-5 presents the runtime information with parallelism on a dual-core CPU. 

Loop 2-1-1 linearizes all the operating constraints in 0.00277s compared with 0.00477s 

without parallelism. The runtime is reduced to around one half. Parallelism affects 

runtime mainly on the loops with more operating constraints. The total runtime of the 

whole algorithm is 0.07764s. Parallelism reduces 14.91% of the total runtime. 

 
 
 
 
 
 

# 
Layer-3 
Runtime 

Linearization 
Runtime 

LP Runtime 
Power Flow 

Runtime 
PF 

1-1-1 0.00649 0.00147 0.00062 0.00330 6 
1-2-1 0.00766 0.00411 0.00137 0.00215 5 

1 0.01418 
2-1-1 0.00902 0.00475 0.00116 0.00217 5 
2-2-1 0.00390 0.00042 0.00126 0.00219 5 
2-2-2 0.00352 0.00005 0.00127 0.00218 5 

2 0.01651 
3-1-1 0.00935 0.00536 0.00095 0.00216 5 
3-1-2 0.00318 0.00005 0.00097 0.00214 5 
3-1-3 0.00319 0.00005 0.00097 0.00215 5 

3 0.01584 
4-1-1 0.00903 0.00508 0.00091 0.00215 5 
4-1-2 0.00307 0.00005 0.00086 0.00213 5 
4-2-1 0.00346 0.00024 0.00105 0.00214 5 
4-2-2 0.00316 0.00005 0.00094 0.00214 5 

4 0.01877 
5-1-1 0.00908 0.00513 0.00094 0.00216 5 
5-1-2 0.00324 0.00005 0.00102 0.00214 5 

5 0.01234 
6-1-1 0.00871 0.00536 0.00076 0.00173 4 
6-2-1 0.00289 0.00025 0.00088 0.00174 4 

6 0.01166 
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Table 8-5: Runtime information of the RTS-79 system with parallelism 
 

 

8.4 The RTS-96 System Example 

 The RTS-96 system is three RTS-79 systems with several long-distance 

connections [77]. The problem setup is the same as in the RTS-79 system. The costs in 

each iteration are shown in Figure 8.12 and Figure 8.13. Figure 8.14 presents the real 

power loss in each iteration. An observation is that the actual cost decreases at the fifth 

and the sixth iteration, while the real power loss increases at these two iterations since 

less cost does not mean less loss. Table 8-6 shows the operating constraints added in each 

iteration. The total number of the operating constraints is 272, while the actual number of 

the operating constraints added is 45 in total. The number of the operating constraints 

# 
Layer-3 
Runtime 

Linearization 
Runtime 

LP Runtime 
Power Flow 

Runtime 
PF 

1-1-1 0.00587 0.00138 0.00063 0.00275 6 
1-2-1 0.00778 0.00385 0.00135 0.00256 5 

1 0.01369 
2-1-1 0.00704 0.00277 0.00118 0.00219 5 
2-2-1 0.00386 0.00041 0.00125 0.00217 5 
2-2-2 0.00391 0.00005 0.00122 0.00262 5 

2 0.01488 
3-1-1 0.00679 0.00269 0.00099 0.00219 5 
3-1-2 0.00324 0.00005 0.00097 0.00219 5 
3-1-3 0.00323 0.00005 0.00099 0.00217 5 

3 0.01328 
4-1-1 0.00602 0.00161 0.00132 0.00217 5 
4-1-2 0.00307 0.00005 0.00084 0.00216 5 
4-2-1 0.00348 0.00027 0.00100 0.00217 5 
4-2-2 0.00322 0.00005 0.00096 0.00218 5 

4 0.01585 
5-1-1 0.00641 0.00225 0.00095 0.00233 5 
5-1-2 0.00327 0.00005 0.00100 0.00219 5 

5 0.00970 
6-1-1 0.00555 0.00217 0.00080 0.00173 4 
6-2-1 0.00289 0.00025 0.00090 0.00173 4 

6 0.00850 
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added at the first iteration is much larger since the changes of the variable values are 

larger. 

 The ideal phenomenon of the algorithm is that the cost without mismatch reduces 

tremendously at the first iteration and increases a little bit due to more constraints 

included. This phenomenon is the same as those in the three-bus system and in the RTS-

79 system. However, the cost without mismatch in the RTS-96 system reduces 

monotonously, because the linearization bounds limit the step lengths of the control 

variables. Therefore, the convergence speed of larger systems will be limited by the 

linearization error. On the other hand, large linearization bounds may result in no power 

flow solution. 

 Table 8-7 presents the runtime information without parallelism and Table 8-8 

presents the runtime information with parallelism. The time unit is second. The total 

runtime without parallelism is 0.860637 seconds and the total runtime with parallelism is 

0.735704 seconds. 

 

Figure 8.12 The cost with mismatches for the RTS-96 system 
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Figure 8.13 The cost without mismatches for the RTS-96 system 

 

Figure 8.14 The real power loss of the RTS-96 system 
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Table 8-6: The operating constraints added at each iteration for the RTS-96 system 
 

 

 The contingency number in the RTS-96 system is 219. OPF results show that four 

of those do not have any feasible solution. They are Transmission Line 10 between Bus 

106 and Bus 110, Transmission Line 48 between Bus 206 and Bus 210, Transmission 

Line 86 between Bus 306 and Bus 310, and Transmission Line 120 between Bus 318 and 

Bus 223. The first three of those are at the same location in each zone, and the last one 

connects Zone 2 and Zone 3. The contingencies with no power flow solution do not 

include the generator outages since this system has more dispatch choices than the RTS-

79 system does. 

 
 
 
 
 
 
 

# Operating constraints 

1 

V101r
2+V101i

2 ≤ 1.052, V102r
2+V102i

2 ≤ 1.052, V117r
2+V117i

2 ≤ 1.052,  
V118r

2+V118i
2 ≤ 1.052, V121r

2+V121i
2 ≤ 1.052, V122r

2+V122i
2 ≤ 1.052,  

0.952 ≤ V208r
2+V208i

2, V301r
2+V301i

2 ≤ 1.052, V302r
2+V302i

2 ≤ 1.052,  
V303r

2+V303i
2 ≤ 1.052, V304r

2+V304i
2 ≤ 1.052, V305r

2+V305i
2 ≤ 1.052,  

V306r
2+V306i

2 ≤ 1.052, V307r
2+V307i

2 ≤ 1.052, V308r
2+V308i

2 ≤ 1.052,  
V309r

2+V309i
2 ≤ 1.052, V310r

2+V310i
2 ≤ 1.052, V311r

2+V311
2 ≤ 1.052,  

V312r
2+V312i

2 ≤ 1.052, V313r
2+V313i

2 ≤ 1.052, V314r
2+V314i

2 ≤ 1.052,  
V315r

2+V315i
2 ≤ 1.052, V316r

2+V316i
2 ≤ 1.052, V317r

2+V317i
2 ≤ 1.052,  

V318r
2+V318i

2 ≤ 1.052, V319r
2+V319i

2 ≤ 1.052, V320r
2+V320i

2 ≤ 1.052,  
V321r

2+V321i
2 ≤ 1.052, V322r

2+V322i
2 ≤ 1.052, V323r

2+V323i
2 ≤ 1.052,  

V324r
2+V324i

2 ≤ 1.052, V325r
2+V325i

2 ≤ 1.052 

2 V201r
2+V201i

2 ≤ 1.052, V202r
2+V202i

2 ≤ 1.052, V207r
2+V207i

2 ≤ 1.052 

3 None 

4 None 

5 V218r
2+V218i

2 ≤ 1.052, V221r
2+V221i

2 ≤ 1.052, V222r
2+V222i

2 ≤ 1.052 

6 V223r
2+V223i

2 ≤ 1.052 
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Table 8-7: Runtime information of the RTS-96 system without parallelism 
 

 

 
 
 

# 
Layer-3 
Runtime 

Linearization 
Runtime 

LP Runtime 
Power Flow 

Runtime 
PF 

1-1-1 0.028860 0.011207 0.001380 0.011779 7 
1-2-1 0.059427 0.041676 0.006225 0.011443 7 
1-2-2 0.018953 0.000183 0.006892 0.011810 7 

1 0.107337 
2-1-1 0.066303 0.048126 0.005844 0.00876 5 
2-1-2 0.014380 0.000183 0.005828 0.008304 5 
2-1-3 0.014300 0.000182 0.005872 0.008184 5 
2-2-1 0.018000 0.002967 0.006555 0.008427 5 
2-2-2 0.015269 0.000193 0.006828 0.008185 5 
2-2-3 0.014762 0.000193 0.006220 0.008288 5 

2 0.143176 
3-1-1 0.070713 0.051147 0.008306 0.007651 5 
3-1-2 0.015819 0.000184 0.007988 0.007584 5 
3-1-3 0.016230 0.000184 0.007970 0.008017 5 
3-1-4 0.016657 0.000192 0.008395 0.008009 5 
3-2-1 0.023277 0.004317 0.010857 0.008049 5 
3-2-2 0.018024 0.000201 0.010010 0.007750 5 
3-2-3 0.017844 0.000199 0.009775 0.007809 5 

3 0.178645 
4-1-1 0.075032 0.053234 0.010639 0.007792 5 
4-1-2 0.017574 0.000200 0.009729 0.007579 5 
4-1-3 0.018381 0.000200 0.010320 0.007801 5 
4-1-4 0.019193 0.000209 0.010641 0.008282 5 
4-2-1 0.020150 0.001776 0.010488 0.007833 5 
4-2-2 0.018479 0.000205 0.010490 0.007720 5 
4-2-3 0.018873 0.000219 0.010875 0.007714 5 

4 0.187839 
5-1-1 0.075822 0.055812 0.008187 0.008406 5 
5-1-2 0.017107 0.000216 0.008813 0.008001 5 
5-1-3 0.016288 0.000216 0.007930 0.008079 5 
5-1-4 0.016390 0.000216 0.008075 0.008037 5 
5-1-5 0.017362 0.000215 0.008722 0.00836 5 

5 0.143029 
6-1-1 0.078233 0.059373 0.006958 0.008371 5 
6-1-2 0.017328 0.000217 0.008955 0.008086 5 

6 0.095694 
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Table 8-8: Runtime information of the RTS-96 system with parallelism 
 

 

# 
Layer-3 
Runtime 

Linearization 
Runtime 

LP Runtime 
Power Flow 

Runtime 
PF 

1-1-1 0.023727 0.006261 0.001325 0.011797 7 
1-2-1 0.057903 0.040158 0.006432 0.011261 7 
1-2-2 0.020041 0.000184 0.00699 0.012799 7 

1 0.101762 
2-1-1 0.045657 0.027951 0.005799 0.008181 5 
2-1-2 0.01577 0.000183 0.005973 0.009543 5 
2-1-3 0.016242 0.000185 0.006299 0.009688 5 
2-2-1 0.016794 0.001643 0.006685 0.008404 5 
2-2-2 0.0153 0.000195 0.006392 0.008644 5 
2-2-3 0.015258 0.000195 0.006293 0.008705 5 

2 0.125194 
3-1-1 0.044509 0.023248 0.008951 0.008009 5 
3-1-2 0.016987 0.000195 0.008723 0.008003 5 
3-1-3 0.017275 0.000195 0.008877 0.008143 5 
3-1-4 0.016913 0.000195 0.008416 0.008241 5 
3-2-1 0.023599 0.004288 0.011273 0.007989 5 
3-2-2 0.019581 0.000212 0.011293 0.008008 5 
3-2-3 0.021117 0.000212 0.012674 0.008166 5 

3 0.160062 
4-1-1 0.048882 0.025968 0.0109 0.008008 5 
4-1-2 0.01874 0.000358 0.010103 0.008205 5 
4-1-3 0.019318 0.000211 0.011035 0.008011 5 
4-1-4 0.019403 0.000211 0.011174 0.007958 5 
4-2-1 0.021087 0.001622 0.011074 0.008342 5 
4-2-2 0.019467 0.00022 0.01107 0.008111 5 
4-2-3 0.019445 0.000218 0.01121 0.007955 5 

4 0.166514 
5-1-1 0.046422 0.026436 0.008216 0.008252 5 
5-1-2 0.01719 0.000217 0.008543 0.008363 5 
5-1-3 0.016315 0.000218 0.007744 0.008292 5 
5-1-4 0.017697 0.000217 0.00797 0.009448 5 
5-1-5 0.017228 0.000219 0.008823 0.008117 5 

5 0.114911 
6-1-1 0.042454 0.024823 0.00766 0.006474 5 
6-1-2 0.014517 0.000218 0.007798 0.006434 5 

6 0.057103 
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8.5 Test Systems with Different Sizes 

 This section presents the results of nine cases of different sizes: 6 buses [110], 9 

buses [111], 14 buses [112], 24 buses [76], [77], 30 buses [113], 39 buses [114]-[117], 57 

buses, 118 buses, and 300 buses [112]. Table 8-9 presents runtime information (in second) 

of these systems for several algorithms. Bold numbers mean that the algorithm does not 

converge at the specific case. MATLAB stands for MATLAB Optimization Toolbox. 

Successive LP stands for the sparse successive LP method. PDIPM stands for the 

prime/dual interior point method [118]. SC-PDIPM stands for the step-controlled variant 

of PDIPM. TRALM stands for the trust region based augmented Langrangian method 

[117]. MIPS stands for MATLAB Interior Point Solver using the primal/dual point 

method. SC-MIPS stands for the step-controlled variant of MIPS [117], [120], [121]. 

SLP-sc stands for the proposed SLP algorithm on the solo-core platform. SLP-dc stands 

for the proposed SLP algorithm on the dual-core platform. SQP-sc stands for the 

proposed SQP algorithm on the solo-core platform. SQP-dc stands for the proposed SQP 

algorithm on the dual-core platform. Since MINOS [119] solver does not support 64-bit 

operating systems, this work uses PDIPM in the TSPOPF package instead of MINOS for 

comparison. 

Table 8-9: Runtime information of nine cases of different sizes 
 

 6 9 14 24 30 39 57 118 300 
MATLAB 1.95 0.47 0.75 3.04 1.12 0.95 1.78 413.2 8329.55
Successive 

LP 
1.04 0.73 1.06 4.95 5.4 13.81 4.73 8.89 31.67 

PDIPM 0.04 0.03 0.04 0.06 0.07 0.07 0.09 0.19 0.53 
SC-

PDIPM 
0.05 0.05 0.06 0.07 0.07 0.16 0.11 0.27 2.55 

TRALM 0.06 0.05 0.14 0.24 0.19 0.97 0.23 4.27 8.91 
MIPS 0.39 0.08 0.11 0.11 0.13 0.13 0.14 0.25 0.59 

SC-MIPS 0.09 0.11 0.14 0.13 0.14 0.17 0.17 0.36 2.54 
SLP-sc 0.0075 0.006 0.037 0.091 0.021 0.106 0.187 1.103 3.391 
SLP-dc 0.0084 0.007 0.036 0.078 0.019 0.082 0.082 0.797 2.116 
SQP-sc 0.039 0.020 0.083 0.364 0.065 0.328 0.386 2.719 4.755 
SQP-dc 0.037 0.014 0.083 0.257 0.062 0.242 0.295 2.304 3.433 
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 MATLAB runs very slow, especially for large-scale systems. For example, its 

runtime on the 300-bus system are more than two hours. Successive LP and TRALM do 

not converge in some cases since they need select appropriate parameters for each case 

and they may fall into local minimum when starting from an inappropriate working point. 

These phenomena usually occur on systems with large sizes and/or peak loads. The 

proposed algorithm is also a sequential algorithm, so it is very important to select 

appropriate values of the parameters where the linearization bound is the most important 

one. For example, a smaller bound may result in more iterations but a larger bound may 

result in an infeasible power flow solution. A future research orientation of this algorithm 

is a smarter value-selection method for the parameters. PDIPM and MIPS both use 

interior-point methods. Their runtimes are smaller, but they need feasible starting 

working points. 

 Figure 8.15 - Figure 8.23 present costs with/without mismatches in each iteration 

for all the cases in this section. Since the quadratized transformer model and the 

quadratized generator model are different from the corresponding polar models in the 

compared works, this work modifies these systems appropriately and adds several 

additional parameters, such as generator internal impedance and transformer magnetizing 

admittance. The curves in Figure 8.15 - Figure 8.23 are different, because these systems 

have different structures and parameters. 

 

Figure 8.15 The costs with/without mismatches for the 6-bus system 
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Figure 8.16 The costs with/without mismatches for the 9-bus system 

 
Figure 8.17 The costs with/without mismatches for the 14-bus system 

 
Figure 8.18 The costs with/without mismatches for the 24-bus system 
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Figure 8.19 The costs with/without mismatches for the 30-bus system 

 
Figure 8.20 The costs with/without mismatches for the 39-bus system 

 
Figure 8.21 The costs with/without mismatches for the 57-bus system 
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Figure 8.22 The costs with/without mismatches for the 118-bus system 

 
Figure 8.23 The costs with/without mismatches for the 300-bus system 

8.6 Post-Solution Sensitivity Analysis 

 This section presents the shadow price in the final solution. Figure 8.24 shows the 

shadow price of max
109 111 109 111u ut t  , the upper bound of the control variable of the 

transformer between Bus 109 and Bus 111. Linear regression gives  

max
109 111182676.73 73.09 $ /uCost t hour   ,        (8-8) 

so the shadow price
 

max
109 111

73.09$ / ( )
u

dCost
hour pu

dt 

   . That means the final cost reduces 

when max
109 111ut   increases. Figure 8.25 shows the shadow price of min

101,1 101,1g gP P , the real 

power variable of the first generator at Bus 101. Linear regression gives  



 118

min
101,1183476.18 8048.17 $ /gCost P hour  ,        (8-9) 

so the shadow price 
min
101,1

8048.17$ / ( )
g

dCost
hour pu

dP
  . That means the final cost increases 

when min
101,1gP  increases. Therefore, using larger variable bounds means a lower final cost. 

In addition, a constraint with larger shadow price has more effect on the cost function. 

The data points of max
109 111ut   are not close to their linear regression since the shadow price 

of max
109 111ut   is very small and consequently the final cost is easily affected by linearization 

error. 

 

Figure8.24 Sensitivity analysis on the upper bound of a transformer-tap variable in 

the RTS-96 system 
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Figure 8.25 Sensitivity analysis on the lower bound of a real-power variable for the 

RTS-96 system 

8.7 Summary 

 This chapter provided some illustrative examples to demonstrate the OPF 

algorithm developed in this thesis. First, a simple three-phase system was used for 

describing how to setup the nonlinear optimization problem. Next, the solution and the 

analysis of the RTS-79 system and the RTS-96 system were presented to elaborate on 

more properties of the algorithm. Then, the following section compared the proposed 

OPF algorithm with seven famous OPF software packages on nine widely used 

benchmark systems. Our OPF algorithm with parallelism can solve the 300-bus system in 

about 2 seconds. Finally, the post-solution sensitivity analysis was presented. This section 

gave the computation procedures of the shadow prices of two constraints, the upper 

bound of a transformer tap variable and the lower bound of a generator real power 

variable. 
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CHAPTER 9 

DEMONSTRATION AND EVALUATION OF PROPOSED TOPF 

WITH SEVERAL TEST SYSTEMS 

 

9.1 Introduction 

 This chapter demonstrates the proposed TOPF algorithm via three cases: an eight-

bus system, the RTS-79 system, and the RTS-96 system. All these cases are modeled 

using quadratized three-phase power flow. 

9.2 An Three-Phase Eight-Bus System Example 

 Figure 9.1 shows the eight-bus power system derived from the symmetric and 

balanced three-bus system in Section 8.2. The eight-bus system includes more types of 

devices for demonstration. 

OPF 1 2

B1Ph1Ph
S IM 3Ph

1 2

12

12

BUS1L BUS1H BUS2H BUS2L

SECBUS1 BUS5

BUS3

BUS4

GEN1 GEN2 GEN3

 
Figure 9.1 An eight-bus power system 

 Table 8-1 lists the generator parameters in the eight-bus system, as the three-bus 

system in Section 8.2, where GEN1 runs in slack mode, GEN2 runs in PV mode, and 
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GEN3 runs in PQ mode. The voltage level at the transmission level is 115kV, the voltage 

level at the distribution level is 13.8kV, and the voltage level at the residential level is 

240V. Figure 9.2 shows the parameters of the transmission line from BUS1H to BUS2H. 

The other two transmission lines have the same types of phase conductors, shields, and 

towers but different lengths: 15.0 miles (BUS1H to BUS3) and 5.0 miles (BUS2H to 

BUS3). The rating of the transformer connecting BUS2L and BUS 2H is 300MVA, and 

the rating of other three-phase two-winding transformers are both 100MVA. The power 

rating of the induction motor is 3MVA and its inertia constant is 0.2s. Table 9-1 lists the 

parameters of all other loads. 

3-Phase Overhead Transmission Line Accept
Cancel3-Phase Overhead Transmission Line

Phase Conductors ACSR
Size JOREE

Shields/Neutrals HS
5/16HS

Tower/Pole 101A
Circuit Number 1

Tower/Pole Ground Impedance (Ohms)
25.0 0.0R =

Bus Name, Side 1

20.0Line Length (miles)

0.1Line Span Length (miles)

100.0Soil Resistivity (Ohm-Meters)

X =

BUS1H

Bus Name, Side 2

BUS2H

Circuit Number

1

Type

Size
Type

Type

N/AStructure Name

115.0Operating Voltage (kV)

100.0

Insulation Levels (kV)
FOW (Front of Wave)

BIL (Basic Insulation Level) 100.0
AC (AC Withstand) 100.0

Transposed Phases

Insulated Shields

Transposed Shields

Failure & Repair Rates
Failure Rate (per year)

Repair Rate (per year)

1.0

1.0

Get From GIS

Read GPS Coordinates

WinIGS-F - Form: IGSF_M102 - Copyright ?A. P. Meliopoulos 1998-2010
 

Figure 9.2 The transmission line (BUS1H to BUS2H) parameters in the eight-bus 

power system 
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Table 9-1: The load parameters in actual units in the eight-bus system 

 
 Since the three-phase model is much more complicated than the symmetric and 

balanced model, it has many more state variables. The formed TOPF problem has 123 

state variables, where the induction motor has 30 state variables. The control variable set 

includes the capacitor bank switch, the voltage magnitude of GEN1, the real power and 

the voltage magnitude of GEN2, and the real power and the reactive power of GEN3. The 

penalty factor μ is set to 107. The linearization bound is set to 0.2. Each phase at a three-

phase bus is limited between 0.95pu and 1.05pu. Single-phase bus voltages are limited 

between 0.90pu and 1.10pu. Transformers are assumed to be non-controllable. Figure 9.3 

shows the costs in each iteration. Table 9-2 shows detailed runtime information. The total 

runtime is 0.17 seconds. The total number of potential operating constraints is 72, while 

the algorithm adds 18 operating constraints in the end. 

 
Figure 9.3 The costs with/without mismatches for the eight-bus system 

 
 
 

Device Type Bus Name
Real 

Power 
Reactive 
Power 

Three-phase Constant Power Load BUS3 200MW 58MVar 
Three-phase Constant Impedance Load BUS3 20MW 10MVar 

Three-phase Capacitor Bank BUS3 0MW 12MVar 
Single-phase Constant Power Load SECBUS1 10kW 3kVar 

Single-phase Constant Impedance Load SECBUS1 10kW 3kVar 
Single-phase Balanced Constant Impedance Load SECBUS1 5kW 3kVar 
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Table 9-2: Runtime information of the eight-bus system 
 

9.3 The Three-Phase RTS-79 System Example 

 Figure 9.5 shows the three-phase RTS-79 system derived from the symmetric and 

balanced RTS-79 system in Section 8.3 [90]. The penalty factor μ is set to 107. The 

linearization bound is set to 6.68×10-7. The bus voltages are limited between 0.95pu and 

1.05pu. The taps of the transformers connecting substations are between 0.9pu and 1.1pu, 

and step-up transformers are non-controllable. The TOPF problem has 68 control 

variables and 786 state variables. Figure 9.4 shows the costs in each iteration. Table 9-3 

shows the detailed runtime information. The total runtime is 5.37 seconds. The total 

number of the operating constraints is 539, while there are 152 active operating 

constraints in the last iteration. 

 
Figure 9.4 The costs with/without mismatches for the three-phase RTS-79 system 

 

# 
Layer-3 
Runtime 

Linearization 
Runtime 

LP Runtime 
Power Flow 

Runtime 
# 

Constraint
1-1-1 0.028843 0.000411 0.000621 0.028777 2 

1 0.028861 
2-1-1 0.029817 0.000407 0.000136 0.027756 18 
2-2-1 0.056166 0.001418 0.000242 0.027231 18 

2 0.086027 
3-1-1 0.030158 0.001667 0.000247 0.026749 18 

3 0.030173 
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Figure 9.5 The three-phase RTS-79 power system 
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Table 9-3: Runtime information of the three-phase RTS-79 system 
 

 

9.4 The Three-Phase RTS-96 System Example 

 Figure 9.6 presents the sketch map of the RTS-96 system derived from the three-

phase RTS-79 system in Section 9.3. The bold lines show the interconnections between 

the substations in different areas. Area 3 has one more controllable transformer compared 

with the RTS-79 system. 

 The linearization bound is set to 2.933×10-7 and the other parameters are the same 

as the RTS-79 system. The formed TOPF problem has 205 control variables and 2,360 

state variables. Figure 9.7 shows the costs in each iteration. Table 9-4 shows detailed 

runtime information. The total runtime is 43.36 seconds. The RTS-96 system has 1,631 

operating constraints, and the algorithm adds 275 active operating constraints in the end. 

 

# 
Layer-3 
Runtime 

Linearization 
Runtime 

LP Runtime 
Power Flow 

Runtime 
# 

Constraint
1-1-1 0.173266 0.007988 0.000407 0.167586 2 
1-2-1 0.630574 0.270877 0.006850 0.196492 124 
1-2-2 0.337500 0.000426 0.008578 0.167485 124 
1-2-3 0.329287 0.000403 0.008001 0.166152 124 
1-2-4 0.330533 0.000601 0.007845 0.166279 124 
1-2-5 0.329061 0.000425 0.007510 0.166624 124 
1-2-6 0.333342 0.000424 0.007524 0.168047 124 

1 2.463710 
2-1-1 0.460630 0.271801 0.005636 0.166114 124 
2-1-2 0.341018 0.000404 0.005856 0.168388 124 
2-1-3 0.339616 0.000403 0.005962 0.167369 152 
2-2-1 0.405417 0.063222 0.010263 0.167295 152 
2-2-2 0.341846 0.000494 0.008652 0.167667 152 

2 1.888770 
3-1-1 0.526419 0.334408 0.010106 0.165554 152 
3-1-2 0.343638 0.000677 0.011355 0.167005 152 

3 0.870164 
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Figure 9.6 The sketch map of the three-phase RTS-96 power system 

 

 
Figure 9.7 The costs with/without mismatches for the three-phase RTS-96 system 
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Table 9-4: Runtime information of the three-phase RTS-79 system 
 

 

9.5 Summary 

 This chapter presented the TOPF solution of three test systems: the eight-bus 

system, the RTS 79 system, and the RTS-96 system. All three systems are modeled via 

the quadratized three-phase power system model. The results showed that the proposed 

TOPF algorithm is effective for small- and middle- size systems. Tests for large systems 

are left for future work. 

 

# 
Layer-3 
Runtime 

Linearization 
Runtime 

LP Runtime 
Power Flow 

Runtime 
# 

Constraint
1-1-1 0.86983 0.05896 0.00117 0.73966 2 
1-2-1 5.61849 4.33786 0.05137 0.67394 228 
1-2-2 1.29183 0.00242 0.06247 0.67276 228 
1-2-3 1.27127 0.00239 0.05865 0.65314 228 
1-2-4 1.27638 0.00239 0.06329 0.65599 228 
1-2-5 1.27033 0.00226 0.05823 0.66007 228 
1-2-6 1.25060 0.00231 0.06020 0.63686 228 
1-2-7 1.25575 0.00238 0.05679 0.64298 238 
1-3-1 1.47544 0.19776 0.06647 0.64920 238 
1-3-2 1.26452 0.00249 0.06662 0.64260 238 
1-3-3 1.26754 0.00236 0.06606 0.64074 238 
1-3-4 1.27787 0.00249 0.06747 0.65006 238 

1 19.3903 
2-1-1 5.41201 4.56495 0.05242 0.68547 238 
2-1-2 1.35438 0.00238 0.05597 0.64028 238 
2-1-3 1.35409 0.00239 0.05983 0.64367 270 
2-2-1 2.04234 0.63359 0.07140 0.67570 270 
2-2-2 1.40742 0.00269 0.07469 0.66522 270 

2 11.5709 
3-1-1 6.07620 5.23366 0.07252 0.67042 270 
3-1-2 1.43808 0.00280 0.07180 0.68559 270 
3-1-3 1.39747 0.00288 0.07070 0.65693 275 
3-2-1 1.53588 0.10936 0.07759 0.67652 275 
3-2-2 1.41834 0.00301 0.07692 0.67573 275 

3 11.8663 
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CHAPTER 10 

DEMONSTRATION OF REACTIVE SOURCE PLANNING WITH 

DYNAMIC PROGRAMMING AND THE PROPOSED OPF METHOD 

 

10.1 Introduction 

 This chapter presents a base system that may already have a number of static and 

dynamic VAR resources. The operation of the system is over a planning horizon, 

typically five to fifteen years is considered. Over this planning period it may be necessary 

to add dynamic VAR sources and/or static VAR sources to maintain acceptable 

performance as electric loads increase. The dynamic sources can be of various types, 

such as synchronous generators, STATCOMs, static VAR compensators, inverter based 

interfaces of wind, PV systems, etc. The decision process involves the addition of 

specific static and dynamic VAR sources at specific locations in the system at specific 

times (stages). Then, in terms of the installed sources, the state of the system can be 

defined at a given time as the base case plus the addition of specific amount of static and 

dynamic VAR sources to specific locations. In general, it is assumed that a decision to 

add VAR sources can be taken at specific time intervals (or stages), for example at 

intervals of six months. In this case, a stage is equivalent to a period of six months. In a 

planning period of ten years, there will be a total of twenty stages. 

10.2 System Description 

 The test system in Figure 10.1 consists of transmission, two substations, and 

distribution feeders. Substations are shown in Figures 10.2 and Figure 10.3. The cost 

coefficients of the 155MVA generators are a = 382.2391 $/hour, b = 12.38826 

$/(MW·hour), and c = 0.008342 $/(MW2·hour). The cost coefficients of the 350MVA 
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generators are a = 665.1094 $/hour, b = 11.84954 $/(MW·hour), and c = 0.004895 

$/(MW2·hour). Each of the two substations includes a 15MVA, 115kV/13.8kV transformer 

with three distribution feeders comprising 24 13.8kV buses, 11 induction motors, 6 three-

phase loads, and 13 single-phase loads. 

 

Figure 10.1 The test system for dynamic VAR planning 
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Figure 10.2 Substation 1 in the test system for dynamic VAR planning 
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Figure 10.3 Substation 2 in the test system for dynamic VAR planning 

 A three-phase fault was considered at the high voltage side of the transformer at 

Substation 1. This type of faults at this location usually causes the most severe effect on 

induction motors. Candidate locations for reactive power allocation are marked in Figure 

10.2 and Figure 10.3. The amount of reactive power allocated at each location is 900 

kVar and 1,500 kVar (for static sources) and 600 kVar (for dynamic sources). Table 10-1 

shows the different options for reactive power allocation. The transitions between these 
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states are considered over a period of twenty planning stages. Each stage is separated by a 

period of six months. It has also been assumed that a reactive power source cannot be 

removed once it has been installed. 

10.3 Candidate Reactive Sources 

 Table 10-1 shows different reactive sources considered. The acquisition cost and 

the installation cost are considered for each type of device, and they will be converted to 

the annualized equivalent cost (AEC). 

Table 10-1: Candidate reactive sources 
 
#  Device Type  Capacity 

(kVar) 
Acquisition 
Cost ($) 

Installation 
Cost ($) 

Annualized 
Equivalent Cost ($)

0  Capacitor Bank  900 8,500 5,500 840.18

1  Capacitor Bank  1500  9,500  6,500  960.21 

2  Static VAR Compensator  600 20,000 7,000 1620.4

 

10.4 Candidate Locations Selection 

 Table 10-2 shows the locations to place the capacitor banks or the SVCs. 

Candidate locations are selected from these locations with larger negative sensitivities 

and certain distances between each other. Therefore, S1-POLE5 and S1-POLE13 are 

selected, where S1-POLE5 is at Location 1 and S1-POLE13 is at Location 2 in Figure 

10.2 respectively. 
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Table 10-2: Locations of capacitor bank with sensitivity calculation 
 

#  Location Name  Sensitivity  #  Location Name  Sensitivity 

0  S1‐POLE1  6.54895  24  S2‐POLE2  29.4894 

1  S1‐POLE2  7.33222  25  S2‐POLE3  21.6163 

2  S1‐POLE3  ‐8.0637  26  S2‐POLE4  9.30731 

3  S1‐POLE4  8.37319  27  S2‐POLE5  28.8481 

4  S1‐POLE5  ‐26.3786  28  S2‐POLE14  ‐5.52452 

5  S1‐POLE14  10.0024  29  S2‐POLE15  30.1988 

6  S1‐POLE15  9.81778  30  S2‐POLE16  29.2361 

7  S1‐POLE16  9.98795  31  S2‐POLE17  29.6444 

8  S1‐POLE17  10.6499  32  S2‐POLE18  30.8978 

9  S1‐POLE18  7.879 33 S2‐POLE21 27.768 

10  S1‐POLE9  5.88635  34  S2‐POLE20  25.2289 

11  S1‐POLE8  ‐27.2261  35  S2‐POLE19  ‐6.36113 

12  S1‐POLE7  13.2733  36  S2‐POLE7  32.1202 

13  S1‐POLE10  ‐29.1543  37  S2‐POLE8  ‐6.97761 

14  S1‐POLE11  ‐31.9043  38  S2‐POLE9  ‐7.31361 

15  S1‐POLE12  8.1601  39  S2‐POLE10  26.0613 

16  S1‐POLE13  ‐33.0314  40  S2‐POLE11  ‐3.05085 

17  S1‐POLE19  14.1361  41  S2‐POLE12  24.3671 

18  S1‐POLE20  13.1129  42  S2‐POLE13  21.9133 

19  S1‐POLE21  13.7967  43  S2‐POLE22  23.7267 

20  S1‐POLE22  8.50671  44  S2‐POLE23  24.1174 

21  S1‐POLE23  8.45695  45  S2‐POLE24  25.6656 

22  S1‐POLE24  8.62304  46  S1‐POLE6B  2.58117 

23  S2‐POLE1  ‐5.7388  47  S2‐POLE6B  ‐7.07904 

10.5 State Definitions 

 This section describes the state definitions. Each state at any stage is 

differentiated according to different reactive source allocations. By considering possible 

combinations of these choices, there are 16 states in total shown in Table 10-3, including 

the base case that does not contain any addition of the reactive power resources. 

 Two candidate allocation choices are selected. Each state is associated with a 

certain cost since it involves a certain addition of reactive power sources. Five types of 

costs are associated to each state: AEC JAnnualizedEquivalentCost, the operating cost JOperatingCost, 

the voltage deviation penalty JVoltageDeviationPenalty, the voltage recovery time penalty 

JVoltageRecoveryTimePenalty, the voltage oscillation penalty JVoltageOscillationPenalty, the lower bound 

of voltage magnitudes JVoltageLowerBound, and the upper bound of voltage recovery times 

JVoltageRecoveryTimeUpperBound. AEC is derived from the acquisition cost and the installation 

cost. It occurs when a new reactive resource is installed and remains the same in 
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subsequent stages. The operating cost is calculated from the TOPF result. The voltage 

deviation penalty, the voltage recovery time penalty, and the voltage oscillation penalty 

occur in every planning stage recurrently. They are different in various stages since the 

system parameters may change during stages. 

 Table 10-3 shows the state definitions with the acquisition cost, the installation 

cost, and the AEC since their values are the same for the states with the same index in 

different stages. For example, these costs are the same at State 3, Stage 2 and Stage 3, 

Stage 3, respectively. However, the operating cost and the performance penalties vary in 

different stages. 

Table 10-3: State definitions 
 

State 
# 

Location 
Capacity 
(kVar) 

Type 
Acquisition 
Cost ($) 

Installation 
Cost ($) 

Annualized 
Equivalent Cost 

($) 
0  Base System 

1  CH2‐1  900  Capacitor Bank  8500  5500  840.182 

2  CH2‐2  1500  Capacitor Bank  9500  6500  960.208 

3  CH2‐3  600  Static VAR Compensator  20000  7000  1620.35 

4  CH1‐1  900  Capacitor Bank  8500  5500  840.182 

5 
 

CH1‐1  900  Capacitor Bank  17000  11000  1680.36 

CH2‐1 900 Capacitor Bank    
6 
 

CH1‐1  900  Capacitor Bank  18000  12000  1800.39 

CH2‐2 1500 Capacitor Bank    
7 
 

CH1‐1  900  Capacitor Bank  28500  12500  2460.53 

CH2‐3  600 Static VAR Compensator    
8  CH1‐2  1500  Capacitor Bank  9500  6500  960.208 

9 
 

CH1‐2  1500  Capacitor Bank  18000  12000  1800.39 

CH2‐1 900 Capacitor Bank    
10 
 

CH1‐2 1500  Capacitor Bank 19000 13000  1920.42

CH2‐2 1500 Capacitor Bank    
11 
 

CH1‐2  1500  Capacitor Bank  29500  13500  2580.56 

CH2‐3  600 Static VAR Compensator    
12  CH1‐3 600  Static VAR Compensator 20000 7000  1620.35

13 
 

CH2‐1  900  Capacitor Bank  28500  12500  2460.53 

CH1‐3  600 Static VAR Compensator    
14 
 

CH2‐2  1500  Capacitor Bank  29500  13500  2580.56 

CH1‐3  600 Static VAR Compensator    
15 
 

CH1‐3  600  Static VAR Compensator  40000  14000  3240.7 

CH2‐3  600 Static VAR Compensator    

10.6 Simulation Results 

 We simulate every state in all the stages. The simulation time for each case is 3 

seconds. A three-phase fault occurs at 0.1s and clears at 0.3s. Table 10-4 and Table 10-5 



 134

show the simulation result of State 6 (one capacitor at each location) at Stage 19 for all 

the load buses. Since the location of the three-phase fault is closer to Substation 1, the 

voltage recovery times of the buses in Substation 1 is longer. 

 

Table 10-4: Simulation data of Substation 1 for State 6 at Stage 19 
 

Load Bus Name 
Nominal 
Voltage 
(kV) 

Actual 
Voltage (kV)

Voltage 
Deviation 

Percentage (%)

Recovery 
Time (s) 

Voltage 
Oscillation 

Magnitude (kV) 

Voltage 
Oscillation 

Percentage (%)

STAGE ‐ 19, STATE ‐ 6, SUBSTATION ‐ 1 

S1‐POLE5_A  7.96743  8.51567  6.88094  0.435  0.0960342  1.20533 

S1‐POLE6B_A  7.96743  8.51143  6.82778  0.435  0.0959873  1.20475 

S1‐POLE8_A  7.96743  8.48735  6.5255  0.44  0.0958447  1.20296 

S1‐POLE10_A  7.96743  8.34538 4.74358 0.455 0.0941182  1.18129

S1‐POLE18_A  7.96743  8.55424  7.36511  0.43  0.0968623  1.21573 

S1‐MCC1_A  0.277128  0.297674  7.41379  0.41  0.00336017  1.2125 

S1‐MCC4_A  0.277128  0.297144  7.22251  0.435  0.00340506  1.2287 

S1‐MCC7_A  0.277128  0.292781 5.64811 0.475 0.00340491  1.22864

S1‐MCC10_A  0.277128  0.290744  4.91316  0.46  0.00334894  1.20844 

S1‐MCC11_A  0.277128  0.286981  3.55538  0.52  0.00336835  1.21545 

S1‐MCC13_A  0.277128  0.283271  2.21678  1.09  0.0063457  2.28981 

S1‐MCC14_A  0.277128  0.300748  8.52309  0.425  0.0034465  1.24365 

S1‐MCC17_A  0.277128  0.300079  8.28181  0.43  0.00344339  1.24253 

S1‐MCC21_A  0.277128  0.299809  8.18424  0.48  0.0035825  1.29272 

S1‐MCC22_A  0.277128  0.287754  3.83427  0.52  0.00338141  1.22016 

S1‐MCC24_A  0.277128  0.287492  3.73982  0.52  0.00338278  1.22066 

S1‐HOUSE2_L1  0.12  0.126727  5.60601  0.44  0.00142527  1.18773 

S1‐HOUSE3_L1  0.12  0.131538  9.6147  0.41  0.00147241  1.22701 

S1‐HOUSE5_L1  0.12  0.12992 8.26636 0.425 0.0014883  1.24025

S1‐HOUSE8_L1  0.12  0.131423  9.51928  0.415  0.00147516  1.2293 

S1‐HOUSE9_L1  0.12  0.126242  5.20203  0.45  0.00142563  1.18802 

S1‐HOU12_L1  0.12  0.122788  2.32306  0.66  0.00142622  1.18852 

S1‐HOU13_L1  0.12  0.122735 2.27917 1.05 0.00142749  1.18958

S1‐HOUSE15_L1  0.12  0.128131  6.77545  0.435  0.00145087  1.20906 

S1‐HOUSE16_L1  0.12  0.133034  10.8614  0.405  0.00149731  1.24776 

S1‐HOUSE18_L1  0.12  0.130724  8.93668  0.42  0.00150551  1.25459 

S1‐HOUSE19_A  0.12  0.126049  5.04044  0.46  0.00142536  1.1878 

S1‐HOUSE20_A  0.12  0.1328  10.6664  0.415  0.00149063  1.24219 

S1‐HOUSE23_L1  0.12  0.122664  2.22013  1.05  0.00142479  1.18732 

S1‐HOUSE24_L1  0.12  0.122703  2.25286  1.05  0.00142712  1.18926 
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Table 10-5: Simulation data of Substation 2 for State 6 at Stage 19 
 

Load Bus Name 
Nominal 
Voltage 
(kV) 

Actual 
Voltage (kV)

Voltage 
Deviation 

Percentage (%)

Recovery 
Time (s) 

Voltage 
Oscillation 

Magnitude (kV) 

Voltage 
Oscillation 

Percentage (%)

STAGE ‐ 19, STATE ‐ 6, SUBSTATION ‐ 2 

S2‐POLE5_A  7.96743  8.49739  6.65151  0.265  0.103191  1.29516 

S2‐POLE6B_A  7.96743  8.49506  6.62223  0.265  0.103176  1.29497 

S2‐POLE8_A  7.96743  8.46484  6.24295  0.265  0.102228  1.28307 

S2‐POLE10_A  7.96743  8.32517  4.48992  0.27  0.0923662  1.1593 

S2‐POLE18_A  7.96743  8.52733 7.02732 0.265 0.105656  1.3261

S2‐MCC1_A  0.277128  0.296485  6.98491  0.27  0.00526517  1.8999 

S2‐MCC4_A  0.277128  0.296139  6.8599  0.275  0.00436169  1.57389 

S2‐MCC7_A  0.277128  0.295323  6.56552  0.285  0.00467892  1.68836 

S2‐MCC10_A  0.277128  0.291188 5.07339 0.27 0.00349619  1.26158

S2‐MCC11_A  0.277128  0.283383  2.25701  0.285  0.00314761  1.1358 

S2‐MCC13_A  0.277128  0.283957  2.46417  0.285  0.00315329  1.13785 

S2‐MCC14_A  0.277128  0.298794  7.81783  0.265  0.00370784  1.33795 

S2‐MCC17_A  0.277128  0.298577  7.73958  0.27  0.00404184  1.45847 

S2‐MCC21_A  0.277128  0.299015  7.89786  0.27  0.00405815  1.46436 

S2‐MCC22_A  0.277128  0.285511  3.02491  0.285  0.00316336  1.14148 

S2‐MCC24_A  0.277128  0.285967  3.18946  0.29  0.00316724  1.14288 

S2‐HOUSE2_L1  0.12  0.126468  5.3896  0.27  0.00149357  1.24464 

S2‐HOUSE3_L1  0.12  0.130686  8.90475  0.255  0.00144244  1.20203 

S2‐HOUSE5_L1  0.12  0.129355  7.79608  0.265  0.00158085  1.31737 

S2‐HOUSE8_L1  0.12  0.130491 8.74285 0.255 0.001441  1.20083

S2‐HOUSE9_L1  0.12  0.125922  4.93498  0.27  0.00148119  1.23433 

S2‐HOU12_L1  0.12  0.121939  1.61559  0.285  0.00134106  1.11755 

S2‐HOU13_L1  0.12  0.12186  1.55011  0.285  0.00134067  1.11722 

S2‐HOUSE15_L1  0.12  0.126905  5.75453  0.27  0.0015377  1.28142 

S2‐HOUSE16_L1  0.12  0.131428  9.52307  0.26  0.00148682  1.23902 

S2‐HOUSE18_L1  0.12  0.129809  8.1743  0.265  0.00161846  1.34872 

S2‐HOUSE19_A  0.12  0.127667  6.3888  0.27  0.0015765  1.31375 

S2‐HOUSE20_A  0.12  0.131907  9.92263  0.26  0.00148699  1.23916 

S2‐HOUSE23_L1  0.12  0.121747  1.45562  0.29  0.00133971  1.11643 

S2‐HOUSE24_L1  0.12  0.121744  1.45316  0.29  0.0013398  1.1165 

10.7 Cost Evaluation 

 This section presents the cost computation and gives a computational example for 

State 6 at Stage 19.  

10.7.1 Transition costs between Stages 

 The transition costs are summarized in Table 10-6. Each row represents a state in 

the present stage and each column represents a state in the next stage. ∞ means the 

transition is not feasible since the removal of any installed reactive source is not allowed.  
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Table 10-6: Transition Costs, Stage k-1 to Stage k 
 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1  1 ∞ ∞ ∞ 1 ∞ ∞ ∞ 1 ∞ ∞ ∞ 1 ∞ ∞ 
2   1 ∞ ∞ ∞ 1 ∞ ∞ ∞ 1 ∞ ∞ ∞ 1 ∞ 
3    1 ∞ ∞ ∞ 1 ∞ ∞ ∞ 1 ∞ ∞ ∞ 1 
4     1 1 1 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
5      1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
6       1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
7        1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
8         1 1 1 1 ∞ ∞ ∞ ∞ 
9          1 ∞ ∞ ∞ ∞ ∞ ∞ 
10           1 ∞ ∞ ∞ ∞ ∞ 
11    1 ∞ ∞ ∞ ∞ 
12             1 1 1 1 
13              1 ∞ ∞ 
14               1 ∞ 
15                1 

 

10.7.2 Operating Costs computed via TOPF 

 The planning problem has 321 states in total. Stage 0 has only one state since no 

additional VAR sources exist at the beginning. TOPF should be run for on all these states 

and obtain the operating costs for them. The penalty factor is set to 1×107 and the 

linearization limit is set to 1.1×10-6. The total runtime of all states is 1,933.06s. Therefore, 

the average runtime for each case is 6.02s, where the maximum runtime is 9.90s and the 

minimum runtime is 4.91s. All these cases converge within five iterations. The average 

number of operating constraints added is 12.32 (maximum = 25 and minimum = 8). The 

detailed information of runtime and operating constraints is not provided for concision. 

 Table 10-7 lists TOPF results from Stage 0 to Stage 20. The unit of these numbers 

are $/hour, so the operating cost in each planning stage (= 0.5 year) equals its 

corresponding TOPF result times 4,380 hours (= 365×24/2). For example, the operating 

cost at Stage 19, State 6 = 2,637.8053×4,380. 
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Table 10-7: TOPF results from Stage 0 to Stage 20 
 
Stage\State  0 1 2 3 4 5 6 7 

0 2503.7335        

1 2509.3920 2513.4198 2515.8172 2512.2894 2513.4116 2516.9063 2519.8144 2515.7324

2 2515.3028 2519.2053 2521.6450 2517.2813 2519.2332 2522.7606 2525.6851 2521.5442

3 2521.9845 2525.0762 2527.5569 2522.9995 2525.0962 2528.6943 2531.2592 2527.4611

4 2528.7020 2530.1153 2533.5512 2528.9167 2530.1249 2534.7102 2537.3325 2533.4605

5 2535.6335 2536.1634 2539.6129 2534.9417 2536.1785 2540.8087 2543.4455 2539.541

6 2542.5884 2542.2966 2545.0015 2541.0571 2542.3174 2546.9874 2549.6651 2544.7956

7 2549.7792 2548.5154 2551.1802 2547.2579 2548.5423 2552.4886 2555.9705 2551.0569

8 2557.0974 2554.8205 2557.6817 2553.7496 2555.0558 2558.7336 2562.3803 2557.4051

9 2564.5692 2561.2123 2563.9005 2560.6109 2561.7567 2565.1879 2567.9867 2563.8405

10 2572.1984 2568.5327 2570.4169 2568.2278 2569.3985 2571.7301 2574.5674 2570.3636

11 2579.9918 2574.4425 2577.0212 2575.8595 2577.0589 2578.3606 2581.2369 2576.975

12 2587.9520 2581.8338 2583.7136 2583.7613 2584.9394 2585.0798 2587.9951 2584.6399

13 2596.0774 2589.9439 2590.4945 2591.7396 2592.9378 2591.8878 2594.8426 2590.4633

14 2604.3731 2597.9955 2597.3641 2599.9389 2601.1571 2600.0623 2602.7932 2597.4769

15 2612.8709 2606.3164 2604.3224 2608.3007 2609.5411 2605.7713 2610.0454 2605.2769

16 2621.5710 2614.8066 2613.2843 2616.8392 2618.1027 2612.8469 2615.9217 2613.7569

17 2645.6468 2623.4886 2620.6589 2625.5773 2626.8486 2620.5580 2623.127 2622.4148

18 2655.2712 2632.3551 2628.2477 2634.523 2635.8131 2629.1871 2630.4217 2631.2108

19 2665.1168 2641.4404 2655.0054 2643.6763 2660.0466 2656.7177 2637.8053 2655.032

20 2674.2545 2666.1065 2662.8397 2668.5409 2669.9683 2664.5836 2668.1132 2664.7218

                
Stage\State 8 9 10 11 12 13 14 15 

0         

1 2515.7592 2519.1151 2522.3089 2518.5073 2511.4261 2515.7276 2518.596 2514.5411

2 2521.5742 2525.6147 2528.2176 2523.9709 2518.0724 2521.5788 2524.0558 2520.3791

3 2527.4945 2531.1916 2534.2318 2529.9254 2523.0159 2527.4735 2529.9911 2526.2567

4 2533.5183 2537.2466 2540.3404 2535.9617 2528.9364 2533.4713 2536.0359 2532.2594

5 2539.5816 2543.3851 2546.0957 2542.0819 2535.1630 2539.5500 2542.1507 2537.3734

6 2545.7681 2549.6089 2552.3568 2548.2873 2541.2916 2544.8022 2548.3502 2543.5284

7 2551.1067 2555.9185 2558.7006 2553.6916 2547.9083 2551.1253 2553.7473 2549.8792

8 2557.5887 2562.3318 2565.1324 2560.0817 2555.2412 2557.4075 2560.1309 2556.0968

9 2563.8992 2567.9441 2571.6509 2566.5595 2562.6299 2563.8407 2566.6020 2562.5114

10 2570.4270 2574.5296 2578.3132 2573.1256 2570.2658 2570.3616 2573.1611 2569.0134

11 2577.0433 2581.2039 2584.2085 2579.7804 2577.9561 2576.9705 2579.8086 2576.4948

12 2583.9150 2588.5033 2590.9616 2586.5241 2585.8735 2583.6678 2586.5447 2582.2815

13 2591.0381 2594.8201 2597.9306 2593.3571 2593.9402 2590.4538 2593.3697 2589.7997

14 2599.0893 2601.7626 2604.8376 2601.3797 2602.1814 2597.3287 2600.2840 2597.9362

15 2607.5264 2608.7947 2611.9105 2607.2916 2610.5944 2604.3950 2607.2874 2606.2816

16 2616.0102 2615.9166 2619.0734 2614.3932 2619.1849 2612.7647 2614.3801 2614.7498

17 2624.6836 2623.1282 2626.3262 2621.5844 2627.9913 2621.5311 2621.5620 2623.3848

18 2633.5532 2632.3314 2633.6688 2630.8985 2637.0038 2630.2217 2630.9353 2632.2392

19 2657.5213 2639.9693 2641.1009 2658.4942 2646.2243 2655.0016 2636.4076 2656.0835

20 2667.3606 2668.1387 2671.7588 2666.3884 2671.3813 2663.4841 2666.3285 2665.9279
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10.7.3 Costs at Stage 19 

 Table 10-8 shows the costs of each state at Stage 19. Several bus voltages cannot 

recover after the fault clears, so the addition of VAR sources is necessary. 

Table 10-8: Cost data for all states at Stage 19 
 

State 
# 

Annualized 
Equivalent 

Cost 
Operating Cost 

Voltage 
Deviation 
Penalty 

Voltage 
Recovery 
Time 
Penalty 

Voltage 
Oscillation 
Penalty 

Voltage 
Lower 
Bound 

Voltage 
Recovery 
Time 
Upper 
Bound 

State Cost 

0  0  11,673,211.58  120.68  ∞ 0  0  ∞  ∞
1  840.18  11,569,508.95  142.03  ∞ 0  0  ∞  ∞
2  960.21  11,628,923.65  161.14  454.2  1.55  0  0  11,630,500.74

3  1,620.35  11,579,302.19  133.92  ∞ 0  0  ∞  ∞
4  840.18  11,651,004.11  147.3  ∞ 0  0  ∞  ∞
5  1,680.36  11,636,423.53  177.2  355.5  1.64  0  0  11,638,638.23

6  1,800.39  11,553,587.21  202.28  150.47  1.62  0  0  11,555,741.98

7  2,460.53  11,629,040.16  166.08  1,047.72  1.43  0  0  11,632,715.93

8  960.21  11,639,943.29  170.1  2,380.62  309.94  0  ∞  ∞
9  1,800.39  11,563,065.53  205.97  174.47  1.67  0  0  11,565,248.03

10  1,920.42  11,568,021.94  235.22 43.27 2.06 0 0  11,570,222.91

11  2,580.56  11,644,204.60  192.76  260.94  1.74  0  0  11,647,240.59

12  1,620.35  11,590,462.43  137.36  ∞ 0  0  ∞  ∞
13  2,460.53  11,628,907.01  164.3  793.14  1.48  0  0  11,632,326.46

14  2,580.56  11,547,465.29  187.32 204.44 1.64 0 0  11,550,439.25

15  3,240.70  11,633,645.73  154.22  ∞ 0  0  ∞  ∞

10.7.4 Examples of Cost Evaluations 

 This section illustrates how to compute each cost component for State 6 at Stage 

19. The AEC of State 6 is computed in Example 10-1. In addition, The AEC of State 6 at 

other stages is the same as in this example. The performance penalties of Bus S1-

MCC_13 at State 6, Stage 19 are computed in Example 10-2. The computational 

procedures for the performance penalties of the other buses are the same as those in 

Example 10-2. The performance penalties at State 6, Stage 19 are the sum of the 

performance penalties of all the load buses. 

 

Example 10-1: This example shows the computational procedure of The AEC at State 6. 
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Given: The installed equipment at State 6 includes two capacitor banks: 900 kVar and 

1,500 kVar. Acquisition cost: Ac = $18,000, installation cost: Ic = $12,000, and the 

interest rate of each stage: r = 4%. 

Find: AEC at State 6. 

Solution:  

/

14/0.5

( )
(1 ) 1

0.04
(18,000 12,000) 0.04

(1 0.04) 1

$1,800.39

AnnualizedEquivalentCost C C m p

r
J A I r

r

 
     

 
     


. 

 

 

Example 10-2: This example shows how to compute the performance penalties of Bus 

S1-MCC_13 at State 6, Stage 19. 

Given: The simulation result, e.g., Figure 10.4 shows the Phase A voltage of Bus S1-

MCC_13 at State 6, Stage 19,  

The pre-fault rated voltage, Vni = 277.128V,  

The bus load rating, Si = 1,100kVA, and  

The cost weights, β1 = 2.0 $/MW, β2 = 30 $/MW, and β3 = 1.0 $/MW.  

Find: The performance penalties of Bus S1-MCC_13 at State 6, Stage 19. 

Solution: 

According to Figure 10.4,  

The actual pre-fault terminal voltage, Vti = 283.271V,  

The recovery time of bus voltage, tri = 1.09s, and  

The oscillation magnitude of bus voltage, Vosci  = 6.35V.  

The voltage deviation penalty,  

2 2

1

283.271 277.128
2.0 1.1 $0.4324

0.05 0.05 277.128
ti ni

voltage i
ni

V V
J S

V


            
.   (10-1)
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Vti

tri

Vosci

 

Figure 10.4 The Phase A voltage of Bus S1-MCC_13 at State 3, Stage 2 

The voltage recovery time penalty,  

2

2

2

0, 0.5
1.09 0.5

30 1.1 $45.950.5
0.5, 0.5

0.5

ri

time ri
i ri

if t s

J t
S if t s


               

 

.   (10-2)

 

The voltage oscillation penalty,  
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2
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0, 0.02

6.35 0.02 277.128
1.0 , 0.02

0.02 277.128

$0.0212
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oscillation osci ni
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if V V

J V V
if V V

V

if V V

if V V


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

   
 

 


        


.    (10-3) 

10.8 The Computational Example of Dynamic Programming 

Example 10-3: This example shows how to compute the optimal trajectory cost from 

Stage 18 to State 6, Stage 19 using dynamic programming. 

Given: Table 10-9 gives the cost data of State 6 at Stage 19. JAnnualizedEquivalentCost are the 

results of Example 10-1. JVoltageDeviationPenalty, JVoltageRecoveryTimePenalty, and JVoltageOscillationPenalty 

are the sum of the voltage deviation penalties, the voltage recovery time penalties, and 

the voltage oscillation penalties for all the load buses, respectively. Their computational 

procedures of Bus S1-MCC_13 are shown in Example 10-2. Both hard constraints are 

inactive. 

Table 10-9: Cost data for State 6 at Stage 19 
 

State 
# 

Annualized 
Equivalent 

Cost 
Operating Cost 

Voltage 
Deviation 
Penalty 

Voltage 
Recovery 
Time 
Penalty 

Voltage 
Oscillation 
Penalty 

Voltage 
Lower 
Bound 

Voltage 
Recovery 
Time 
Upper 
Bound 

State Cost 

6  1,800.39  11,553,587.21  202.28  150.47  1.62  0  0  11,555,741.98

 
Table 10-10: Optimal trajectory costs from Stage 0 to all states at Stage 18 

 
#  0  1  2  3 

  ∞ 202,403,891.43  202,412,342.72 ∞ 
#  4 5 6  7 

  202,522,214.92 202,369,139.11 202,422,626.83  202,393,506.93 

#  8  9  10 11 
  202,490,446.66  202,403,648.74  202,436,987.82  202,415,162.85 

#  12  13  14  15 

  ∞  202,373,416.80 202,425,689.67 202,410,100.88
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Find: The optimal trajectory cost from Stage 0 to State 6, Stage 19. 

Solution: The cost of State 6 at Stage 19:  

C(X6,19) = JAnnualizedEquivalentCost(X6,19) + JOperatingCost(X6,19) + JVoltageDeviationPenalty(X6,19) + 

JVoltageRecoveryTimePenalty(X6,19) + JVoltageOscillationPenalty(X6,19) + JVoltageLowerBound(X6,19) + 

JVoltageRecoveryTimeUpperBound(X6,19) 

 = 1,800.39 + 11,553,587.21 + 202.28 + 150.47 + 1.62 

 = $11,555,741.98.          (10-4) 

The optimal trajectory cost from Stage 0 to State 6 at Stage 19:  

,18
6,19 ,18 ,18 6,19 6,19

18
* ( ) min *( ) ( ) ( )

$213,968,084.70
j

j j
all state X in stage

C X C X T X X C X    


.   (10-5)

 

 Optimal trajectory costs from Stage 0 to other states can be computed similarly. 

10.9 The Planning Details of Optimal VAR Allocation 

 Figure 10.5 - Figure 10.7 show the planning details. Each cell represents a state 

with its state #, its stage #, the state cost, and the optimal trajectory cost from Stage 0. 

The orange cells represent the optimal trajectory to the final stage. 
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0,0 0,1 0,2 0,3 0,4 0,5 0,6

0 10,991,296.09 11,017,184.14 11,046,448.45 11,075,869.72 11,106,227.94 11,136,688.72

0 10,991,296.09 22,008,480.23 33,054,928.68 44,130,798.40 55,237,026.34 66,373,715.06

1,1 1,2 1,3 1,4 1,5 1,6

11,009,811.49 11,035,150.26 11,060,862.80 11,082,932.19 11,109,420.59 11,136,281.86

11,009,811.49 22,026,446.35 33,069,343.03 44,137,860.87 55,240,218.99 66,373,308.20

2,1 2,2 2,3 2,4 2,5 2,6

11,020,459.79 11,045,983.46 11,071,875.29 11,098,128.04 11,124,675.72 11,148,275.28

11,020,459.79 22,037,279.55 33,080,355.52 44,153,056.72 55,255,474.12 66,385,301.62

3,1 3,2 3,3 3,4 3,5 3,6

11,005,628.16 11,027,491.07 11,052,535.01 11,078,450.60 11,104,838.02 11,131,621.53

11,005,628.16 22,018,787.16 33,061,015.24 44,133,379.28 55,235,636.42 66,367,257.95

4,1 4,2 4,3 4,4 4,5 4,6

11,009,779.31 11,035,276.29 11,060,954.35 11,082,978.21 11,109,490.86 11,136,377.19

11,009,779.31 22,026,572.38 33,069,434.58 44,137,906.89 55,240,289.26 66,373,403.53

5,1 5,2 5,3 5,4 5,5 5,6

11,025,968.78 11,051,608.41 11,077,595.74 11,103,942.95 11,130,651.76 11,157,711.87

11,025,968.78 22,042,904.50 33,086,075.97 44,158,871.63 55,261,450.17 66,394,738.21

6,1 6,2 6,3 6,4 6,5 6,6

11,038,860.17 11,064,571.43 11,088,983.35 11,115,581.54 11,142,353.53 11,169,592.36

11,038,860.17 22,055,867.52 33,097,463.59 44,170,510.22 55,273,151.93 66,406,618.70

7,1 7,2 7,3 7,4 7,5 7,6

11,021,591.79 11,047,045.47 11,072,959.31 11,099,234.51 11,125,864.62 11,148,877.37

11,021,591.79 22,038,341.56 33,081,439.55 44,154,163.19 55,256,663.02 66,384,513.78

8,1 8,2 8,3 8,4 8,5 8,6

11,020,211.91 11,045,679.65 11,071,608.50 11,097,990.55 11,124,545.41 11,151,639.95

11,020,211.91 22,036,975.74 33,080,088.73 44,152,919.23 55,255,343.81 66,388,666.29

9,1 9,2 9,3 9,4 9,5 9,6

11,035,799.73 11,064,265.47 11,088,689.72 11,115,207.94 11,142,091.68 11,169,348.95

11,035,799.73 22,055,561.57 33,097,169.95 44,170,136.63 55,272,890.08 66,406,375.29

10,1 10,2 10,3 10,4 10,5 10,6

11,049,947.12 11,075,824.39 11,102,163.68 11,128,916.12 11,154,120.94 11,181,541.25

11,049,947.12 22,067,120.49 33,110,643.91 44,183,844.80 55,284,919.34 66,418,567.59

11,1 11,2 11,3 11,4 11,5 11,6

11,033,899.97 11,057,828.33 11,083,906.67 11,110,343.07 11,137,146.79 11,164,323.73

11,033,899.97 22,049,124.42 33,092,386.90 44,165,271.75 55,267,945.19 66,399,960.15

12,1 12,2 12,3 12,4 12,5 12,6

11,001,849.48 11,030,958.76 11,052,609.52 11,078,539.62 11,105,810.17 11,132,651.48

11,001,849.48 22,022,254.86 33,061,089.76 44,133,468.30 55,236,608.57 66,369,260.05

13,1 13,2 13,3 13,4 13,5 13,6

11,021,569.60 11,047,195.78 11,073,012.40 11,099,280.55 11,125,902.72 11,148,904.94

11,021,569.60 22,038,491.87 33,081,492.63 44,154,209.24 55,256,701.12 66,385,513.51

14,1 14,2 14,3 14,4 14,5 14,6

11,034,284.92 11,058,196.58 11,084,190.65 11,110,664.17 11,137,444.19 11,164,595.18

11,034,284.92 22,049,492.67 33,092,670.89 44,165,592.85 55,268,242.59 66,401,203.74

15,1 15,2 15,3 15,4 15,5 15,6

11,017,138.46 11,042,707.07 11,068,448.86 11,094,738.68 11,117,135.68 11,144,092.34

11,017,138.46 22,034,003.16 33,076,929.09 44,149,667.36 55,247,934.08 66,379,728.76  

Figure 10.5 The optimal transitions from Stage 0 to Stage 6 
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0,7 0,8 0,9 0,10 0,11 0,12 0,13

11,168,182.83 11,200,234.93 11,232,960.41 11,266,376.57 11,300,514.19 11,335,386.98 11,370,990.76

77,541,897.90 88,742,132.83 99,975,093.23 111,241,469.80 122,541,984.00 133,877,370.98 145,248,361.74

1,7 1,8 1,9 1,10 1,11 1,12 1,13

11,163,517.87 11,191,131.70 11,219,125.39 11,251,186.61 11,277,069.74 11,309,442.70 11,344,967.16

77,536,826.07 88,727,957.77 99,947,083.16 111,198,269.77 122,475,339.51 133,784,782.20 145,129,749.36

2,7 2,8 2,9 2,10 2,11 2,12 2,13

11,175,335.20 11,203,808.85 11,231,044.20 11,259,583.13 11,288,507.15 11,317,817.43 11,347,516.00

77,549,050.26 88,745,706.75 99,973,177.03 111,232,760.16 122,521,267.31 133,839,084.74 145,186,600.74

3,7 3,8 3,9 3,10 3,11 3,12 3,13

11,158,778.88 11,187,210.28 11,217,260.76 11,250,621.13 11,284,047.14 11,318,658.25 11,353,607.78

77,526,036.83 88,713,247.11 99,930,507.87 111,181,129.00 122,465,176.14 133,783,834.40 145,137,442.18

4,7 4,8 4,9 4,10 4,11 4,12 4,13

11,163,640.01 11,192,166.69 11,221,514.43 11,254,983.63 11,288,534.80 11,323,052.13 11,358,088.49

77,537,043.54 88,729,210.23 99,950,724.66 111,205,708.29 122,494,243.08 133,817,295.21 145,175,383.70

5,7 5,8 5,9 5,10 5,11 5,12 5,13

11,181,804.23 11,209,154.29 11,237,421.09 11,266,072.80 11,295,111.30 11,324,538.77 11,354,355.87

77,555,112.43 88,745,980.36 99,965,378.86 111,213,155.96 122,493,381.07 133,799,878.28 145,139,138.07

6,7 6,8 6,9 6,10 6,11 6,12 6,13

11,197,206.68 11,225,278.17 11,249,830.65 11,278,650.44 11,307,859.01 11,337,456.23 11,367,445.15

77,570,610.21 88,762,321.71 99,979,040.88 111,229,375.10 122,513,567.30 133,831,699.31 145,184,740.36

7,7 7,8 7,9 7,10 7,11 7,12 7,13

11,176,299.19 11,204,101.45 11,232,285.64 11,260,854.14 11,289,809.48 11,323,379.66 11,348,884.81

77,543,557.14 88,730,138.28 99,945,532.75 111,191,362.01 122,470,938.48 133,788,555.80 145,132,719.20

8,7 8,8 8,9 8,10 8,11 8,12 8,13

11,175,020.38 11,203,408.75 11,231,045.98 11,259,635.18 11,288,612.12 11,318,708.26 11,349,907.08

77,548,735.44 88,745,306.65 99,973,178.81 111,232,813.99 122,521,426.11 133,840,134.37 145,190,041.44

9,7 9,8 9,9 9,10 9,11 9,12 9,13

11,196,981.75 11,225,068.64 11,249,647.05 11,278,487.93 11,307,717.65 11,339,685.53 11,367,350.02

77,570,289.96 88,761,894.71 99,977,604.82 111,225,571.09 122,505,987.42 133,815,025.04 145,152,132.22

10,7 10,8 10,9 10,10 10,11 10,12 10,13

11,209,323.41 11,237,490.88 11,266,038.05 11,295,214.79 11,321,031.85 11,350,606.08 11,381,126.24

77,583,038.47 88,779,388.78 100,008,170.87 111,268,391.81 122,553,792.01 133,871,873.39 145,220,210.98

11,7 11,8 11,9 11,10 11,11 11,12 11,13

11,187,991.49 11,215,977.03 11,244,346.54 11,273,102.73 11,302,247.44 11,331,781.85 11,361,707.95

77,555,249.44 88,742,013.86 99,957,593.64 111,203,610.60 122,483,376.44 133,796,958.00 145,145,542.35

12,7 12,8 12,9 12,10 12,11 12,12 12,13

11,161,630.53 11,193,746.49 11,226,107.09 11,259,550.88 11,293,234.28 11,327,914.46 11,363,252.87

77,530,890.57 88,724,637.06 99,950,744.15 111,210,295.03 122,503,529.31 133,831,443.77 145,194,696.64

13,7 13,8 13,9 13,10 13,11 13,12 13,13

11,176,597.42 11,204,110.58 11,232,285.12 11,260,843.88 11,289,788.18 11,319,120.15 11,348,841.33

77,545,857.46 88,735,001.15 99,956,922.19 111,207,927.04 122,488,057.94 133,794,459.65 145,133,623.54

14,7 14,8 14,9 14,10 14,11 14,12 14,13

11,188,231.30 11,216,188.26 11,244,528.35 11,273,253.68 11,302,366.21 11,331,867.10 11,361,757.90

77,557,491.35 88,747,078.83 99,969,165.41 111,223,997.83 122,512,661.24 133,835,396.41 145,193,201.67

15,7 15,8 15,9 15,10 15,11 15,12 15,13

11,171,906.28 11,199,136.73 11,227,230.05 11,255,706.50 11,288,472.86 11,313,817.05 11,346,747.42

77,539,164.23 88,725,173.56 99,940,477.16 111,186,214.37 122,469,601.86 133,778,993.20 145,125,740.62  

Figure 10.6 The optimal transitions from Stage 7 to Stage 13 
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0,14 0,15 0,16 0,17 0,18 0,19 0,20

11,407,353.66 11,444,634.07 11,482,882.11 11,589,069.33 ∞ ∞ ∞

156,655,715.39 168,100,349.46 179,583,231.58 191,172,300.91 ∞ ∞ ∞

1,14 1,15 1,16 1,17 1,18 1,19 1,20

11,380,240.00 11,416,699.32 11,453,922.76 11,492,065.51 11,531,214.49 ∞ ∞

156,509,989.36 167,926,688.68 179,380,611.43 190,872,676.94 202,403,891.43 ∞ ∞

2,14 2,15 2,16 2,17 2,18 2,19 2,20

11,377,604.18 11,408,085.43 11,447,352.13 11,479,688.87 11,513,011.37 11,630,500.74 ∞

156,564,204.92 167,972,290.35 179,419,642.48 190,899,331.35 202,412,342.72 214,042,843.46 ∞

3,14 3,15 3,16 3,17 3,18 3,19 3,20

11,389,532.22 11,426,183.80 11,463,650.40 11,502,077.50 ∞ ∞ ∞

156,526,974.40 167,953,158.19 179,416,808.59 190,918,886.09 ∞ ∞ ∞

4,14 4,15 4,16 4,17 4,18 4,19 4,20

11,394,098.16 11,430,842.52 11,468,401.40 11,506,838.40 11,546,650.72 ∞ ∞

156,569,481.87 168,000,324.39 179,468,725.79 190,975,564.20 202,522,214.92 ∞ ∞

5,14 5,15 5,16 5,17 5,18 5,19 5,20

11,390,159.07 11,415,166.43 11,446,168.70 11,479,973.63 11,517,841.00 11,638,638.23 ∞

156,519,908.42 167,925,155.79 179,371,324.49 190,851,298.11 202,369,139.11 214,007,777.34 ∞

6,14 6,15 6,16 6,17 6,18 6,19 6,20

11,402,266.10 11,434,028.96 11,459,767.38 11,491,330.17 11,523,295.48 11,555,741.98 11,688,756.36

156,577,649.80 167,998,233.87 179,432,057.73 190,910,972.65 202,422,626.83 213,968,084.70 225,656,841.06

7,14 7,15 7,16 7,17 7,18 7,19 7,20

11,379,606.76 11,413,778.86 11,450,939.22 11,488,905.05 11,527,557.84 11,632,715.93 ∞

156,512,325.97 167,926,104.83 179,377,044.05 190,865,949.10 202,393,506.93 214,026,222.86 ∞

8,14 8,15 8,16 8,17 8,18 8,19 8,20

11,385,175.15 11,422,139.29 11,459,319.28 11,497,363.96 11,536,407.54 ∞ ∞

156,575,216.59 167,997,355.88 179,456,675.16 190,954,039.12 202,490,446.66 ∞ ∞

9,14 9,15 9,16 9,17 9,18 9,19 9,20

11,397,755.84 11,428,554.99 11,459,749.51 11,491,342.29 11,531,695.02 11,565,248.03 11,689,010.75

156,527,505.20 167,938,544.35 179,386,438.18 190,871,953.72 202,403,648.74 213,968,896.77 225,657,907.52

10,14 10,15 10,16 10,17 10,18 10,19 10,20

11,411,375.12 11,442,351.25 11,473,722.87 11,505,490.61 11,537,656.47 11,570,222.91 11,704,552.85

156,597,975.86 168,006,556.17 179,446,013.22 190,925,133.09 202,436,987.82 213,982,565.63 225,687,118.47

11,14 11,15 11,16 11,17 11,18 11,19 11,20

11,396,845.34 11,422,739.17 11,453,852.12 11,485,370.87 11,526,226.31 11,647,240.59 ∞

156,534,287.52 167,949,713.56 179,403,565.68 190,888,936.54 202,415,162.85 214,062,403.45 ∞

12,14 12,15 12,16 12,17 12,18 12,19 12,20

11,399,364.61 11,436,245.84 11,473,948.57 11,512,709.45 ∞ ∞ ∞

156,594,061.25 168,030,307.09 179,504,255.66 191,016,965.11 ∞ ∞ ∞

13,14 13,15 13,16 13,17 13,18 13,19 13,20

11,378,954.27 11,409,911.80 11,446,587.55 11,485,025.19 11,523,188.64 11,632,326.46 ∞

156,508,703.63 167,918,615.43 179,365,202.97 190,850,228.16 202,373,416.80 214,005,743.26 ∞

14,14 14,15 14,16 14,17 14,18 14,19 14,20

11,392,040.40 11,422,714.41 11,453,781.99 11,485,249.52 11,526,358.33 11,550,439.25 ∞

156,578,641.13 167,986,919.33 179,426,072.34 190,904,892.00 202,425,689.67 213,962,781.97 ∞

15,14 15,15 15,16 15,17 15,18 15,19 15,20

11,382,390.40 11,418,954.68 11,456,070.44 11,493,965.27 11,532,979.49 ∞ ∞

156,508,131.01 167,927,085.69 179,383,156.13 190,877,121.39 202,410,100.88 ∞ ∞  

Figure 10.7 The optimal transitions from Stage 14 to Stage 20 
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 The optimal trajectory shows that the best choice is installing a 1,500 Var 

capacitor bank at Location 2 at Stage 9 and installing a 900 Var capacitor bank at 

Location 1 at Stage 19. If the final stage is Stage 19, the best choice will be installing a 

600 Var SVC at Stage 19 instead of a 900 Var capacitor bank. Table 10-11 shows the 

back tracing information providing the optimal trajectory of any states. In this table, each 

row represents a state and each column represents a stage. The number in Cell i, j (i, = the 

state index, j = the stage index) gives the state index in Stage j - 1 on the optimal 

trajectory of State i, Stage j. For instance, State 1, Stage 16 is on the optimal trajectory of 

State 9, Stage 17. Orange cells represent the optimal trajectory from Stage 0 to Stage 20. 

Table 10-11: Back tracing information of dynamic programming 
 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ‐1 ‐1 ‐1

1  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 ‐1 ‐1

2  0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 ‐1

3  0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 ‐1 ‐1 ‐1

4  0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 ‐1 ‐1

5  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 5 5 5 5 ‐1

6  0 0 0 0 0 0 4 4 4 4 4 4 4 4 2 2 2 2 2 6

7  0 0 0 0 0 3 3 3 3 3 3 3 3 7 7 7 7 7 7 ‐1

8  0 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8 8 ‐1 ‐1

9  0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 9 9 9

10  0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 10

11  0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 11 11 11 11 ‐1

12  0 0 0 0 0 12 12 12 12 12 12 12 12 12 12 12 12 ‐1 ‐1 ‐1

13  0 0 0 0 0 12 12 12 12 1 1 1 1 1 13 13 13 13 13 ‐1

14  0 0 0 0 0 12 12 12 12 12 12 12 12 2 2 2 2 2 2 ‐1

15  0 0 0 0 0 3 3 3 3 3 3 3 15 15 15 15 15 15 ‐1 ‐1

 

10.10 Summary 

 This chapter gave an example that illustrates how the dynamic programming 

algorithm can be used to perform VAR planning on a test distribution network. The 

network is simulated on the software WinIGS – Q. TOPF is used to compute the 
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operating costs for all states in all stages. The planning result shows that the operating 

costs computed via TOPF are a significant part in the state cost. 

 



 

148 

CHAPTER 11 

CONCLUSIONS AND FUTURE RESEARCH DIRECTION 

 

11.1 Conclusions 

The work performed in this thesis is to develop a robust and high-efficient OPF 

algorithm via the quadratic model on both single-phase and three-phase power systems. 

The proposed algorithm can solve power systems with various types of devices. A special 

type of devices proposed in this work is the mismatch current source at each bus, which 

can help the algorithm starting from arbitrary states which can be feasible or infeasible. 

Therefore, this algorithm can even provide a solution for infeasible systems (without a 

valid power flow solution). The result of an infeasible system will have nonzero 

mismatches at the final step and these mismatches can be converted to remedial actions 

such as load shedding. 

The models of single-phase and three-phase power systems in this thesis are both 

quadratized for excellent convergence properties. Quadratization is achieved via using 

Cartesian co-ordinates and introducing additional internal state variables. A device in the 

power system usually has control variables and state variables classified according to 

device types and modes. For example, synchronous generators in slack mode, PQ mode, 

and PV mode have different variable classifications. The proposed OPF algorithm solves 

for the control variables in the optimization step and for the state variables in the power 

flow step. 

This work can identify active operating constraints and add only them to the 

model via adding the violated constraints of the previous iteration. For example, the 

three-phase RTS-96 system has 1,631 operating constraints, while the number of final 

active constraints added is only 275, which is 16.86% of the total amount. 
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 Sparsity technologies can highly reduce the storage and runtime in linearization 

and solving the power flow. If the algorithm does not use sparsity technologies, the size 

of the Jacobian matrix is O(N2) for a power system with N state variables. The 

computation of the inverse Jacobian matrix requires O(N3) runtime when using a 

common inverse matrix algorithm. For example, the three-phase RTS-96 system has 

2,360 state variables that require over 1010 computations. Sparsity technologies can solve 

this problem via manipulating only nonzero cells since most of the cells in the Jacobian 

matrix are filled with 0. 

The developed OPF software has been tested on eleven systems sized from three 

buses to three hundred buses and the results are compared with seven well-known OPF 

software packages. The TOPF software is also tested on four three-phase systems. 

Finally, an important contribution of this work is applying the proposed TOPF 

algorithm on a planning problem: optimal VAR allocation mitigating FIDVR phenomena. 

This problem is solved via dynamic programming and TOPF is used to compute the 

operating costs in each planning stage. This part demonstrates the use of OPF in power 

system planning. 

11.2 Future Work 

 This thesis work has proposed an OPF algorithm and tested on various benchmark 

systems that contain up to 300 buses. However, OPF is a complicated concave 

optimization problem and should be applied to large-scale power systems. There are 

several research topics related to this thesis, which can be investigated in the future. 

 A first extension is to apply the algorithm on large-scale systems since power 

systems nowadays include over tens of thousands of buses and control variables. This 

task may need further optimization of the code. First, the present code linearizes the 

operating constraints separately. Each linearization process requires solving the linear 

equation system Ax = b once. Since A does not change in one iteration, an advanced 
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solving method is expected. Second, sequential methods should to solve the power flow 

when updating state variables. This step occurs in every Layer-3 loop. A faster power 

flow code will reduce the runtime tremendously. Third, the present code parallelizes the 

linearization step. Parallelism on other time consuming steps such as LP and power flow 

also requires additional work. 

 A second extension will be a smarter method to manage the modeled operating 

constraints. The present algorithm keeps adding operating constraints if they are violated 

in the previous iteration. Since working points move during iteration times, some 

constraints may not reach their boundaries afterwards. Future work can add one or more 

steps to remove some modeled operating constraints. 

 An important extension is the further improvement of the convergence speed. The 

convergence speed depends on the moving direction of the working point and the step 

lengths of the control variables. In the present algorithm version, the moving direction is 

determined by LP or QP, and the step lengths are controlled by the linearization limits, 

which is an important topic in SLP or SQP. Selecting larger limits means a faster 

convergence but a larger oscillation, while selecting smaller limits means a slower 

convergence speed. The given algorithm computes the linearization limits based on the 

linearization error of the power balance equations or the current conservation equations. 

The inequity constraints are not included in the computation of the limits due to less 

usefulness and a larger computation burden. Some advanced step-length strategies need 

to be developed since a high convergence speed is very important for large-scale systems. 

 Another important extension of the presented work lies in the further development 

of the TOPF software. The device models in the present TOPF code contain the control 

variables indirectly. Therefore, the partial derivatives of the power flow equations with 

respect to the control variables are computed via a sensitivity analysis, which is much 

slower than a direct substitution. Since OPF and TOPF both require high computational 
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efficiency, their code should be greatly optimized before releasing it for practical or 

commercial use. 

 An evident further extension is a better planning algorithm in optimal VAR allocation, 

which is also a NP-complete problem. The proposed algorithm reduces the search space via 

preselecting candidate locations using sensitivity analysis. However, this method is not 

accurate and may not find better selections. An obvious improvement is repeating the given 

method on several location combinations and then selecting the one with the minimum cost. 

 Finally, several investigations of the proposed OPF algorithm and the quadratized 

system model are of interest. This dissertation work demonstrated and compared the 

sequential OPF algorithm with several other methods. One of the observations is that NLP 

methods using the Kuhn-Tucker conditions also promise a good efficiency. Therefore, future 

work can develop a NLP method using the quadratized model. In addition, people can also 

extend this algorithm to SCOPF including the contingency constraints. 
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APPENDIX A 

QUADRATIC SINGLE-PHASE TRANSFORMER MODEL 

This section describes the model of the single-phase two-winding transformer. 

Three of these models can be connected into the four subcases of Y-Y, Y-, -Y, and -

 connected transformers. 

1tkY 2tkY

tkmY



tkE




tktE

1I

2I

3I

4I

1V

2V

3V

4V
1: kn kut t

 

Figure A.1 The single-phase transformer model 

Figure A.1 illustrates the physical model of the single-phase variable-tap 

transformer. The turn ratio tk consists of two parts: one is the nominal transformation 

ratio tkn and the other is the per-unit tap selection tku. The overall turn ratio tk = tkn tku. The 

admittance 1tkY  and 2tkY  of the transformer are expressed as follows:  

2
1

1 1

1
2tk tk kn

k k

Y Y t
r j L

 


   and        (A.1) 

 2
2 2

2 1

1 1
tk

tk
ku

Y
Y

abs t r j L
 

  

 ,       (A.2) 

where tk tk tkY g jb   is the nominal admittance of the transformer referred to the 

secondary side. tkm tkm tkmY g jb   is the magnetizing admittance referred to the primary 

side. This model assumes that the leakage impedance is proportional to the number of 

turns. 

According to Kirchhoff’s laws, the equations of a single-phase transformer are  

 1 1 1 2tk tkI Y V V E       ,         (A.3) 

 3 2 3 4tk kn ku tkI Y V V t t E       , and        (A.4) 
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   1 1 2 2 3 40 tk tk kn ku tk kn ku tk tkm tkY V V E t t Y V V t t E Y E                 .    (A.5) 

Two state variables 2
1 (1 )tk kuu t   and 2

1

1

1tk
tk

u
u




 are introduced to eliminate 

the absolute value function in the denominator in 2tkY . Other two state variables 

3 2tk tk kuu u t  and 4 3tk tk kuu u t  are introduced to reduce the order of the equation system. 

By substituting them into (A.1) to (A.5) and separating the equations into real and 

imaginary parts, the following quadratized equations of a single-phase transformer are 

formed:  

2 2
1 1 2 1 22 ( ) 2 ( )r kn tk r r tkr kn tk i i tkiI t g V V E t b V V E      ,      (A.6) 

2 2
1 1 2 1 22 ( ) 2 ( )i kn tk i i tki kn tk r r tkrI t g V V E t b V V E      ,      (A.7)

 

3 2 3 4 2 3 4 3 32 ( ) 2 ( ) 2 2r tk tk r r tk tk i i tk kn tk tkr tk kn tk tkiI u g V V u b V V g t u E b t u E      ,   (A.8) 

3 2 3 4 2 3 4 3 32 ( ) 2 ( ) 2 2i tk tk i i tk tk r r tk kn tk tki tk kn tk tkrI u g V V u b V V g t u E b t u E      ,   (A.9) 

2 2
1 2 1 2
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2 2 2 2
4 4
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2 ( ) 2 ( )

(2 2 ) (2 2 )
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kn tk tk i i kn tk tk r r

kn tk kn tk tk tmk tki kn tk kn tk tk tmk tkr

t g V V t b V V

t g u V V t b u V V

t g t g u g E t b t b u b E

   
   
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,    (A.10) 
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2 2 2 2
4 4

0 2 ( ) 2 ( )

2 ( ) 2 ( )

(2 2 ) (2 2 )

kn tk r r kn tk i i

kn tk tk r r kn tk tk i i

kn tk kn tk tk tmk tkr kn tk kn tk tk tmk tki

t g V V t b V V

t g u V V t b u V V

t g t g u g E t b t b u b E

   
   

     

,    (A.11) 

2 2
10 2 1ku ku tkt t u    ,          (A.12) 

2 1 20 1tk tk tku u u   ,          (A.13) 

2 30 tk ku tku t u  , and          (A.14) 

3 40 tk ku tku t u  ,          (A.15) 

This model includes six state variables [Etk1r, Etk1i, utk1, utk2, utk3, utk4] and one 

control variable tku. 
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APPENDIX B 

LINEARIZATION METHODS 

B.1 Overview 

The original OPF problem is a nonlinear optimization problem. The state 

variables are eliminated and the problem is re-cast in terms of control variables only. This 

is achieved by linearization where all functions/quantities are expressed as a linear 

combination of control variables. Therefore, the nonlinear optimization problem is 

reformulated to a linear optimization problem and can be solved by well-designed LP 

algorithms. 

Theoretically, the coefficient of a control variable in the linearized function equals 

the total derivative of the original function with respect to the control variable. The state 

variables are eliminated in the linearization step since they can be solved according to the 

power flow equations. However, if a nonlinear equation is a conditional identity 

according to the power flow equations, such as power balance equations and current 

conservation equations, their total derivatives with respect to any control variable are 

zero. The explanation is as follows: f(x, u, v) = 0 is assumed to be the real power balance 

equation. The total derivative of f(x, u, v) with respect to iu  is 
1 1( , ,0) ( , ,0)o o

i

f f

u




x u x u
, 

where (x1, u1, 0) is the state after changing ui to ui +Δui from state (xo, uo, 0). Obviously, 

f(xo, uo, 0) = 0 and f(x1, u1, 0) = 0 according to the power flow equations. 
( , , )df v

d


x u
0

u
, 

because 1 1( , ,0) ( , ,0) 0o of f x u x u . Therefore, the total derivatives of the real power 

balance equation cannot reflect the rates of change of the control variables. In addition, 

although the partial derivatives 
( , , )f v



x u

0
u

, they cannot be used as the coefficients of 

the control variables since they do not have any physical meanings. To overcome these 
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problems, the linearization step uses the reduced power flow equations, referred to as 

greduced(x, u, v) = 0. The reduced power flow equations consist of the power flow 

equations excluding all the slack bus equations in a symmetric and balanced power 

system or the neutral-phase equations at the slack bus in a three-phase power system. 

Since no conditional identity exists, 
( , , ) 0

( , , )

reduced v

f v






 g x u

x u
0

u
, which is suitable for the 

use as linearized coefficients of the control variables. Linearization using the reduced 

power flow equations eliminates all the state variables not associated with the slack bus. 

The state variables of the slack bus can also be eliminated since they are assumed to be 

constant in the optimization step. Two methods to obtain the coefficients of the linearized 

functions are presented in the following two subsections. 

B.2 The Definition of the Derivative 

The derivative of f(x, u, v) with respect to ui is computed as follows,  

1. Compute the value of f(x, u, v) at the present operating point, referred to as f(xo, uo, 0). 

2. Change ui infinitesimally, referred to as ui1=ui0+Δui. The value of the function f(x, u, v) 

in this step is f(xo, u1, 0). The partial derivative of f(x, u, v) with respect to ui (
( , , )

i

v

u



x u

) 

is 
1( , , 0) ( , ,0)o o o

i

f f

u




x u x u
. 

3. Resolve the reduced power flow equations and obtain the updated values of the state 

variables (x1). The function value changes to f(x1, u1, 0). 

4. 
1 1

( , , ) 0

( , , ) ( , ,0) ( , ,0)

reduced

o o

i iv

f v f f

u u


 


 
g x u

x u x u x u
.    (B.1) 

B.3 The Co-state Method 

 For a general operating constraint f(x, u, v) ≤ 0, its linearized constraint is  
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( , , ) 0

( , , )
( , ,0) 0

reduced

o o

v

f v
f




  

 g x u

x u
x u u

u
.       (B.2) 

The partial derivative with respect to u according to the reduced power flow equations is  

1

( , , ) 0

( , ,0) ( , , 0)( , , ) ( , ,0) ( , ,0)
,

reduced

o o o oo o o o
reduced reduced

v

f v f f




    
        g x u

g x u g x ux u x u x u

u u x x u

           (B.3) 

where 

(xo, uo, 0) is the current working point and  

( , ,0)o o
reduced


g x u

x
 is the Jacobian matrix of the reduced power flow equations at the 

working point (xo, uo, 0). 

 The co-state method requires the computation of the inverse Jacobian matrix and 

the multiplication of matrices. These computations need sparsity techniques since the 

algorithm is intended for large-scale systems. 

B.4 Linearization Update Methods 

The operating constraints in the OPF problem are linearized as well, but the 

linearized constraints cannot guarantee that the original nonlinear constraints are satisfied 

due to the linearization error. If a nonlinear constraint is violated, the algorithm will 

change its corresponding linearized constraint via the linearization update method, 

retrieve the previous working point, and then redo the linear programming (LP). 

Therefore, the nonlinear constraint will be satisfied in the steps thereafter. 

The linearized constraint of h(x, u) ≤ hmax is max( , )o odh
h

d
  

x u
u

u
 and the 

linearized constraint of hmin ≤ h(x, u) is min ( , )o odh
h

d
  

x u
u

u
. This analysis focuses on 

the upper bound constraints only, and the formulas of the lower bound constraints can be 

obtained similarly. 
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First, we analyze a simple case: the LP result reaches the boundary of a constraint. 

Since the working point does not change if any violation occurs, the linearized constraints 

without violation remain unchanged. If any constraint is violated, a certain value should 

be subtracted from the corresponding b of that constraint. The overshoot (h(x, u) – hmax) 

is subtracted from b. Therefore, the new value of b is  

max max

max max max

( , ) or

[ ( , ) ] ( , )

h if h h is not violated

h h h if h h is violated

 

   

x u

x u x u
.   (B.4) 
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Figure B.1 The result reaches the boundary of a constraint 

 Figure B.1 shows the violation caused by the linearization error of the variable 

iu u . If the overshoot is subtracted from b, the solution moves to the left dotted vertical 

line. Figure B.1 shows that the constraint is satisfied. The dots represent the solution 

before the update and the squares represent the updated solution. However, the LP 

solution may not reach to the boundary of the linearized constraint, but the solution may 

already violate the corresponding nonlinear constraint. In this situation, Formula (B.4) 

cannot guarantee that the updated solution satisfies the nonlinear constraint. As shown in 

Figure B.1, the overshoot is subtracted from the right side of the linearized constraint. 

The linearized constraint changes to  

max max

( , , ) 0

( , )
( , ) [ ( , ) ]

reduced

o o
o o

v

h
h h h h




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
g x u

x u
x u u x u

u
.   (B.5) 
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 The updated right side of the constraint is shown as the lower horizontal dashed 

line in Figure B.1. In this situation, o
i iu u   or its adjacent points can be also accepted as 

the LP solution, but the nonlinear operating constraint h(x, u) ≤ hmax will be violated 

again. According to the algorithm, this process continues until the right side of linearized 

constraint becomes low enough to ensure that the new working point satisfies the 

nonlinear operating constraint h(x, u) ≤ hmax. In some extreme cases, many updates are 

required to meet the nonlinear constraint. 
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Figure B.2 The result does not reach the boundary of the constraint 

To solve the problem above, the power flow update of the linearized constraint 

should also be subtracted from the right side of the linearized constraint. Figure B.2 

shows this method. The new value of b is  

max max
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Figure B.3 The final version of the linearization update method 

The updated linearized formula of the lower bound constraint can be obtained 

similarly. The new value of b is  
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B.5 Linearization Limit Strategies 

 The linearization limits are the limits on the control variables in LP. The objective 

of these limits is to control the linearization error, which increases when the size of the 

power system increases. For example, if all the linearization limits equal their physical 

limits, the result of the three-bus system converges but LP solutions for the RTS-79 

system and the RTS-96 system are not valid. In addition, linearization limits should be 

not too small since a small region may require more iterations [78]. 

 The simplest linearization limit strategy is to keep a control variable in a region 

with a fix ratio to the present value of that variable, but the algorithm using this strategy 

may need a large number of iterations. Several papers improved this strategy by adjusting 
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the ratio according to the value of the objective function [79], [80] or the violation of 

constraints [81]. A proper linearization limit will improve the value of the objective 

function or reduce the number of violations. However, some control variables may have 

very small per-unit values, such as real and the reactive powers. If a control variable is 

close to zero, its linearization limit is very small, so that the variable may be trapped in a 

small region close to zero. One modified method is using a fixed number, e.g., 0.2, 

instead of the variable value in calculating its linearization limit. According to the 

property of the power system, the algorithm can also use the physical limits of a variable 

instead of using the value as the multiplicand in the calculation since the change of a 

variable value is not sensitive to its value in the per-unit scale. 

 In recent years, some advanced linearization limit strategies have been proposed. 

Schittiwsky et al. proposed a strategy based on a decent penalty function [82]. Chen 

proposed a strategy not including any heuristic criteria [83], [84]. Pourazady and Fu’s 

strategy can reduce the linearization limit exponentially [85]. All these methods are based 

on the information of the previous iterations. If the penalty function increases, the 

algorithm raise the linearization limit; otherwise, the algorithm lowers the linearization 

limit. However, the linearization limit physically depends on the linearization error, 

which relies on the system configuration and the functions to be linearized. Therefore, 

Lamberti and Pappalettere proposed several complicated strategies according to the 

system and function information [86], [88]. 

 The bi-search method considered in this work can compute the linearization limits 

according to the objective function and all the constraints. At the working point (xo, uo, 0), 

the linearized form of the function f(x, u, v) is fL(Δx, Δu, v). η is defined as the maximum 

allowable linearization error; therefore, |f(x, u, v) - fL(Δx, Δu, v)| ≤ η, which can be 

represented as a function of the control variable ui (i.e., |f(ui) - fL(Δui)| ≤ η.) only for 

simplification. The physical upper bound of ui is assumed to be ui
max-physical, so the 
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physical upper bound of Δui is Δui
max-physical = ui

max-physical - ui
o. Δui

min and Δui
max are 

defined as the lower and the upper bounds of Δui respectively. 

 The bi-search algorithm to find the upper bound Δui is shown as follows: (The 

linearization lower bound can be also obtained similarly.) 

1. If |f(ui
max-physical) - fL(Δui

max-physical)| ≤ η, set Δui
max-physical to Δui

max and exit. 

2. Set the iteration index i = 0 and set the maximum iteration index imax to maintain the 

precision. 

3. Set ui
upper = ui

max-physical, Δui
upper = Δui

max-physical, ui
lower = ui

o, and Δui
lower = Δui

o. 

4. Set ui
working = 0.5·ui

upper + 0.5·ui
lower and Δui

working = 0.5·Δui
upper + 0.5·Δui

lower. 

5. Compute f(ui
working) and fL(Δui

working). 

6. If |f(ui
working) - fL(Δui

working)| ≤ η, keep ui
lower unchanged and set Δui

upper = Δui
working; 

otherwise, if |f(ui
working) - fL(Δui

working)| ≥ η, set ui
lower = ui

working and keep ui
upper unchanged. 

7. If i < imax, go to 4; otherwise, set Δui
working as the linearization upper bound of Δui and 

exit. 

 Since the bi-search algorithm considers the objective function and all the 

constraints and therefore requires numerous computations, this method is simplified by 

considering the power balance equations or the current conservation equations only. The 

reasons are the following: first, these equations are the key to a valid power flow solution. 

Second, the updated values after perturbing a control variable are not required since they 

are constant according to the power flow equations. Therefore, the lower and upper limits 

on ui (ui ∊ u, ui ≠ v) are  

min min
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               (B.8) 

max max

( , , ) 0 ( , , ) 0

( , , )( , , )
min , / , /

reduced reduced

o ir
i i i

i iv v

I vI v
u u u

u u
 

 

          
         g x u g x u

x ux u
.      (B.9) 



 

162 

REFERENCES 

 

[1] F. Capitanescu and L. Wehenkel, “A new iterative approach to the corrective 

security-constrained optimal power flow problem,” IEEE Transactions on Power 

Systems, Vol. 23, No. 4, Nov. 2008, pp. 1533-1541. 

[2] O. Alsac, J. Bright, M. Prais, and B. Stott, “Further developments in LP-based 

optimal power flow,” IEEE Transactions on Power Systems, Vol. 5, No. 3, Aug. 

1990, pp. 697-711. 

[3] G. D. Irisarri, X. Wang, J. Tong, and S.Mokhtari, “Maximum loadability of power 

systems using interior point nonlinear optimization method,” IEEE Transactions on 

Power Systems, Vol. 12, No. 1, Aug. 1997, pp. 162-172. 

[4] J. Z. Zhu and M. R. Irving, “Combined active and reactive dispatch with multiple 

objectives using an analytic hierarchical process,” IEE Proceedings on Generation, 

Transmission and Distribution, Vol. 143, Issue: 4, Aug. 1996, pp. 344-352. 

[5] J. A Momoh, R. J. Koessler, M. S. Bond, B. Stott, D. Sun, A. Papalexopoulos, and 

P. Ristanovic, “Challenges to optimal power flow,” IEEE Transactions on Power 

Systems, Vol. 12, No. 1, Feb. 1997, pp. 444-447. 

[6] W. D. Rosehart, C. A. Canizares, and V. H. Quintana, “Multiobjective optimal 

power flows to evaluate voltage security costs in power networks,” IEEE 

Transactions on Power Systems, Vol. 18, No. 2, May 2003, pp. 578-587. 

[7] A. Monticelli, M. V. F. Pereira, and S. Granville, “Security-constrained optimal 

power flow with post-contingency corrective rescheduling,” IEEE Transactions on 

Power Systems, Vol. PWRS-2, No. 1, Feb. 1997, pp. 175-180. 

[8] P. E. Oñate and J. M. Ramirez, “Optimal power flow including transient stability 

constraints,” in Proceedings of the 2008 IEEE/PES Transmission and Distribution 

Conference and Exposition, Apr. 21-24, 2008, pp. 1-9. 

[9] X. Li, Y. Z. Li, and S. H. Zhang, “Analysis of probabilistic optimal power flow 

taking account of the variation of load power,” IEEE Transactions on Power 

Systems, Vol. 23, No. 3, Aug. 2008, pp. 992-999. 



 163

[10] J. Carpentier, “Contribution to the economic dispatch problem,” Bull. Soc. France 

Elect, Vol. 8, Aug. 1962, pp. 431-437. 

[11] H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” IEEE 

Transactions on Power Apparatus and Systems, Vol. 87, No. 10, Oct. 1968, pp. 

1866-1876. 

[12] B. Stott and E. Hobson, “Power system security control calculations using linear 

programming,” IEEE Transactions on Power Apparatus and Systems, Vol. 97, No. 

5, Oct. 1978, pp. 1713-1731. 

[13] D. I. Sun, B. Ashley, B. Brewer, A. Hughes, and W. F. Tinney, “Optimal power 

flow by Newton approach,” IEEE Transactions on Power Apparatus and Systems, 

Vol. 103, No. 10, Oct. 1984, pp. 2864-2880. 

[14] A. M. Sasson, “Nonlinear programming solutions for load-flow, minimum-loss, 

and economic dispatching problems,” IEEE Transactions on Power Apparatus and 

Systems, Vol. 88, No. 4, Apr. 1969, pp. 399-409. 

[15] N. S. Rau, “Issues in the path toward an RTO and standard markets,” IEEE 

Transactions on Power Systems, Vol. 18, No. 1, May 2003, pp. 435-443. 

[16] R. R. Shoults, S. V. Venkatesh, S. D. Helmick, G. L. Ward, and M. J. Lollar, “A 

dynamic programming based method for developing dispatch curves when 

incremental heat rate curves are nonmonotonically increasing,” IEEE Transactions 

on Power Systems, Vol. 1, No. 1, Feb. 1986, pp. 10-16. 

[17] T. Gomez, I. J. Pbrez-Aniaga, J. Lumbreras, and V. M. Parra, “A security-

constrained decomposition approach to optimal reactive power planning,” IEEE 

Transactions on Power Systems, Vol. 6, No. 3, Aug. 1991, pp. 1069-1076. 

[18] R. A. Jabr, “Optimal power flow using an extended conic quadratic formulation,” 

IEEE Transactions on Power Systems, Vol. 3, No. 23, Aug. 2008, pp. 1000-1008. 

[19] O. Alsac and B. Stott, “Optimal load flow with steady-state security,” IEEE 

Transactions on Power Apparatus and Systems, Vol. 93, No. 3, Jun. 1974, pp. 745-

751. 

[20] A. J. Monticelli, M. V. P. Pereira, and S. Granville, “Security-constrained optimal 

power flow with post-contingency corrective rescheduling,” IEEE Transactions on 

Power Systems, Vol. 2, No. 1, Feb. 1987, pp. 175-182. 



 164

[21] J. Martinez-Crespo, J. Usaola, and J. L. Fernandez, “Optimal security-constrained 

power scheduling by Benders decomposition,” Electric Power Systems Research, 

Vol. 77, Issue: 7, May 2007, pp. 739-753. 

[22] T. B. Nguyen and M. A. Pai, “Dynamic security-constrained rescheduling of power 

systems using trajectory sensitivities,” IEEE Transactions on Power Systems, Vol. 

18, No. 2, May 2003, pp. 848-854. 

[23] C. H. Lin and S. Y. Lin, “Distributed optimal power flow with discrete control 

variables of large distributed power systems,” IEEE Transactions on Power 

Systems, Vol. 23, No. 3, Aug. 2008, pp. 1383-1392. 

[24] K. R. Frisch, The Logarithmic Potential Method of Convex Programming, 

Manuscript at Institute of Economics, University of Oslo, Norway, 1955. 

[25] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential 

Unconstrained Minimization Techniques, John Willey and Sons, 1968. 

[26] Y. C. Wu, A. S. Debs, and R. E. Marsten, “A direct nonlinear predictor–corrector 

primal-dual interior point algorithm for optimal power flows,” IEEE Transactions 

on Power Systems, Vol. 9, No. 2, May 1994, pp. 876-883. 

[27] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE 

Transactions on Power Systems, Vol. 9, No. 1, Feb. 1994, pp. 136-142. 

[28] G. L. Torres and V. H. Quintana, “An interior-point method for nonlinear optimal 

power flow using rectangular coordinates,” IEEE Transactions on Power Systems, 

Vol. 13, No. 4, Nov. 1998, pp. 1211-1218. 

[29] H. R. Cai, C. Y. Chung, and K. P. Wong, “Application of differential evolution 

algorithm for transient stability constrained optimal power flow,” IEEE 

Transactions on Power Systems, Vol. 23, No. 2, May 1998, pp. 719-728. 

[30] P. E. O. Yumbla, J. M. Ramirez, and C. A. C. Coello, “Optimal power flow subject 

to security constraints solved with a particle swarm optimizer,” IEEE Transactions 

on Power Systems, Vol. 23, No. 1, Feb. 2008, pp. 33-40. 

[31] M. M. El Metwally, A. A. El Emary, F. M. El Bendary, and M. I. Mosaad, 

“Optimal power flow using evolutionary programming techniques,” 12th 

International Middle-East Power System Conference, Mar. 12-14 2008, pp. 260-

264. 



 165

[32] A. M. Sasson, F. Viloria, and F. Aboytes, “Optimal load flow solution using the 

hessian matrix,” IEEE Transactions on Apparatus and Power Systems, Vol. 92, 

Issue: 1, Jan. 1973, pp. 31-41. 

[33] R. Billinton and S. S. Sachdeva, “Optimal real and operation in a hydro-thermal 

system,” IEEE Transactions on Apparatus and Power Systems, Vol. 91, Issue: 4, 

July. 1972, pp. 1405-1411. 

[34] R. R. Shoults and D. T. Sun, “Optimal power flow based on P-Q decomposition,” 

IEEE Transactions on Apparatus and Power Systems, Vol. 101, Issue: 2, Feb. 1982, 

pp. 397-405. 

[35] R. A. Ponrajah and F. D. Galiana, “The minimum cost optimal power flow problem 

solved via the restart homotopy continuation method,” IEEE Transactions on 

Power Systems, Vol. 4, No. 1, Feb. 1989, pp. 139-148. 

[36] G. Tognola and R. Bacher, “Unlimited point algorithm for OPF problems,” IEEE 

Transactions on Power Systems, Vol. 14, No. 3, Aug. 1999, pp. 1046-1054. 

[37] C. J. Rehn, J. A. Bubenko and D. Sjelvgven, “Voltage optimization using 

augmented Lagrangian functions and quasi-Newton techniques,” IEEE 

Transactions on Power Systems, Vol. 4, No. 4, Dec. 1989, pp. 1470-1483. 

[38] A. M. Sasson, C. Trevino, and F. Aboytes, “Improved Newton's load flow through 

a minimization technique,” IEEE Transactions on Apparatus and Power Systems, 

Vol. 90, Issue: 5, Sept. 1971, pp. 1974-1981. 

[39] M. V. F. Pereira, L. M. V. G. Pinto, S. Granville, and A. Montlcelli, “A 

decomposition approach to security constrained optimal power flow with post 

contingency corrective rescheduling,” 9th Power Systems Computation Conference, 

1987, pp. 585-591. 

[40] C. W. Sanders and C. A. Monroe, “An algorithm for real-time security constrained 

dispatch,” IEEE Transactions on Power Systems, Vol. 2, No. 4, Nov. 1987, pp. 

175-182. 

[41] G. F. Reid and L. Hasdorff, “Economic dispatch using quadratic programming,” 

IEEE Transactions on Apparatus and Power Systems, Vol. 92, Issue: 6, Nov. 1973, 

pp. 2015-2023. 



 166

[42] M. A. El-Kady, B. D. Bell, V. F. Carvalho, R. C. Burdhett, H. H. Happ, and D. R. 

Vierath, “Assessment of real-time optimal voltage control,” IEEE Transactions 

and Power Systems, Vol. 1, Issue: 2, May 1986, pp. 99-107. 

[43] G. F. Reid and L. Hasdorff, “Economic dispatch using quadratic programming,” 

IEEE Transactions on Apparatus and Power Systems, Vol. 92, Issue: 6, Nov. 1973, 

pp. 2015-2023. 

[44] R. C. Burchett, H. H. Happ, and D. R. Vierath, “Quadratically Convergent Optimal 

Power Flow,” IEEE Transactions on Apparatus and Power Systems, Vol. 103, 

Issue: 11, Nov. 1984, pp. 3267-3216. 

[45] F. Capitanescu, M. Glavic, D. Ernst, and L. Wehenkel, “Contingency filtering 

techniques for preventive security-constrained optimal power flow,” IEEE 

Transactions on Power Systems, Vol. 22, No. 4, Nov. 2007, pp. 1690-1697. 

[46] Y. Li and J. D. McCalleyl, “Decomposed SCOPF for improving efficiency,” IEEE 

Transactions on Power Systems, Vol. 24, No. 1, Feb. 2009, pp. 494-495. 

[47] A. M. Geoffrion, “Generalized Benders decomposition,” Journal of Optimization 

Theory Applications, Vol. 10, No. 4, Oct. 1972, pp. 237-260. 

[48] M. Shahidehopour and Y. Fu, “Benders decomposition: applying Benders 

decomposition to power systems,” IEEE Power and Energy Magazine, Vol. 3, No. 

1, Mar. 2005, pp. 20-21. 

[49] J. Martinez-Crespo, J. Usaola, and J. L. Fernandez, “Security-constrained optimal 

generation scheduling in large-scale power systems,” IEEE Transactions on Power 

Systems, Vol. 21, No. 1, Feb. 2006, pp. 494-495. 

[50] G. Hug-Glanzmann and G. Andersson, “Decentralized optimal power flow control 

for overlapping areas in power systems,” IEEE Transactions on Power Systems, 

Vol. 24, No. 1, Feb. 2009, pp. 327-336. 

[51] D. W. Wells, “Method for economic secure loading of a power system,” in 

Proceedings of the Institution of Electrical Engineers, Vol. 115, No. 8, Aug. 1968, 

pp. 1190-1194. 

[52] C. M. Shen and M. A. Laughton, “Power system load scheduling with security 

constraints using dual linear programming,” in Proceedings of the Institution of 

Electrical Engineers, Vol. 117, No. 11, Nov. 1970, pp. 2117-2127. 



 167

[53] B. Stott and J. L. Marinho, “Linear programming for power system network 

security applications,” IEEE Transactions on Apparatus and Power Systems, Vol. 

98, Issue: 3, May 1979, pp. 837-848. 

[54] M. Santos-Neito and V. H. Quintana, “Linear Reactive Power Studies for 

Longitudinal Power Systems,” in Proceedings of 9th Power Systems Computation 

Conference, 1987, pp. 783-787. 

[55] R. Mota-Palomino and V. H. Quintana, “Sparse reactive power scheduling by a 

penalty-function - linear programming technique,” IEEE Transactions on Power 

Systems, Vol. 1, No. 3, Aug. 1986, pp. 31-39. 

[56] S. A. Farghal, M. A. Tantawy, M. S. Abou-Hussein, S. A. Hassan, and A. A. 

Abou-Slela, “A fast technique for power system security assessment using 

sensitivity parameters of linear programming,” IEEE Transactions on Apparatus 

and Power Systems, Vol. 103, Issue: 5, May 1984, pp. 946-953. 

[57] K. A. Clements, P. W. Davis, K. D. Frey, S. A. Hassan, and A. A. Abou-Slela, “An 

interior point algorithm for weighted least absolute value power system state 

estimation,” in Proceedings of IEEE/PES 1991 Winter Meeting. 

[58] S. Granville and F. R. de M. Alves, “Active-reactive coupling in optimal reactive 

dispatch, a solution via Karush-Kuhn-Tucker optimality conditions,” IEEE 

Transactions on Power Systems, Vol. 9, No. 4, Nov. 1994, pp. 1774-1779. 

[59] L. S. Vargas, V. H. Quintana, A. Vannelli, “A tutorial description of an interior 

point method and its application to security-constrained economic dispatch,” IEEE 

Transactions on Power Systems, Vol. 8, No. 3, Aug. 1993, pp. 1315-1324. 

[60] R.A Jabr, A.H. Coonick, and B.J. Cory, “A primal-dual interior point method for 

optimal power flow dispatching,” IEEE Transactions on Power Systems, Vol. 17, 

No. 3, Aug. 2002, pp. 654-662. 

[61] Y. C. Wu, A. S. Debs, R. E. Marsten, “A direct nonlinear predictor-corrector 

primal-dual interior point algorithm for optimal power flows,” IEEE Transactions 

on Power Systems, Vol. 9, No. 2, May 1994, pp. 876-883. 

[62] G. L. Torres and V. H. Quintana, “On a nonlinear multiple-centrality-corrections 

interior-point method for optimal power flow,” IEEE Transactions on Power 

Systems, Vol. 16, No. 2, May 2001, pp. 222-228. 



 168

[63] S. Dan, “Multi-area economic dispatch with tie line constraints,” IEEE 

Transactions on Power Systems, Vol. 10, No. 4, Nov. 1995, pp. 1946-1951. 

[64] A. G. bakirtzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, “Optimal power flow 

by enhanced genetic algorithm,” IEEE Transactions on Power Systems, Vol. 17, 

No. 2, May 2002, pp. 229-236. 

[65] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of 

IEEE International Conference on Neural Networks, Vol. 4, Nov. 27 - Dec. 1 1995, 

pp. 1942-1948. 

[66] M. A. Abido, “Optimal power flow using particle swarm optimization,” in 

Proceedings of the International Journal of Electrical Power and Energy Systems, 

Vol. 24, No. 7, Oct. 2002, pp. 563-571. 

[67] B. Zhao, C. X. Guo, and Y. J. Cao, “Improved particle swarm optimization 

algorithm for OPF problem,” in Proceedings of the IEEE PES Power Systems 

Conference and Exposition, Vol. 1, Oct. 10-13 2004, pp. 233-238. 

[68] S. He, J. Y. Wen, E. Prempain, Q. H. Wu, J. Fitch, and S. Mann, “An improved 

particle swarm optimization for optimal power flow,” International Conference on 

Power System Technology, Vol. 2, Nov. 21-24 2004, pp. 1633-1637. 

[69] J. G. Vlachogiannis and K. Y. Lee, “A comparative study on particle swarm 

optimization for optimal steady-state performance of power systems,” IEEE 

Transactions on Power Systems, Vol. 21, No. 4, Nov. 2006, pp. 1718-1728. 

[70] J. G. Vlachogiannis and K. Y. Lee, “Coordinated aggregation particle swarm 

optimization applied in reactive power and voltage control,” in Proceedings of the 

IEEE Power Engineering Society General Meeting, Jun. 18-22 2006. 

[71] A. Berizzi, C. Bovo, M. Merlo, G. Callegari, M. Porcellini, and M. Pozzi, “Second 

order sensitivities for constrained reactive optimal power flow,” in Proceedings of 

the 43rd International Universities Power Engineering Conference, Sept. 1-4 2006, 

pp. 1-7. 

[72] G. L. Torres and V. H. Quintana, “Rectangular form optimal power flow by 

interior-point methods,” in Proceedings of COPIMERA’97, Sept. 28 - Oct. 3 1997, 

pp. 64-70. 



 169

[73] A. P. S. Meliopoulos, Power System Modeling, Analysis, and Control, Georgia 

Institute of Technology, 2008. 

[74] G. K. Stefopoulos and A. P. S. Meliopoulos, “Quadratized three-phase induction 

motor model for steady-state and dynamic analysis,” in Proceedings of 38th North 

American Power Symposium, Sept. 17-19 2006, pp. 65-75. 

[75] F. Yang, A. P. S. Meliopoulos, G. J. Cokkinides, and G. K. Stefopoulos, 

“Contingency simulation using single phase quadratized power flow,” in 

Proceedings of International Conference on Probabilistic Methods Applied to 

Power Systems, Jun. 11-15 2006, pp. 1-8. 

[76] P.M. Subcommittee, “IEEE reliability test system,” IEEE Transactions on 

Apparatus and Power Systems, Vol. 98, Issue: 6, Nov. 1979, pp. 2047-2054. 

[77] P.M. Subcommittee, “IEEE reliability test system - 1996,” IEEE Transactions on 

Power Systems, Vol. 14, No. 3, Aug. 1999, pp. 1010-1020. 

[78] G. G. Pope, “Optimum design of stressed skin structures,” AIAA Journal, Vol. 11, 

1973, pp. 1545-1552. 

[79] R. T. Haftka and Z. Gurdal, Elements of Structural Optimization, 3rd edition, 

Dordrecht: Kluwer Academic Publishers, 1992. 

[80] B. A Wujek and J. E Renaud, “New adaptive move-limit management strategy for 

approximate optimization,” Part 1 and 2, AIAA Journal, Vol. 36, 1998, pp. 1911-

1934. 

[81] G. N Vanderplaats and S. Kodyalam, “Two level approximation methods for stress 

constraints in structural optimization,” AIAA Journal, Vol. 28, 1990, pp. 948-951. 

[82] K. Schittowski, C. Zillober, and R. Zotemantel, “Numerical comparison of 

nonlinear programming algorithms for structural optimization,” Structural and 

Multidisciplinary Optimization, Vol. 7, No. 1-2, Feb. 1994, pp. 1-19. 

[83] T. Y. Chen, “Calculation of the move limits for the sequential linear programming 

method,” International Journal for Numerical Methods in Engineering, Vol. 36, 

No. 15, Jun. 2005, pp. 2661-2619. 

[84] T. Y. Chen, “A comprehensive solution for enhancing the efficiency and the 

robustness of the SLP algorithm,” Structural and Multidisciplinary Optimization, 

Vol. 66, No. 4, Feb. 1998, pp. 373-384. 



 170

[85] M. Pourazady and Z. Fu, “An integrated approach to structural shape 

optimization,” Structural and Multidisciplinary Optimization, Vol. 60, No. 2, July 

1996, pp. 279-289. 

[86] L. Lamberti and C. Pappalettere, “Comparison of the numerical efficiency of 

different sequential linear programming based algorithms for structural 

optimisation problems,” Computers and Structures, Vol. 7, No. 6, July 2000, pp. 

713-728. 

[87] L. Lamberti and C. Pappalettere, “Move limits definition in structural optimization 

with sequential linear programming,” Part I and II, Computers and Structures, Vol. 

81, No. 4, Mar. 2003, pp. 197-238. 

[88] L. Lamberti and C. Pappalettere, “Improved sequential linear programming 

formulation for structural weight minimization,” Computer Methods in Applied 

Mechanics and Engineering, Vol. 193, Issues: 33-35, Aug. 2004, pp. 3493-3521. 

[89] G. F. Reid and L. Hasdorff, “Economic dispatch using quadratic programming,” 

IEEE Transactions on Apparatus and Power Systems, Vol. 92, Issue: 6, Nov. 1973, 

pp. 2015-2023. 

[90] Q. B. Dam, A. P. Meliopoulos, G. T. Heydt, and A. Bose, “A breaker-oriented, 

three-phase IEEE 24-substation test system,” IEEE Transactions on Power Systems, 

Vol. 25, Issue: 1, Jan. 2010, pp. 59-67. 

[91] R. Huang, F. Evangelos, G. J. Cokkinides, and G. K. Stefopoulos, “Substation 

based dynamic state estimator - numerical experiment,” in Proceedings of 2010 

IEEE PES Transmission and Distribution Conference and Exposition, Apr. 19-22 

2010, pp. 1-8. 

[92] F. Evangelos, R. Huang, G. J. Cokkinides, and G. K. Stefopoulos, “Implementation 

of a 3-phase state estimation tool suitable for advanced distribution management 

systems,” in Proceedings of 2010 IEEE PES Power Systems Conference and 

Exposition, Mar. 20-23 2011, pp. 1-8. 

[93] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative 

Approach, 4th ed., Morgan Kaufmann, San Francisco, CA, Sept. 27 2007, pp. 216. 



 171

[94] Y. Hong and F. Wang, “Development of three-phase Newton optimal power flow 

for studying imbalance/security in transmission systems,” Electric Power Systems 

Research, Vol. 55, Issue: 1, Jul. 2000, pp. 39-48. 

[95] H. M. Khodr, M. A. Matos, and J. Pereira, “Distribution optimal power flow,” in 

Proceedings of 2007 IEEE Power Tech, Jul. 1-5 2007, pp. 1-5. 

[96] Y. Zhu and K. Tomsovic, “Optimal distribution power flow for systems with 

distributed energy resources,” Electrical Power and Energy Systems, Vol. 29, Issue: 

3, Nov. 2007, pp. 260-267. 

[97] G. P. Harrison, A. Piccolo, P. Siano, and A. R. Wallace, “Hybrid GA and OPF 

evaluation of network capacity for distributed generation connections,” Electric 

Power Systems Research, Vol. 78, Issue: 3, Nov. 2008, pp. 392-398. 

[98] M. J. Dolan, E. M. Davidson, G.W. Ault, F. Coffele; I. Kockar, and J.R. McDonald, 

“Using optimal power flow for management of power flows in active distribution 

networks within thermal constraints,” in Proceedings of 44th International 

Universities Power, Sept. 1-4 2009, pp. 1-5. 

[99] A. R. Ahmadi and T. C. Green, “Optimal power flow for autonomous regional 

active network management system,” in Proceedings of 2009 IEEE PES General 

Meeting, Jul. 26-30 2009, pp. 1-7. 

[100] L. F. Ochoa, C. J. Dent, and G. P. Harrison, “Distribution network capacity 

assessment: variable DG and active networks,” IEEE Transactions on Power 

Systems, Vol. 25, Issue: 1, Nov. 2010, pp. 87-95. 

[101] L. F. Ochoa and G. P. Harrison, “Minimizing energy losses: optimal 

accommodation and smart operation of renewable distributed generation,” IEEE 

Transactions on Power Systems, Vol. 26, Issue: 1, Nov. 2011, pp. 198-205. 

[102] S. Bruno, S. Lamonaca, G. Rotondo, U. Stecchi, and M. La Scala, “Unbalanced 

three-phase optimal power flow for smart grids,” IEEE Transactions on Industrial 

Electronics, Vol. PP, Issue: 99, Nov. 2011, pp. 1-10. 

[103] OpenDSS, available at http://electricdss.sourceforge.net/. 

[104] A.Merlin and H. Back, “Search for a minimal-loss operating spanning tree 

configuration in an urban power distribution system,” in Proceedings of the 5th 

Power System Computation Conference (PSCC), Cambridge, 1975, pp. 1-18. 



 172

[105] D. Shirmohammadi and H. W. Hong, “Reconfiguration for electric distribution 

networks for resistive line loss reduction,” IEEE Transactions on Power Delivery, 

Vol. 4, Issue: 2, Apr. 1989, pp. 1492-1498. 

[106] N. G. Caicedo, C. A. Lozano, J. F. Díaz, C. Rueda, G. Gutiérrez, C. Olarte, “Loss 

reduction in distribution networks using concurrent constraint programming,” in 

Proceedings of 2004 International Conference on Probabilistic Methods Applied to 

Power Systems, Sept. 12-16 2004, pp. 295-300. 

[107] M. A. Matos and P. Melo, “Multiobjective reconfiguration for loss reduction and 

service restoration using simulated annealing,” in Proceedings of 1999 

International Conference on Power Tech, Aug. 29 - Sept. 2 1999, pp. 213. 

[108] M. A. Matos and P. Melo, “Loss minimization in distribution networks with 

multiple load scenarios,” in Proceedings of 2001 International Conference on 

Power Tech, Sept. 10- 13 2001, pp. 5-11. 

[109] M. A. Matos et al., “Meta-heuristics Applied to Power Systems,” Meta heuristics: 

Computer Decision-Making, Kluwer Academic Publishers B. V., Nov. 30 2003, pp. 

449-464. 

[110] A. J. Wood and B F. Wollenberg, Power Generation, Operation, and Control, John 

Wiley & Sons, Jan. 1996, pp. 104. 

[111] J. H. Chow, D. K. Frederick, and N. W. Chbat, Discrete-Time Control Problems 

Using MATLAB, CL-Engineering, Oct. 7 2002, pp. 70. 

[112] IEEE test cases, available at http://www.ee.washington.edu/research/pstca/. 

[113] O. Alsac and B. Stott, “Optimal load flow with steady state security,” IEEE 

Transactions on Apparatus and Power Systems, Vol. 93, Issue: 3, Nov. 1974, pp. 

745-751. 

[114] G. W. Bills, et al., “On-line stability analysis study,” RP90-1 Report for the Edison 

Electric Institute, Oct. 12 1974, pp. 1-20 - 1-35. 

[115] M. A. Pai, Energy Function Analysis for Power System Stability, Kluwer Academic 

Publishers, Boston, Aug. 31 1989. 

[116] T. Athay, R. Podmore, and S. Virmani, “A Practical Method for the Direct 

Analysis of Transient Stability,” IEEE Transactions on Apparatus and Power 

Systems, Vol. 98, Issue: 2, Nov. 1979, pp. 573-584. 



 173

[117] MATPOWER, available at http://www.pserc.cornell.edu/matpower/. 

[118] TSPOPF, available at http://www.pserc.cornell.edu/tspopf/. 

[119] MINOPF, available at http://www.pserc.cornell.edu/minopf/. 

[120] H. Wang, C. E. Murillo-Sánchez, R. D. Zimmerman, and R. J. Thomas, “On 

computational issues of market-based optimal power flow,” IEEE Transactions on 

Power Systems, Vol. 22, No. 3, Aug. 2007, pp. 1185-1193. 

[121] H. Wang, On the Computation and Application of Multi-period Security-

constrained Optimal Power Flow for Real-time Electricity Market Operations, 

Ph.D. thesis, Electrical and Computer Engineering, Cornell University, May 2007. 

[122] GLPK, available at http://www.gnu.org/s/glpk/. 

[123] Gurobi, available at http://www.gurobi.com/. 

[124] K. G. Murty, “A new practically efficient interior point method for convex 

quadratic programming,” Mathematical Programming and Game Theory for 

Decision Making, World Scientific Publishing, Hackensack, NJ, Apr. 2008, pp. 21-

31. 

[125] F. Delbos and J. C. Gilbert, “Global linear convergence of an augmented 

Lagrangian algorithm for solving convex quadratic optimization problems,” 

Journal of Convex Analysis, Vol. 12, No. 1, 2005, pp. 45-69. 

[126] D. P. O’Leary, “A generalized conjugate gradient algorithm for solving a class of 

quadratic programming problems,” Linear Algebra and its Applications, Vol. 34, 

Dec. 1980, pp. 371-399. 

[127] K. G. Murty, Linear Complementarity, Linear and Nonlinear Programming, Sigma 

Series in Applied Mathematics, Berlin, 1988. 

[128] I. Bernhardt, N.M. Fraser, E.M. Jewkes, and M. Tajima, Engineering Economics in 

Canada, 3rd ed., Pearson Prentice Hill, Toronto, 2006. 

[129] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to 

Algorithms, 2nd ed., The MIT Press, Cambridge, 2001. 

[130] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 

1957a. 



 174

[131] K. D. W. Nandalal and J. J. Bogardi, Dynamic Programming Based Operation of 

Reservoirs: Applicability and Limits, Cambridge University Press, Cambridge, UK, 

2007. 

 

 



 

175 

VITA 

YE TAO 

 

 

YE TAO was born in Xi’an, China in 1980. He attended public schools in Xi’an 

and received his high-school diploma in June 1999. In September 1999, he joined 

Tsinghua University in Beijing, China, where he received a B.E. in Automatic Control in 

2003 and a M.E. in System Engineering in 2006. He then moved to the United States and 

joined the Georgia Institute of Technology, in Atlanta, Georgia, in Fall 2006, receiving a 

M.S. in Electrical and Computer Engineering in 2008, before continuing to pursue a 

doctorate in Electrical Engineering, again at Georgia Tech. 

 




