
J

15:24:38 OCA PAD AMENDMENT - PROJECT HEADER INFORMATION 105/20/96

Active
Project 1: C-36-X25 Cost share #: Rev 1: 6

OCA file 1: Center I : 10/24-6-R8016-0AO Center shr I:

Contractl: N00014-94-1-0215
Prime I:

Subprojects ? : N
Main project I:

Project unit:
Project director(s):

ARKIN R C

Sponsor/division names: NAVY
Sponsor/division codes: 103

COMPUTING

COMPUTING

Mod I: A00001
Work type : RES
Document GRANT
Contract entity: GTRC

CFDA: 12.300
PE 1:

Unit code: 02.010.300

(404)894-8209

I OFC OF NAVAL RESEARCH
I 025

Award period: 931115 to 970331 (performance) 970331 (reports)

Sponsor amount
Contract value
Funded

Cost sharing amount

New this change
0.00
0.00

Does subcontracting plan apply ?: N

Total to date
659,567.00
659,567.00

75,00!1.00

Title: FLEXIBLE REACTIVE CONTROL FOR MULTI-AGENT ROBOTIC SYSTEMS IN HOSTILE ENVIRON.

PROJECT ADMINISTRATION DATA

OCA contact: Jacquelyn L. Bendall

Sponsor technical contact

TERESA A. MCMULLEN, CODE 333
(703)696-4302

OFFICE OF NAVAL RESEARCH
BALLSTON TOWER ONE
800 NORTH QUINCY STREET
ARLINGTON, VIRGINIA 22217-5660

Security class CU,C,S,TS) : U
Defense priority rating
Equipment title vests with: Sponsor

Administrative comments -

894-4820

Sponsor issuing office

RESIDENT REPRESENTATIVE
(404)730-9270

OFFICE OF NAVAL RESEARCH
101 MARIETTA STREET, SUITE 2805
ATLANTA, GA 30323-0008

ONR resident rep. is ACO CY/N): Y
ONR supplemental sheet

GIT X

MODIFICATION NO. A00001 EXTENDS PERIOD OF PERFORMANCE TO 3-31-97.

CA8120 Georgia Institute of Technology
Office of Contract Administration

PROJECT CLOSEOUT - NOTICE

Page: 1
01-APR-1997 15:24

u
Closeout Notice Date 01-APR-1997

Project Number C-36-X25 Doch Id 45476

Center Number 10/24-6-R8016-0AO

Project Director ARKIN, RONALD

Project Unit COMPUTING

Sponsor NAVY/OFC OF NAVAL RESEARCH

Division Id 3314

Contract Number N00014-94-1-0215 Contract Entity GTRC

Prime Contract Number

Title FLEXIBLE REACTIVE CONTROL FOR MULTI-AGENT ROBOTIC SYSTEMS IN
HOSTILE ENVIR

Effective Completion Date 31-~~R-1997 (Performance) 31-MAR-1997 (Reports)

Closeout Action:

Final Invoice or Copy of Final Invoice
Final Report of Inventions and/or Subcontracts
Government Property Inventory and Related Certificate
Classified Material Certificate
Release and Assignment
Other

Comments

Distribution Re~Jired:

Project Director/Principal Investigator
Research Administrative Network
Accounting
Research Security Department
Reports Coordinator
Research Property Team
Supply Services Department
Georgia Tech Research Corporation
Project File

NOTE: Final Patent Questionnaire sent to PDPI

YIN

y
y
y

N
N
N

y
y
y

N
y
y
y
y
y

Date
Submitted

C-36-

ANNUAL REPORT FY1994

Flexible Reactive Control for Multi-Agent Robotic
Systems in Hostile Environments

ONR/ ARPA Grant #N00014-94-1-0215

Prepared by: Ronald C. Arkin (P.I.), Jonathan Cameron,
Doug MacKenzie, Tucker Balch, and Khaled Ali

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332
email: arkin@cc.gatech.edu

Fax: (404) 853-9376
Phone: (404) 894-8209

1

Contents

1. Introduction

2. Formation Control

2.1 Simulation Environment

2.2 Formations

2.3 Behavioral Integration .

2.4 Approach

2.4.1 Formation Position References .

2.4.2 The maintain- for.mation Motor Schema.

2.5 Results

2.6 Discussion

2. 7 Technical Transfer

3. Teleautonomy

3.1 Forms of Teleoperation

3.1.1 Human Operator as a Behavior

3.1.2 Human Operator as a Behavioral Supervisor

3.2 Teleoperation Interface

3.2.1 Main Window .

3.2.2 Meta Window .

3.2.3 Detail Window

3.2.4 Usability Tests

3.3 Teleautonomy Tests ..

3.3.1 Simulation Environment

3.3.2 Tasks ..

3.3.3 Results

3.3.4 Analysis

3.4 Integration with ARPA UGV Project

3.4.1 Teleautonomy Behavior

3.4.2 Parameter Modification

4

4

5

5

6

6

7
8

8

10

10

11

12

12

13

14

14

15

15

17

17

17

18

18

22

22

23

23

4. Configuration Design Support for Mission Specification 24
4.1 The Configuration Description Language (CDL) . 24

4.2 Code Generators . 26

4.3 MissionLab - Simulation System Implementation 26

4.3.1 Script-based Military Scenario Executive Coordination Operator 29

2

5. Communication in Multiagent Robotic Teams

References

6. Publications to Date Resulting from this Research

3

29

31

33

1. Introduction

This document constitutes the 1994 Annual Report for the ONR/ ARPA Grant
#N00014-94-1-0215 entitled Flexible Reactive Control for Multi-Agent Robotic Sys­
tems in Hostile Environments. This project is supported by ARPA's Real-time Plan­
ning and Control Program and has as a customer ARPA's UGV Demo II program.
This first annual report reflects the first year's accomplishments within the context of
an overall three year research program.

The goals of this research are to produce intelligent, flexible, reactive behaviors and
methods for specifying and communicating information between multiagent teams. In
particular we have been studying three closely related subjects:

• Formation Control - to allow teams of robotic agents to move in a coordinated
manner through a potentially hostile environment without interfering with other
active navigational behaviors.

• Teleautonomous Control of Multi-agent Teams- to allow a massive reduction in
cognitive workload for the control of a group of robotic vehicles by permitting
commands to be specified at the team level rather than at the individual agent
level.

• Team Mission Specification Methods - to provide robust and flexible miSSion
specification for reactive team military scenarios.

It is intended that all of these projects will be fielded in some capacity for the upcoming
ARPA Demo C and Demo II scenarios involving 2-4 HUM MY s. This report surveys
the progress made to date in each of these areas.

2. Formation Control

This research concerns the development of behaviors for formation maintenance in
heterogeneous societies of mobile robots. The target platform is a set of four robotic
vehicles to be employed as a scout unit by the U.S. Army. Formations are important
in this application as they allow the unit to utilize its sensor assets more efficiently
than if the robots are arranged randomly.

The robots in this work are heterogeneous in that each is assigned a unique identifi­
cation number (ID). A robot's position in formation depends upon its ID. There are no
other differences between robots. In future work the robots may differ substantially in
their sensor capabilities, making it appropriate for specific robots to occupy particular
positions in a formation.

Formation control is one part of a more complex behavioral assemblage which in­
cludes other components for task achievement. In addition to maintaining their position
in formation, robots must simultaneously move to a goal location and avoid obstacles.

4

The formation behaviors presented here are implemented as motor schemas. Read­
ers not familiar with motor schema-based reactive control are referred to (4].

2.1 Simulation Environment

Results were generated in simulation on a Sun SPARC IPC under SunOS and the
X11 graphical windowing system. The simulation environment is a 1000 by 800 meter
two dimensional "playing field" upon which various sizes and distributions of circular
obstacles may be scattered. Each simulated robot is a separately running C program
that interacts with the simulation via a Unix socket. The simulation displays the
environment graphically and maintains world state information which it transmits to
the robots as they request it. Figure 1 shows a typical simulation run. The robots are
displayed as five-sided polygons (rectangles with points), while the obstacles are black
circles. The robots' paths are depicted with solid lines.

Sensors allow a robot to distinguish between three perceptual classes: robots, ob­
stacles and goals. The robots' sensors and actuators are implemented in the main
simulation. When one of the robot's perceptual processes requires obstacle informa­
tion for exan1ple, a request for that data is sent via the socket to the simulation.
The information returned is a list of angle and range data for each obstacle in sensor
range. Robot and goal sensor information is provided similarly. The robot moves by
transmitting its desired velocity to the simulation process. The simulation process
automatically maintains the position and heading of each robot.

Figure 1: Typical simulation run showing four robots in a wedge formation executing
a 90 degree left turn.

2.2 Formations

Several formations for four robots are considered:

5

• line - where the robots travel line-abreast.

• column - where the robots travel one after the other.

• diamond - where the robots travel in a diamond.

• wedge - where the robots travel in a "V".

For each formation, each robot has a specific position (based on it's ID). Figure 2.2
shows the formations and robots' positions within them.

3,

2.

4 3 2 't
4

2

4
4

Figure 2: Formations for four robots (from left to right: line, column, diamond,
wedge)

2.3 Behavioral Integration

The focus is on formation maintenance, but formation behaviors must meld with
other behaviors such as obstacle avoidance. In the examples here, the task for each
robot is to move to a goal location, avoid obstacles, avoid collisions with other robots
and maintain formation position simultaneously. The primitive behaviors, move- to­
goal, avoid- static- obstacle, avoid- robot, and maintain- formation, respectively,
implement these behaviors. Each behavior generates a vector representing desired
direction and magnitude of movement. A gain value indicates the relative importance of
the individual behaviors. The high-level combined behavior is generated by multiplying
the output of each primitive behavior by its gain, then summing the results. Gains and
other schema parameters are listed in Table 1. See [4] for a more complete discussion
of the parameters of the avoid- static- obstacle and move- to- goal motor schemas.

2.4 Approach

Formation maintenance is accomplished in two steps: first, a perceptual process,
detect-formation- position, determines the robot's proper position in the formation;
second, the motor schema maintain- formation generates a movement vector towards
it.

6

Parameter

avoid- static- obstacle
gain
sphere of influence
minimum range

avoid- robot
gain
sphere of influence
minimum range

move- to- goal
gain

maintain- formation
gain
desired spacing
controlled zone radius
dead zone radius

II Value

2.0
50

5

2.0
20

5

1.0

1.0
50
25
0

Units

meters
meters

meters
meters

meters
meters
meters

Table 1: Parameter values used for motor schemas.

2.4.1 Formation Position References

Each robot must compute its proper position in the formation for each movement
step. Three techniques for formation position determination are being explored:

• Unit-center-referenced: a unit-center is computed by averaging the x and y
positions of each robot. Each robot determines its formation position relative to
that center.

• Leader-referenced: each robot determines its formation position in relation to
the navigational leader (the unit leader is not necessarily the navigational leader).
The navigational leader does not attempt to maintain formation; the other robots
are responsible for formation maintenance.

• Neighbor-referenced: each robot maintains a position relative to one other
robot.

These relationships are depicted in Figure 3. Arrows show how the formation
positions are determined. Each arrow points from a robot to the associated reference.
The perceptual schema detect- formation-position must use one of these references to
determine the proper position for the robot. The spacing between robots is determined
by the desired spacing parameter of detect- formation -position.

7

Figure 3: Formation position determined by various reference techniques (from left
to right: unit-center, leader, neighbor)

2.4.2 The maintain- formation Motor Schema

Once the desired formation position is known, the maintain- formation motor
schema generates a movement vector towards it. In all cases the direction of the vector
is towards the desired formation position. The magnitude of the vector depends upon
how far the robot is from the desired position. Figure 4 illustrates three zones (defined
by distance from the desired position) used for magnitude computation. The radii of
these zones are parameters of the maintain- formation schema. In the examplecase,
robot 3 is attempting to maintain a formation position to the right of and behind robot
1. Robot 3 is in the controlled zone, so a n1oderate force towards the desired position
(forward and right) is generated by maintain- formation. The magnitude of the
vector is computed as follows:

• Ballistic zone: magnitude set at maximum (the schema's gain value).

• Controlled zone: magnitude varies linearly from maximum at the farthest edge
of the zone to zero at the inner edge.

• Dead zone: in the dead zone vector magnitude is always zero.

2.5 Results

The line, column, wedge and diamond formations have been implemented using
the unit-center-referenced and leader-referenced approaches. Neighbor-referenced for­
mations are under development.

Figure 5 illustrates robots moving in each of the basic formations using the leader­
referenced approach. In each of these simulation runs the robots were first initialized
on the left side of the simulation environment, then directed to proceed to the lower
center of the frame. After the formation was established, a 90 degree turn to the left
was initiated. Results are similar for the unit-center-referenced formations.

8

BalliaicZone

Figure 4: Zones for the computation of maintain- formation magnitude

• • •
• I / • • .

• fi I

,, I j/ -- I I I
r~~(w. '~ '--~ ~~~ e .. ~ ~~/ '-......... ~· ~ (I ~-1. ~'-- -........._ " I ~!/ 4
.................................... J_ • • •

~ ---- . • •

Figure 5: Four robots in leader-referenced diamond, wedge, line and column forma­
tions.

• •

•
Figure 6: Comparison of leader-referenced (left) and unit-center-referenced (right)
diamond formations.

9

Qualitative differences between the two approaches can be seen as a formation of
robots moves around obstacles and through turns (see Figure 6). For leader-referenced
formations any turn by the leader causes the entire formation to shift accordingly,
but if another robot turns, the rest of the formation is not affected. In unit-center­
referenced formations any robot move or turn impact the entire formation. In turns
for leader-referenced formations, the leader simply heads in the new direction; other
robots must adjust their position to move into formation. In unit-center-referenced
turns, the whole formation initially appears to spin about a central point, as it aligns
with the new heading.

2.6 Discussion

Which formation type and formation reference is best? The answer depends on
many factors, including task, environment, and mission constraints. More simulations
and analysis of qualitative results will help robot system designers match formations
to applications. Sensor and mission constraints may also dictate specific types of
formations. In any case, these applications probably rule out the use of unit-center­
referenced formations:

• Human Leader: A human cannot reasonably compute a formation's unit-center
on the fly, especially while simultaneously avoiding obstacles. A leader-referenced
formation is most appropriate in this application.

• Communications Restricted Applications: The unit-center approach re­
quires a transmitter and receiver for each robot and a protocol for exchanging
position information. Conversely, the leader-referenced approach only requires
one transmitter for the leader, and one receiver for each following robot. Band­
width requirements are cut by 75% in a four robot formation.

• Passive Sensors for Formation Maintenance: Unit-center-referenced for­
mations place a great demand on passive sensor systems (e.g. vision). In a
four robot visual formation for instance, each robot would have to track three
other robots which may spread across a 180 degree field of view. Leader- and
neighbor-referenced formations only call for tracking one other robot 1

2. 7 Technical Transfer

The forn1ation behaviors are being transferred to the UGV project at two levels:
first as part of onboard software for UGV Demo C, and second as part of a military
mission description and simulation package called MissionLab.

1The neighbor-referenced approach is used by U.S. Army Infantry Squads and Air Force fighters
for visual formations.

10

At Demo C, formation routines will be installed on two UGVs to implement a
"follow-the-leader" behavior during road following. At a Technical Demo to be held
in conjunction with Demo C, we expect to additionally demonstrate a comprehensive
suite of formation behaviors for two robots. Tech transfer for this application requires
integration with the DAMN Arbiter, and the LinkManager software aboard the UGVs.
Work towards this integration has already begun: interface descriptions are presently
being worked out with Martin Marietta, and a version of the DAMN Arbiter is in use
at Georgia Tech for integration testing.

In MissionLab, a military mission simulator, formation software has been combined
with other behaviors to enable robots to carry out complex missions. Using the script­
like language in MissionLab, a comn1ander may specify complete missions for a team
of robots then execute them in simulation. Section 4.3 of this report describes this in
more detail.

3. Teleautonomy

Reactive multi-agent robotic societies can be potentially useful for a wide-range of
tasks. This includes operations such as foraging and grazing (e.g., [1,11,7]) which have
applicability in service (vacuuming and cleaning), industrial (assembly) and military
(convoy and scouting) scenarios.

Although promising results have been achieved in these systems to date, purely re­
active systems can still benefit from human intervention. Many purely reactive systems
are myopic in their approach: they sacrifice global knowledge for rapid local interac­
tion. Global information can be useful and it is in this capacity that a human operator
can interact with a multi-agent control system.

A related problem in teleoperation is that a human operator is potentially over­
whelmed by the large amount of data required to control a multi-agent system in a
dynamic environment. This phenomenon is referred to as cognitive overload. The
approach described in this section provides a mechanism to significantly reduce the
human operator's cognitive and perceptual load by allowing the reactive system to
deal with each robot's local control concerns. Two principal mechanisms to achieve
this are by (1) allowing the operator to act either as a constituent behavior of the so­
ciety or (2) to allow him/her to supervise the societal behavioral sets and gains, acting
only as needed based upon observable progress towards societal task completion.

In this research, the human operator is allowed to control whole societies of agents;
not one robot at a time, but rather controlling global behavior for the entire multi-agent
system. This is a straightforward extension of our work in both multi-agent robotic
systems [1] and teleautonomy [3]. The end product is a simple way for a commander
to control large numbers of constituent elements without concern for low-level details
(which each of the agents is capable of handling by themselves). In essence, the human

11

operator is concerned with global social strategies for task completion, and is far less
involved with the specific behavioral tactics used by any individual agent.

3.1 Forms of Teleoperation

Telerobotic control is facilitated by two methods. The first method allows the
human operator to give directional information to the robots. The second method
allows the operator to interactively adjust the parameters of the reactive behaviors,
thereby changing the overall behavior of the robot society.

3.1.1 Human Operator as a B~havior

The most common form of teleoperation for robots is to give the robot or robots
directional information. In our approach, we are concentrating on giving directional
information to the society in general, rather than to any particular robot or robots.
In addition, the robots do not blindly follow the directional information of the human
operator as a remotely controlled vehicle would. Instead, each robot interprets the
directional instructions based on its particular situation in the world.

In our initial work, the robots used a motor schema-based reactive control system.
For a more detailed account of this approach, see [4]. Each of a robot's primitive
behaviors, or schemas, outputs a vector. The direction of the vector indicates the
direction that the behavior wants the robot to go in. The magnitude of the vector
indicates the amount that the behavior wants the robot to go in that direction. The
vectors that are output from all the robots' behaviors are summed and normalized.
The robot uses the resulting vector as the direction in which to move.

In our system, the human operator acts as one of the robots' behaviors when giving
directional instructions. This is called the teleautonomy behavior. The human operator
injects another vector into the system, just as if he were one of the robots' other
behaviors. The direction of the vector indicates the direction that the human operator
wants the society of robots to move in. The magnitude of the vector indicates the
importance that the human operator thinks should be placed on moving in the specified
direction. This vector is then summed and normalized along with all the other vectors
from the other behaviors, and the resulting vector is used to indicate the direction of
movement of the robot.

Thus, the robots do not blindly follow the instructions of the human operator, and
each robot interprets the instructions based on his personal situation. For instance,
if the human operator instructs the society of robots to move north and there is an
obstacle directly north of robot #3, then robot #3 will not collide with the obstacle.
The vector from the human operator will point in the direction of the obstacle, but
the vector from the robot's avoid-static-obstacle behavior will point away from the
obstacle. Because these vectors will cancel each other out, robot #3 will not collide

12

with the obstacle. However, all of the other robots will proceed north, assuming that
their particular situation allows them to.

3.1.2 Human Operator as a Behavioral Supervisor

Each of the robots' behaviors has one or more parameters associated with the
behavior. The values of these parameters determine exactly how the behavior will
function. For instance, one parameter of the avoid-static-obstacle behavior is the
gain. Increasing the gain for the avoid-static-obstacle behavior increases the magni­
tude of the vector output by the avoid-static-obstacle behavior. This has the effect
of causing the robot to want to avoid obstacles more.

By adjusting the values of one or more behavioral parameters, the human operator
can alter the overall behavior of the robots.

The human operator has the option to adjust the values of individual behavior
parameters or to adjust the overall robots' behavior, or personality, in terms of more
abstract personality traits, such as Aggressiveness.

First, the human operator can directly manipulate the behavior parameters. Every
parameter for all behaviors is represented in the Telop interface. The human operator
can adjust a single parameter at a time. This allows a human operator knowledgeable
about the behaviors to fine tune the robot society's overall behavior.

The human operator can also manipulate the behavior parameters in terms of
abstract personality traits. There is a set of abstract parameters, which are intended
to represent general kinds of behavioral or personality adjustments that the human
operator might want to make. In our current system the abstract parameters are
Aggressiveness, Wanderlust, and Perceptiveness. The value of an abstract parameter
controls the value of two or more individual parameters. The three abstract parameters
used each control the values of two individual parameters, but an abstract parameter
could control considerably more.

The abstract parameter Aggressiveness determines the amount that the robot is
focussed on achieving its goal. Increasing the Aggressiveness parameter causes an in­
crease in the move-to-goal behavior gain and a decrease in the avoid-static-obstacle
behavior sphere of influence. The personality effect of this is to cause the robots to
focus more on getting to their goal location and worry less about what is in their way.
Likewise, decreasing the Aggressiveness parameter causes a decrease in the move-to­
goal behavior gain and an increase in the avoid-static-obstacle behavior sphere of
influence. The personality effect of this is to cause the robots to be more careful of
obstacles and be less concerned about getting to their goal location.

The abstract parameter Wanderlust determines the desire of the robot to randomly
explore the terrain it is in. Wanderlust controls the gain and the persistence of the
noise behavior. Increasing the Wanderlust causes the robots to move more randomly.

13

The abstract parameter Perceptiveness determines the distance from the robot be­
yond which perception of obstacles and other robots is ignored. This is important,
because if the robot's perception is noisy at the outer limits, the operator may want
the robot to ignore the data coming from that region.

3.2 Teleoperation Interface

The Telop system includes a graphical user interface to facilitate the communication
between the human operator and the robots. The interface consists of three parts: the
main window, the meta-slider window and the detail-slider window.

3.2.1 Main Window

The Main Window contains an on-screen joystick and some other general controls
(see Figure 7).

Figure 7: Main Window

The purpose of the on-screen joystick is to provide the human operator a means to
give directional information to the robots, as described in the section Teleoperator as
a Behavior. The position of the joystick indicates the vector that is injected into the
system from the teleautonomy behavior. The direction that the joystick is depressed
provides the directional component of the vector, and the amount that it is depressed
provides the magnitude of the vector.

The main window also contains a toggle button to start and stop the robots from
moving, a button to reset all of the behavior parameters to their default values, a
slider-bar that controls the speed of the robots, and controls for modes that affect the
timing of parameter changes.

The default mode of the system is the Immediate Effect mode. When the system
is in this mode, any changes to the parameters, both individual and abstract, are
immediately noticed and used by the robots' behaviors.

14

In the Delayed Effect mode, parameter changes are not immediately noticed by
the behaviors until a Commit button is pressed. The behaviors continue using the
parameters that the system had when the Delayed Effect mode was entered or the
Commit button was last pressed, whichever is most recent. This allows the human
operator to change the values of multiple parameters and then have the changes take
place simultaneously when the Commit button is pressed.

3.2.2 Meta Window

The Meta Window contains three meta-sliders, and a button that pops up the
Detail Window (see Figure 8).

Figure 8: Meta Window

The meta-sliders are slider-bars that control the value of abstract parameters. There
is one meta-slider for each of the abstract parameters: Aggressiveness, Wanderlust, and
Perceptiveness. We call them meta-sliders because, as the user moves a meta-slider, it
then in turn moves two or more detail-sliders, as described below, that correspond to
the individual behavior parameters associated with that abstract parameter.

Each meta-slider is a different color. The detail-sliders in the Detail Window that
are associated with a meta-slider are the same color.

3.2.3 Detail Window

The Detail Window contains several detail-sliders and a button that removes the
detail window (see Figure 9). The detail-sliders are slider-bars, each of which controls
the value of an individual behavior parameter.

The detail-sliders are physically arranged into groups. Some groups contain slider­
bars for behavior parameters used in a particular state of the robots' task. Other

15

Forage
.5

~sMlli£~~­
Avoid Robot Gain

20
~::t:Jitq~tifii®ftf;;!
Avoid Robot Sphere of Influence

1.2

Noise Gain

4

Noise Persistence

Obstacles

5.0

Obstacle Sphere of Influence

Acquire I Deliver
.1

lc:::tlldillli· ... l!@!ifiiJiil?,jjl
Avoid Robot Gain

20
h~L·tffi- I tt:­
Avold Robot Sphere of Influence

.2
lit£ 1 e~tr--E

Noise Gain

2

1.0

Move to Goal Gain

Perceptiveness
100

(:-&~Watt£1Wh1W!CC
Perceive Obstacles

Figure 9: Detail Window

16

groups contain slider-bars that deal with behavior parameters for a general concept,
such as the Obstacle group, which contains slider-bars associated with a behavior for
avoiding obstacles.

The groupings that we are using now are based on our own particular task. The
slider-bars would either need to be regrouped based on the task they are being used
for, or there would have to be a menu of predetermined tasks. Choosing a task from
this menu would automatically regroup the slider-bars for that particular task.

Most detail-sliders are the same color, but those detail-sliders that are associated
with one of the meta-sliders are the same color as the meta-slider they are associated
with.

3.2.4 Usability Tests

A set of usability tests has been conducted on the interface of Telop. These tests
yielded useful information for making the interface more helpful and usable. We have
made changes to the Telop interface based on the suggestions from these studies.

The evaluators in the usability tests were people working in the robotics group at
the Georgia Institute of Technology. In the future, we plan to conduct at least one
more set of usability tests on Telop. At that time, we plan to use military students as
evaluators.

3.3 Teleautonomy Tests

A set of experiments were done to test the usefulness of the teleautonon1y behavior
for certain tasks. Only the teleautonomy behavior was tested. The behavioral param­
eters were not modifyed during the testing. All of the tests were done in a simulation
environment.

3.3.1 Simulation Environment

The system is tested on a graphical simulation environment prior to its port to
our Denning robots. The objects represented in the sin1ulation environment include
robots, obstacles, and attractors. Each robot's trail is depicted by a broken line. Every
robot uses the same set of behaviors (a homogeneous society), but the sensory input
for each is different, depending on the robot's location within the environment. The
robots can sense objects within a certain radius around them. They have the ability
to distinguish whether a sensed object is an obstacle, another robot, or an attractor.

The agents have a limited form of communication between themselves. A robot is
capable of communicating its current behavioral state or the location of an attractor
that it is acquiring or delivering [6). The communication is simulated by using shared

17

memory. Each agent only looks at this shared memory when there is no attractor
within its sensing range.

In tasks that require the movement of attractors, more than one robot is allowed
to contribute to the transport of the object at the same time. The net effect of this
cooperation is simulated by having the robots move the attractor farther during each
time unit if there are more robots carrying it . The distance traveled while carrying an
attractor is determined by the mass of the object and the number of robots carrying
it.

3.3.2 Tasks

The use of teleoperation in multi-agent systems was tested for three different tasks.
The tasks were foraging, grazing (vacuuming), and herding the robots into a pen. In
all three tasks , a teleoperator provided input at his own discretion.

In the foraging task, the robots wander around looking for attractors. When a
robot finds a target object, it communicates its location to the other agents while si­
multaneously n1oving to acquire it. After its acquisition, the robot carries the attractor
back to a home base, then deposits it, and finally returns back to the task of searching
for more attractors. If a robot cannot detect an attractor within its sensory radius, it
checks to see if any other agent has communicated the location of another candidate
goal object. If so, then the robot proceeds to acquire it.

In the grazing task, the robots are placed in an environment studded with obstacles .
Initially, all of the floor that is not covered with an obstacle is "ungrazed". Each section
of the floor that is ungrazed is treated as if it had an attractor on it. That is, a robot
can sense an ungrazed section of floor from a distance, and it can also communicate
the presence of an ungrazed section of the floor to the other robots. When an agent
passes over an ungrazed region it becomes clean. The task is completed when a certain
percentage of the floor, specified in advance, has been grazed. The robots normally
wander randomly until an ungrazed floor area is detected.

In the herding task, there is a pen with an opening formed of obstacles in the
simulation environment. All the agents are initially outside of the pen. The robots
remain in the forage state for the duration of the run and wander aimlessly in random
directions. The robots are repulsed by the obstacles and the other robots. The task is
to get all of the robotic agents inside the pen at the same time.

3.3.3 Results

For the foraging and grazing tasks, tests were conducted that compared the total
number of steps taken by the robots to complete the tasks with and without the
help of a teleoperator. For the herding task, no comparison could be made between
teleoperation and no teleoperation, because the likelihood of all the robots wandering

18

into the pen by themselves at the same time is virtually nil. Interesting information
was gained about this task nonetheless.

In the tests conducted for the foraging task, three robots were used to gather six
attractors. The density of obstacles in the environment was 10%. The total number of
steps required to finish the task was measured both with and without a teleoperator.
If teleoperation is used wisely, it can significantly lower the total number of steps
required to complete the task by greatly reducing the time spent in the forage state
(i.e., the number of steps that the robots spend looking for attractors). If none of the
agents currently sense an at tractor, then the teleoperator can assist by guiding the
robots in a fruitful direction. However, once the robots can sense an attractor, the
teleoperator should stop giving instructions, unless the instructions are to deal with a
particularly troublesome set of obstacles. In general, the robots perform more efficiently
by themselves than when under the control of a teleoperator if the agents already have
an attractor in sight. The human's instructions tend to hinder the robots if they are
already moving to acquire or return an attractor. Indeed, when teleoperation is used
at all times, the overall number of steps required for task completion often increases
when compared to no teleoperation at all. However, if the human only acts to guide
the robots toward an attractor when none are currently detected, significant reductions
in time for task completion are possible. The average over several experimental runs
of the total number of time steps required for task completion when teleoperation was
used in this manner was 67% of the average task completion time when no teleoperation
was used.

An example trace of a forage task without teleoperation is shown in Figure 10(a).
Another trace of the same forage task with a human teleoperator helping the robots find
the attractors when they did not have one in sensing range is shown in Figure 10(b).
The robots all started at the home base in the center of the environment. In the run
without teleoperation, the robots immediately found the two closer attractors at the
lower right. Then they quickly found the two closer attractors at the upper right. At
this point, the robots did not immediately detect the remaining two attractors. Two of
the three agents proceeded by chance to the left and upper left sides of the environment,
wandering unsuccessfully while seeking an attractor. Eventually, the other robot found
the attractor in the lower right corner, and the other two robots moved to help with
its return. After delivering it to the home base, the robots wandered again for a
while without finding the last attractor. Finally, the last attractor was detected and
successfully delivered to home base. In the same world with the help of a human
teleoperator, the two protracted periods of wandering while searching for attractors
are avoided. This indicates the types of environments where the use of teleoperation
for the forage task is most beneficial. The greatest benefit from teleoperation can be
seen when there are one or more attractors that are far from both the home base and
the start locations of the robots. Typically, this is when the robots do not sense the
target objects without wandering for a while.

For the grazing task, five robots were used. A sample run of a grazing task is

19

•
• • ·>::~\

------------------------• ------- ---·---~--~~-
(a) (b)

Figure 10: Foraging task.(a) Without Teleoperation (b) With Teleoperation

shown in Figure 11. In this case, the robots performed poorly when a large amount
of teleoperation was involved. Teleoperation only proved useful when the robots had
difficulty in locating a section of ungrazed floor. When the robots had already detected
an ungrazed area, they performed better without any input from the teleoperator.
The agents' performance degraded considerably, often taking several times longer to
complete the task, if teleoperation was used when a robot had already located an
ungrazed floor area. Moreover, since remaining untreated areas tend to be clustered
together in large patches, the agents typically do not need to spend long periods of
time looking for another ungrazed spot (which is opposite the case of the foraging task
discussed above). Therefore, the use of teleoperation did not help significantly with
the grazing task. When teleoperation was used solely to help the robots find ungrazed
floor area when they were not already cleaning, only a 4% improvement in average task
completion time performance was observed when compared to not using teleoperation.
Thus, when used wisely, teleoperation helped somewhat but not to a large extent.

For the herding task, five robots were herded into a pen that was 36 units long by 18
units wide, with a 12 unit long door in one of the longer sides. All of the robots started
at one spot on the side of the pen with the door. In most test runs, the teleoperator
encountered no difficulty with this task. He was able to herd the robots into the pen
with no problem. In some of the test runs, there were a few minor difficulties, such
as robots wandering back out of the pen after having been herded in. However, the
teleoperator was still able to complete the task without much frustration and in a
reasonable amount of time. The results of a test run for the herding task is shown in
Figure 12.

20

Figure 11: Grazing Task

···· ..

,'. · .. ·~ /;
I ' ', ~·... ~, .. •

·. ,' ! ...
. ' ,

. ~·~ . :;~, .. ,.•

,/ ·· ..
. ·~ ..

: ··.
' .

'. '· ~~;~~·:,.;./
,., • ,. · ••• ·.: I- '\ ..

,.· , ... ,

. . -~ _ .. -~ \ .. '·' '•

•'

Figure 12: Herding Task

21

3.3.4 Analysis

Some conclusions can be ascertained from the studies conducted thus far. It should
be remembered, however, that these are preliminary studies, and there are many vari­
ables that have not yet been explored. For instance, we intend to explore the effects
of teleoperation while varying the number of robots for a particular task, to study the
role and impact of different inter-agent communication methods on teleoperation, and
to conduct an analysis of what types of environments teleoperation is most suited for.

The use of the teleautonomy schema in conjunction with the robots' other be­
haviors proved particularly effective for the foraging task, while being less so for the
grazing task (vacuuming). Herding the robots into a pen was arduous but feasible
using this method. During foraging, the best results were observed when teleoperation
was used only to guide the robots in the direction of an attractor if one had not been
previously sensed. For the vacuuming task, teleoperation was not significantly better
than no teleoperation, although minor improvements were observed. The best results
were again seen when teleoperation was used in guiding the robots towards dirty areas
that were outside the sensor (or communication) range of the agents.

Trying to herd the robots into a pen is possible, although a frustrating task. Two
conceivable improvements can be used for this task regarding teleoperation. The first
is to allow the teleoperator to turn off the input from the teleoperation schema for
specific robots but not for others, allowing the operator to concentrate on the outside
robots without worrying what effects his actions will have on robots already inside the
pen. The other improvement is to allow the teleoperator to completely stop a robot's
movement when it is inside the pen. In this way, the output of the teleoperation
schema could be thought of as producing a vector that nullifies the vectors produced
by the robot's other schemas. However, both of these strategies involve producing
different output for the teleautonomy schema for different robots. This means that
the teleoperator would have a greater burden, defeating the purpose of this research in
reducing the cognitive workload.

Another important point is that if the teleoperator is given unrestricted control
of the magnitude of the vector produced by the teleoperation schema, it is possible
for the teleoperator to force a robot to collide with obstacles and other robots. The
teleoperator must be careful when increasing the gain of the teleautonomy schema
so that this does not occur. It can be a delicate task to override the output of the
noise schema, which is necessary to cause the robots to quickly move in a particular
direction, while not overriding the avoid-static-obstacle behaviors.

3.4 Integration with ARPA UGV Project

The Telop system is being developed for use as part of the ARPA UGV project.
The integrated demo of Demo C will include the teleautonomy behavior. A tech demo

22

at Demo C and the integrated demo at Demo II will include both the teleautonomy
behavior and the slider bars for modifying behavioral parameters.

3.4.1 Teleautonomy Behavior

We are currently working to make Telop compatible with the DAMN arbiters, which
are the arbitration systems used on the vehicles in the UGV project. The main window
of the interface has been modified in appearance and functionality to accommodate
the differences between the combination mechanism used in our schema system and
the arbitration mechanism used in the DAMN arbiters. The joystick now controls
the direction and the speed of the society of robots. When the joystick is used, the
interface sends messages (via TCX) to the teleautonomy behaviors. These messages
indicate the direction and the speed that the society of robots should move in. Two
slider bars have been added to adjust the weight that the DAMN turn arbiters and the
DAMN speed arbiters use when considering the votes from the teleautonomy behavior.
The communication with the DAMN arbiters to change the weights is done using TCX.

We are in the process of in1plementing the teleautonomy behavior in the same form
as the other DAMN behaviors. There are actually two teleautonomy behaviors, one
for turning and the other for speed. Each robot will be running one teleautonomy
turn behavior and one teleautonomy speed behavior. When the behaviors receive a
message from the Telop interface indicating a direction and speed for the society to
move in, the behaviors will compute a turn radius and speed based on the situation of
the particular robot that the behavior is resident on. This conversion from holonomic
to nonholonomic instructions has not yet been implemented. Then the behaviors send
their votes for this turn radius and speed to the DAMN arbiter. The votes for turn
radii are actually distributed among all the possible turn radii as a gaussian centered
at the desired turn radius.

We are also creating an interface for modifying the default parameters that the
Telop interface will use when it is started by either MRPL or the STX interface. This
default editor will also allow modification of the system defaults for the parameters.

The interfaces are implemented using UIM/X for ease of integration with the other
interfaces in the project.

3.4.2 Parameter Modification

For a technical demo at Demo C and for the integrated demo at Demo II, we are
implementing detail-sliders and meta-sliders for controlling behavioral parameters both
in terms of the individual parameters and abstract personality traits. The detail-sliders
will correspond to the possible behaviors running on the vehicles. The grouping of the
detail-sliders will be based on the tasks and concepts that are part of the military
scenario used in the UGV demos. The meta-sliders will then be set up to control
appropriate detail-sliders based on the personality trait that they represent.

23

There will be two detail-sliders for the weights of each behavior in the arbiters. The
first will control the weight in the turn arbiter, and the second will control the weight
in the speed arbiter. In addition, we will analyze the internal parameters present in
the behaviors used with DAMN. If it is appropriate for a particular paran1eter, we will
include a slider bar in the Telop interface for modifying this paran1eter.

When a slider bar is moved, the Telop interface will send messages to the appro­
priate arbiters or behavior on each vehicle. The messages will instruct the arbiter to
change the weight that it uses when considering the votes of a particular behavior.

4. Configuration Design Support for Mission Specification

Configuration design tools are being developed which will support graphical con­
struction of abstract configurations which can then be compiled to execute on the
MRPL system for UGV Demo II. Planned capabilities include a graphical editor for
creating configurations, support for automated configuration evaluation, and a Multi­
Robot Programming Language (MRPL) code generator.

4.1 The Configuration Description Language {CDL)

The context free Configuration Description Language (CD L) provides a solid the­
oretical foundation for specifying architecture and robot independent configurations
of behavior-based robots. Societies of robots come in three types; trivial, homoge­
neous teams, and heterogeneous castes. The language specifies the coordination be­
tween n1embers of homogeneous teams, members of heterogeneous castes, assemblages
of behaviors for individual robots, as well as perceptual strategies within primitive
sensorimotor behaviors.

A preliminary version of the language has been developed. The grammar G gen­
erating the language will be described by the notation [10] G = (V, T, Q, S), where V
is the set of variables, T is the set of terminal symbols, Q is the set of productions,
and S represents the highest-level society (the start variable). Using this notation, G
is described as

G = ({S,X,R,A,C,Y,B,P,Z},
{pi, IDj, ak, /t, *m, +n, -o, %p, @q, #r, =s, {, }, [,], (,), \', (,)},
Q,
S)

24

and Q consists of the productions

s -t R I '/z XS' I '*m XS'
X -t XSIS
R -t {A}
A -t B I [+n Y A] I [-o Y A] I [%pYA] I [@q Y A]
y -t YAIA
B -t (Pmj) I (akPmJ) I (P) I (akP)
p -t Pi I (#r ZP) I (=s ZP)
z -t ZPIP

Where

• S is a society

• X is a list of one or more societies

• R is a single robot

• A is a behavioral assemblage

• Y is a list of one or more assemblages

• B is a primitive sensorimotor behavior

• Pis a perceptual module or a coordinated perceptual group

• Z is a list of one or more perceptual modules

• Pi, i E natural numbers is an instance of a perceptual process

• mj, j E natural numbers is an instance of a motor process

• ak, k E natural numbers is an instance of an active perception motor process

• / z, l E natural numbers is an instance of a caste (heterogeneous) society operator

• *m, m E natural numbers is an instance of a team (homogeneous) society operator

• +n, n E natural numbers is an instance of an assemblage cooperation operator

• - 0 , o E natural numbers is an instance of an assemblage competitive operator

• %p, p E natural numbers is an instance of an assemblage sequencing operator

• @q, q E natural numbers is an instance of the generic assemblage coordination operator

• #r, r E natural numbers is an instance of a perceptual fusion operator

• =s, s E natural numbers is an instance of a perceptual sequencing operator

• ' ' delineates societies

• { } delineates agents (robots)

• [] delineates coordinated assemblages

• () delineates primitive sensorimotor behaviors

• () delineates a group of coordinated perceptual modules.

25

Sensors are explicitly represented to allow parameterization and to facilitate hard­
ware binding. Perceptual modules function as virtual sensors which extract features
from one or more sensation streams and generate, as output, a stream of features (indi­
vidual percepts). Motor modules use one or more feature streams (perceptual inputs)
to generate an action stream (a sequence of actions for the robot to perform). Percep­
tual coordination is the process of linking one or more perceptual modules to motor
modules and is partitioned into three categories[2): sensor fission, action-oriented per­
ceptual fusion, and sensor "fashion". Active perception utilizes a special motor module
which generates an action stream to modify the information the sensor is providing. A
primitive behavior consists of one or more perceptual modules and a motor module gen­
erating a stream of actions based on perceptual inputs. An assemblage can be treated
as a single sensorimotor behavior even though it may be recursively composed of many
primitive behaviors and coordination strategies. Each individual robot is controlled by
a single assemblage.

4.2 Code Generators

The Configuration Network Language (CNL) will be used to represent the output
of the CDL compiler. CNL has been designed and implemented as a dataflow language,
where the executable functions represented by the nodes are specified using a standard
programming language. A compiler generating C++ code for the schema architecture
has been developed and is in regular use in the mobile robot lab. A compiler generating
MRPL code for the ARPA architecture will be developed this fall.

4.3 MissionLab - Simulation System Implementation

The MissionLab simulation system architecture is shown in Figure 13. The basic
parts are a simulation system, a display system, and robot control software. The
simulation system is shown in a dotted box.

The simulation system includes a module which can read and interpret overlay
files, a database where the scenario information is stored, a module which can read and
interpret command files (and construct an internal list of instructions), and a command
interpreter which will execute the commands from the internal list of commands. The
commands are digested and sent to the individual robots to be executed. This also
includes some simple execution monitoring. For details of the simulation system, see
[8).

The robot control software is a preconfigured set of assemblages for accomplishing
a variety of tasks. Each assemblage is a set of schemas (or low-level behaviors). An
executive inside the robot software receives the command from the simulation system,
loads information from the command (such as goal locations), and selects the proper set

26

Figure 13: Overview of the current MissionLab system.

27

of behaviors to execute the desired task. Ultimately, MRPL behaviors will be encoded
as an alternate behavior strategy.

The simulation system spawns separate control processes to control the robots.
Each of these processes runs a copy of a robot control program. If the robot were real,
these processes would communicate with the robot (perhaps via radio links). In our
case, the robots are simulated. These separate processes are running independently, in
parallel. They communicate with the simulation system using the TCX inter-process
communication package [9].

The simulation system also coordinates information exchange between the robots.
When commands are executed, the simulation system sends the command to the ap­
propriate robot with whatever modifications are necessary. For instance, a "unit"
might consist of several robots. When the unit is commanded to do something, the
simulation system uses the console database to determine what robots need to receive
the command. The simulation system then sends the command to each robot in the
unit. In some cases, the command must be modified slightly before it is sent-such as
in a start command so that all the robots in the unit are not positioned on top of each
other.

Map overlay information is loaded from overlay description files. This includes in­
formation including locations of control measures such as boundaries, assembly areas,
lines of departure/lines of contact, attack positions, passage points, gaps, axes of mo­
tion, phase lines, battle positions, and objectives. A sample file is shown in Figure 14.
Actual map coordinates are not included for simplicity.

SCENARIO 11 Demo-C 11

SITE 11 Demo B site, Colorado 11

ORIGIN X Y
CONTROL MEASURES:
Boundary Yankee x1 y1 x2 y2 ... xn yn
LDLC Echo x1 y1 x2 y2 xn yn
AA Alpha x1 y1 x2 y2 x3 y3 ... xn yn
ATK Bravo x1 y1 x2 y2 x3 y3 ... xn yn
PP Charlie x y
Gap Delta x1 y1 x2 y2
Axis Foxtrot x1 y1 x2 y2 xn yn
PL Gamma x1 y1 x2 y2 xn yn
BP 1 x1 y1 x2 y2 xn yn
BP 2 x1 y1 x2 y2 xn yn
OBJ Zulu x1 y1 x2 y2 xn yn

Figure 14: Example overlay description file without real map coordinates.

28

4.3.1 Script-based Military Scenario Executive Coordination Operator

A coordination operator has been developed which will interpret a set of steps
necessary to accomplish a multiagent mission. Each step is a series of commands to
send to the teams of robots involved all at the same time. The step is not complete
until all the robots have completed their commands. The tools will load the steps and
execute them in our simulation environment with minimal human interaction. Each
robot will be configured with a set of behaviors to allow it to execute its commands
with appropriate reactive control software.

The robots are configured with a set of behaviors which allow them to perform
the necessary tasks (see the lower part of Figure 13). Currently we have behaviors for
moving to a specified location, following a line, and occupying a position. Concurrently,
the robot can be using any of several formations behaviors, such as line formation,
column formation, diamond formation, wedge formation, and no formation. We are
also working towards implementation several coordinated movement techniques such as
traveling overwatch and bounding overwatch. The executive coordination node in each
robot control software receives commands from the simulation system and activates
the appropriate behaviors to accomplish the task.

There are two task description files: an overlay description file and a command
description file. The overlay description file is a file containing the mission overlay
information which was described in the previous section. The command description
file contains background information and commands. The background information part
includes such things as which overlay file to use, starting positions, and the composition
of the units involved. The command information part includes a series of steps to be
executed. Each step can be composed of several commands to be executed in parallel.

An example of a command description file is given in Figure 15. Notice that the file
references an overlay file. Also notice the readable nature of the command language.

5. Communication in Multiagent Robotic Teams

Multiple cooperating robots are able to complete many tasks more quickly and re­
liably than one robot alone. Communication between the robots can multiply their
capabilities and effectiveness, but to what extent? In this research, the importance of
communication in robotic societies is investigated through experiments on both simu­
lated and real robots. Performance was measured for three different types of commu­
nication for three different tasks. The levels of communication are progressively more
complex and potentially more expensive to implement. For some tasks, communica­
tion can significantly improve performance, but for others inter-agent communication
is apparently unnecessary. In cases where communication helps, the lowest level of
communication is almost as effective as the more complex type. The bulk of these
results are derived from thousands of simulations run with randomly generated ini-

29

MISSION NAME 11 Demo C simulation 11

SCENARIO 11 Demo-C 11

OVERLAY test.odl
SP Home 0 0
UNIT Wolf (Wolf-1 ROBOT BFV) (Wolf-2 UGV SSV HUMMER)
COMMAND LIST:

0. UNIT Wolf START SP-Home 10 0
1. UNIT Wolf MOVETO AA-Alpha FORMATION diamond traveling-overwatch

1a. UNIT Wolf OCCUPY AA-Alpha FORMATION Column
2. UNIT Wolf MOVETO ATK-Bravo FORMATION Column
3. UNIT Wolf OCCUPY ATK-Bravo FORMATION Diamond
4. UNIT Wolf MOVETO PP-Charlie FORMATION Column
5. UNIT Wolf FOLLOW Gap-Delta FORMATION Column
6. UNIT Wolf FOLLOW Axis-Foxtrot FORMATION Diamond Traveling-Overwatch

PHASE-LINE PL-Gamma 06-10-94:23:10
7. UNIT Wolf PASS-PHASE-LINE PL-Gamma
8. UNIT Wolf-1 MOVETO BP-1 FORMATION Line Bounding-Overwatch AND

UNIT Wolf-2 MOVETO BP-2 FORMATION Line Bounding-Overwatch
9. UNIT Wolf-1 OCCUPY BP-1 FORMATION DIAMOND AND

UNIT Wolf-2 OCCUPY BP-2 FORMATION DIAMOND
10. UNIT Wolf-1 MOVETO OBJ-Zulu FORMATION Line Bounding-Overwatch AND

UNIT Wolf-2 MOVETO OBJ-Zulu FORMATION Line Bounding-Overwatch
11. UNIT Wolf OCCUPY OBJ-Zulu FORMATION Diamond
12. UNIT Wolf STOP

Figure 15: Example Command Description File

30

tial conditions. The simulation results help determine appropriate parameters for the
reactive control system which was ported for tests on Denning mobile robots.

Three different types of communication are evaluated in this research. Using a
minimalist philosophy, the first type actually involves no direct communication between
the agents. The second type allows for the transmission of state information between
agents in a manner similar to that found in display behavior in animals. The third
type (goal communication) requires the transmitting agent to recognize and broadcast
the location of an attractor when one is located within detectable range.

Our research to date focuses on three tasks: foraging, consuming, and grazing.
Foraging consists of searching the environment for objects (referred to as at tractors)
and carrying them back to a central location. Consuming requires the robot to perform
work on the attractors in place, rather than carrying them back. Grazing is similar to
lawn mowing; the robot or robot team must adequately cover the environment.

The impact of communication on performance in reactive multiagent robotic sys­
tems has been investigated through extensive simulation studies. Performance results
for three generic tasks illustrate how task and environment can affect communication
payoffs. Initial results from testing on mobile robots are shown to support the simula­
tion studies.

The principal results for these tasks are:

• Communication improves performance significantly in tasks with little environ­
mental communication.

• Communication is not essential in tasks which include implicit communication.

• More complex communication strategies offer little or no benefit over low-level
communication.

Future work in this area is concerned with societal performance in fault-tolerant
multiagent robotic systems; where unreliable communication may be present and the
robotic agents have the potential for failure.

REFERENCES

[1] Arkin, R.C., "Cooperation without Communication: Multi-agent Schema Based Robot
Navigation", Journal of Robotic Systems, Vol. 9(3), April 1992, pp. 351-364.

[2] Arkin, R.C., "The Multiple Dimensions of Action-Oriented Perception: Fission, Fusion,
Fashion", Working notes of AAAI 1991 Fall Symposium on Sensory Aspects of Robotic
Intelligence, Monterey, CA, Nov. 15-17, 1991.

[3] Arkin, R.C., "Reactive Control as a Substrate for Telerobotic Systems", IEEE Aerospace
and Electronics Systems Magazine, Vol. 6, No. 6, June 1991, pp. 24-31.

31

[4] Arkin, R.C., "Motor Schema-Based Mobile Robot Navigation", International Journal of
Robotics Research, Vol. 8, No.4, August 1989, pp. 92-112.

[5] Arkin, R.C. and Ali, K.S., "Integration of Reactive and Telerobotic Control in Multi­
agent Robotic Systems", From animals to animats 4: Proc. 4th International Conference
on Simulation of Adaptive Behavior, Brighton, England, Aug. 1994, pp. 473-478

[6] Arkin, R.C., Balch, T., and Nitz, E., "Communication of Behavioral State in Multi­
agent Retrieval Tasks", Proc. 1993 IEEE International Conference on Robotics and
Automation, Atlanta, GA, May 1993, Vol. 3, pp. 588-594.

[7] Brooks, R., Maes, P., Mataric, M., and More, G., "Lunar Base Construction Robots",
IEEE International Workshop on Intelligent Robots and Systems (IROS '90}, pp. 389-
392, Tsuchiura, Japan, 1990.

[8] Cameron, J .M. and MacKenzie, D.C., "Specifying complex military scenarios", Georgia
Institute of Technology, Working paper, contact authors.

[9] Fedor, C., "TCX: Task Communication," (User manual for TCX, available through the
Robotics Institute), Carnegie Mellon University, Feb. 15, 1993.

[10] Hopcroft, J .E. and Ullman, J.D., Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, pp. 79, 1979.

[11] Mataric, M., "Minimizing Complexity in Controlling a Mobile Robot Population", 1992
IEEE International Conference on Robotics and Automation , Nice, pp. 830-835.

32

6. Publications to Date Resulting from this Research

• FORMATION BEHAVIORS

1. Balch, Tucker, 1994 "Motor schema-based formation control for multi-agent
robot teams", Working paper, contact author.

• TELEAUTONOMOUS CONTROL

1. Arkin, R.C. and Ali, K., 1994. "Integration of reactive and telerobotic con­
trol in multi-agent robotic systems", Proc. Third International Conference
on Simulation of Adaptive Behavior, (SAB94) {From Animals to Animals},
Brighton, England, Aug. 1994, pp. 473-478.

2. Ali, Khaled S., 1994 "Telop: Teleoperation of multi-agent reactive robotic
systems", Working paper, contact author.

• MISSION SPECIFICATION

1. MacKenzie, D. and Arkin, R.C., 1993. "Formal specification for behavior­
based mobile robots", Mobile Robots VIII, Boston, MA, Nov. 1993, pp. 94-
104.

2. MacKenzie, Douglas C., 1994 "A Design Methodology for the Configuration
of Behavior-Based Mobile Robots", Ph.D. Thesis Proposal, 1994.

3. Cameron, Jonathan M. and MacKenzie, Douglas C., 1994 "Specifying com­
plex military scenarios'', Working paper, contact authors.

• INTER-ROBOT COMMUNICATION

1. Balch, T . and Arkin, R.C., 1994. "Communication in reactive multiagent
robotic systems", to appear in Autonomous Robots, Vol. 1, No. 1.

33

ANNUAL REPORT FY 1995

Flexible Reactive Control for Multi-Agent Robotic
Systems in Hostile Environments

ONR/ ARPA Grant #N00014-94-1-0215

Prepared by: Ronald C. Arkin (P.I.), Doug MacKenzie,
Tucker Balch, and Khaled Ali

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332
email: arkin@cc.gatech.edu

Fax: (404) 853-9376
Phone: (404) 894-8209

Contents

1. Introduction

2. Formation Control

2.1 Summary of Results for FY 94 .

2.2 Research Accomplishments for FY 95 .

2.2.1 Quantitative Formation Results

2.2.2 The Formation Expert

2.2.3 Port to Lockheed-Martin UGV's.

2.3 Technology Transfer for FY 95 .

2.4 Goals for FY 96

3. Team Teleautonomy

3.1 Summary of Results for FY 94 .

3.2 Research Accomplishments for FY 95

3.2.1 Tasks

3.2.2 Experimental Results . .

3.3 Technology Transfer for FY 95 .

3.4 Goals for FY 96

4. Configuration Design Support for Mission Specification

4.1 Summary of Results FY 94

4.2 Research Accomplishments for FY 95

4.3 Technology Transfer for FY 95 .

4.4 Goals for FY 96

References

5. Publications to Date Resulting from this Research

3

3

3

5

5

6

6

7

8

8

8

9

10

10

12

14

14

14

16

17

19

19

20

1. Introduction

This document constitutes the 1995 Annual Report for the ONR/ ARPA Grant
#N00014-94-1-0215 entitled Flexible Reactive Control for Multi-Agent Robotic Sys­
tems in Hostile Environments. This project is supported by ARPA's Real-time Plan­
ning and Control Program and has as a customer ARPA's UGV Demo II program.
This second annual report reflects this year's accomplishments within the context of
an overall three year research program.

The goals of this research are to produce intelligent, flexible, reactive behaviors and
methods for specifying and communicating information between multiagent teams. In
particular we have been studying three closely related subjects:

• Formation Control - to allow teams of robotic agents to move in a coordinated
manner through a potentially hostile environment without interfering with other's
active navigational behaviors.

• Teleautonomous Control of Multi-agent Teams- to allow a massive reduction in
cognitive workload for the control of a group of robotic vehicles by permitting
commands to be specified at the team level rather than at the individual agent
level.

• Team Mission Specification Methods - to provide robust and flexible mission
specification for reactive team military scenarios.

This report surveys the progress made to date for each of these areas. Each section
includes a review of the previous year's accomplishments, the achievements for this
fiscal year, technology transfer achieved, and goals for the upcoming year.

2. Formation Control

This portion of our research centers on the development of behaviors for formation
maintenance in heterogeneous societies of mobile robots. The target testbed is a set
of four robotic vehicles to be employed as a scout unit by the U.S. Army as part of
ARPA's UGV Demo II program. Formations are important in this application as they
allow the unit to utilize its sensor assets more efficiently than if the robots are arranged
randomly.

2.1 Summary of Results for FY 94

Motor schemas, or 'primitive behaviors, for relative positional maintenance were
developed and integrated with other navigational behaviors to help robots complete

3

navigational tasks while in formation. Four formations, based on existing military doc­
trine and two methods for determining correct vehicle position have been investigated.
The formations developed are shown in Figure 1. These particular formations were
selected because they are used by mechanized scout platoons on the battlefield. The
robots in this work are heterogeneous in that each is assigned a unique identification
number (ID). A robot's designated position in a given formation depends upon its ID.
There are no other behavioral differences between the robots.

Formation control is one part of a more complex behavioral assemblage which in­
cludes other components for high-level task achievement. In addition to maintaining
their position in formation, robots must also move to a specified goal location while
avoiding collisions with obstacles.

• •
•

•
• •

Figure 1: Implemented formations for four robots.
From left to right: line, column, diamond, wedge.

•

•

Formation maintenance is accomplished in two steps: first, a perceptual process,
detect-formation-position, determines the robot's proper position in formation based
on current environmental data; second, a motor schema maintain-formation gener­
ates a movement vector toward the correct location. Each robot must compute its
proper position in the formation for each movement step.

Two techniques for formation position determination were investigated: unit-center
and leader referenced. In unit-center referenced formations a unit-center is computed
by averaging the x and y positions of all the robots involved in the formation. Each
robot determines its own formation position relative to that center. In leader referenced
formations each robot determines its formation position in relation to the lead robot
(Robot 1). The leader does not attempt to maintain formation; the other robots are
responsible for formation maintenance. These relationships are depicted in Figure 2.
Arrows show how the formation positions are determined. Each arrow points from a
robot to the associated reference. The perceptual schema detect-formation-position
uses one of these references to determine the proper position for the robot. The spacing
between robots is determined by the desired spacing parameter of detect-formation­
position.

4

Figure 2: Formation position determined by different reference techniques.
From left to right: unit-center, leader.

2.2 Research Accomplishments for FY 95

Research in formation behaviors continued in FY 1995 in three areas: first, a series
of experiments in simulation were conducted to determine the best formations for par­
ticular situations; second, an expert system, called the Formation Expert was developed
to help mission planners select appropriate formations for particular missions; third,
the behaviors were ported to another robot architecture for use on Lockheed-Martin
UGV's·

'

2.2.1 Quantitative Formation Results

The performance of a group of four simulated robots was evaluated quantitatively
for both turning conditions and for navigation across an obstacle field. Results were
generated using Georgia Tech's MissionLab robot simulation environment (see Sec­
tion 4). The experimental results were presented at the International Conference on
Multiagent Systems in July 1995 and are summarized here:

• For turning:

For turns in a unit-center-referenced formation, diamond formations perform
best.

For turns in a leader-referenced formation, wedge and line formations per­
form best.

Performance for column formations is significantly worse than that for line,
wedge and diamond formations.

• For travel across an obstacle field the best performance is found using column
formations. This result reflects the fact that column formations present the
smallest cross-section as they traverse the field. Once the lead robot offsets to
avoid an obstacle, the others can follow in its "footsteps."

• Overall, unit-center-referenced formations fare better than leader-referenced for­
mations.

5

2. 2. 2 The Formation Expert

Figure 3: The Formation Expert GUI.

To aid UGV mission planners in selecting appropriate formations for particular
situations, we developed an expert system called the Formation Expert. The Forma­
tion Expert automatically analyzes a mission plan then suggests parameter settings
for formation behaviors based on that context. A user may adjust these recommended
parameters with a graphical user interface (GUI). The displayed diagram of the for­
mation is adjusted to reflect changes the user makes as he moves slider bars or pushes
buttons (Figure 3).

In order to make its recommendations, the Formation Expert consults a rule base,
which specifies conditions under which particular formations are appropriate. The
rule base is an easy to understand text file that can be revised by a user to reflect new
situations or better formations for certain situations. Also, since the Formation Expert
is generic it may be easily adapted for use in other UGV domains as well.

2.2.3 Port to Lockheed-Martin UGV's

Behaviors for line, wedge and column formations for two robots were ported to
the DAMN architecture for use on Lockheed-Martin UGVs. The primary difference
between the DAMN architecture and the motor schema paradigm used at Georgia Tech
centers on the use in DAMN of separate arbiters for heading and speed. The motor
schema approach unifies these control components.

The unit-center-referenced approach was used for formation on UGVs. Recall that
while in formation, each robot is assigned a specific position to maintain relative to
the unit-center. On UGVs the unit-center is computed several times each second using
GPS and communication equipment aboard the UGVs. After the GPS information is
received and processed, each robot is able to determine how far out of position it is,
and where it ought to move to get back into position.

6

Control commands which keep the robot in position are separated into fore-aft and
side-side corrections. Fore-aft corrections are made by adjusting the robot's speed,
while side-side corrections are made by adjusting the robot's heading. The size of
speed and steering corrections depend on how far out of position the robot is. In
general, the further out of position a robot is, the more aggressively it strives to move
back into position.

These formation behaviors played a critical role in July 1995 at UGV Demo C. The
event, held at Lockheed-Martin's facility in Denver, Colorado, included two demonstra­
tions of formation; in the first Tech Demo, and in the final Integrated Demo. Figure 4
shows the UGVs in formation.

Figure 4: UGVs in formation.

2.3 Technology Transfer for FY 95

As mentioned above, formation behaviors were transferred to Lockheed-Martin for
the ARPA-sponsored UGV project. The formation behavior software will continue to
be used and expanded through the rest of the UGV Demo II project.

The Formation Expert has been incorporated into STX/MCU developed by Hughes
STX, as well as the mission planning system developed for UGV Demo II by the
University of Michigan. It is expected that other researchers on the project may adapt
the Expert for use in their domains as well. The University of Texas at Arlington
has utilized the formation behaviors in their research on sensor coordination between
multiple robots. Finally, formation behaviors are included in the public distribution of
MissionLab (see the section on Configuration Design).

7

2.4 Goals for FY 96

Research in formation control has not yet addressed various modes of robot fail­
ure. Communications, sensor, and motor failures can significantly impact a formation.
Mechanisms to deal with these failures might include automatic reconfiguration of the
formation (renumbering) and application of fault-tolerant communications strategies.

To date, formations have been demonstrated in simulation for four robots, but
only for two actual mobile robotic vehicles at a time. We intend to upgrade one of
the robots in our laboratory and integrate it with an existing team of two Denning
robots. This will permit formation research with a three-robot team. Demo II will
include formations of three and perhaps four robots. Additional consultation with
Lockheed-Martin will include extending the existing software for these formations at
Demo II.

3. Team Teleautonomy

This research concerns the development and implementation of methods to allow
a human operator to control a team of robots. Our approach provides a mechanism
to significantly reduce the human operator's cognitive and perceptual load by allowing
the reactive system to deal with each robot's local control concerns. Two principal
mechanisms to achieve this are by allowing the operator to act either as a constituent
behavior of the society or to allow him/her to supervise the societal behavioral sets and
gains, acting only as needed based upon observable progress towards task completion.

3.1 Summary of Results for FY 94

In this research, which is implemented in the TELOP system, the operator is allowed
to control whole societies of agents; not one robot at a time, but rather controlling
global behavior for the entire multiagent system. The end product is a simple way
for a commander to control large numbers of constituent elements without concern for
low-level details (which each of the agents is capable of handling by themselves).

Telerobotic control is facilitated by two methods. The first method allows the
human operator to give directional information to the robots. The second method
allows the operator to interactively adjust the parameters of the reactive behaviors,
thereby changing the overall behavior of the robot society.

In the first method, the human operator give directional information to the robot
team. He controls the output of a teleautonomy behavior by using an on-screen
"joystick". The teleautonomy behavior then produces a vector output in the direction
that the joystick was depressed and with a magnitude relative to the amount that the
joystick was depressed. This vector is sent to each of the robots and is then summed

8

and normalized with the vectors from the other active behaviors on each robot [1]. The
robot then executes the resultant vector.

In the second method, the operator interactively changes the overall behavior of the
robot team by adjusting the parameters of the reactive behaviors. The human operator
manipulates the behavioral parameters in terms of abstract personality traits. Mak­
ing parameter changes in terms of personality traits allows a user, with no knowledge
about the underlying behaviors and their parameters, to effectively modify the robots'
behavior. In our current system, the abstract parameters include Aggressiveness and
Wanderlust. The value of an abstract parameter controls the values of several indi-
vidual low-level parameters. The operator uses slider bars to modify the value of an
abstract personality trait.

A set of experiments was performed ·to test the usefulness of the teleautonomy
behavior for certain tasks. These tasks include foraging, grazing, and herding. For the
foraging task, if teleoperation is used wisely, it can significantly lower the total number
of steps required to complete the task by greatly reducing the time spent -in the forage
state (i.e., the number of steps that the robots spend looking for at-tractors). For the
grazing task, teleoperation was not significantly better than no teleoperation. For the
herding t-ask, the teleautonomy behavior was discovered to be an acceptable tool,
but possible improvements were determined.

A set of usability tests was conducted on the interface for TELOP. These tests
yielded substantial information for making the interface more helpful and usable.
Changes to the Telop interface were made based on the results of these usability tests.

3.2 Research Accomplishments for FY 95

The TELOP system has been adapted to run on real robots. This involved integrat­
ing it with the MissionLab1 [3] system. TELOP can now be used both in simulation
and on real robots through MissionLab.

Further experiments were carried out on real robots. These experiments tested the
use of both the teleautonomy behavior and the abstract parameters. Two generic
tasks were tested on real robots. These tasks include directing the robots out of a
box canyon and squeezing the robots through small spaces. TELOP was tested on a
pair of Denning MRV-2 mobile robots, each about three feet tall with a diameter of 32
inches. Each robot is equipped with a ring of 24 ultrasonic sensors and shaft encoders.
A Sun Sparcstation 5 served as the base station, running TELOP through MissionLab.
The base station communicates with the robots using FreeWave radio links. The base
station and human operator were on the third floor of the Manufacturing Research

1 MissionLab is a system for specifying and simulating multiagent robotic missions. MissionLab
takes high-level military-style plans and executes them with teams of real or simulated robotic
vehicles . The source code for MissionLab is available on the World Wide Web at the location
http://www .cc.gatech.edu/ ai/robot-lab/research/MissionLab/MissionLab.html.

9

Center at Georgia Tech, and the robots were running on the first floor. The feedback
to the operator consisted of the graphical depiction of the robots actions relayed in
real-time by MissionLab and walkie-talkie communication between the operator and a
human who was on the first floor observing the robots.

3.2.1 Tasks

Multiagent teleautonomy was tested on a pair of Denning mobile robots for two
tasks including navigating the robots out of a box canyon and squeezing them through
a tight space. In both tasks, the robots were using the teleautonomy, avoid-static­
obstacle, avoid-robot, move-to-goal, noise, and column formation [2] behaviors.

In the first task, a box canyon, constructed from chairs, was set up in the room.
The robots were started on the side of the room facing the opening of the box canyon.
The robots were instructed to go to a location on the other side of the box canyon, such
that the box canyon lay directly along the straight-line path from the start location to
the destination. Since the robots operate purely reactively in this mode, they normally
would get stuck in the box canyon and need to be helped out by the human operator.

The task setup for the second task was the same as the first, except that the box
canyon had a gap in it. The gap was sufficiently small so that the robots could not
squeeze through it with the usual default gain setting for the avoid-static-obstacle
behavior. The robots were provided with this default setting at the start of the task,
so they would normally become stuck in the box canyon. The human operator should
then be able to increase the robots' Aggressiveness to forcibly squeeze them through
the gap.

3.2.2 Experimental Results

For the two tasks involving the two Denning mobile robots, the runs were video­
taped, and a screen capture was taken of the tracking of the actual robots' movement
from the MissionLab interface. MissionLab monitors the movement of the robots using
information from their shaft encoders. This movement is plotted over an underlay
depicting the task environment.

For the box canyon task, as expected, the two robots got stuck in the box canyon
while heading to the destination location (see Figure 5a). The human operator was able
to use the on-screen joystick to steer the robots out of the box canyon, and around the
side of it (see Figure 5b). After the robots were completely around the lip of the box
canyon and were no longer in any danger of falling back into it, the operator released
the joystick. Then the robots continued on to their destination autonomously. A trace
of the robots' movement is shown in Figure 6.

For the squeezing task, the robots became trapped within the box canyon while
heading to their destination (Figure 7a). This is. a result of the default gain for the

10

(a) (b)

Figure 5: Box canyon task: (a) The robots are stuck in the box canyon. (b) The. robots
are being maneuvered out of the box canyon using the teleautonomy behavior.
The camera was located 4 floors above the robots, giving a birds-eye view of the action. The
robots have circles of white tape on top of them to make them more visible.

0
llori1

Figure 6: MissionLab trace of the robots movement during the box canyon task. The
robots became stuck in the box canyon, and were then herded around the side of the box
canyon by the human operator using the teleautonomy behavior.

ll

(a) (b)

Figure 7: Squeezing task: (a) The robots are stuck in the box canyon with a gap. (b)
The robots are being squeezed through the gap in the box canyon by making them more
aggressive.
The camera was located 4 floors above the robots, giving a birds-eye view of the action.

avoid-static-obstacle behavior being set too high and the gain for the move-to­
goal behavior set too low for the robots to pass through the gap. The human operator
slowly increased the robots' aggression until the robots successfully squeezed through
the passageway (see Figure 7b). A trace of the robots' movement is shown in Figure
8.

When increasing the aggression of the robots, the operator should make small
incremental increases until the robots squeeze through the small space. Then the
operator should decrease the aggression again. If, however, the operator increases the
aggression too much, the robots may charge through obstacles on their way to the goal
(although this may be consistent with what the operator wants).

3.3 Technology Transfer for FY 95

The TELOP system has recently been integrated with the ARPA UGV Demo II
architecture using the STXmcu mission control system for use on teams of HMMWV s.
The teleautonomy behavior was demonstrated at a technical demo during Demo C
of the UGV project in the summer of 1995. The teleautonomy behavior and the
personality sliders are intended to be used in Demo II during the summer of 1996.

We made Telop compatible with the DAMN arbiters, which are the arbitration
systems used on the vehicles in the UGV project. This required changing the imple­
mentation of TELOP, but the underlying ideas remain the same.

The main window of the interface was modified in appearance and functionality to
accommodate the differences between the combination mechanism used in our schema
system and the arbitration mechanism used in the DAMN arbiters. The joystick now

12

T- of ._,1111 111112 RaiiDts

Figure 8: MissionLab trace of the robots movement during the squeezing task. The robots
became trapped in the box canyon with a gap, but the operator squeezed them through the
passage by increasing their aggressiveness.

controls the direction and the speed of the society of robots. When the joystick is
used, the interface sends messages (via IPT) to the teleautonomy behaviors. These
messages indicate the direction and the speed that the society of robots should move
in. A slider bar was added to adjust the weight that the DAMN turn arbiter uses when
considering the votes from the teleautonomy behavior. The communication with the
DAMN arbiters to change the weights is done using IPT.

We implemented the teleautonomy behavior in the same form as the other DAMN
behaviors. There are actually two teleautonomy behaviors, one for turning and the
other for speed. Each robot runs one teleautonomy turn behavior and one teleauton­
omy speed behavior. When the behaviors receive a message from the Telop interface
indicating a direction and speed for the society to move in, the behaviors compute a
turn radius and speed based on the situation of the particular robot that the behavior
is resident on. Then the behaviors send their votes for this turn radius and speed to
the DAMN arbiter. The votes for turn radii are actually distributed among all the
possible turn radii as a gaussian centered at the desired turn radius.

An interface for modifying the default parameters that the Telop interface uses
when it is started by either MRPL or the STX interface was also created. This default
editor also allows modification of the system defaults for the parameters.

Personality-sliders for controlling behavioral parameters in terms of abstract per­
sonality traits were implemented. So far, one personality-slider for the Aggressiveness
traithas been developed. We will be implementing more if we receive a go-ahead at
the next UGV Demo II Workshop. The personality sliders adjust the weights that
the DAMN arbiter uses when considering the votes from each voting behavior. Each
personality-slider adjusts certain weights that will cause the robots to act more or less
like the personality for which the slider-bar is named. For instance, the Aggressiveness
slider-bar adjusts the weights of the avoid-obstacle and follow-path behaviors.

13

When a slider bar is moved, the Telop interface sends messages to the appropriate
arbiters on each vehicle. The messages instruct the arbiters to change the weights
that are used when considering the votes of a particular behavior. The interfaces are
implemented using UIM/X for ease of integration with the other interfaces in the Demo
II progran1.

In addition, TELOP has been integrated with the MissionLab system, which is avail­
able for downloading on the World Wide Web. The user can edit a file to dynamically
create new slider-bars for the personality traits that he or she wishes to manipulate
without having to recompile the system. The desired personality slider-bars are in­
dicated using a simple syntax. This allows other researchers to experiment with the
TELOP system.

3.4 Goals for FY 96

Further work on the control of abstract personality traits will be undertaken, with
the intention that they be utilized in UGV Demo II. To date, we have implemented one
personality slider for aggressiveness. Other suitable· personality sliders will be created
as needed.

The teleautonomy behavior was demonstrated at Demo C. We expect that both
the teleautonomy behavior and the personality sliders to be part of Demo II.

Further experiments and usability studies will be conducted to evaluate the teleau­
tonomous control concepts and interfaces. These studies will compare the methods of
teleautonomous control that we have developed with other forms of telerobotic control
along a prescribed set of dimensions.

4. Configuration Design Support for Mission Specification

Configuration design tools have been developed which support the graphical con­
struction of abstract configurations which can then be bound to the UGV architecture
and compiled into MRPL code executable on the UGV's. Capabilities of the Mission­
Lab toolset include a graphical configuration editor, MRPL and C++ code generators,
a multiagent. simulator and an integrated operator console. The mission scenario lan­
guage and corresponding interpreter permit the specification of complex multiagent
missions in a structured user-friendly language. The combination of the mission sce­
nario language and graphical configuration editor should allow operators with minimal
training (such as soldiers) to construct complex multiagent missions.

4.1 Summary of Results FY 94

The Societal Agent architecture was developed to capture the recursive composition
of configurations. Specifying a reactive behavioral configuration for use by a multia-

14

gent team executing a mission requires both a careful choice of the behavior set and
the creation of a temporal chain of behaviors which executes the mission. This difficult
task is simplified by applying an object-oriented approach to the design of the mis­
sion using a methodology called temporal sequencing. Temporal sequencing partitions
the mission into discrete operating states with perceptual triggers causing transitions
between those states. Several smaller independent configurations (assemblages) can
then be created which each implement one state. Assemblages consist of groups of
basic behaviors and coordination mechanisms that allow the group to be treated as a
single, coherent behavior. Upon instantiation, the assemblage is parameterized based
upon the requirements of these specific mission requirements. These assemblages can
be re-parameterized and used in other states within this mission or · archived as high
level primitives for use in subsequent projects.

The MissionLab system, an implementation of the Societal Agent architecture, sup­
ports graphical construction of configurations using a visual configuration editor. This
editor, CfgEdit, supports the recursive construction of reusable components at all levels,
from primitive motor behaviors to societies of cooperating robots by allowing creation
of coordinated assemblages of components which are then treated as atomic higher­
level components available for later reuse. The Configuration Editor allows deferring
commitment (binding) to a particular robot architecture or specific vehicles until the
configuration has been developed. This explicit binding step simplifies developing a
configuration which may be deployed on one of several vehicles which may each re­
quire use of a specific architecture. The process of retargeting a configuration to a
different vehicle when the available vehicles or the system requirements change is sim­
ilarly eased. The capability exists to generate either MRPL code for the ARPA UGV
architecture or C++ code targeted for the Autonomous Robot Architecture (AuRA)
which is executable within the MissionLab system. The AuRA executables drive both
simulated robots and several types of Denning vehicles (DRV-1, MRV-2, MRV-3). The
architecture binding process determines which compiler will be used to generate the
final executable code, as well as which libraries of behavior primitives will be available
for placement within the editor.

The mission scenario language and corresponding interpreter permit the specifica­
tion of complex multiagent missions in a structured, relatively user-friendly, language.
The mission coordination operator has the expressive power of a finite state machine
but allows the user to specify the sequence of steps making up the mission using a
domain-specific language with high-level primitives and mnemonic names. At run
time, the mission coordination operator communicates with the operator console to al­
low the mission to be entered interactively or predefined missions to be executed from
saved files.

Using these tools, various multiagent missions have been demonstrated in simulation
and on our Denning robots. The MissionLab toolset was demonstrated as part of UGV
demo C and has been made publicly available in source code form via anonymous FTP
or WWW access.

15

4.2 Research Accomplishments for FY 95

The last year has seen completion of the MissionLab toolset. The MissionLab robot
software development system provides support for users in the various stages of mis­
sion development (e.g., behavior implementation, assemblage construction, and mission
specification). The primitive behavior implementor must be familiar with the particu­
lar robot architecture in use and a suitable programming language such as C++. The
assemblage constructor uses a library of behaviors to build skill assemblages using the
graphical configuration editor. This allows visual placement and connection of behav­
iors without requiring programming knowledge. However, the construction of useful
assemblages still requires knowledge of behavior-based robot control. Specifying a con­
figuration for the robot team consists of selecting which of the available skills are useful
for the targeted environments and missions. Specification of the mission sequence can
occur at run-time using a domain-specific structured language. Military terminology
and nomenclature are used in MissionLab to facilitate specification of missions by mil­
itary users unfamiliar with robot control techniques. The overall philosophy, however,
is by no means restricted to this application domain. ·

Consider specification of a configuration implementing a janitorial task for a mobile
robot. Specifically, the robot should wander around looking for empty soda cans, pick
them up, wander around looking for a recycling basket, and then place the can into
the basket. Figure 9 is a schematic representation of an FSA for such a robotic trash
collector constructed using CfgEdit. The circles represent the possible operating states
with the label indicating the assemblage agent active during that state. The arcs are
labeled with the perceptual triggers causing the transition where relevant. Powering up
in the start state, the robot begins to wander looking for a suitable soda can, operating
in the Look_for_can state. When a can is perceived, the Pick_up_can state is activated
and if the can is successfully acquired, a transition to the Look_for_basket state occurs.
Loss of the can in either of these states causes the FSA to fall back to the previous state
and attempt recovery. When a recycling basket is located, the PuLcan state becomes
active and the can is placed in the basket. A transition back to the Look_for_can state
repeats the process.

Figure 10 shows MissionLab executing a simulation. The large area with various
things drawn in it is the main display area. Within the display area robots, obstacles,
and other features are visible. The solid round black circles are obstacles. The four
robots are moving across the middle of the display area in roughly a diamond formation.
More details about the type of mission displayed in the figure are explained in the n~xt
section. The command interface in the lower right part of Figure 10 allows the operator
to control the execution of the mission. The steps of the mission are displayed as they
execute.

Specifically, several software projects were finished: The configuration editor CfgEdit
was rewritten to support the recursive construction implicit in the Societal Agent ar­
chitecture. It now serves as the focal point for the MissionLab integrated development

16

Figure 9: FSA for a trash collecting robot

environment and spawns other parts of the toolset as the user requires them. It al­
lows graphical construction and visualization of the configuration description language
(CDL) descriptions which can then be compiled into the selected output format. A
conversion to the ARPA UGV standard IPT communications package was completed.
The robot executables now communicate to the simulation server and operator console
using IPT. Three internal compilers have been written. Two CDL compilers generate
either the MRPL specifications used in the UGV program or a CNL (configuration
network language) description of the input configuration. The CNL compiler can then
translate this second type of output into C++ code using the AuRA architecture.
These AuRA-style executables can then be run within the MissionLab operator work­
station, freely mixing simulated and real robots.

4.3 Technology Transfer for FY 95

For ARPA UGV Demo C, Georgia Tech demonstrated the MissionLab mission
specification and configuration software as part of a Technology Demo. This demo in­
volved collaboration of Georgia Tech and the University of Texas at Arlington (UTA)
in a joint demonstration. The MissionLab system has been adopted and extended
by UTA to help verify their sensing algorithms for this joint tech demo. Additional
requests to use MissionLab have come from the Naval Research Laboratories and

17

•
0 0.

• •

•
•

•
ltxls Golf

•

•

I'· .. ·--~--·-..-...
11~;;;;;;;;;:;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;::;;;;;;;;;;==;;J:;::

Figure 10: Example scenario in MissionLab

18

a joint US /Mexico research effort. The system is available through the Internet
(http:/ jwww.cc.gatech.edu/ai/robot-lab/research/MissionLab) in both source and SPARC
executable form.

4.4 Goals for FY 96

The MissionLab system is undergoing rapid evolution as the developer prepares to
conduct usability studies on the system in support of his Ph.D. Dissertation. A goal
of the studies relevant to this venue is to show that the toolset allows operators unable
to specify missions using conventional means (such as soldiers) to conduct complex
multiagent missions with only minimal_training. It is intended that the evaluations
will include testing by military personnel and military students here at Georgia Tech
to allow direct verification.

Another release of MissionLab is planned for early 1996 to incorporate changes
leading up to the usability studies. This will include advanced mission specification
techniques, robot software configuration tools, and reusable control software libraries,
as well as advanced team teleautonomous control concepts. Initial versions of many
of these components were part of the 7/95 release of MissionLab. The next release
will improve and complete the existing components, adding many new capabilities and
simplifying the duties of the operator while making the system more powerful and
robust.

REFERENCES

[1] Arkin, R.C., "Motor Schema-Based Mobile Robot Navigation", International Journal of
Robotics Research, Vol. 8, No.4, August 1989, pp. 92-112.

[2] Balch, T. and Arkin, R.C., "Motor Schema-based Formation Control for Multiagent
Robot Teams", 1995 International Conference on Multiagent Systems, San Francisco,
CA, pp. 10-16, 1995.

[3] MacKenzie, D., Cameron, J ., Arkin, R., "Specification and Execution ofMultiagent Mis­
sions", Proc. 1995 Int. Conf. on Intelligent Robotics and Systems IROS '95, Pittsburg,
PA, Vol. 3, pp. 51-58, 1995.

19

5. Publications to Date Resulting from this Research

• FORMATION BEHAVIORS

1. Balch, T. and Arkin, R.C., 1995. "Motor Schema-based Formation Control
for Multiagent Robot Teams", 1995 International Conference on Multiagent
Systems, San Francisco, CA, pp. 10-16.

• TELEAUTONOMOUS CONTROL

1. Arkin, R.C. and Ali, K., 1994. "Integration of reactive and telerobotic con­
trol in multi-agent robotic systems", Proc. Third International Conference
on Simulation of Adaptive Behavior, (SAB94) [From Animals to Animats},
Brighton, England, Aug. 1994, pp. 473-478.

2. Ali, Khaled S., 1994 "Telop: Teleoperation of multi-agent reactive robotic
systems", Working paper, contact author.

3. Ali, K.S. and Arkin, R.C., 1995. "Multiagent Teleautonomous Behavioral
Control", Submitted to Robotica, 1995.

• MISSION SPECIFICATION

1. MacKenzie, D. and Arkin, R.C., 1993. "Formal specification for behavior­
based mobile robots", Mobile Robots VIII, Boston, MA, Nov. 1993, pp. 94-
104.

2. MacKenzie, Douglas C., 1994. "A Design Methodology for the Configura­
tion of Behavior-Based Mobile Robots", Ph.D. Thesis Proposal, 1994.

3. Cameron, Jonathan M. and MacKenzie, Douglas C., 1994. "Specifying com­
plex military scenarios", Working paper, contact authors.

4. MacKenzie, D. and Arkin, R.C., 1995. "Specification and Execution of Mul­
tiagent Missions", Proc. 1995 conference on Intelligent Robots and Systems
(IROS'95), August 1995, Pittsburgh, PA, Vol. 3, pp. 51-58.

5. Douglas C. MacKenzie, Jonathan M. Cameron, and Ronald C. Arkin, 1995.
"Specification and Execution of Multiagent Missions", Submitted to Au­
tonomous Robots.

• INTER-ROBOT COMMUNICATION

1. Balch, T. and Arkin, R.C., 1994. "Communication in reactive multiagent
robotic systems", to appear in Autonomous Robots, Vol. 1, No. 1.

2. Arkin, R.C. and Balch, T., 1995., "Communication and Coordination in Re­
active Robotic Teams", to appear in Coordination Theory and Collaboration
Technology, ed. G. Olson, J.B. Smith, and T. Malone, 1995.

20

3. Arkin, R.C. and Balch, T., 1995, "AuRA: Principles and Practice", sub­
mitted to Journal of Experimental and Theoretical Artificial Intelligence,

1995.

21

REPORT DOCUMENTATION PAGE fOIW4~
0~1 No. t1/U~JU

,. .. It ..,..IIIC ... l:llt 1M~ .. .t, I --'"....,_, 1M u.. IDr ~ _,_., -'-' ~ .. ~ u4
~ Ia. ._. -' lilt......._ fll iMarwiiii~M. .,.. ___,....,.... ~..,.... • tlf •a.r..,.. oiCM fll ~c&. ..a--.._..... lw M**& ta. ..,.._ .. .,..._. .. ~~ ~ ~ l.r :Wa jee ()peN!_, _, ILipaN. WJ Hdmoe 0... II.......,., 1- I JeW. A~WtJoa.
Ul!U~ 1M .. tM OC. Ill H•va -.,... l•pc •_. "'-• ... ,.,... (~ltl). ~DC~ ·

'. IIIJIJICY Ulll ON. Y £-.. a.ttAI I. IWJIIiQfn' r». T1 a. NJICllli': T'tiiii#IIJ 0. TU C0Y1N.0
. 970327 931115 - q70J31

"' T'1'U Nf:J IIATTT\.I

Flexible Reactive Control for Multi-agent Robotic
Systems in Hostile Environments

~~)

Ronald Arkin, Doug MacKenzie, Tucker Balch and
Khaled Ali

Contract No. N00014-94-l-021S

~------------------------------------·-------------+----------------------------··-.. ~~1'\0tol ~"i. ,.UWUR

Dr. Ronald Arkin
Georgia Institute of Technology
College of Computing

~~laftfi~0Gic 036~~2-0280
t. ~~-~~tlac\'~l)..uq)~ISl

Office of Naval Research, Ballstori Tower One
800 North Quincy Street
Arlington, VA 22217-5660

Ms. Teresa McMullen, Scientific Officer Code: 333

1~ ~/AVAUAilUTY ltA'ID41DtT

May not be released by other than sponsoring
~rganization without approval of Office of
Naval Research

C-36-X25

13. Abstract: This document constitutes the Final Report for the ONR/DARPA
Grant #N00014-94-1-0215 entitled Flexible Reactive Control for Multi-agent
Robotic Systems in Hostile Environments. This project is supported by
DARPA's Real-time Panning and Control Program and has a customer DARPA's
UGV Demoll program. This report reflects the project's accomplishments
within the context of an overall three year research program. The goals of the
research were to produce intelligent, flexible, reactive behaviors and methods
for specifying and communicating information between multiagent teams.

l4. IUSIIC'f 'T1DUG

Foraation Controls, Teleautonomous Control of Multi-agent Teams

Unclassified

1'- UC\JRITY C'\..A.SSI~ ~ 0#

nusrAOI
Unclassified

at. UC'\.JATn' ~nOM 06
~CT

Unclassified Unlimited
~~OM' 2M ,.._ l ·U!
~ 1i!r A,'dj a4 2» II l'U- ~ IJ;

FINAL REPORT

Flexible Reactive Control for Multi-Agent Robotic
Systems in Hostile Environments

ONR/DARPA Grant #N00014-94-1-0215

Prepared by: Ronald C. Arkin (P.I.)
Khaled Ali, Tucker Balch, Darrin Bentivegna,

Zhong Chen, and Doug MacKenzie
College of Computing

Georgia Institute of Technology ·
Atlanta, Georgia 30332

email: arkin@cc.gatech.edu
Fax: (.-!04) 853-9376

Phone: (404) 894-8209

Contents

1. Introduction

2. Formation Control

2.1 Motor Schema-based Formation Control

2.2 Motor Schema Results in Simulation ..

2.3 Motor Schema Results on Mobile Robots

2.4 Formation Control for the UGV Demo II Architecture.

2.4.1 UGV Behaviors for Formation ..

2.5 The Formation Expert

2.6 Results for UGV Demo II Mobile Robots

3. Team Teleautonomy

:3.1 Summary of Results for F'{ 94 and FY 95

3.2 Research Accomplishments for FY 96

4. MissionLab

4.1

4.2

Research Accomplishments for FY 94 and FY 9595

Research Accomplishments for FY 96

5. Experimental Testbeds

5.1 Nomad Testbed ...

.5.2 Hummer Testbed ..

.5.2.1 Hardware Description.

.5.2.2 Software Description .

References

6. Publications Resulting fron1 this Research

3

3

6

7

I

8

10

13

13

14

14

16

18

21

23

27

27

27

28

29

31

33

1. Introduction

This document constitutes the Final Report for ONR/DARPA Grant #N00014-94-
l-0215 entitled Flexible Reactive Control for Multi-Agent Robotic Systems in Hostile
Environments. This project wass supported by DARPA's Real-time Planning and
Control Program and had as a customer DARPA's UGV Demo II program. This
report reflects this project's accomplishments within the context of an overall three
year research program.

The goals of this research were to produce intelligent, flexible, reactive behaviors
and methods for specifying and communicating information between multiagent teams.
In particular we have studied three closely related subjects:

• Formation Control - to allow teams of robotic agents to move in a coordinated
manner through a potentially hostile environment without interfering with other's
active navigational behaviors.

• Teleautonomous Control of i\!Iulti-agent Teams- to allow a massive reduction in
cognitive workload for the control of a group of robotic vehicles by permitting
commands to be specified at the team level rather than at the individual agent
level.

• Team Mission Specification i\llethods - to provide robust and flexible miSSion
specification for reactive team military scenarios.

2. Formation Control

vVe have developed a behavior-based approach to robot formation-keeping. Since
behavior-based systems integrate se\·Pral goal oriented behaviors simultaneously, s_ys­
tems using this technique are able to navigate to waypoints, avoid hazards and keep
forn1ation at the same time. The initial target for this work is a team of robotic vehicles
to be fielded as a scout unit by the t · .S. Army. Formation is important in this and
other military applications where scr1sor assets are limited. Formations allow individual
team members to concentrate their sensors across a portion of the environment, while
their partners cover the rest. Air Force flghter pilots for instance, direct their visual
and radar search responsibilities clcp('JHiing on their position in a formation [7]. The
approach is potentially applicable i 11 rna11y other domains such as search, agricultural
coverage tasks, security patrols and :--u on.

Behaviors for four formations e1nd two formation reference types were implemented
and evaluated. The behaviors wcrP demonstrated successfully in the laboratory on
holonomic robots, and outdoors on !-wheel-drive HUMMERs. In the course of these
evaluations, the approach was implemented on two different reactive robotic archi­
tectures, AuRA and the UGV Demo I I .\rchitecture. The AuRA implementation is

conceptually simpler and applicable to holonomic robots, while the UGV implemen­
tation addresses the additional complexity of non-holonomic vehicle control. Separate
experiments in simulation evaluated the utility of the various formation types and
references in turns and across obstacle fields.

Each robot's position in formation depends on a unique identification number (ID).
This is important in applications where one or more of the agents is dissimilar. In Army
scout platoons for instance, the leader is not usually at the front of the formation, but
in the middle, or to one side.

(

t,

4 '

Figure 1: Formations for four robots (from left to right: line, column, diamond,
wedge)

The formation behaviors were implemented as motor schemas, in the AuRA archi­
tecture [1], and as steering and speed behaviors in the UGV Demo II architecture [6].
In both cases, the individual behaviors run as concurrent asynchronous processes with
each behavior representing a high-level behavioral intention of the agent. Perceptions
are directly translated into a response vector in AuRA, or as turning or speed votes
on the UGV. Readers are referred to [1] and [6] for more inforn1ation on schema-based
reactive control and the UGV Demo II architecture.

Figure 2: Shannon and Sally, two ~omadics Technologies Nomad 150 mobile robots.
The formation behaviors demonstrated on Denning l\IIRV -3s and DARPA's Unmanned
Ground Vehicles are now under evaluation on these new robots.

Figure 3: Formation position determined by various reference techniques (from left

to right: unit-center, leader, neighbor)

Initial results of research at Georgia Tech for simulated robot teams appeared in

[3]. Since then the approach has been demonstrated on on two types of mobile robots
(Denning Nlobile Robotics MRV-3s, and 0:-\RPA's Unmanned Ground Vehicles) and
two robotic architectures (AuRA and the t:Gv Demo II Architecture). The system

has also been ported to Nomadics Techr10logies Nomad 150 robots (Figure 2).

Several formations for a team of four robots are considered (Figure 1):

• line- where the robots travel line-nbreast.

• column - where the robots travel one after the other.

• diamond- where the robots travel in a diamond.

• wedge - where the robots travel in a ··v,.

These formation types are used h.'· l .. S. mechanized scout platoons on the battlefield
[2]. For each formation, each robot has a specific position (based on its ID). Figure 1
shows the formations and robots· po-;i t ions within them.

Formation maintenance is accontl)lislwd in two steps: first, a perceptual process,
detect-formation-position, dct er111 i ncs the robot's proper position in formation based
on current environmental data; s<'colld. the rnotor process maintain-formation , gen­

erates motor commands to direct t lw robot toward the correct location. In the case of
motor schema control, the command i-; n Jllo\·ement vector towards the correct location.
For the U GV Demo II Archi teet u r<' "'<'p<t rd t e ··votes,, are cast for steering and speed

corrections towards the format ion 1 H > i 1 il)n . \ lotor commands for each architecture are
covered in more detail below.

Each robot computes its prop<'r 1)(>-..itinrt in the formation for each movement step.
Three techniques for formation po~it i()rt determination have been identified:

• Unit-center-referenced: a tt rr it-n'nter is computed by averaging the x andy
positions of all the robots i 11 \·ohTd i 11 the formation. Each robot determines its
own formation position relat i\<' tot h<tt c<'IJter.

• Leader-referenced: each robot determines its formation position in relation to
the lead robot (Robot 1). The leader does not attempt to maintain formation;
the other robots are responsible for formation maintenance.

• Neighbor-referenced: each robot maintains a position relative to one other
predetermined robot.

These relationships are depicted in Figure 3. Arrows show how the formation
positions are determined. Each arrow points from a robot to the associated reference.
The perceptual schema detect-formation-position uses one of these referencE:s to
determine the position for the robot. Spacing between robots is determined by the
desired spacing parameter of detect-formation-position.

Since AuRA and the UGV Demo II architectures utilize different formulations for

perceptual and motor processes, they are examined separately below.

2.1 Motor Schema-based Formation Control

Several motor schemas, move-to-goaL avoid-static-obstacle, avoid-robot ar1d

maintain-formation implement the overall behavior for a robot to move to a goal
location while avoiding obstacles, collisions with other robots and remaining in form<l­
tion. An additional background schema, noise, serves as a form of reactive "grease··.
dealing with some of the problems endemic to purely reactive navigational methods
[1]. Each schema generates a vector representing the desired behavioral response (d i­
rection and magnitude of movement) given the current sensory stimuli provided by the
environment . A gain value is used to indicate the relative importance of the individual
behaviors. The high-level combined behavior is generated by multiplying the outputs
of each primitive behavior by its gain, then summing and normalizing the results.

Once the desired formation position is known, the maintain-formation motor
schema generates a movement vector towards it. The vector is always in the direction
of the desired formation position, but the magnitude depends on how far the robot is
away from it. Figure 4 illustrates three zones, defined by distance from the desired
position, used for magnitude computation. The radii of these zones are parameters
of the maintain-formation schema. In the example, Robot 3 attempts to maintain
a position to the left of and abeam Robot 1. Robot 3 is in the controlled zone, so
a moderate force towards the desired position (forward and right) is generated by
maintain-formation. The magnitude oft he vector is computed as follows:

• Ballistic zone: the magnitude is set at its maximum, which equates to th('
schema's gain value.

• Controlled zone: the magnitude varies linearly from a maximum'at the farthest
edge of the zone to zero at the inner edge.

• Dead zone: in the dead zone vector magnitude is always zero.

Ballistic Zone

Figure 4: Zones for the computation of maintain-formation magnitude

• If ,.

:

1

I I ·/; I
'-<1' /

/ .
Figure 5: Typical simulation run showing four robots 1n a leader-referenced wedge
formation executing a 90 degree left turn.

2.2 Motor Schema Results in Simulation

Experiments in simulation evalua t eel t. he utility of the various formation types and
references in turns and across obstc:tcl(' fields. For 90 degree turns, the diamond forma­
tion perforn1s best when the uni t-C('Il t ('r-reference for formation position is used, while
vvedge and line formations work lw~t \\·hen the leader-reference is used. For travel
across an obstacle field, the column formation works best for both unit-center- and
leader-referenced formations. In mo~t cct~t's. unit-center-referenced formations perform
better than leader-referenced formc-tt i()ll" .

2.3 Motor Schema Results on Mobile Robots

lVIissionLab is designed so that at r·tlllt in1e a researcher may choose between a sim­
ulated run, or a run on physical r()hots. So far, the system can command Denning
MRV-:3, MRV-2 and DRY robots. l·>\t<'n..;ions to MissionLab provide control of No-

• • •

• •

Figure 6: Four robots in leader-referenced diamond, wedge, line and column forma­
tions.

• •

•
Figure 7: Comparison of leader-referenced (left) and unit-center-referenced (right)
diamond formations.

madics Research Nomad-150 robots and a HUMMER 4-wheel drive vehicle instru­
mented for robotic use at Georgia Tech. Formation experiments on the latter two
systems are in progress.

The behaviors have been tested on Denning 1\IIRV-3 robots, Ren and Stimpy, in
conjunction with the teleoperation experiments covered in Section 3 ..

2.4 Formation Control for the UGV Demo II Architecture

UGV Demo II is an DARPA-fund('d project aimed at fielding a robotic scout platoon
for the Army. Each Unmanned Crot111d \ 'chicle (UGV) is a 4-wheel-drive "Hummer~'
equipped with position, vision and hazard sensors, control computers and actuation
devices for steering and speed control (l:igure 8). Four UGVs were built by Lockheed­
Martin, and up to three have been operated simultaneously in formation. This section
shows how formation behaviors were adapted for use on these robots.

Motor behaviors in the UGV architecture are coordinated by a speed arbiter and a
turn arbiter. This approach differs frorn the motor schema method where each behavior
generates both direction and magnit 11df'. In the UGV architecture each arbiter runs

Figure 8: One of DARPA's UGVs for Demo II Program.

concurrently and accepts "votes" from the various active motor behaviors. For turning,
behaviors vote for one of 30 discrete egocentric steering angles ; the angle with the
most votes wins. A behavior may actually cast several votes for separate headings at
once, where the votes are spread about a central angle with a Gaussian distribution.
For speed, the lowest speed vote wins. Details on the mathematical formation of the
arbitration process are available in [6].

As in the case of motor schema-based robots, the UGVs must simultaneously nav­
igate to a goal position, avoid collisions with hazards and remain in forn1ation. This
is accomplished by concurrent activation of independent behaviors for each. Here we
will deal only with the behaviors for formation.

For UGVs, formations and formation positions were determined in the same way
as described for the detect-formation-position perceptual schema. But the non­
holonomic constraints on UGV movement call for a revision of the formation motor
behavior. Of significance in the non- holonomic case is that the robot's heading during
and after formation corrections significantly impact its ability to remain in position.
Not only should the vehicle be in the right location, but its heading should be aligned
with the axis of the formation. If it is very far off heading, the robot will quickly fall
out of position either laterally, fore-aft or both. A technique used by pilots for aircraft
formation [7] is well suited for this task: positioning is decon1posed into fore-aft and
side-side adjustments. Fore-aft corrections are made by adjusting speed only, while
lateral corrections are made by adjusting heading only. Each correction is applied
independently. A consequence of the approach is that when a robot is ahead of its po­
sition it will not attempt to turn arot111d. but just slow down. The following heuristics
summarize the approach:

For speed selection:

• If the robot is in formation, the best speed for maintaining that formation is the
current speed.

q

F

Fnrmarimr l'osilion

Rohut

Figure 9: Illustration of terms used rr1 d('scribing formation behaviors for UGVs. In
this diagram the robot is behind and to t lw right of its position in formation.

• If the vehicle is behind its posit ion. it should speed up.

• If the vehicle is in front of its posit ion. it should slow down.

• The selected change in speed should depend on how far out of position the robot
IS.

• Since the speed arbiter selects the lowest speed vote of all the active behaviors for
output to the vehicle, formation control may only be possible by slowing down.

For steering:

• If the robot IS In formation. 1lw best heading for position maintenance is the
formation axis.

• If the robot is out of posit iort ll1tPrally and the formation is moving, it should
turn towards the formation <t--.:i~ \\'ith an angle that depends on how far out of
position it is.

• If the robot is out of posit iun c~rrd 1 lw formation has stopped moving, the robot
should head directly toward~ it .. I'"" i 1 ion.

2.4.1 UGV Behaviors for Forrnation

Two separate behaviors, maintain-formation-speed and maintain-formation­
steer run concurrently to keep t lw 'f'lticlt' in position. Each determines an appropriate
value at each movement step and 'ol ('....; d~'n>rd i ngly. The votes, along with those from

o~her behaviors are tallied and acted upon by the speed and steering arbiters. The
discussion will now focus on an individual robot and how the speed and steer behaviors
determine their outputs. To formalize the approach, the following formation terms are
introduced (see Figure 9):

• Rpos,Rdir the robot's present position and heading.

• Rmag, the robot's present speed.

• Fpos, the robot's proper position in formation.

• Fdir, the direction of the formation's movement.

• Formation Axis, a ray through Fpos in the Fdir direction.

The maintain-formation-speed behavior first determines the magnitude of t h<'
required speed correction, then casts its vote by adding the correction to the cu rrf'nl
speed. A gain value is used to adjust the rate of correction. The speed correction.
DeltaSpeed, varies from -1.0 (slow down) to 1.0 (speed up). The magnitude depends 011

how far fore or aft the robot is of its desired position. Three zones, perpendicular to the
formation axis and defined by distance fore or aft of Fpos determine DeltaSpeed (Figure
10). The size of these zones are parameters of the formation behavior. DeltaS peed i~

set negative if the robot is in front of Fpos and positive otherwise. The magnitude i~

computed as follows:

• Ballistic zone : 1.0

• Controlled zone : the magnitude varies linearly from a maximum of 1.0 at the
farthest edge of the zone to zero at the inner edge.

• Dead zone : in the dead zone the n1agnitude is always zero.

Finally, maintain-formation-speed casts its vote for the vehicle speed as follows:

SpeedV ote = Rmag + DeltaS peed x SpeedGain

The maintain-formation-steer behavior follows a similar procedure to determine
an egocentric steering direction, (the angle for the front wheels with respect to the vehi­
cle body 1). The calculation proceeds i 11 three steps. First, the magnitude of correction
is determined based on how far laterally the robot is from its formation position. Thr
maximum correction is for the robot to head directly towards the formation axis, thr
minimum is for the robot to head direct I]' along the formation axis. The magnitude of
H eadingCorrection is determined as follO\-vs (Figure 10):

1 In the actual implementation, votes are 1ast. for a turn radius. For clarity we use the steering
angle of the wheels here.

II

Ballistic Zone

R R - - Controlled Zone ~ :::;..

F -- Fonnati n Axis
DeadzOnt F ' ,-'; -,.; ••'

-

Controlled Zone

Ballistic Zone

Figure 10: Zones centered on F, the desired formation position. The zones on the
left are used for computing speed, corrections, while those on the right are for heading
corrections.

• Ballistic zone: goo, i.e. head directly towards the axis.

• Controlled zone: the turn varies linearly from a maximum of goo at the farthest
edge of the zone to 0° at the inner edge.

• Dead zone: 0°, i.e. head parallel to the axis.

The sign is set according whether the robot is left or right of the formation axis. If
the robot is left of the axis, calling for a right turn the sign is positive, it is set negative
otherwise. The DesiredHeading can now be determined with reference to the formation
aXIS:

DesiTedH eading = Fdir - Delio II rading

As the robot moves forward. this l1eading will simultaneously bring it to and prop­
erly align it with the formation C1:..: is. In the special case where the formation has
stopped n1oving, DesiredHeading is iJJsl<'nd s('t to take the robot directly to its position:

DesiredH eading = Fpos - RP(J.5

Next. DesiredH eading is translctl cd i 111 o an egocentric angle for the vehicle's front
wheels:

Steer Vote = DesiredH eading - 1?.1,,.

l ..!

Positive angles indicate a right turn and negative ones a left turn. If the result is
either greater than 180° or less than -180°, 360° is added or subtracted to bring the
result within those bounds. Finally the angle is clipped to the physical limits of the
vehicle.

2.5 The Formation Expert

Figure 11: The Formation Expert G UI.

To aid UGV mission planners in selecting appropriate formations for particular
, situations, we developed an expert system called the Formation Expert. The Forma­

tion Expert automatically analyzes a mission plan then suggests parameter settings
for formation behaviors. based on that context. A user may adjust these recommended
parameters with a graphical user interface (GUI). The displayed diagram of the for­
mation is adjusted to reflect changes the user makes as he moves slider bars or pushes
buttons (Figure 11).

In order to make its recommendations. the Formation Expert consults a rule base,
which specifies conditions under which particular formations are appropriate. The
rule base is an easy to understand text file that can be revised by a user to reflect new
situations or better formations for certain situations. Also, since the Formation Expert
is generic it may be easily adapted for use in other UGV domains as well.

2.6 Results for UGV Demo II Mobile Robots

The unit-center referenced approach was used exclusively on the HUMMERs be­
cause the UGV architecture only rro,·icles for a robot to slow down to keep formation.
It was felt that since the leader would never slow down to keep formation and a trailer
could never speed up if it fell behind. a leader-referenced approach would fail. Final
integration with mobile robots was completed by Lockheed-Martin in Denver.

Figure 12: Two DARPA UGVs in formation (from left to right: line, wedge, column)

Formation played a key role in the success of UGV Demo C in the Summer of
1995. At that demonstration two HUMMERs ran through a series of tests including a.
sequence of formations (Figure 12). The HUMMERs followed an approximately one­
half mile course across open terrain while smoot shifting from column to wedge to
line formations.

The behaviors were extended by Lockheed-Martin for use in three robot HUMMER
formations. The three robot formations have run satisfactorily but videotape of the
tests is not yet available. Performance in these tests was limited by a communications
system that induced up to 7 seconds of latency in robot to robot position reports. This
problem points to the utility of using a passive approach for locating team members,
versus the explicit exchange of location based on GPS readings.

3. Team Teleautonomy

This research concerned the development and implementation of methods to allow
a human operator to control a team of robots. Our approach provides a mechanism
to significantly reduce the human operator's cognitive and perceptual load by allowing
the reactive system to deal with each robot's local control concerns. Two principal
mechanisms to achieve this are by allovving the operator to act either as a constituent
behavior of the society or to allow him/ her to supervise the societal behavioral sets and
gains, acting only as needed based upon observable progress towards task completion.

3.1 Summary of Results for FY 94 and FY 95

Two forms of teleautonomous control of teams of mobile robots were developed and
implemented. In each of these forms. the operator is allowed to control whole societies
of agents; not one robot at a time, but rather controlling global behavior for the entire
multiagent system. The end product is a simple way for a commander to control large

I I

numbers of constituent elements without concern for low-level details (which each of
the agents is capable of handling by themselves).

The first method for telerobotic control allows the human operator to give di­
rectional information to the robot team. He controls the output of a teleautonomy
behavior by using an on-screen "joystick". The teleautonomy behavior then produces
a vector output in the direction that the joystick is depressed and with a magnitude
relative to the amount that the joystick is depressed. This vector is sent to each of
the robots and is then summed and normalized with the vector outputs from the other
active behaviors on each robot. The robot then executes the resultant vector. In this
method of teleautonomous control, the operator acts as one of the robots' behaviors.

In the second method, the operator interactively changes the overall behavior of
the robot team by adjusting the parameters of the reactive behaviors. The human
operator can manipulate the behavioral rarameters either individually or in terms of
abstract groupings such as personality traits. l\!Iaking parameter changes in terms of
personality traits allows a user, with no knowledge about the underlying behaviors and
their parameters, to effectively modify the robots' behavior. In our current system, the
abstract parameters include Aggressic(1/(- s8 and Wanderlust. The value of an abstract
parameter controls the values of several individual low-level parameters. The operator
uses slider bars to modify the value of an abstract personality trait. In this method of
telerobotic control, the operator acts as a behavioral supervisor.

Both methods for telerobotic control have been integrated with the N!issionLab sys­
tem and work both in simulation and on real robots. Additionally, both teleautonomy
methods have been integrated with the DARPA UGV Demo II architecture using the
STXmcu mission control system for use on teams of HMMWV s. The first method was
demonstrated at a technical demo during Demo C of the UGV project in the summer
of 1995.

Experiments was conducted to t f'st the usefulness of the teleautonomy behavior
for certain tasks. Some of the e:\pf'riments were conducted in simulation and some
were conducted on real robots.

The simulation experiments t<'sl <'d the first method of control, the operator as a
behavior approach. The tasks includ(·d foraging, grazing, and herding. For the foraging
task, if teleoperation is used wisely. it can significantly lower the total number of steps
required to complete the task by gn·atl_,. reducing the time spent in the forage state
(i.e., the number of steps that thf' r()l HJt-.. "'pt•nd looking for at tractors). For the grazing
task, teleoperation was not signific<~r t t I' ltt>ll<'r than no teleoperation. For the herding
task, the teleautonomy behavior \\"d d i -..cu,·ered to be an acceptable tool, but possible
improvements were determined.

The experiments on real roboh t t''' ('d the use of both the teleautonomy behavior
and the abstract parameters. Tlw tct ... k~ ir1cluded directing the robots out of a box
canyon and squeezing the robots 1 hrolll!,h a small space. The telerobotic interface was
tested on a pair of Denning i\tiRV-~ IJtoiJilc r·obots . .-\Sun Sparcstation 5 served as the

(a) (b)

Figure 13: Box canyon task: (a) The robots are stuck in the box canyon. (b) The robots

are being maneuvered out of the box canyon using the teleautonomy behavior.

The camera was located 4 floors above the robots, giving a birds-eye view of the action. The'

robots have circles of white tape on top of them to make them more visible.

base station, running the telerobotic interface through MissionLab.

For the first task, the human operator was able to use the on-screen joystick to steer
the robots out of a box canyon. After the robots were no longer in danger of falli11g
back into the box canyon, the operator released the joystick, and the robots continued
to their destination autonomously. Figure 13 shows video stills of the robots during
this experiment.

For the second task, the operator used the behavioral parameter control to cause
the robots to squeeze through a small gap that would normally be too small for the
robots to traverse, due to the repulsion from their avoid-static-obstacle behavior.
By increasing the abstract parameter Aggressiveness, the operator was able to squeeze
the robots through the small space. Figure 14 shows video stills of the robots during
this experiment.

A set of usability tests were conducted on the operator's interface. These tests
yielded useful information for making the interface more helpful and usable. Changes
were made to the interface based on suggestions derived from these usability tests.

3.2 Research Accomplishments for FY 96

A Hun1mer has been actuated anu controlled by means of teleautonomy. The
low-level control software for the H urn mer has been integrated with the 1\l!issionLab
toolset. This allows a human operator to control the movement of the Hummer through
the teleautonomy behavior using the on-screen "joystick" described in the Tea.m
Teleautonomy section. The joystick is shown in Figure 15.

The operator is located outside of the Hummer a.nd commands a compass directioll

I (i

(a) (b)

Figure 14: Squeezing ta.sk: (a) The robots are stuck in the box canyon with a. gap. (b)

The robots are being squeezed through the gap in the box canyon by making them more

aggressive.

The camera. wa.s located 4 floors above the robots, giving a. birds-eye view of the action.

Figure 15: The on-screen "joystick·· allmvs the human operator to control the robots

heading in terms of compass directions.

! ~

and a speed in miles per hour by manipulating the joystick. This information is trans­
n1itted by means of a wireless communication network to the robot control software
running on-board the Hummer. The on-board processing software then repeatedly
reads the current heading and speed of the vehicle and determines h~w to control the
steering wheel, brake, and throttle to cause the Hummer to move at the desired veloc­
ity. This allows a human operator to exert a form of supervisory control over the robot,
where he sets a desired velocity and then does not need to send any more commands
as the robot autonomously determines how to achieve and maintain this velocity.

Two experiments have been conducted to test the teleautonomous control of the
Hummer. The first experin1ent tested the capability to provide the operator with
control over the steering of the robot. The second tested steering and speed control by
a human operator.

At the time of the first experiment, only steering control had been implemented.
The operator sat inside the Hummer in the back seat and controlled the heading of
the vehicle in terms of compass directions through the joystick. An emergency driver
sat in the driver's seat and controlled the throttle and brake. The emergency driver
did not touch the steering wheel, but was prepared to take control of the steering if
necessary. The vehicle was steered by computer control around a crowded parking lot.
Part of the test included steering the vehicle through a tight space with only a fevv
feet of clearance on both sides of the robot. The experiment showed that our steering
control worked, and that the method of controlling the robot's heading by specifying
compass directions is effective. However, we also realized that this method of specifying
co!Dpass directions would probably work better if done from outside the vehicle.

In the second experiment, the human operator was remotely located outside of
the robot vehicle. This tin1e, the operator controlled both direction and speed. An
emergency driver was located in the driver's seat of the Hummer, but he did not touch
the steering wheel, brake, or throttle. The vehicle was driven by computer control
around a large empty parking lot. The operator successfully caused the robot to execute
many turns and circles, driving both uphill and downhill. Figure 16 shows the vehicle
during the experiment. The experiment successfully demonstrated steering, brake, and
throttle control of both the direction and speed of the robot, and that controlling the
heading of the robot by specifying a compass direction is easier to accomplish when
the human operator is located outside' of the robot vehicle.

4. MissionLab

MissionLab is powerful set of soft \\'are tools for developing and testing behaviors
for single robots and robot teams. ('ode generated by MissionLab can directly control
commercial robots built by Denning .\lobile Robotics and Nomadic Technologies, as
well as an experimental4-wheel drive I I urn mer developed at Georgia Tech. A primary
strength of MissionLab is its support of hot h simulated and real robots. A developer

Figure 16: The automated Hummer under teleautonomous control. The operator was

controlling the direction and speed of travel from another vehicle at the edge of the parking

lot.

I •)

can experiment with behaviors in simulation and then run those same configurations
on mobile robots.

j\lfissionLab has a distributed architecture. The main user's console can run on one
computer while multiple robot control executables are distributed across a network,
potentially onboard the actual robots they control.

The core of the MissionLab toolset is con1posed of five primary components:

• cfgedit: The Configuration Editor is a graphical tool for building robot behav­
iors. The designer can build complex control structures with the point and click
of a mouse. cfgedit generates source code which, when compiled, can directly
control a simulated or real robot. Details on cfgedit are provided in a separate
manual.

• cnl: cfgedit generates a control program in the Configuration Network Language
(CN L) which is compiled by the program cnl. The compiled program (or robot
executable) may now directly control a robot. The cnl compiler is automatically
invoked by cfgedit when needed. In general, users will not need to be concerned
with cnl unless they want to dew' lop their own primitive behaviors.

• mlab: Once the robot executablcs are created, they can be tested in mlab. mlab
is primarily a console-like program fron1 which a developer monitors the progress
of experimental runs of his robot executables. When mlab is used for simulation
(as opposed to controlling mobile robots), it serves as a sensor and actuator
simulator from the point of view of the robot executable. On mobile robots, the
actual sensors are used instead.

• CMDL: The Command Description Language (CMDL) may optionally be used
for describing simple sequential robot missions. CMDL files are read by mlab at
runtime and offer a mechanis111 for providing high-level input to robot behaviors
developed in cnl.

• ODL: The Overlay Descript io11 Language provides descriptions of the environ­
Inent (especially useful in sillliJ!i-ttion) to mlab. Obstacles, boundaries and so on
may be described in ODL.

The Societal Agent architecture' ,,;1." d('' t·loped to capture the recursive composition
of configurations. Specifying a react t\ •• l)('hrtvioral configuration for use by a multia­
gent team executing a mission req 11 i r('~ ! 10th a careful choice of the behavior set and
the creation of a temporal chain ol· IH·ha,·iors which executes the mission. This difficult
task is simplified by applying an uhjt'd-oriented approach to the design of the mis­
sion using a methodology called '' n1 pont! .-;r quencing. Temporal sequencing partitions
the mission into discrete operating -.tat('s \\'ith perceptual triggers causing transitions
between those states. Several s1na ll('r i r1dt 'JH'Ilden t configurations (assemblages) can

-'"

then be created which each implement one state. Assemblages consist of groups of
b~sic behaviors and coordination mechanisn1s that allow the group to be treated as a
single, coherent behavior. Upon instantiation, the assemblage is parameterized based
upon the requirements of these specific mission requirements. :r'hese assemblages can
be re-parameterized and used in other states within this mission or archived a.s high
level primitives for use in subsequent projects.

The l\1issionLab system, an implementation of the Societal Agent architecture. sup­
ports graphical construction of configurations using a visual configuration editor. Thi s
editor, CfgEdit, supports the recursive construction of reusable components at all levels.
from primitive n1otor behaviors to societies of cooperating robots by allowing creation
of coordinated assemblages of components which are then treated as atomic higher­
level components available for later reuse. The Configuration Editor allows deferring
commitment (binding) to a particular robot architecture or specific vehicles until the

configuration has been developed. This explicit binding step simplifies developing e1

configuration which may be deployed on one of several vehicles which may each r·e­

quire use of a specific architecture. The process of retargeting a configuration t.o d

different vehicle when the available vehicles or the system requirements change is simi­
larly eased. The capability exists to generate either MRPL code for the DARPA UC\ .
architecture or C++ code targeted for the Autonomous Robot Architecture (AuR.-\ \
which is executable within the MissionLab system. The AuRA executables drive bot I!
simulated robots and several types of Denning vehicles (DRV-1, MRV-2, MRV-3). The
architecture binding process determines which compiler will be used to generate thf'
final executable code, as well as which libraries of behavior primitives will be available
for placement within the editor.

The mission scenario language and corresponding interpreter permit the specifica­
tion of complex multiagent missions in a structured, relatively user-friendly, language.
The mission coordination operator has the expressive power of a finite state machine
but allows the user to specify the sequence of steps making up the mission using a
domain-specific language with high-le\'el primitives and mnemonic names. At run
time, the mission coordination operator communicates with the operator console to al­
low the mission to be entered interactively or predefined missions to be executed from
saved files.

Using these tools, various multiagent missions have been demonstrated in simulation
and on our Denning robots. The AfissionLnb toolset was demonstrated as part of UGV
demo C and has been made publicly axailahle in source code form via anonymous FTP
or WWW access.

4.1 Research Accomplishments for FY 94 and FY. 9595

1995 saw the completion and initial release of the MissionLab toolset. The l'vfis­
sionLab robot software development systC'm provides support for users in the various

.!l

stages of mission development (e.g., behavior implementation, assemblage construc­
tion, and mission specification). The primitive behavior implementor must be familiar
with the particular robot architecture in use and a suitable programming language
such as C++. The assemblage constructor uses a library of behaviors to build skill
assemblages using the graphical configuration editor. This allows visual placement and
connection of behaviors without requiring programming knowledge. However, the con­
struction of useful assemblages still requires knowledge of behavior-based robot control.
Specifying a configuration for the robot team consists of selecting which of the avail­
able skills are useful for the targeted environments and missions. Specification of the
mission sequence can occur at run-time using a domain-specific structured language.
Military terminology and nomenclature are used in MissionLab to facilitate specifica­
tion of missions by military users unfamiliar with robot control techniques. The overall
philosophy, however, is by no means restricted to this application domain.

Consider specification of a configuration implementing a janitorial task for a mobile
robot. Specifically, the robot should wander around looking for empty soda cans, pick
them up, wander around looking for a rec_vcling basket, and then place the can into
the basket. Figure 17 is a schematic representation of an FSA for such a · robotic trash
collector constructed using CjgEdit. The circles represent the possible operating states
with the label indicating the assemblage agent active during that state. The arcs are
labeled with the perceptual triggers causing the transition where relevant. Powering up
in the start state, the robot begins to wander looking for a suitable soda can, operating
in the Look_Jor_can state. When a can is perceived, the Pick_up_can state is activated
and if the can is successfully acquired, a transition to the Look_for_basket state occurs.
Loss of the can in either of these states causes the FSA to fall back to the previous state
and attempt recovery. When a recycling basket is located, the PuLcan state becomes
active and the can is placed in the basket. A transition back to the Look-for _can state
repeats the process.

Figure 18 shows l\!JissionLab executing a simulation. The large area with various
things drawn in it is the main display area. \Nithin the display area robots, obstacles,
and other features are visible. The ~ol id round black circles are obstacles. The four
robots are moving across the middle oft he display area in roughly a diamond formation.
l\'1ore details about the type of mission di"played in the figure are explained in the next
section. The command interface in t lw lowPr right part of Figure 18 allows the operator
to control the execution of the mission. lite "t eps of the mission are displayed as they
execute.

Specifically, several software proj<·, t ~\\'ere finished: The configuration editor CjgEdit
was rewritten to support the recur" i \ <' cor1st ruction implicit in the Societal Agent ar­
chitecture. It serves as the focal point lor the MissionLab integrated development
environment and spawns other part" u[· the toolset as the user requires them. It al­
lows graphical construction and vis ua I i za t ion of the configuration description language
(CDL) descriptions which can then he cornpiled into the selected output format. A
conversion to the DARPA UGV standard [PT n)!lltnunications package was completed.

,.,

Figure 17: FSA for a trash collecting robot

The robot executables communicate to the simulation server and operator console using
IPT. Three internal compilers have been written. Two CDL compilers generate either
the MRPL specifications used in the 0 G V program or a CNL (configuration network
language) description of the input configuration. The CNL compiler can then trans­
late this second type of output into C++ code using the AuRA architecture. These
AuRA-style executables can then be run within the MissionLab operator workstation,
freely mixing simulated and real robots.

For DARPA UGV Demo C, Georgia Tech demonstrated the N!issionLab mission
specification and configuration sofhvare as part of a Technology Demo. This demo in­
volved collaboration of Georgia Tech and the UniversityofTexas at Arlington (UTA) in
a joint demonstration. The lv!ission Lab system has been adopted and extended by UTA
to help verify their sensing algorithms for this joint tech demo. The system is available
through the Internet (http:/ I W\V\V .cc .ga tech .eel ul ail robot-lab I researchiMissionLab).

4.2 Research Accomplishments for FY 96

Significant accomplishments regaroing N1issionLab in 1996 include usability studies
highlighting its utility in robot behaxior design , improvements in the distribution and
installation of the software, the addition of three dimensional views, hardware drivers
for the control of new robot types, and porting to the Linux operating system. A

[ile ~ld 1;_- ~tiom

~le: 0 I , , , , I , , , , 1100 • <Hlsslon .,.... is 1000.0.. by 1000.0..)

• • • •

• 0

• •
• File: t~."_~l~ ·- ----·---------~-------_j fl.ood FiT.-] ~

~;;:d·c,;;.,. I ~ iJ ; i.;;.;;-;.;··c;;;;;;;] rs.-;;,. si;-J f st;;i~ st..f.~l r;;;,;;;;;-·"1 fAail"'J i
- t

ExecutIng Step:

I '· ~" - """" ~,,.._, ,_,., ,_ ··-"~~ -- .. ' ~_JI '
~IE5~2~~~~~~~~~ Hoxt Stop:

.:!i ··---·----·--·-·------ r-_-s.-£-:-_~-- =-----~---~==rg~-~-~-:-~-~---=--~_:-.-~~~=--=--=:-:_-_~-~=-__ -:-:;:-~------------::.:-:~-:::.-. ..:..-::...-------·- ~ [

Figure 18: Example scenano In MissionLab

21

usability study completed this year as part of a Ph.D Dissertation has demonstrated
the advantages of Mission Lab as a robot design tool [4].

Previously, MissionLab was only available for computers running the SunOS oper­
ating system. This year, the entire Mission Lab toolset has been ported to the Linux
operating system as well. This significantly expands its applicability since portable
computers running Linux may cost as little as ~ the cost of other Unix-based comput­
ers. It is economically feasible to outfit robots with individual onboard control using
low-cost Linux machines. This, in concert with the distributed capabilities of w'lis­
sionLab make it easy to conduct multi-robot experirr1ents over a distributed wireless
network (Figure 19). In addition to compiling on Linux machines, the overall ease of
installation on SunOS and Linux is now greatly improved.

MlahConsolc

Wireless Network Connections

I l<l>llli'AilC I digldze< I

~~MRV-l

b
D

) lumtn~r

b
D

Figure 19: Mission Lab provide-.; fur di-.;t ri buted control of multirobot missions. A
single console computer (upper l<'ft 1 ill I he used to command a team of robots over a
wireless network. The remote l'11i\ Jllacltirtcs are installed on the robots they control.

Three dimensional views can lw i ii \IJk(·d i11 In!a\) to give the user a more realistic

.-,

representation of the mission scenario. 3D views of the layout include top view, side
view and front view. The robot in the views is shown as a six-legged robot. A snapshot
of the 3D views is shown in Figure 20. The 3D views are generated using sphigs

- - -

F.~~ --------------, -. --------------r-rr-:

' I

I ,

I

• I

• •

Top room view

~-..-
Side room view I·-·· i'.'iiiiils I

Front Room View

Figure 20: An example of the :3D view now available in Mission Lab.

package.

In this version, all objects have the sarne height, and they are located on the same
z plane. Basically, the 3D views con t <1 in the san1e information as the 2D view except
for some 3D enhancement. In the future, we will change the overlay definition to
accommodate true 3D descriptions. including the height of the object and the location
of the object in the z direction. Robot IllO\·crnent vectors will also be extended to 3D
to enable the robot to navigate in a :~I) world. Also, robot representation descriptions
will be added to the overlay file to cd low the user to define the shape of the robot.
Currently a fixed 6 legged robot is used to represent all robots. Some viewpoint control
mechanism will also be added to view the 3D world from different angles.

Hardware drivers were added to \lissionLab this year to enable support for con­
trol of Nomadic Technologies Nomad l .jQ robots and a robotic Hummer developed at

Georgia Tech. This is in addition to support for Denning MRV-3, MRV-4 and DRY
robots already in place.

5. Experimental Testbeds

5.1 Nomad Testbed

MissionLab has been extended to provide control of N omadics Technologies Nom ad
150 robots (Figure 2). A new software library provides an interface between standard
MissionLab movement commands and control messages sent over a serial line to the
hardware. The library is similar to the MissionLab libraries which provide control of
Denning robots and Georgia Tech's Hummer.

Each Nomad is equipped with an on-board PC laptop running Linux (a Unix­
compatible operating system). Behaviors for the robots are compiled into a robot
executable developed on a workstation using cnl or cfgedit. After development and
testing, the executable is downloaded to the robots with ftp over a wireless network.
The network supports typical services like ftp and telnet, but more importantly it
enables the MissionLab console program to manage a team of robots remotely from a
single workstation (Figure 19).

The Non1ad 150s are being equipped with color vision capabilities. Real-time vision­
processing is provided by an on-board computer (Cognachrome from Newtonlabs) able
to track multiple objects identified by color at 30 updates per second. The vision com­
puters will enable robots to track one another and salient features in their environment.
This provides for tasks including formation based on visual references and foraging for
colored objects. MissionLab control programs communicate with the vision computer
over a serial line using an additional interface library.

5.2 Hummer Testbed

Various equipment was installed on a Hummer to provide autonon1ous control.
Safety for personnel and equipment were the highest priority in the design of the
Hummer control system. Care was taken throughout the installation processes to
ensure that we could operate the vehicle safely at all times . A high level C++ software
library was writen to control the actuators. Two programs were also wriiten: one to
test the actuators and the other to opera tc the vehicle via a serial port. This section
describes the equipment installed in the Ilun1mer, the software library used to control
the installed equipment, and some challenges that arose during the vehicle automating
process.

.,­_,

5.2.1 Hardware Description

POWER

The following voltages are needed for the operation of the installed components;
+12VDC, -12VDC, .SVDC, 28VDC and llOVAC. Electrical power to operate the in­
stalled equipment is obtained from the vehicle's battery. An inverter/ charger provides
llOVAC to operate a monitor and other devices that need AC power. A low power
LCD display can replace the monitor. The needed DC voltages are produced using
DCjDC converters. The converters produce reliable outputs for input voltages be­
tween ll-14VDC. The inverter/charger, when plugged into a llOVAC outlet, supplies
llOVAC and 13.6VDC to the vehicle. The 14 .. 5 VDC can be used to charge the vehicle's
battery.

ACTUATORS

Three actuators control the Humn1er. one on the brake, one on the throttle, and one
on the steering wheel. Each actuator is ltllique and provided its own set of challenges
during installation. At the core of each actuator is a DC motor that turns in different
directions when given a different polarity ,·oltage, and at different speeds for different
voltages. There is a clutch on each motor so an operator can quickly decouple the
actuated n1echanism from the actuator.

Brake Actuator: The brake actuator \\'as purchased as a complete unit from Red
Zone Robotics. This unit includes the positioning motor, motor position encoder, brake
position potentiometer, reduction gears. and a clutch. The brake actuator is mounted
on the floor of the vehicle directly belo\\' the brake pedal. When the clutch is engaged,
the encoder gives a direct indication of the brake pedal position. The potentiometer
output is not currently being used. The potentiometer output could be used to detect
failures such as the operator has stepped on the brake or the brake clutch has failed.

Steering Actuator: The steering actuator was assembled using off-the-shelf com­
ponents. A motor, reduction gears. position encoder and a clutch are used for the
driving mechanism. A bracket \\'as Ltlnicated that allowed the driving mechanism to
be mounted directly under the st ccri ng \\'heel shaft and as close to it as possible. A
sprocket was installed on the factor_,. -.. 1 eeri ng wheel and the drive mechanism connected
to the steering wheel with a nylon lwlt. \\'lwn the clutch is engaged, the encoder gives
a direct indication of the position uf t lw front \\'heels. As a safety measure, we have
designed the belt to slip if the oper;ttur !..'.rdlJS the steering wheel. This slippage may
be a problem if the vehicle is opera !I'd i 11 rotrgh terrain and excessive force is needed
to turn the wheels. Slippage will r, · tilt ir1 a mismatch in the actual and measured
position of the front wheels. If slipp<!l!<' occurs, the vehicle will steer slightly off the
desired heading.

Throttle Actuator: The factun· installed cruise control servo is used to operate
the throttle. The use of this sen·o 111ade installation easy but implementation very
difficult. This servo does not ha ,.e ;t po~i 1 ion i ng encoder installed on it. This caused

many problems which are covered in the Electronics and Software sections below. The
throttle actuator, unlike the other two actuators, does not need to have a constant
voltage applied to it to maintain a desired throttle position. Once the throttle position
has been set, when voltage is removed from the servo motor, tl)_e throttle will remain
in that position.

ELECTRONICS

At the heart of the actuator control is a PC104 80486-based computer board. This
board has support for a VGA monitor, four serial lines, a parallel line, an Ethernet
connection, and an LCD monitor. A hard drive is connected to the computer ancl
contains the development environment but it is not necessary for the operation of tlte
actuator software. The computer may be started with a boot disk and the programs
are small enough to fit on one floppy disk.

PC104 compliant embedded controllers manage the actuators. These devices handle
much of the low-level control work necessary for the positioning devices. The user
supplies the values for the proportional, integration, integration limit, differentia tio11.
velocity and acceleration parameters. Once the parameters are set, a user can give "
desired position to the board and the board performs the required trajectory.

The embedded controllers work very well for the brake and the steering wheel.
These actuators have encoders on them that show the position of their respecti \'('
motor. The encoders enable the embedded controller to operate independently. Du('
to the lack of encoder position for the throttle, its control presents some difficul tic~
tht are covered further in the software section. The motor and clutch for the throttlf'
actuator are connected the same as the other actuators. Since there is not an encoder
on this actuator, the encoder inputs on the embedded controller are not connected to
anything.

A PC104 compliant board with A/D converters and counters is installed at the top
of the PC104 stack. This board allows for the measurement of speed. Distance pulses
are generated by a magnetic pickup coil located on the transmission output shaft. This
is the factory installed serisor used in various places throughout the vehicle to compute
speed. The raw output signal is very noisy and could not be used as a direct connection
to the counter. The factory cruise control module circuitry is used to filter the sensor
output and produce a square wave proportional to the distance traveled.

5.2.2 Software Description

vVe wrote the software is Borland C++ to take advantage of data abstraction. The
software lends itself easily to modifications and added functionality. The Controller is
the major class. The Brake, Steer and Throttle class inherit from the Controller class
and add methods as necessary for their unique functions. There are also a Counter
class and a Speed Class. Each of these classes is covered below.

Controller Class

The Controller class provides the interface to the embedded controllers. This class
provides methods for setup, initialization, and positioning devices connected to the
embedded controllers.

Steer and Brake Class

The Steer and Brake class inherit from the Controller class. The Brake class pro­
vides methods for increasing and decreasing the brake position and for releasing the
brake. The Steer class provides methods for moving the steering wheel. The steering
is controlled by a method that moves the steering wheel to position the front wheels
to the desired position given the desired angle, movement velocity and acceleration.
The input angle is the desired angle of the front wheels and can be between -32 and
32 degrees. Negative angles correspond to right turns. To ensure excessive force is not
applied to the steering wheel, the Steer class will not attempt to turn the wheel unless
the vehicle's velocity is greater than l~IPH. In order for a Steer object to know the
current ground speed, it is connected to a Speed object.

Throttle Class

The Throttle class inherits from the ('on troller class. Due to the throttle actuator's
lack of an encoder, this class operates a bit differently from the Steer and Brake classes.
The vehicle's Throttle Position Indicator (TPI) signal is run to the A/D converter.
Currently the software does not use this input for throttle position but it can be
incorporated into the throttle control if more functionality is desired. A voltage ma.Y
be applied to the throttle servo by sending a command to the embedded controller
that will attempt to move the servo at a steady velocity or to a desired position. Since
the controller does not have feedback as to the position of the throttle, the voltage
will continue to be applied until another command is given to stop the motor. The
stop command must be given a precise time after the move command to position the
throttle to a desired position.

vVe first explored two methods to apply the stop command a given time after the
move command is given. One met hod was to put in a delay for how much time to
apply the voltage. During the delay t i rne the software was not addressing other vehicle
functions , such as the speed of the u'hicle. The other method was to put a command
into the loop that will continue to ch<'ck if the desired time has expired and then apply
the stop command. This method pr<'~cntcd a major safety concern. If something in
the software failed between sen eli ng t lw rno,·<' command and before the stop comn1and
is given, the throttle could quickly lw f11ll.' <ll)plied.

The goal was to be able to send ;1 ~ - ~,rnrnand to the embedded controller that ap­
plied the voltage for the desired Cltllulllll of' time. To accomplish this goal we used
the positioning error abilities of the (·tn h<'dded controller. A user may define a maxi­
mum position error in the controller t h<-11. \\'hen exceeded, will remove power from the
controlling servo motor. The throttle docs not need to have a voltage applied to it
to maintain its position. With the right combination of position error, acceleration,
proportionality gain and desired posit iut1 'iilli<'s. a voltage may be applied to the brake

for a given amount of time with just one command. After the command is sent, further
monitoring will not needed. The use of the throttle to control the speed of the vehicle
is covered in the Speed Class below.

Counter Class

The Counter class provides methods to interface to the installed A/D /counter
board. Methods may be easily added to this class to control and access all items
connected to the A/D board. Currently, the major function of this board is to read
the counts from the ground distance sensor. There is another counter on this board
that n1ay be used to measure engine speed or other devices that provide a pulse. The
A/D inputs are configured to measure voltages between 0 and 10 volts. This board
can be used to measure any voltage between the configured voltage and therefore pro­
vides many capabilities to add future functionality to the entire configuration such as
a temperature sensor in the Motor Controller Box.

Speed Class

The Speed class provides methods to control and read the current ground speed
of the vehicle. The method for controlling the speed is designed to be placed in a
loop and called at least four times per second. In order for a Speed object to cont~ol
the vehicle's speed, it must be connected to a Brake, Throttle, and Counter object.
The Speed class will read the speed via the counter object. If the vehicle speed is less
than the desired speed, the Speed class will ensure the brake is released and apply
the throttle. If the vehicle's speed is greater than the desired speed, the Speed class
will decrease the amount of throttle applied. If the vehicle does not begin to slow,
the Speed class will slowly apply the brake until the desired speed is obtained. If stop
command or a desired velocity of zero is sent to. the Speed class, it will apply the brake
to bring the vehicle to a safe and steady stop. If the stop command is used, it must
also be in a loop and continually sent to the Speed object.

REFERENCES

[1) Arkin, R.C., "Motor Schema-Ba.sed Mobile Robot Navigation", International Jour­
nal of Robotics Research, Vol. S. :-Jo. 4, August 1989, pp. 92-112.

[2) Army. Field Manual No 1-1.1. Department of the Army, Washington, D.C., 1986.

[3] Balch, T. and Arkin, R.C., ··~Iotor Schema-based Formation Control for l\tiultia­
gent Robot Teams", 1.995 Intf nwltonal Conference on Multiagent Systems, San
Francisco, CA, pp. 10-16, 199.5.

[4] MacKenzie, D., "A Design l'vlethodology for the Specification of Behavior-based
Robotic Systems", Ph.D. Disse ria/ion, College of Computing, Georgia Institute
of Technology, Atlanta, GA, 1997.

[5] MacKenzie, D., Cameron, J ., Arkin, R., "Specification and Execution of 1\!Iultia­
gent Missions", Proc. 1995 Int. Conf. on Intelligent Robotics and Systems IROS
'95, Pittsburg, PA, Vol. 3, pp. 51-58, 1995.

[6] Rosenblatt, J., "DAMN: A Distributed Architecture for Mobile Navigation", Work­
ing Notes AAAI 1995 Spring Symposium on Lessons Learned for Implemented
Software Architectures for Physical Agents, Palo Alto, CA, March 1995.

[7] U.S. Air Force. Air Combat Command Manual 3-3. k Department of the Air
Force, Washington, D.C., 1992.

6. Publications Resulting from this Research

• FORMATION BEHAVIORS

1. Balch, T. and Arkin, R.C., 1995. "Motor Sche_ma-based Formation Control
for M ultiagent Robot Teams", 1995 International Conference on l'vfultiagent
Systems, San Francisco, CA, pp. 10-16.

2. Arkin, R.C. and Balch, T., 1997. "Cooperative Multiagent Robotic Sys­
tems", invited chapter to appear in AI-based f\.,fobile Robots: Case Studies
of Successful Robot Systems, ed., D. Kortenkamp, R.P. Bonasso, and R. fv1ur­
phy, MIT Press.

• TELEAUTONOMOUS CONTROL

1. Arkin, R.C. and Ali, K., 1994. ""Integration of reactive and telerobotic con­
trol in multi-agent robotic systems", Proc. Third International Conference
on Simulation of Adaptive Behal'ior, (SAB94) [From Animals to Animals},
Brighton, England, Aug. 199-1. pp. 473-478.

2. Ali, Khaled S., 1994 "Telop: Teleoperation of multi-agent reactive robotic
systems", Working paper, contact author.

3. Ali, K.S. and Arkin, R.C., 1997. ''Multiagent Teleautonomous Behavioral
Control", to appear Robotica. 1997.

• MISSION SPECIFICATION

1. 1\!IacKenzie, D. and Arkin. R.C'., 1993. "Formal specification for behavior­
based mobile robots", .'\lobih Robots VIII, Boston, MA, Nov. 1993, pp. 94-
104.

2. Cameron, J. and Macl\<·nzie. D .. 1994. "Specifying complex military sce­
narios", Working paptr. contact authors.

3. MacKenzie, D. and Arkin. H.C .. 1995. "Specification and Execution of Mul­
tiagent Missions", ?roc. I YY.) conference on Intelligent Robots and Systems
(IROS'95), August 19~F). Pittsburgh, PA, Vol. 3, pp. 51-58.

4. MacKenzie, D., Arkin. H. <uHI ('a.rneron, J., 1997. "Specification and Execu­
tion of Multiagent Mission:-;". ·\ utnrzomous Robots, Vol. 4, No. 1, Jan. 1997.

5. MacKenzie, D., 1997. ...\ D('~i~n \Iethodology for the Configuration of
Behavior-Based lVIobilc HuiH>h ... l)h. D. Thesis, College of Computing, Geor­
gai Tech, 1997.

6. MacKenzie, D. and Arkin. H.C .. 1997. "Evaluating the Usability and Utility
of Robot Programming Toolsrts" ~ submitted to International Journal of
Robotics Research.

• INTER-ROBOT COMMUNICATION

1. Balch, T. and Arkin, R.C., 1994. "Communication in reactive multiagent
robotic systems", Autonomous Robots, Vol. 1, No. 1.

2. Arkin, R.C. and Balch, T., 1997., "Communication and Coordination in Re­
active Robotic Teams", to appear in Coordination Theory and Collaboration,
Technology, ed. G. Olson, J.B. Smith, and T. Malone, 1997.

3. Arkin, R.C. and Balch, T., 199.5, "AuRA: Principles and Practice", sub­

mitted to Journal of Experimental and Theoretical Artificial IntelligFnce.
1995.

