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ABSTRACT 
In manufacturing environments, a common task is to 

quickly move a suspended payload point-to-point along a 
fixed overhead conveyor track without inducing significant 
payload vibration. Recent research in command shaping has 
shown remarkably effective ways to reduce the swing of a 
suspended payload providing the motion of the trolley is not 
constrained. However, the development of a command shaper 
where the trajectory of the trolley is constrained to follow a 
fixed curvilinear path has not been explored. This paper will 
present the development of a simple feedforward command 
shaper for fast, low vibration, point-to-point movement of a 
payload suspended from a trolley constrained to follow a fixed 
generalized path.  

The command shaping method involves modifying the 
command signal by convolving it with a series of impulses. 
Prior work has suggested command shaping to be very 
effective for fast, low-vibration movement of flexible systems. 
In this paper, command shaping methods are applied to an 
overhead conveyor system constrained to move along a fixed 
curvilinear path. Two new command shapers are presented for 
canceling payload vibration induced by motion of the trolley 
along the path. The designed Tangential Vibration (TV) shaper 
reduces payload vibrations induced by tangential accelerations 
of the trolley along the path, while the Centripetal-Tangential 
Vibration (CTV) shaper reduces vibrations induced by both 
tangential and centripetal accelerations. A key result of this 
study is that a command shaper having at least three impulses 
is required to yield zero residual vibration for motion along a 
curvilinear path.  A simple pendulum payload attached to an 
actual small-scale overhead trolley following a constrained 
path is used to evaluate the performance of the designed 
command shapers. It is shown that the designed shapers 
significantly reduce payload swing compared to unshaped 
performance.  An experimental sensitivity analysis shows the 

designed shapers are robust to system modeling errors and 
variations in path parameters. 

 
INTRODUCTION 

The area of crane control has been heavily researched 
since the 1960s. A recent paper of Abdel-Rahman, et al. [1] 
reviews the history of crane control techniques. Both open-
loop and closed-loop control schemes have been used with 
success. A brief review of crane control will be presented in 
this section.   

Command shaping, optimal control, closed loop linear 
control, adaptive control, fuzzy logic control, and nonlinear 
control have all been applied to the area of crane control 
research.  Lee [2] researched use of sliding surfaces in 
conjunction with a PID controller.  Lew and Khalil [3], on the 
other hand, developed a linear feedback control method for 
robotic crane control. Additionally, Yi et al. [4] proposed a 
fuzzy control using Single Input Rule Modules. These 
controllers have been shown to be effective in simulations and 
in implementation. 

Command shaping is a technique that has been shown to 
effectively reduce vibration in a system. In this method, the 
command signal is pre-filtered. The filtered input signal is the 
result of a convolution between a command shaper and the 
original input signal. Typically [5-14], a command shaper 
consists of a series of impulses. The time between impulses is 
calculated using a model of the system. In crane applications, 
the necessary elements for the model are the natural frequency 
and the damping of the system. 

Command shaping has been an active area of continuing 
research in crane control. Command shaping began with 
Smith [5] in 1957 with his Posicast technique. A major paper 
in the development of command shaping was authored by 
Singer and Seering [6].  They showed the cancellation of 
vibration at an endpoint, the time penalty incurred, and the 
robustness of a preshaped command with the Draper 
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Laboratory's Space Shuttle Remote Manipulator System 
simulator.  More recent papers such as Garrido et al [7], have 
shown the practicality, simplicity, and effectiveness of 
command shaping. Singhose et al. [8] developed a vector 
diagram approach to designing command shapers.  A United 
States Patent of Yun et al. [9] also explores the area of 
command shaping showing velocity profiles and 
corresponding swing angles. Another Singer et al. [10] paper 
looks further into different types of input shaping control  for 
cranes.  A comprehensive general tutorial on command 
shaping, with discussions of ZV, ZVD, UMZV, and EI 
shapers, was written by Singh and Singhose [11].  These 
command shapers have been shown to effectively cancel out 
the payload vibration induced during straight line motion. 

Lawrence [12] also raises the question if command 
shaping can reduce swinging in tower cranes. Nonlinearities 
such as centripetal and Coriolis accelerations complicate the 
problem. Additionally, tower cranes generate a two 
dimensional tracking problem, whereas the previously 
designed shapers were intended for one-dimensional use.  In 
1996, Singhose et al. [13] successfully used the ZV, UMZV, 
and EI shapers in two-dimensional tracking problems. 
Singhose et al. were able to choose a desired path for the 
payload such as a square and track the path closely using the 
aforementioned shapers. Blackburn et al. [14] extended this 
two-dimensional problem to a tower crane motion. He 
developed a radially assisted command shaper for a tower 
crane model. However, in the development of all of these 
works, the trolley path was not constrained. 

The research presented in this paper aims to constrain the 
curved path of the overhead crane trolley and to eliminate the 
payload swing at a final stopping point. In this research, the 
trolley path is not allowed to deviate from the defined path. 
An example of this type of system would be an assembly line 
in which an overhead rail system transports supplies from one 
station to another. The tracks are permanent and cannot be 
altered. Radial assistance is not an option since the path has 
been set. This research explores how a system constrained this 
way can achieve minimal vibration at a specified stopping 
location by using the theories of command shaping. 

This paper will present a crane model, develop two 
command shapers that cancel out vibrations induced by 
tangential acceleration (TV shaper) and centripetal and 
tangential accelerations (CTV shaper), and present 
experimental results demonstrating the use of these shapers. It 
is assumed in this paper that the crane trolley is fixed in a 
track and is not allowed to deviate from this path. 

The results of implementing the TV and CTV shapers on 
a model crane, and also the results of an experimental 
sensitivity analysis of the shapers performed on the model 
crane will be presented. Discussions and conclusions are 
presented last. 

DERIVATION OF CRANE EQUATIONS OF MOTION 
FOR COMMAND SHAPING 

In this section, the crane is modeled as a three-
dimensional pendulum.  The payload is approximated to be a 
point mass suspended on a massless, rigid cable which is 

attached to the trolley via a ball joint.  It is assumed that the 
pendulum exhibits only the fundamental frequency of 
vibration, with an approximate natural period of  

 

 g
lT π2= , (1) 

 
where g is the acceleration of gravity and l is the pendulum 
cable length. 

The static free-body diagram for a three-dimensional 
pendulum is shown in Fig. 1, where θ represents the angle of 
the pendulum with the vertical in the x-z plane, and φ 
represents the angle of the pendulum with the vertical in the y-
z plane.  The xyz system translates, but does not rotate with the 
trolley. 

 
FIGURE 1:  DIAGRAM OF CRANE AND PATH 

 
Given the assumptions as stated, the tension force in the cable 
is equal to the force of gravity component in the cable 
direction as shown by   
 

 )cos()cos( φθgT FF = . (2) 
 
The tension force is decomposed into components in the three 
coordinate directions by the angle of the pendulum: 
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Expanding the terms from Eq. (3) with Eq. (2) allows the 
tension force components to be defined in terms of the force 
of gravity and the angle of the pendulum: 
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The nonlinear system presented in Eq. (4) is linearized by a 
small angle approximation.  The tension force components can 
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thus be reduced to linear equations in terms of the force of 
gravity and the pendulum angle, 
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Since the force of gravity Fg is assumed to be constant, Eqs. 
(5) are linear and decoupled; thus, the superposition principle 
can be applied to the vibration calculations of each coordinate 
direction independently, as done in [6-9] for motion along one 
dimension. 

Vibration is induced in the payload by applied tensile 
cable forces.  The time-varying amplitude of vibration of the 
crane payload at time t due to an applied pulse force at time 
ti<t will be written as Vti(t).  The subscript indicates the time at 
which the vibration was induced, while the parenthetical value 
indicates the time at which the vibration amplitude is 
evaluated.  Then, the total amplitude of time-varying vibration 
at time t due to all previous pulse forces is equal to the sum of 
all Vti(t) as expressed by  
 

 ( ) ∑=
i

i ttVtV )( . (6) 

The forces on the pendulum are proportional to its 
acceleration, which in turn is proportional to the vibration 
amplitudes.  In accordance with the case of a pendulum 
suspended from a trolley following a curvilinear path, this 
study will consider acceleration due to two sources: tangential 
and centripetal acceleration.  The resultant acceleration at time 
ti is the vector sum of accelerations from these two sources, 
 

 ( ) )()()( ttVtatata iitici ∝+= , (7) 
 
and is proportional to the induced vibration at time ti. 

For the purposes of vibration elimination, the 
proportionality constant between vibration amplitude and 
accelerations can be absorbed into the vibration amplitude (the 
units of Vti(t) are irrelevant since the sum of the time-varying 
amplitudes of vibration will eventually be driven to zero).  
Other sources of acceleration, such as Coriolis effects, are 
assumed to be negligible.  By incorporating Eq. (7) with Eq. 
(6), the time-varying amplitude of vibration at time t can be 
expressed as the sum of current accelerations and vibrations 
induced at previous times (i.e. the vibration accumulates): 
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where δt denotes an infinitesimal time step. 

The goal of this research is to cause the amplitude of 
vibration to go to zero at the stopping position and time of the 
path-constrained trolley.  In the next section, two command 
shapers will be developed to achieve this.  

DEVELOPMENT OF GENERALIZED CONSTRAINED 
PATH COMMAND SHAPERS 

To drive induced vibrations to zero, command shaping 
techniques are invoked.  Here, the generalized CTV shaper is 
developed first to account for both centripetal and tangential 
accelerations.  Then, the simplified TV shaper is developed 
accounting for only tangential accelerations. 
 
Development of CTV Shaper 

Vibrations that are induced at times t+aT (for integer a) 
sum, causing the vibration amplitude to increase, and 
vibrations that are induced at times t+aT/2 cancel (ref. Fig. 
3b).  The vector quantities in Eq. (8) are decomposed into 
scalar quantities in the x and y directions, then—according to 
the command shaping method—the vibrations induced at each 
multiple of half-period times are required to cancel, giving 
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In Eqs. (9), m and n are defined as  
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where tf is the move time for the trolley, and └ ┘ denotes the 
floor function.  For example, if the trolley must come to rest 
by time t=3T, then n=6.  The value of m will depend on 
resolution of the discretization, δt. 

To determine the impulse magnitudes and times necessary 
to drive vibration to zero, Eqs. (9) must be expanded in terms 
of the trolley accelerations, which requires ac and at in Fig. 2 
to be resolved into x- and y-components.  To accomplish this, 
define the angle Ψ as the angle between the x-direction and a 
vector between point s and the center of the osculating circle 
at point s as shown in Fig. 2.  Observe that in general, Ψ is a 
function of time and path geometry:  Ψ= Ψ(s(t)). 
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FIGURE 2: RADIUS OF CURVATURE AND ANGLE FOR ANY 

POINT ALONG THE CONSTRAINED TROLLEY PATH 
 
With this definition, Eqs. (9) are expressed in terms of trolley 
accelerations ac(t) and at(t), yielding: 
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Equations (11) are constraint equations that must be 

satisfied to yield zero payload vibration at the stopping time tf.  
Observe that the dot products are a function of Ψ, which itself 
is a function of path geometry and time. In the development of 
the CTV shaper, centripetal effects are considered.  The 
centripetal acceleration of the payload is modeled as 
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s
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where ρ(s) is the radius of curvature of the path and v(t) is the 
velocity of the trolley.  Note that it is assumed the velocity and 
path of the crane payload is equal to the velocity and path of 
the trolley because a small angle approximation was made.  
The velocity term in Eq. (12) is a function of the acceleration 
along the path, as given by 
 

 ( ) ( )∫=
t

t dttatv
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Because the equations for the shaper have been derived in 
discrete time, Eq. (13) can also be written as a discrete sum.  
At any instant, induced vibration is proportional to the net 

acceleration which is a function of velocity and ρ(s(t)); 
consequently, there is vibration induced at each infinitesimal 
time step δt as shown in Fig. 3a.  For the continuously induced 
vibration to cancel, it is necessary that vibration induced in 
phase (i.e. induced at time multiples of T) cancel with 
vibration out of phase (i.e. induced at time multiples of T/2) as 
indicated in Eqs. (12,13) and in Fig. 3b. 
 

 

 
FIGURE 3:  (a) DISCRETIZED CONTINUOUSLY INDUCED 
CENTRIPETAL VIBRATION.  (b) ILLUSTRATION OF THE 
ADDING AND CANCELING OF VIBRATIONS IN AND OUT 

OF PHASE 
 
 

For positioning the crane, the reference velocity profile, 
vR(t), is convolved with A(t), the designed command shaper, to 
give the shaped velocity profile; differentiation of this shaped 
velocity profile yields the trolley acceleration along the path, 
as shown by 

 
  )()()( tAtvtv RS ∗=  and (14) 
 )()( tvta St &=  (15) 

 
where * is the convolution operator and an over dot denotes 
time differentiation. Fig. 4 illustrates the process of 
determining at from vR.. 

This paper assumes the approximation that the crane 
can exactly follow the shaped velocity profile (so that at(t) 
equals the actual trolley tangential acceleration); otherwise the 
crane dynamics must be considered. 
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FIGURE 4: DETERMING SHAPED VELOCITY AND 

ACCELERATION ALONG THE PATH FROM CONVOLUTION 
 

The impulse magnitudes and times for the CTV shaper, 
A(t) in Eq. (14), are solved for numerically such that the zero-
vibration constraints of Eqs. (11) are satisfied), then 
normalized by the sum of accelerations as shown in Eq. (16) 
to give the amplitudes of the CTV shaper. 
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Notice that, in general, there are many solutions for the 

under-constrained Eqs. (11). Next, a simplification is made to 
Eqs. (11) to develop the simplified TV shaper, and a method 
of solving these equations is presented. 
 
Development of TV Command Shaper 

In this sub-section, the TV shaper is developed by 
considering centripetal effects to be negligible.  Centripetal 
effects can also be eliminated, and Eqs. (11) verified, by 
considering the trolley to be constrained to follow a straight 
line.  In this sub-section, the straight-line simplification is 
presented, then the TV shaper for a curvilinear path is 
developed. 
 
Straight-Line Verification of Shaper Equations The 
TV and CTV shaper methods can be verified by comparing a 
straight-line simplification of Eqs. (11) with the well-known 
ZV command shaper [5-7].  For a straight-line path 
 

 ( ) 0)( and ,0 =Ψ= ttac . (17) 
 
Eqs. (17) are substituted into Eqs. (11) to obtain 
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Normalization of Eqs. (18) by Eq. (16) results in a description 
of all possible shapers.  There are many solutions to this 
under-constrained problem; however, to determine the 
simplest and quickest shaper, Eqs. (18) are solved by setting 

as many terms as possible to zero, with the nonzero terms 
occurring as early as possible.  It is known that at(0) ≠ 0, so it 
is not possible to set all terms in the first equation of Eqs. (18) 
to zero, but the first equation can be solved with only one 
nonzero term: 
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All other terms can be set to zero to satisfy all equations in 
Eqs. (18).  Normalizing Eq. (19) according to Eq. (16) defines 
a shaper with equal impulses at times 0 and T/2.  Thus the 
CTV shaper for linear motion is the well-known ZV shaper 
discussed in [5-7]. 
 
Development of TV Shaper for Constrained Curvi-
linear Path.  This section will show that at least three 
impulses are required to eliminate payload vibration induced 
along a curvilinear path.  The TV shaper is designed to 
minimize payload vibrations induced by accelerations along 
the tangential direction of the constrained curvilinear trolley 
path.  The TV shaper is derived by aligning x-axis with the 
radial direction at the beginning of the path and neglecting 
centripetal effects (after assuming (vt)2/ρ  << 1), giving  
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Using Eq. (20), the CTV constraints in Eqs. (11) simplify to 
 

0
2

sin
22

sin
2

0
2

sin
22

sin
2

0
2

sin
22

sin
2

,3,1,2,0

,3,1,2,0

,3,1,2,0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ψ⎟

⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ψ⎟

⎠
⎞

⎜
⎝
⎛

∑∑

∑∑

∑∑

==

==

==

n

j
t

n

j
t

n

j
t

n

j
t

n

j
t

n

j
t

TjtmTjtmaTjtmTjtma

TjtTjtaTjtTjta

TjTjaTjTja

KK

KK

KK

M

δδδδ

δδδδ

 (21a) 

 

0
2

cos
22

cos
2

0
2

cos
22

cos
2

0
2

cos
22

cos
2

,3,1,2,0

,3,1,2,0

,3,1,2,0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +Ψ⎟

⎠
⎞

⎜
⎝
⎛ +

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ψ⎟

⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛Ψ⎟

⎠
⎞

⎜
⎝
⎛

∑∑

∑∑

∑∑

==

==

==

n

j
t

n

j
t

n

j
t

n

j
t

n

j
t

n

j
t

TjtmTjtmaTjtmTjtma

TjtTjtaTjtTjta

TjTjaTjTja

KK

KK

KK

M

δδδδ

δδδδ

. (21b) 

 
For the derivation of the TV shaper presented in this 

paper, assume that tangential acceleration is caused by 
impulses occurring over a negligible time span (i.e. the crane 
actuators have negligible dynamic effects).  As before, the 
desired solution should have a minimum number of impulses 
occurring at the earliest possible times.  The only term in Eqs. 
(21) that is initially guaranteed to be nonzero is at(0), so the 
simplest form of the first equation of (21b) is solved by 
keeping only j=0,1 to give 
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suggesting that at(T/2) ≠ 0.  Because this term also appears in 
the first equation of (21a), another constraint using only j=1,2 
is 
 

 ( ) ( )( )TTaTTa tt Ψ=⎟⎟
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⎛ sin

2
sin

2
, (23) 

 
which suggests that at(T) ≠ 0; thus, the other parts of Eq. (21) 
having at(T) need to be considered.  Additionally, Eq. (22) no 
longer holds, because (23) required that terms up to j=2 be 
kept.  Hence, Eq. (23) is amended with this additional term 
giving 
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Eqs. (23,24), along with the normalization requirement Eq. 
(16), give three equations for the three unknown impulse 
amplitudes )(,)( ,)0( 2 TAAA T , which are then convolved with 
the reference profile to produce the shaped profile needed for 
no payload vibration.  Observe that when solving for the TV 
shaper, it is not required to know the reference profile in 
advance, as it was for the CTV shaper. 

Eqs. (23,24) show that at least three impulses are 
necessary to achieve zero vibration when accounting only for 
tangential accelerations along a constrained generalized 
curvilinear path. 

Fig. 5 illustrates the TV shaper, in which three impulses 
A1, A2, A3 accelerate the trolley along the curved path.   

 

 
FIGURE 5:  ILLUSTRATION OF 3-IMPULSE SEQUENCE 

USED TO ACCELERATE TROLLEY ALONG PATH 

EXPERIMENTAL RESULTS FROM MODEL CRANE 
This section presents the results of implementing the CTV 

and TV shapers on an actual miniature crane constrained to 
follow a circular path.  The benefits of the shapers will be 
quantified and the robustness of the shapers evaluated. 

The CTV and TV shapers were applied to a model bridge 
crane in the Advanced Crane Controls Laboratory at the 
Georgia Institute of Technology [15].  The trolley of the mini 
bridge crane was constrained to traverse 90-degrees of a 
circular path of radius R=25 cm.  The payload was suspended 
with a nominal cable length of 55 cm.   

A Siemens AG PLC motion control system drives the two 
axes of the bridge crane.  The PLC was programmed to 
always accelerate the trolley linearly in time to a given 
velocity in 0.5 seconds.  Thus, for this application, the 

tangential acceleration is modeled as either zero or--during 
periods of acceleration--as  
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where τ is the acceleration start time. 

The crane is moved with three acceleration pulses at times 
0, T/2, and T, and three deceleration pulses at aT/2, (a+1)T/2, 
and (a+2)T/2 where a is an integer.  Let the velocity at time 
T/2 be v1, the velocity at time T be v2, and the velocity at time 
aT/2 be v3.  Then to decelerate, the velocity at time (a+1)T/2 
is v2, at time (a+2)T/2 is v1, and at time (a+2)T/2+0.5 and 
beyond is 0.  Notice that the stopping time must be integer 
multiples of half the natural payload period. 

Substituting (25) into (11) and imposing that the only 
nonzero tangential accelerations occur at the chosen impulse 
times give the necessary constraint equations for the CTV 
shaper:  
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The impulse amplitudes for the CTV shaper are found by 

solving Eq. (14) for A(t), subject to the constraints of Eqs. 
(26).   

The impulse amplitudes for the TV shaper are found by 
solving Eqs. (23,24) and Eq. (16) for the impulse amplitudes. 

The normalized impulse magnitudes and times for the TV 
shaper implementation was calculated to be as shown in Eq. 
(27), and the solution for the CTV shaper is shown in Eq. 
(28).  
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In this example the commanded speed along the trolley 

path is a step of magnitude vmax=0.14 m/s.  This tangential 
speed command is convolved with the designed shapers.   

Three test cases were run on the model crane: TV shaper 
implementation, CTV shaper implementation, and unshaped 
movement.  In each case, the inverse shaper was used to 
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decelerate the trolley.  The actual recorded trolley path for all 
experiments is shown in Fig. 6. 

 

 
FIGURE 6:  CART POSITION FOR EACH EXPERIMENT 

 
Fig. 7 shows the measured velocity in the direction 

tangent to the constrained path for the three different shapers 
(TV, CTV, and unshaped).  The measured velocity 
perpendicular to the path was verified to be zero, thus 
satisfying the imposed path constraint.  Observe that Fig. 7 
highlights an artifact often encountered with command 
shaping:  a shaped input command generally takes longer to 
execute than the original (unshaped) command, thereby 
introducing a move-time penalty that must be considered 
when designing the positioning system. 
 

 
FIGURE 7:  MEASURED SPEED ALONG PATH 

 
Fig. 8 shows a plot of the payload position during 

movement, as recorded by an overhead camera mounted on 
the trolley.  Notice that of the three test cases, the CTV shaper 
causes the payload to sway the least during the point-to-point 
movement of the trolley.  When the trolley stops moving, the 
residual payload vibration traces an ellipse.  Fig. 9 is a 
comparison of the residual payload vibration projected along 
the major axis of the ellipse traced by the payload after the 
trolley has come to rest at its final position.  The CTV shaper 
has marginally less swing magnitude than the TV shaper in 
this case. 

 
FIGURE 8:  MEASURED POSITION OF TROLLEY (DASHED 
LINES) AND PAYLOAD (SOLID) FOR THE THREE CASES 

 
Fig. 9 indicates that the vibration resulting from unshaped 

point-to-point motion is 160 mm peak-to-peak.  Both the CTV 
and TV shaper reduce the vibration to approximately 7% of 
the unshaped amplitude. 

 

 
FIGURE 9:  COMPARISON OF RESIDUAL VIBRATION 

FOR THE THREE CASES 
 
Sensitivity Analysis of Shapers 

Experiments were performed on the model crane to test 
the robustness of the CTV shaper to modeling errors.  Three 
types of modeling errors were tested: errors in path radius 
specification, errors in natural frequency calculation (i.e. the 
payload is hoisted to a height different from the designed 
height), and errors in system type.   

The sensitivity curves in Fig. 10 highlight the robustness 
of the command shaper [11].  The abscissa of Fig. 10a gives 
the normalized frequency, defined as the actual system 
frequency divided by the modeled frequency.  The ordinate 
shows the normalized residual vibration magnitude, defined as 
the sum of the payload vibration amplitudes projected along 
the major and minor axes of the ellipse traced during the 
residual vibration. 

The sensitivity curve for natural frequency (Fig. 10a) 
indicates that the shaper is relatively insensitive to modeling 
errors near the nominal value, but the performance degrades 
rapidly when the error is larger than 40%.  When the actual 
path radius is much smaller than the radius used for designing 
the shaper, the residual vibration tends to increase, as in Fig. 
9b, because the smaller radius results in higher centripetal 

End 

Start 

CTV Shaper 

Unshaped 

TV Shaper 
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acceleration inducing components of payload swing larger 
than the command shaper is designed to account for. 

 

  
FIGURE 10:  SENSITIVITY CURVES FOR ERRORS IN PATH 

RADIUS AND PENDULUM LENGTH 
 

Fig. 11 shows the residual vibration resulting from using 
a single-mode shaper on a double-mode (double pendulum) 
system.  In this case, the double-mode system was a payload 
mass hanging approximately 10 cm from the crane’s hook.  
The payload mass was about 10 times the crane’s hook mass.  
The hook’s length of 55 cm was used to design the impulse 
amplitudes of the shaper.  Notice that only a marginal amount 
of additional vibration is induced in this double-mode system 
when compared with Fig. 9 for a single mode system, 
illustrating that the shaper is robust to modeling errors in the 
order of the system. 
 

 
FIGURE 11:  RESIDUAL VIBRATION FOR ERRORS IN 
SYSTEM TYPE:  SINGLE MODE SHAPER USED ON 

DOUBLE MODE SYSTEM 

DISCUSSION 
While the TV shaper allows for any arbitrary stop time, 

the stop time for the CTV shaper must occur at integer 
multiples of half-periods in order to sufficiently cancel the 
continuously-induced vibration from centripetal effects.  This 
stop time must be known when solving the CTV shaper 
equations.   

Because of the continuously-induced nature of centripetal 
acceleration, for an exact solution of the CTV shaper in Eqs. 

(11), an infinite number of constraint equations must be 
satisfied simultaneously.  However, this work has shown that 
the equations can be discretized in time and a satisfactory 
solution can be found by solving one equation for each time 
step.  Because tangential acceleration is not continuous, the 
TV shaper has a simpler solution that requires only three 
impulses, as indicated in Eqs. (23,24) and Fig. 5. 

In the implementation of the two shapers, the CTV shaper 
proved to be only a slight improvement over the simplified TV 
shaper, indicating that centripetal effects in the tested case are 
minor.  Additionally, in this case the TV shaper is slightly 
faster than the CTV shaper by about 0.5 sec, as indicated in 
Fig. 7 and the unshaped motion is slightly faster than the TV 
shaper.  For these reasons, the TV shaper may be more useful 
that the CTV shaper in cases where speed of response is 
critical.   

The CTV shaper was also tested with modeling errors to 
determine the robustness.  From the results displayed in Fig. 
10, the CTV shaper was found to be relatively insensitive to 
modeling errors in path radius.  For example, if a shaper 
designed for a certain radius (in this study, R=25 cm) is used 
to move the trolley along a path of larger or slightly smaller 
radius, then the residual vibration will remain at an acceptable 
level.  However, if the actual radius is less than about 60 % of 
the modeled radius then vibration increases significantly, as 
shown in Fig. 10.  The CTV shaper is more sensitive to 
decreases in radius because the unmodeled component of the 
centripetal acceleration is inversely proportional to the radius.  
The CTV shaper has a similar sensitivity to natural frequency 
modeling errors as other 3-impulse shapers [11].   

A possible future extension of this study is to account for 
Coriolis effects and other inherently nonlinear aspects of the 
crane and pendulum system.  The shaper designed to account 
for these nonlinearities could then be compared to the TV and 
CTV shapers to determine the impact of the nonlinear effects.  
Further comparisons should be made between these shapers 
and other types of command pre-filtering, such as S-curve 
acceleration profiles.  Also, the CTV and TV shapers should 
be experimentally verified with other path geometries. 

CONCLUSIONS 
Two command shapers were developed to cancel 

vibration of a payload suspended from a trolley constrained to 
follow a specified curvilinear path.  The designed CTV shaper 
cancels vibration induced by both tangential and centripetal 
accelerations, while the TV shaper cancels only tangentially 
induced vibrations.  It was determined that the TV shaper can 
be implemented with three impulses occurring at times 0, T/2, 
and T.  It was also determined that in order to cancel 
centripetal acceleration-induced vibration with the CTV 
shaper, the stop time must be an integer multiple of T/2. 

Both shapers were tested experimentally on a model crane 
constrained to follow a circular path.  Experimentally, the 
peak-to-peak vibration of the unshaped system was 160 mm.  
The TV shaper resulted in a peak-to-peak vibration of less 
than 12 mm, or about 7% of the unshaped vibration.     

The shapers were found to be robust to modeling errors in 
both natural frequency and radius.  Both the TV and CTV 

(a) (b) 
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shapers can be highly effective at canceling out residual 
vibration in this constrained path problem.  
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