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A B S T R A C T

Given a large graph with millions of nodes and edges, say a social
graph where both the nodes and edges can have multiple different
kinds of attributes (e.g., job titles, tie strengths), how do we quickly
find matches for subgraphs of interest (e.g., a ring of businessmen
with strong ties)? We propose MAGE, Multiple Attribute Graph Engine,
a subgraph matching framework that pushes the envelope of graph
matching capabilities and performance, through several major inno-
vations: (i) with line graph transformation, MAGE works for graphs
with both node and edge attributes and return both exact as well as
near matches — other techniques often support only node attributes
and return only exact matches; (ii) MAGE supports a plethora of
queries, including multiple attributes for each node or edge, wild-
cards as attribute values (i.e., match any permissible value), and con-
tinuous attributes via multiple discretization strategies; (iii) MAGE
leverages a novel technique based on memory mapping to compute
random walk with restart probabilities, which provides a speedup
of more than 2 orders of magnitude on large graphs. We evaluated
MAGE’s effectiveness and scalability with real and synthetic graphs
with up to 2.3 million edges. Experimental results on the DBLP au-
thorship graph and the Rotten Tomatoes movie graph illustrate the
effectiveness and exploratory functionality of our contributions to
graph querying. By devising query-centric innovations, our work im-
proves the ease with which a user can explore their graph data.
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1
I N T R O D U C T I O N

Graphs are a convenient means to represent many naturally occur-
ring patterns. As entities are often related to one another in a pair-
wise fashion, many systems can be faithfully represented with graphs.
Since the development and broadening of large scale information sys-
tems, collecting the requisite information for the purpose of building
graphs has become a common task. For example, the words social net-
work have become a household phrase in the past decade; while the
social networks themselves are growing at unparalleled rates.

Many graphs are richly embedded with information, but because
of the size and complexity of these graphs, spotting a particular pat-
tern outright quickly becomes infeasible. People often want to find
patterns in graphs to better understand their dynamics and to detect
who or what is related to the possible anomalies within. For instance,
given an intelligence graph containing various entities, which are con-
nected with edges denoting gathered intelligence, an analyst might
seek to better understand the structure of criminal activity. Given
some initial structure of a terrorist cell or other organized criminal
group, one could leverage a pattern matching system to discover po-
tentially dangerous individuals. This is a promising notion; however,
there are many challenges associated with the technical aspects of
this problem.

First, we need a convenient approach that allows users to specify a
rich set of possible query patterns, with appropriate values assigned
to the nodes and edges. Consider the fictitious intelligence graph in
Figure 1a. Here, the node attribute is the entity type, with the possi-
ble values of Event, Location, and Person, and the edge attribute is the
amount of gathered intelligence for a pair of entities, with the possible
values of Confirmed, Suspected, and Unlikely. For this graph, the user
of the system should be able to specify a query similar to Figure 1b,
which looks for two individuals — potentially unrelated to each other
with current intelligence — who were both confirmed at the location
of some event and are also believed to have attended the event. In the
query, the two individuals are denoted by the P-nodes (nodes with
letter P inside), and they are linked to the corresponding location,
which is represented by the L-node, with confirmed intelligence de-
noted by the C-edges (similarly, the location is connected to the event
with confirmed intelligence). In general, the challenge is that the user
might not know what values to assign to some nodes and edges in
the query; so instead of guessing the user should be allowed to leave
any node or edge as a wildcard, meaning that it can take any value
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introduction 2

(a) An intelligence graph linking locations, events and people. Each edge
denotes a measure of confidence in the connecting relationship.

(b) A sample query that can be formed in MAGE and a potential result.
The query looks for two potentially related individuals, who were both
confirmed at the location of some event and are also believed to have
attended the event. The node labeled with a star indicates a wildcard,
which can take any attribute value.

Figure 1: Using MAGE to seek patterns in an intelligence graph. All the
figures are best viewed in color.



1.1 innovations and contributions 3

from the set of possible values, as long as the structure of the query
is satisfied. For instance, in our running example the two individuals
are connected via a wildcard (*-node) in order to find out possible
entities that might relate the individuals to each other. In some other
cases, the user might know a couple of admissible values for a par-
ticular node or edge. Rather than forming several distinct queries for
each of these values and then combining the results, the user should
be able to specify in a single query those values she knows to sim-
plify the process. Returning to the example, the condition that the
individuals must be either confirmed or suspected of being involved
in the event is denoted by specifying both values with a disjunction
(i.e., C∨ S) on the edges linking the P-nodes to the E-node.

Once a query is formed, we need to find exact matches as well as
near matches, because the query might have wildcards or not exist
exactly as specified within the graph. As the query in Figure 1b con-
tains a wildcard linking two individuals, the system should be able to
return a match filling in the wildcard, e.g., the location entity for node
1 in the result. Even with the wildcard, the exact specified structure
may not exist in in the graph; under this scenario the system would
return a “best-effort” match of the query containing additional nodes
and edges. By generating both exact and near matches, we can pro-
vide the user the top-k most closely matched subgraphs even if their
initial query was not exactly present.

In this paper we present MAGE; a pattern matching system for
graphs with node and edge attributes, which overcomes the chal-
lenges stated above. MAGE produces top-k closest subgraph matches
and broadens the number of possible input graphs as well as possi-
ble queries. MAGE is a system which can be used in an enormous
number of domains; from intelligence applications to understanding
the patterns of movie success. Our approach is also scalable to many
large graphs, offering new insight through graph querying.

1.1 innovations and contributions

We make several major contributions to graph querying in this work.
Support for node and edge attributes. The first is that we have

created a pattern matching system for graphs that supports queries
with categorical node and edge attributes. Using both node and edge
attributes expands the effectiveness of our system on real world data
and expands the types of questions that can be answered through
graph querying. Although many graphs contain numerical or contin-
uous attributes, several methods are offered to discretize them for use
in MAGE.

Flexible queries with rich attributes. The second contribution is fo-
cused on improving the ease of querying. Sometimes query-information
is limited and the exact attribute of a node or edge may be unknown.
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The wildcards allow the user to avoid having to specify a value for an
unfamiliar attribute. Many graphs have several dimensions of data as-
sociated with both the nodes and edges. Multiple attributes on nodes
and edges of the query and graph help users query richer datasets.
We propose a method to allow the specification of queries across mul-
tiple categorical attributes simultaneously.

Fast & scalable algorithm. Our third contribution is a novel tech-
nique based on memory mapping to improve the performance and
scalability of the random walk with restart (RWR) algorithm. MAGE
leverages approximate RWR steady-state probabilities as proximity
scores between nodes within the input graph and the query graph to
determine how well a subgraph matches the query. The RWR proba-
bilities are needed at multiple times in MAGE, therefore we propose
a fast and highly scalable single-machine approach for RWR calcula-
tions. The experimental results show that our solution provides sig-
nificant improvements over traditional approaches to compute RWR
probabilities on a single machine.



2
P R O B L E M D E F I N I T I O N

In its general form, we are given two graphs G1 and Q, and we wish
to know if G contains a subgraph that is equivalent to Q. This problem
is often referred to as the subgraph isomorphism problem. Unfortu-
nately the subgraph isomorphism problem is NP-Complete [6], mak-
ing all general solutions computationally infeasible for even modest
sized graphs.

The problem we are solving is subtly different than the pure sub-
graph isomorphism problem. The problem we attempt to solve is for-
mally defined as follows:

given : (i) A graph G whose nodes and edges have categorical at-
tributes, (ii) a query graph Q showing the desirable configura-
tion of nodes connected with edges, each assigned one or more
attribute values (or a wildcard), and (iii) the number of desired
matching subgraphs k.

find : k matching subgraphs Qi (i = 1, ...,k) that match query graph
Q as closely as possible, according to a goodness metric.

2.1 preliminary : querying on node attributes

Several approaches have been proposed to subgraph isomorphism
problem. In this paper we utilize the techniques of inexact subgraph
matching approaches to form the foundation of MAGE.

Algorithm 1 G-Ray Algorithm [20]

Require: Node-attributed graph G, query graph Q, and desired num-
ber of results k

Ensure: k node-attribute matched subgraphs from G

for i=1→k do
Qi = approximate-subgraph(G,Q,k)

end for
return Qi where i = 1→ k

The G-Ray algorithm [20], a best-effort subset selection algorithm,
relies heavily on RWR values as the selection criterion when con-
structing query results2. This approach uses single nodes as the restarts
when calculating the RWR values. We leverage this approach but con-
siderably modify it to allow multiple attributes as restarts in the RWR

1 Table 1 gives all the symbols used in the paper.
2 We refer the reader to [21] for the details of the RWR algorithm.
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2.1 preliminary : querying on node attributes 6

Symbol Description

G the n×n adjacency matrix for G

A the n× t node-attribute matrix for graph G

Q query subgraph to be extracted from G

G′ the (m+n)× (m+n) linegraph-modified bipartite graph

A′ node-edge-attribute matrix for graph G′

Q′ query subgraph after edge augmentation

M a bijective mapping between edges of G and edge-nodes in G′

〈s, t〉 an edge leading from node s to node t

n the number of nodes in G

m the number of edges in G

t the number of distinct categorical attributes

Table 1: Terminology and notation

approximations (see Section 4.2 for details). Approximate RWR is still
a computationally expensive step that must be performed often when
matching subgraphs. In Section 4.4 we show our approach to reduc-
ing query latency by decreasing RWR calculation times.

While G-Ray is an integral facet of MAGE, the limitations of the
original algorithm are far too constrictive. The G-Ray algorithm is in-
adequate in supporting expressive querying as it does not support
(i) attributed edges, (ii) unknown query attributes, (iii) multiple at-
tributes, and incurs (iv) sizable query latencies on large graphs. These
points are exactly what we aim to address in this paper and in the de-
velopment of MAGE. Using our linegraph augmentation we support
edge attributes, and with wildcards and multiple attributes we sup-
port queries with limited information. In addition, we aim to speed
up the subgraph search computation, which is doubly critical in the
case of queries containing wildcards, multiple attributes, and edge
attributes.



3
M A G E O V E RV I E W

Unlike many previous systems, we focus on both the edge and node
attributes in G. We have chosen to use an edge-augmentation method
based on the intuition from the linegraph transformation [24]. Under
the canonical linegraph transformation, each vertex in the line graph
L of G is an edge from G. Two vertices in L are connected if and only
if their corresponding edges (from G) share a common endpoint in
G. Figure 2a demonstrates an example transformation with the key
linegraph transformation occurring in the rightmost two figures.

By making use of the line-graph transformation on the starting
graph G, we can produce an attributed line graph L where each of
the edges in G is represented by a node in L. Rather than working
with both L and G, we create G′ which combines aspects of both G

and L. We achieve this by transforming each edge in G into an edge-
node in G′. This new edge-node is connected to the same vertices in
G′ that it connected to as an edge of G. This process is illustrated
with a toy graph in Figure 2b, where the edge-nodes are the square
nodes splitting each edge of G. Under this formulation, no two nodes
in G will be directly connected in G′. Similarly, no two newly intro-
duced edge-nodes will be directly connected in G′. The structure of
the newly created graph is bipartite between the set of original nodes
and the set of new edge-nodes. We make use of this fact in the devel-
opment of MAGE.

3.1 supporting multiple attributes

Often in real graph datasets, nodes and edges can have multiple fields
of data. Similarly, a user may want to query for one or more attributes
at the same time on a node or edge. These are important considera-
tions and they are fully supported in MAGE by allowing lists of vari-
ables on each query node or edge. Each list of attributes are combined
to produce query results with a logical-or for each item in the list dur-
ing query time. This allows for the quick generation of queries across
multiple node or edge attributes. Multi-attribute queries greatly ex-
tend the user’s query possibilities and, therefore, exploratory power.

3.2 supporting wildcards

In order to ease the construction of query-graphs as well as extend
usability of MAGE, we developed wildcard attributes. The wildcard
allows MAGE to match any attributed node or edge to a wildcard

7



3.2 supporting wildcards 8

(a) The canonical linegraph transformation of G. The middle figure is the
intermediate step of the transformation, where a node for each original
edge is created. L(G) is the linegraph of G in which all edges from G that
shared a node in G are now connected as the nodes of L(G).

(b) Edge augmentation of graph G. Rather than performing the linegraph
transformation and having two separated attributed graphs, we have
embedded the nodes of L(G) directly into G. The result is G′.

Figure 2: The linegraph transformation and the edge augmentation ap-
proach used to support edge and node attributes in MAGE.
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node or edge, respectively, while maintaining the overall query con-
nectivity. This is carried out by relaxing the node and edge attribute
constraints used during the acquisition of nodes during query-result
construction. Our experimental investigations suggest that our ap-
proach to wildcards is efficient and does not incur significant query
overhead.



4
M E T H O D O L O G Y

The general approach taken for MAGE is explained in Procedure 2

and the subsequent procedures are described in the following sec-
tions.

4.1 supporting edge attributes

In order to support edge attributes, a method is needed that allows
the incorporation and later selection of data on each edge. For this we
have chosen to embed an edge-node in each edge of G. The pseudo-
code for this edge-embedding is found in Procedure 3.

Algorithm 2 MAGE Algorithm

Require: Fully-attributed graph G, attribute graph A, query graph Q,
and desired number of results k

Ensure: k node-attribute matched subgraphs from G

1: G′ = Linegraph-Embedder(G)
2: Q′ = Linegraph-Embedder(Q)
3: Aw = Wildcard-Attribute-Injector(A)

4: for i=1→k do
5: Q′

i = G-ray(G′,Aw,Q′,k)
6: Qi = Linegraph-Extractor(Q′

i)

7: end for
8: return Qi where i = 1→ k

10



4.2 supporting multiple attributes 11

Algorithm 3 Linegraph-Embedder

Require: Edge-attributed n×n graph G

Ensure: Edge-embedded (m+n)× (m+n) graph G′ and a mapping
M from edges to newly created edge-nodes

1: Let S be an all-zero (n×m) matrix
2: for all u = 1→ m edges, ei,j ∈ G do
3: S(u, i) = 1

4: S(u, j) = 1

5: M(u) = ei,j

6: end for

7: G′ =

[
0 S

ST 0

]
8: return G′

4.1.1 Linegraph Augmentation

The following shows the algorithm for constructing the line graph
transformation of the original graph. This algorithm is O(m) where
m is the number of edges from G. This needs only to be done once
and is therefore precomputed a single time before querying.

This transformation creates G′, a (m+ n)× (m+ n) adjacency ma-
trix. Expanding both dimensions of our adjacency matrix by a factor
of m may seem shockingly expensive in memory usage; however, G′

is guaranteed to be bipartite between the original nodes and the new
edge-nodes. Because only original nodes can be connected to edge-
nodes, we have only the m×n and n×m regions of our augmented
matrix that can possibly contain values. We can derive the sparsity as
follows:

2mn

m2 + 2mn+n2

if the graph is undirected only mn edges need to be stored. Because
we use sparse data structures, the memory for this augmentation
grows at a linear rate with the number of edges.

The matched subgraph results produced by MAGE are still em-
bedded with edge-nodes and should therefore be converted back to
the original graph format. The linegraph-extractor (see Procedure 4)
serves this purpose; to return our modified results to the style and
format specified with the input graph.

4.2 supporting multiple attributes

The categorical attribute matrix A is an n × t sparse matrix where
there are t distinct attribute categories for each of n nodes. Each row
of A represents a node while each column represents a single categor-



4.3 supporting wildcards 12

Algorithm 4 Linegraph-Extractor

Require: Edge augmented query result Q′
i

Ensure: Attribute matrix Qi

1: for all node-edge uj ∈ Q′
i where j = 1→ q do

2: s = source edge leading into uj

3: t = target edge leading out of uj

4: remove edge 〈s,uj〉
5: remove edge 〈uj, t〉
6: replace edge-node uj with M(uj)

7: end for
8: return Qi

ical variable. Each node’s categorical data is encoded as a — usually
sparse — vector of ones.

While t can be very large, generally the mapping of categorical at-
tributes to nodes is very sparse. Practically, A utilizes a minor amount
of memory. We support multiple attributes on each edge and node,
and allow them to be selected via logical OR. This is done by allowing
the rows of A to have multiple values at once.

These rows are leveraged during the attribute-centric random walk
with restart carried out in line 5 of Algorithm 2. By serving as restart
sources during the RWR calculations, the correctly attributed nodes
are given larger proximity scores and therefore are more likely to be
selected as a result.

4.3 supporting wildcards

To support the wildcard attribute we have created a universal at-
tribute applied to all nodes and edges. This attribute is one among
many that each edge or node may have at any time.

Algorithm 5 Wildcard-Attribute-Injector

Require: Attribute matrix A

Ensure: Attribute matrix Aw

1: for i = 1→ n do
2: ai,t+1 = 1

3: end for
4: return Aw

We have implemented the wildcard attribute by creating a new
and distinct attribute node in the attribute matrix A that points to
all nodes. This technique works because the MAGE algorithm will se-
lect this wildcard attribute regardless of whatever other attributes a
node or edge may have. This can be achieved by appending a column
of ones to the attribute matrix as an initialization step.
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4.4 query latency

MAGE uses proximity scores between nodes in data graph G and
query graph Q to determine how well a subgraph Qi matches Q.
Specifically, the proximity between nodes i and j in a graph is defined
as the score of j when it performs a RWR on the graph with i being
the restarting node. The issue is that the number of RWR queries re-
quired to find a matching subgraph is significant, making this phase
a bottleneck of the whole approach for large data graphs. We extend
a recent work on single-machine graph computation frameworks [13],
which uses the memory mapping capability of the operating systems
to perform fast graph computations. Memory mapping is a mecha-
nism that allows to map a file on disk into the main memory such
that the file can be accessed the same way as if it was in memory.
This makes it possible to perform I/O operations faster than access-
ing disk directly due to the low level optimizations provided by the
hardware to the operating systems. We show in Section 5.2.3 that our
memory mapping based RWR implementation reduces the latency
for RWR queries significantly.



5
E VA L U AT I O N

Due to the tremendous size of modern datasets we are interested
primarily in the evaluation of the scalability of MAGE: how does the
time-per-query increase with larger graphs? We analyze various sizes
of real and synthetic graphs to answer this question. We also investi-
gate the cost of our query extensions; wildcard and multi-attributes.
For synthetic graphs we use stochastically generated Erdős-Rényi ran-
dom graphs and Watts-Strogatz graphs. For real graphs we use an
actor-movie graph from Rotten Tomatoes and a citation graph from
DBLP.

5.1 datasets

MAGE operates on categorical attributes, so fields must first be en-
coded categorically to be implemented in our system. For continuous
fields, discretization offers several methods to aggregate multiple con-
tinuous values into categories. With quantiles, histogramming, and
domain specific methods for value aggregation, most continuous val-
ues can be quickly converted into categories.

5.1.1 DBLP

We have chosen to use the DBLP authorship dataset. With over 2 mil-
lion edges, we have elected to use DBLP as our real-world scalability
test. We have extracted categorical edges attributes based on the num-
ber of co-citations among the set of authors.

5.1.2 Rotten Tomatoes

We have also tested MAGE on a modest-sized directed graph con-
structed out of the Rotten Tomatoes movies and actors. The graph
contains more than 20,000 movies with edges connecting similar movies
and actors that performed therein. Actors are linked bidirectionally
to movies in which they took part and movies have edges to movies
that Rotten Tomatoes has deemed similar. Quartiles were used to ag-
gregate continuous fields into categories over fields like critics’ film
scores, runtimes, release dates, and others. The edges connecting simi-
lar movies were originally weighted by the number of user-contributed
“up-votes”, these values were also broken into categories by quartiles.

14



5.2 scalability and speed 15

5.1.3 Parameters

The random walks with restart requires two parameters; the fly-out
or restart-probability and the number of iterations for the iterative
method. In all experiments the restart-probability is set to 0.15 and
the iterations are set to 10. After 10 iterations the performance did
not significantly improve under the iterative method.

5.2 scalability and speed

The query-scalability tests were carried with a 4-node 3-edge linear
query graph on two types stochastically generated data-graphs of
varying size. Erdős-Rényi random graphs and Watts-Strogatz graphs
were stochastically generated for vary sizes n. Their node and edge
attributes were selected uniformly at random with 3 distinct categor-
ical attributes each. The test query was run on these graphs for k = 5

results.

Figure 3: MAGE query performance on synthetic graphs of varying sizes.
The average query time increases linearly with the size of the
graph.

MAGE performs queries in linear time with the number of edges
in each graph. For both the canonical ER graphs and the small-world
WS graphs the increase in query time is linear in the number of edges,
suggesting good scalability.

Synthetic networks can model many of the structural properties
of real networks; however, synthetic scalability tests are insufficient.
To address this we performed scalability experiments on the DBLP
dataset. We generated randomly attributed 4-node 3 edge linear queries
and averaged the result over multiple runs. Each node has more than
3000 possible categorical attributes as both conference and years of
submission were encoded. Each edge takes one of 5 possible cate-
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gories of co-citation strength. These categories are drawn from the
quartiles over the collection of co-cititing authors in DBLP.

Figure 4: MAGE query performance averaged over subsets of the DBLP
graph. MAGE exhibits scalable, linearly increasing query latency
when tested on DBLP.

As with the synthetic graphs, the experiments over a real network
demonstrate a linearly increasing scale between average query time
and the number of edges.

5.2.1 Wildcard Cost

In order to measure the potential added overhead of wildcards, we
tested across multiple sizes of graph with varying numbers of wild-
cards in a common query. For each number of wildcards, we averaged
multiple runs and compare these against the same query graph with
specified attributes.

Figure 5 shows the query time when using wildcards relative to a
query with only normal attributes. The wildcard overhead increases
linearly with the number of wildcards. This suggests that large queries
can safely incorporate wildcards without computational constraints,
reducing the cognitive load on MAGE users during their data mining.

5.2.2 Multi-attribute Cost

We performed a series of tests to determine the costs of multi-attribute
queries by varying the size of graph and running queries with both
single attributes and multi-attributes. For the multi-attributes, we em-
bedded each node and edge with 3 distinct attributes, tripling the
amount of queryable attribute data in the graph.

Figure 6 indicates a very small difference in query latency between
the regular query and the multi-attribute query. Data-rich graphs can
be queried in MAGE with minor increases in query latency. Multi-
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Figure 5: This experiment shows the query latencies for queries contain-
ing wildcards tested on various sizes of Watts-Strogatz networks.
Adding additional wildcards to a query increases the query la-
tency at a linear rate.

Table 2: Real graphs used in experiment

Network Nodes Edges

DBLP 317,080 1,049,866

LiveJournal 4,847,571 68,993,773

Twitter 41,652,230 1,468,365,182

attributes queries can be submitted without fear of incurring decreased
query performance.

5.2.3 Memory-Mapped RWR Results

MAGE utilizes memory mapping to reduce the time needed for each
RWR query. To illustrate the effect of memory mapping, here we com-
pare our hybrid implementation that uses MATLAB plus memory
mapping in Java with pure implementation in MATLAB. Previous
research [13] showed the effectiveness of Java in mapping graphs to
memory, however Java still lacks a sparse matrix library that can scale
to graphs with more than a million of nodes. We prefer not to use
MATLAB’s native memory mapping capability either since it is not
highly optimized and incurs overhead1. Therefore, our hybrid imple-
mentation takes advantage of MATLAB’s efficient matrix library and
Java’s optimized memory mapping capability. The datasets we use
in the comparison are: the DBLP graph with 1 million edges [26], a
LiveJournal graph with 69 million edges [2], and a Twitter graph with
1.47 billion edges [12]. Table 2 shows the exact statistics of the graphs.
Our protocol consists of executing 10 iterations of the RWR algorithm

1 http://www.mathworks.com/support/solutions/en/data/1-1OG2ML/
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Figure 6: The introduction of 2 additional attributes per node and edge
barely affects query latency. Tests were run on varying sizes of
Watts-Strogatz small-world networks.

for the same node 3 times and reporting the average time needed for
the query.

Figure 7: Comparing the elapsed times of three approaches for a RWR query
with three graphs. Java does not have a matrix library and is in-
cluded as a lower bound. MATLAB is not able to scale to large
graphs (diamond pattern means it could not compute the result
within 8 hours). Our hybrid approach significantly improves the
query latency. For example, on Twitter graph (1.47 billion edges),
our method is at least 2 orders of magnitudes faster.

Figure 7 shows the elapsed times for the RWR queries. We include
the results for the pure Java implementation as a lower bound. From
the figure, we observe three outcomes: (i) the three approaches per-
form similarly when the graph is small, (ii) pure MATLAB implemen-
tation cannot scale to large graphs (it could not compute the RWR
probabilities within 8 hours in the case of the Twitter graph), and (iii)
our hybrid approach is slightly slower than the pure Java implemen-
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tation. The results show that our hybrid approach can scale to very
large graphs while retaining low query latency.

5.3 effectiveness

For the purposes of demonstrating the result quality we show the
results for several queries first on a synthetic toy-graph and second
on Rotten Tomatoes movie data.

5.3.1 Query Examples

The following graphs illustrate the ranked results return by MAGE
when run on the toy graph presented in Figure 8.

Figure 8: A toy graph with categorically attributed nodes and edges. In this
graph the edges are encoding categorical attributes (see legend above,
left), not edge weight.

5.3.2 Rotten Tomatoes Query Results

In order to test the effectiveness of MAGE we have queried a movie
graph constructed from Rotten Tomatoes similar movies. Rotten Toma-
toes allows users to up-vote algorithmic and suggested similar films.
We discretize this crowd sourced similarity score into two main cate-
gories, weakly similar and strongly similar. For each movie we have
extracted and encoded a plethora of categorical attributes. From MPAA
rating, runtime, critic review, to genres the query possibilities are
rich. Figure 11 shows a few queries and results we scoured from this
dataset.



5.3 effectiveness 20

Figure 9: The first 4 results (with each result in its own color) for the linear
query at the top of this figure. The fourth result (in purple) inserts
and extra edge-node-edge into the pattern to complete the approx-
imation. Nodes or edges shared by query results will contain both
result colors.

Figure 10: The first 4 results for the specified star query. Note that this query
has a wildcard as the center of the star, and another at the end of
one of the legs. The fourth result is a partial match.
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6
R E L AT E D W O R K

Our work finds similarities to two lines of research. Below, we review
related work from each category.

Proximity search on graphs. Various techniques and approaches
for graph-related problems require measures of node-to-node prox-
imities. There has been extensive work on graph data structures and
databases for this purpose [1, 17]. Methods in indexing have been pro-
posed to improve the capabilities and responsiveness of graph query
tools [27]. The two main approaches used to compute proximity in
graphs are random walk with restart [11, 16, 21, 8] and PageRank [4].

Pattern matching on graphs. There has been research on pattern
matching against single-large graphs [25], where Wolverton et al. de-
veloped the Link Analysis Workbench for use within the intelligence
industry. The goal of this research was to create a system to aid an
expert user from the intelligence community in creating, maintain-
ing and matching patterns across large quantities of relational data.
The pattern-matching module in this work heavily utilized a graph
edit distance metric to create scores for graph-graph similarity. Rather
than a graph edit distance, we utilized random walk with restart in
the goodness of match criterion.

Matching attributed graphs has been studied in [5] again as a po-
tential tool for the intelligence industry. With the enormous amount
of content in modern graphs, the primary concern of the modern
intelligence analyst is sifting for useful data amongst torrents of unre-
lated content. This approach allows an analyst to specify a particular
pattern in an attributed relational graph and scour a much larger
dataset for occurrences of such a structure. This was done primarily
with observed activity graphs involving large quantities of relational
intelligence data over large numbers of entities. This problem is still
challenging and highly relevant today.

Approximate matching is a common relaxation to the subgraph iso-
morphism problem and has been researched heavily [18, 15]. Inexact
graph matching has also been investigated with special emphasis on
web content scanning. The system OntoSeek utilizes inexact graph
matching based on linguistic ontologies over a large collection of key-
words called WordNet [9]. OntoSeek was designed to simplify and
improve query results over large catalogs and yellow pages.

There are a host of purely structural graph matching systems ex-
ploring polynomial time solutions to variants of the subgraph iso-
morphism problem. These systems take into consideration just the
structure and connectivity of a set of edges and vertices [14, 22, 23].

22



related work 23

Others have investigated the source of intractability for various query
patterns [3]. These approaches generally do not utilize any semantic
content from the graphs themselves, making it challenging for these
approaches to extend fully to our problem formulation.

While there are many separate approaches that work very well at
their particular focus, there are few algorithms that combine the afore-
mentioned techniques to tackle inexact matching in large, attributed
graphs with highly variable content. Recent work include [7] and [10],
however the former requires the user to specify a “focus” node in the
query and the latter returns results that do not adhere to the query
structure. The closest work is that of Tong et al. [20], which proposes
graph X-ray or G-Ray, a method that finds subgraphs that exactly
or approximately match a desirable query pattern. The G-Ray algo-
rithm is based on two core concepts. The first is the random walk
with restart idea [21], which is used to estimate the goodness of
a match between a subgraph and a query graph. The goodness of
match metric is necessary to rank the quality of approximate query
matches extracted from the graph. The second key concept in G-Ray
is the CenterPiece Subgraphs idea [19]. The CenterPiece approach is
used to locate subgraphs that have high goodness score as candidate
query results. At a high level, G-Ray works iteratively by finding a
seed node and forming a seed-local base set, expanding the base set,
and bridging the nodes in the base set, all according to the query
graph. The main drawback of G-Ray is that it only supports graphs
with node attributes. This is a significant limitation, considering the
additional semantics contributed to the graphs by the edge attributes.
We have leveraged many of the ideas and techniques proposed in this
work to create MAGE.
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C O N C L U S I O N

In this paper we address the problem of pattern matching on graphs
with rich attributes. A typical query we consider is, “return all the
rings of businessmen with strong ties”, where occupation is the node
attribute and tie strength is the edge attribute. To the best of our
knowledge, ours is the first pattern matching approach that is capa-
ble of performing exact and inexact matching on graphs with both
node and edge attributes for which wildcards and multiple attribute
values are permissible. Our technique is highly scalable; it leverages a
novel technique based on memory mapping to compute random walk
with restart probabilities, which provides a speedup of more than 2

orders of magnitude on large graphs. We evaluated the effectiveness
and scalability of our approach with real and synthetic graphs with
up to 2.3 million edges. Experimental results on the DBLP author-
ship graph demonstrate a scalable design on real networks. Through
our experiments we demonstrate a linear cost increase when adding
wildcards to a query and minimal overhead when adding multiple
attributes per node and edge. The Rotten Tomatoes movie graph ex-
periments illustrate the effectiveness and exploratory functionality of
our contributions to graph querying. We believe our work improves
the flexibility with which a user can explore the patterns and struc-
ture within their graph-data through exploratory queries.

24
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