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SUMMARY

Helicopters are versatile aerial vehicles and are ideal for a variety of operations. How-

ever, recent studies have shown that the number and rate of accidents associated with he-

licopters are increasing. In the 2017 most wanted list, the National Transportation Safety

Board (NTSB) recommended expanding the use of flight data recorders in helicopters. This

action means that the amount of flight data for routine helicopter operations is expected to

proliferate in the coming years, and it is crucial to utilize the information appropriately for

knowledge discovery or anomaly detection. Data mining techniques are widely used in

the commercial fixed-wing aviation domain to improve operational safety retrospectively.

However, studies on anomaly detection for flight data in the rotorcraft domain are not as

prevalent, potentially due to the lack of installed flight data recorders and vague definitions

of phases of flight. One of the objectives of this research is to develop a framework for

improving flight safety specific to rotorcraft operation by retrospectively discovering po-

tential anomalies in flight data records. To pave the way for the task of anomaly detection,

we first focus on phases of flight identification, and several methods are proposed to find

the homogeneous flight segments. A few flight samples with pre-labeled flight phases were

used to compare these techniques, and results show that a regression-based method and a

filtering approach can identify flight phases in different altitude regions.

Additionally, exceedance analyses are typically used in flight data monitoring (FDM)

for anomaly detection. However, they usually rely on pre-defined thresholds, which might

vary depending on the type of operations or the vehicles considered. Without defining

thresholds in advance, we proposed a sequential approach that contains three modules for

detecting different levels of anomalies. To ensure the effectiveness of the methods se-

lected, synthetic and simulated data are used to compare the performance of the proposed

techniques before applying them to the actual flight segments. Then, specific groups of

initial climb and the approach segments from a real dataset are used to demonstrate the va-

xiii



lidity of the methods chosen in this study. Our test indicates that using functional principal

component analysis (FPCA) or a convolutional variational autoencoder (CVAE) can extract

shape features in time-series signals in a parsimonious fashion. Along with a density-based

clustering method (DBSCAN), we can identify the shape anomalies in flight parameters.

Although the detected anomalies might not directly be associated with hazardous events,

it may be helpful to assist helicopter operators in discovering patterns not conforming to

their standard operating procedures or that do not follow normal operations.

The exploratory analysis aims to develop an efficient methodology to explore the safety

envelope of some flight maneuvers and to acquire recovery trajectories for hazardous events.

The autorotation maneuver is selected as a use case due to its time criticality and low occur-

rences in routine helicopter operations. To facilitate the process of predicting the responses,

surrogate modeling is used in this study. With this implementation, the responses can be

predicted without going through the optimization. Among all the types of surrogates tested

in this study, Gaussian process regression with MaxPro design is an adequate method be-

cause it can capture the responses of some known functions in both the low or the high-

dimensional spaces. To predict the required controls for an unobserved condition in the

operational space, we proposed a surrogate that contains two Gaussian processes for han-

dling functional responses in unequal lengths. Finally, a sensitivity analysis is conducted

to identify the key parameters that affect the shape of the safety envelope.

xiv



CHAPTER 1

INTRODUCTION

1.1 Background

Helicopters are versatile aerial vehicles and they are ideal for a wide variety of operations,

such as search and rescue, sight-seeing, and oil rig support. The rotary-wing configura-

tion, which is fundamentally different from fixed-wing aircraft, allows helicopters to have

the capability to take off vertically and hover in the air. The superior maneuverability of

helicopters relies on a good rotor system design, which was a challenging task at an early

development stage. It took thirty more years to demonstrate the first practical helicopter

flight compared with the Wright brother’s success in 1908. Over the years, engineers have

come up with different design variants of helicopters ranging from the ones with tandem

rotors, tilt rotors to coaxial rotors and have also introduced several features to improve

flight safety, such as using modern avionics onboard for enhancing the situation awareness

and employing a wire cutter for preventing wire strike incidents. Helicopter flights are

supposed to be more reliable in recent days than in the past; however, people still have

doubts about the safety of rotorcraft operations. According to [1], helicopter flights are

85 times more dangerous than automobile transportation. From a recent safety report by

the United States Helicopter Safety Team (USHST) [2], it is shown in Figure 1.1 that the

fatal accident rate has an increasing trend. In order to reach the goal of 20% reduction of

fatal accident rate from the baseline, more attention needs to be directed to the safety of

rotorcraft operations.
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Figure 1.1: Helicopter accident statistics from USHST [2]

To understand the significant events that have happened in rotorcraft accidents, Rao

et al. [3] used a state-based accident model to analyze 5051 accidents in the National

Transportation Safety Board (NTSB) database from 1982 to 2008. In Figure 1.2, which is

drawn based on the data provided in [3], more than half of the fatal accidents for helicopters

terminated in a state relevant to inflight collisions with either terrain/water or an object.

We can also observe that a small proportion of these accidents do not associate with a

recognizable end state, potentially due to damaged recorders or no recorder on board. In

Figure 1.3a, hazardous events for both fatal and non-fatal accidents are identified, and the

top two on the chart are the loss of control (LOC) and the controlled flight into terrain

(CFIT). By looking at the likelihood versus consequence plot in Figure 1.3b, these two

hazardous states are situated at the top right corner; therefore, their significance in terms

of the occurrence and the severity cannot be ignored. To further dive into what are the

triggers for these hazardous events, all precursory events for the LOC and the CFIT are

charted separately in Figure 1.4 and 1.5 along with the likelihood versus consequence plots.

Obviously, the inflight planning/decision and the remedial actions are the top triggers for

these hazardous events. Thus, decision-making is essential for survival in such hazardous

events, especially for those that are time-critical.
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Figure 1.2: Terminal states for fatal accidents (data from [3])

(a) Number of cases for hazardous events (b) Likelihood versus consequence plot

Figure 1.3: Hazardous events for both fatal and non-fatal accidents (data from [3])

(a) Number of cases for the triggers of the LOC (b) Likelihood versus consequence plot

Figure 1.4: Top triggers for the LOC on both fatal and non-fatal accidents (data from [3])
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(a) Number of cases for the triggers of the CFIT (b) Likelihood versus consequence plot

Figure 1.5: Top triggers for the CFIT on both fatal and non-fatal accidents (data from [3])

To look at the helicopter accidents from another perspective, the U.S. Joint Helicopter

Safety Analysis Team (JHSAT) [4] provided a compendium report in which 523 helicopter

accidents occurred in the early 2000s were investigated. In Figure 1.6, the accidents are

grouped by the occurrence category, and the top two on the chart are the LOC and the

autorotation. Another way to categorize these accidents is to examine what phases of flight

they are associated with. As shown in Figure 1.7, the majority of accidents, including

both fatal and non-fatal ones, are associated with the landing phase. If we only considered

the fatal accidents, the en-route phase would be the one to have the most prominent case

number. Given the availability of accident statistics, researchers can have a better picture of

what happened during accidents and are also able to identify prevalent patterns in multiple

accidents.
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Figure 1.6: Helicopter accidents by occurrence category [4]

Figure 1.7: Helicopter accidents grouped by phases of flight [4]

To determine the root cause of aviation accidents, investigators typically use the 5M

model [5] for accident analysis. The 5M model contains five ingredients: man, machine,

medium (environment), mission, and management. To look at the accidents from the per-

spective of “man” in 5M, pilots who had less than 500 flying hours are accounted for 45%

of the accidents among all cases considered in [4]. The issue of immature pilots can be

remedied through flight training programs. With more experience gained from either ac-

tual flights or simulators, the chances of making good pilot decisions can be potentially

increased. When looking from the perspective of “machine” in 5M, 28% of the accidents

5



can be attributed to system component failure as shown in Figure 1.6. To enhance the

reliability of parts in a helicopter, sensors can be placed inside the vehicle for health mon-

itoring and with the information acquired, a comprehensive maintenance schedule can be

established. For the third “M” medium, inferior operating conditions like bad weather or

proximity to obstacles are likely to increase the risk of accidents. On a foggy day, pilots

need to pay additional attention to the change of weather, which tends to increase their

workload. If the weather information can be predicted and be fed to pilots promptly, they

may be better aware of the situation; thus, this type of risk can then be mitigated. Similar to

the medium, high-risk missions may drastically increase the workload for pilots. An exam-

ple of high-risk missions would be an emergency medical service (EMS) type of mission

that is usually planned quickly and has inadvertent events during the operation. The last

“M” refers to the management and it is the overarching element of the 5M model. Accord-

ing to [5], the management dictates the distribution of resources, and the way resources

being allocated would determine its success or failure. Suppose an operator runs the busi-

ness in a mountainous area and the management decided not to purchase terrain warning

systems for its helicopters. On those days with low visibility conditions, the operations

would have higher risks than those on clear days.

A safety management system (SMS) [6] is the standard method for mitigating the risk

of aerial operations. There are four pillars in the SMS: the safety policy, safety risk manage-

ment, safety promotion, and safety assurance. We will focus on safety assurance because

some activities, including data analysis and hazard identification, are directly related to

flight data monitoring (FDM), which is also an approach for risk mitigation. Based on

the Civil Aviation Authority (CAA), FDM is a “systematic method of accessing, analyz-

ing, and acting upon the information obtained from digital flight data records of routine

flight operations to improve safety. It is a proactive and timely use of flight data to identify

and address operational risks before they can lead to incidents and accidents.” The Fed-

eral Aviation Administration (FAA) defines FDM as “the technology and methodology for
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collecting and analyzing data recorded in flight.” According to these quotes, three major

components of an FDM program are described as the following:

• Data collection and acquisition

• Flight data analysis

• Data visualization and remedial actions

A detailed process flow of a typical FDM program is extracted from [7] and it is shown

in Figure 1.8. The feedback mechanism is essential to improve the safety of operations

in a retrospective manner. Two programs for helicopter operations in general aviation are

relevant to FDM: Helicopter Flight Data Monitoring (HFDM) and Health and Usage Mon-

itoring System (HUMS). In the HFDM, flight data analysis primarily focuses on detecting

exceedances and safety-related events. Exceedances are limits or thresholds placed on

flight parameters to detect abnormal timestamps in the flight data records. Manufacturers

and operators typically determine these values, and they may not stay the same for various

types of missions. Moreover, events are usually defined through multiple flight param-

eters over a period of time. Sometimes, due to the inaccessibility of certain parameters

in less-capable recorders, inferences need to be made on the missing parameters. In Fig-

ure 1.9, Payan et al. [8] organized several significant helicopter events into safety metrics

and prioritized them based on their severity. Once the results are obtained from either ex-

ceedance analysis or event detection, statistical analysis is a useful tool to uncover trends

and patterns.

In addition to the HFDM, the HUMS program focuses on monitoring the deterioration

of mechanical parts inside helicopters, and it is primarily implemented to prevent system

component failures. Typical parameters being monitored in the HUMS program are those

from the engine, transmission, and rotor systems. These acquired sensor data are used to

predict the failure times of the parts inside each system. With all information gathered
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from the HUMS, an intelligent maintenance schedule can be established and, as a result,

increase the airworthiness of the vehicle.

Figure 1.8: Process flow of a typical flight data monitoring (FDM) program [7]
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Figure 1.9: Categorization and prioritization of safety metrics for helicopter operations [8]

1.2 Motivation

In the early years when helicopters were first introduced to the aerial operation, they had

suffered from high accident rates due to a lack of knowledge on the rotary-wing vehicle.

With the improvements in rotorcraft design and system reliability, along with the expe-

riences gained from accidents, the accident rate continued to decline until a plateau was

reached. As pointed out in [9], one of the significant factors that affect the trend of the

accident rate is the pilot’s action. Compared to fixed-wing flights in commercial airliners,

helicopter flights had higher accident rates during the period investigated in [10]. Thus,

more attention needs to be directed in this domain. Further, a more recent report from

the U.S. Helicopter Safety Team (USHST) [11] indicates that, even though the number of

helicopter accidents had dropped for the past few decades, it started to go in a reverse di-

rection since 2015. In order to gain a fuller picture of what is happening in an incident or

an accident, the use of flight data recorders onboard helicopters is consequential, and this
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action was recommended by the National Transportation Safety Board (NTSB) [12]. With

that being said, the amount of flight data records available for investigation would grow.

Therefore, it is necessary to have a toolkit for analyzing the data and giving feedback to the

relevant parties based on the results from the analyses.

To support the recommendation of using flight data recorders for risk mitigation, the

Federal Aviation Administration (FAA) initiated an effort to build an information system

for monitoring flight data records. This endeavor is a collaboration between multiple or-

ganizations, including operators, USHST, the Helicopter Association International (HAI),

and universities. The anticipated end product would be similar to the Aviation Safety Infor-

mation Analysis and Sharing (ASIAS) used in fixed-wing commercial aviation but adapted

to fulfill rotorcraft needs. In this program, flight data records from participating operators

are provided to HAI under a Memorandum of Understanding (MOU), and sensitive infor-

mation is removed before placing these data into a database. The research teams can then

analyze the data and prototype relevant metrics for the platform. The program described

above is illustrated in Figure 1.10, and this partnership is envisioned to create some useful

analytic tools for providing insights on the corresponding operation. Some earlier research

achievements can be found in [13][14][15]. Flight data records from the same database will

be used in this study to continue the effort. During the course of the study, it is observed

that the detection of some safety-related events would rely on the knowledge of phases of

flight. This dependency motivates us to first tackle the phases of flight identification, and to

treat it as a prerequisite for other successive tasks such as knowledge discovery or anomaly

detection.
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Figure 1.10: The concept of HFDM for rotorcraft ASIAS

Data science has become a popular area of study in the past decade. Many techniques

in machine learning and data mining have been widely applied to various industries. Since

flight data analysis is an essential element of the FDM, it is intuitive to leverage these

methods to uncover the trend in the data. In the process of a typical machine learning

task, the first step is to acquire the data that are sufficient for understanding the behavior

of a system. Next, the techniques suitable for achieving the objective are selected, and

the corresponding analyses are conducted. With the results summarized from the analyses,

it is expected that the patterns of a system can be revealed. In general, these techniques

can be categorized into two separate classes: (1) supervised learning and (2) unsupervised

learning. The main difference between these two classes is that the former is suitable for

classification and prediction tasks while the latter is more capable of pattern recognition.

The selection of the methods within these two classes would primarily be determined based

on the availability of the training data. It is anticipated that the safety of aerial operations

can be enhanced by applying the appropriate techniques to detect abnormal patterns in

the flight data, and providing constructive feedback to pilots or the management team.

Numerous methods have already been implemented to analyze flight data records from
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commercial airliners, and their efficacy is demonstrated in the relevant literature. Given

the dissimilarity between the operations of helicopters in general aviation and fixed-wing

flights in commercial aviation, some modifications may be required if we intend to leverage

those methods to the rotorcraft domain. Some key aspects worth to be examined when

considering applying data science methods to flight data records from rotorcraft operations

are described as follows:

• Diversity: flight data records from commercial and fixed-wing general aviation usu-

ally follow a routine structure based on the corresponding mission profile. However,

the flight profiles from rotorcraft operations may be more diverse due to various mis-

sion types ranging from search and rescue, air ambulance, power line cleaning, to

even offshore operation. In Figure 1.11, an example of categorizing the flight data

records into different hierarchical levels is provided. The heterogeneous nature of the

helicopter flight data encourages the need to group similar flights before the analysis,

and only with a proper grouping, a valid comparison can be guaranteed.

• Scalability: flight data recorders typically can record ten or more flight parameters,

including flight parameters and even engine variables. With multiple vehicles oper-

ated daily, a large amount of data is required to be processed. The performance of

the analytic tool should not degrade significantly as the sample size grows. Suppose

the turnaround time for the analysis is considerably lengthy; in that case, the pilots

or the management team may not get the feedback promptly, and it could lead to a

higher risk in operation.

Aside from using post-flight analysis to enhance the safety of rotorcraft operations,

knowing how to avoid hazardous events and react optimally upon encounters are also es-

sential for accident mitigation. This approach is more proactive because it aims to guide

pilots during the encounter of the event rather than afterward. The operational space can

be thought of as the safety envelope of a hazardous event, and the process of exploring
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Figure 1.11: Different levels of categorization for flight data records

the space might be time-consuming based on various model complexity and optimization

algorithms. Since the surrogate modeling with the design of experiments is typically used

in the design space exploration, this approach may be suitable for operational space ex-

ploration. Two characteristics of a hazardous event considered in this study are rareness

and time criticality. These events are rarely observed in a typical FDM program, and pi-

lots could have less experience dealing with them. A flight simulator is a valuable tool to

explore the unknown regions of the flight envelope, and it can also be used to train pilots.

Another feature of a hazardous event is time criticality, which means that remedial action

must be taken as soon as the events start. The delayed implementation of required recovery

would be detrimental to the operation and increase the accident risk. Because the autorota-

tion meets these two characteristics and also ranks the top two occurrence categories in the

accidents from the compendium report [4], it is adopted as the use case for our exploratory

analysis.

Autorotation is a special type of maneuver specific to rotorcraft, and pilots would apply

this maneuver when helicopters experience engine failure. It is called autorotation because

the rotor is self-rotated to keep the vehicle afloat. During the event, no power is supplied to

the main rotor to produce the lift for sustaining the weight of the vehicle. In the autorota-

tion, the main rotor is primarily driven by the airflow from beneath, and this phenomenon
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is similar to a windmill effect. The key to a successful autorotation depends on how pilots

manage the remaining energy in the rotor system. In the beginning, pilots would experi-

ence a sudden drop in altitude. If pilots try to pull the collective, which is the control for

increasing the lift, it will stall the rotor blades and quickly lose energy. Therefore, the FAA

helicopter flying handbook [16] instructs pilots to lower the collective initially for prevent-

ing rotor stall. Suppose the vehicle descends too fast without sufficient horizontal speed; in

that case, the rotor will enter into vortex ring state (VRS), a condition where the rotation en-

ergy is mostly used for producing vortices rather than generating the lift. It is a challenging

task for pilots to execute the maneuver appropriately under time constraints. Thus, finding

the optimal control trajectories that properly manage the remaining energy to achieve a

safe landing is important and knowing how to avoid the event in the operational space is

also consequential. The height-velocity diagram (H-V diagram, usually called “deadman’s

curve” in the community) is a tool for pilots to understand the dangerous zone of particular

combinations of height above ground and horizontal velocity. A typical H-V diagram is

shown in Figure 1.12. Pilots need to avoid the red regions for the entire flight to ensure a

higher margin of successful autorotation upon engine failure. In the past, the H-V diagram

was constructed through real test flights. It could be dangerous for those cases closer to the

real boundary. With the availability of a simulator and an appropriate surrogate model, it is

anticipated that the operational space can be better understood under different scenarios.

1.3 Relevant Studies

In this section, we will first review various techniques used for detecting anomalies in flight

data records from commercial fixed-wing aviation. To the best of our knowledge, there are

few data mining methods applied to flight data records from general aviation, especially

rotary-wing, potentially due to their heterogeneous nature and limited availability. It would

be interesting to learn how these existing approaches can be transformed or leveraged to

the rotorcraft domain. Since flight data records are in the forms of multivariate time series
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Figure 1.12: Typical height-velocity diagram [17]

and trajectory data, it is worth reviewing some recent data mining advancements on these

data types. More specifically, some studies relevant to time series clustering and trajectory-

based clustering were surveyed. The methods found in the literature might be useful for

detecting the spatial-temporal patterns and anomalies in the data.

For the safety envelope exploration of the autorotation maneuver, the studies relevant

to computing the optimal control were reviewed to support the work on the exploratory

analysis. Since surrogate modeling will be looked into to predict the safety boundary and

the corresponding controls, several types of research, including the design of experiments

and surrogate models for predicting functional responses, will also be covered.

1.3.1 Data mining application in flight data records

Amidan et al. [18] developed a methodology called morning report for finding anoma-

lous flights in commercial fixed-wing aviation. This methodology aims at relieving subject
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matter experts from screening large amounts of flight data “at night” by instead present-

ing them potential anomalous flights the next “morning.” First, the flight data records are

truncated into homogeneous segments, which correspond to phases of flight. Then, for a

specific flight phase, the multivariate time series is transformed into mathematical signa-

tures, which are essentially statistical properties of a quadratic polynomial fit of the original

time series. In the analysis, extracted mathematical signatures were clustered using the k-

mean algorithm. Each flight in its cluster was assigned an atypicality score, and it is a

metric created based on principal component analysis. For dealing with multiple flight

phases in a standard flight sequence, a more general metric called global atypicality score

was proposed. It is the combination of the p-value of the atypicality score and the cluster

membership score. All the flights considered in the study were ranked based on this metric,

and SMEs can use this information to identify anomalous flights.

Iverson [19] used a statistical-oriented and data-driven approach named Inductive Mon-

itoring System (IMS) to find anomalies in flight data records. IMS is a supervised learn-

ing approach where training data are required to construct the knowledge database. This

training set contains only the data from nominal operations, and the anomalous data were

excluded. The knowledge database consists of high-dimensional clusters formed by the

training data. Once it is constructed, the user can query the database for a newly observed

data point to see if it belongs to one of the nominal clusters. If a data point is close to the

boundary of a nominal cluster or far away from the cluster center, then it is flagged as an

anomalous point. This approach is similar to process monitoring in which the knowledge

database is the control chart rather than several groups of clusters. Temperature monitoring

sensor data in the wings of the STS-107 Columbia Space Shuttle were used to demonstrate

the capability of the IMS. The author claimed that the abnormal behavior in temperature

reading could be detected 3 minutes after the foam impact. This information could have

given crew members more time to find a countermeasure for alleviating the damage. A few

improvements on top of this framework mentioned in the paper are (1) dimensional reduc-
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tion of the parameter space and (2) to consider other clustering methods, such as distance

or density-based ones, for constructing the knowledge database.

Budalakoti et al. [20] proposed a method named sequenceMiner which aims at detect-

ing anomalies within discrete flight data records. A discrete flight parameter can be the

signal from a control switch which can be toggled on and off in the cockpit. This parame-

ter is different from a continuous flight parameter that typically represents the response of

a dynamical system. In this study, discrete flight parameters or sequences were clustered

using CLARA (Clustering LARge Applications) with the normalized Longest Common

Subsequence (nLCS) as the distance measure. The sequences far away from the medoid

of a cluster are declared anomalous sequences. The overall methodology is built upon a

probabilistic Bayesian network, and it outperforms the Hidden Markov Model (HMM) in

a test using synthetic data. From the analysis of a real dataset, sequenceMiner is capable

of detecting 13 suspect sequences out of 2200 while the SMEs confirm that 5 out of the 13

detected sequences are truly anomalies.

Das et al. [21] developed a method called Multiple Kernel Anomaly Detection (MKAD),

which seeks to tackle both continuous and discrete types of flight data records. In Multiple

Kernel Learning (MKL), a generic kernel, fundamentally a weighted sum of individual ker-

nel functions, is used to determine outliers based on the corresponding decision boundary.

This idea is similar to ensemble learning since each kernel has its prediction functionality.

In MKAD, one kernel is dedicated to continuous data while the other is for discrete data.

In the study, the continuous data are discretized using Symbolic Aggregate approXimation

(SAX), which can alleviate the impact of noise. Through this transformation, both types of

data are in discrete format, and the corresponding kernels are chosen to be the normalized

longest common subsequences. The MKAD was applied to 2500 flights in a descending

phase within the same airport in the test. The number of flight parameters recorded is 160,

and this set is shrunk to 39 based on subject matter experts’ screening. Five hundred flights

were used to train the model, and as a result, MKAD can identify 227 anomalous flights.
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Within the identified anomalous flights, 114 flights can only be detected if both continuous

and discrete data types are present in the analysis.

Chu et al. [22] proposed a method based on the idea of multivariate statistical process

control (SPC), and they intended to use this method for detecting anomalies for flights in

the cruise phase. In earlier studies, input and output signals from the system were studied

separately, and no dynamical model was involved in the analysis. In this study, a surrogate

of the dynamical system was built based on regression in which historical input/output

pairs of data were used to train the model. To enhance the goodness-of-fit of the model,

both affine and quadratic regressors were considered in the modeling. Once the surrogate

model is trained, newly observed input/output data can be inserted into the model, and the

residuals computed from the regression are served as the monitoring signals. The metric

used in the control chart for signal monitoring is the Hotelling T 2 statistics. In the test,

a dataset of simulated flights with fault injection was analyzed, and it is reported that the

method is capable of finding 80% of the anomalous flights.

Das et al. [23] developed a framework called DMKD (Data Mining and Knowledge

Discovery), and it is a multistep approach. The process of DMKD is shown in Figure

1.13, and it includes five steps: (1) data pre-processing (2) feature extraction (3) anomaly

detection (4) consulting with subject matter experts (5) reporting. In feature extraction,

the continuous data are first transformed into discrete features using Symbolic Dynamic

Filtering (SDF) and then added to the discrete data. The combined set of features is fed

into an outlier detection method called iOrca to find the anomalies in the data.
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Figure 1.13: Data Mining and Knowledge Discovery (DMKD) Framework [23]

iOrca [24] is a distance-based anomaly detection method based on the idea of nearest

neighbors and it is an improved version of Orca developed by Bay et al. [25]. In the nearest

neighbor algorithm, there are two tuning parameters, k and t, where k stands for the num-

ber of nearest neighbors and t is the number of points with the largest values of the outlier

metric. Each point inside the dataset has its own k-nearest neighbors, and its outlierness

can be measured by the mean distance from itself to the k-nearest neighbors. A point with

a higher value in the outlier metric is relatively far away from its neighboring points than

a point with a lower value in the outlier metric. Once the outlier metric for each point is

found, all data points are ordered based on their values in the outlier metric, and the top t

points with the largest values in the outlier metric are flagged as outliers. This algorithm is

easy to implement. However, its computation time scales with the square of the size of the

dataset. Orca improved the computation time for the nearest neighbor algorithm by intro-

ducing the concepts of blocking and pruning. The dataset is truncated into several subsets

by blocking, and the nearest neighbor algorithm is applied sequentially on each block. By

pruning the points that are not likely to be outliers, the number of distance calculations is

reduced. With these two modifications, Orca can bring the computational time down to a

linear relationship with the size of the dataset rather than a quadratic relationship. iOrca

goes one step further by indexing the points in the dataset so the list of outliers can be

updated faster compared to Orca.
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The Symbolic Dynamic Filtering (SDF) is a method that enables the transformation of

continuous data into a discrete format. The continuous data can be realized as a trajectory

in p-dimensional space, and the feature space can be partitioned into a finite number of

discrete cells that are mutually exclusive and exhaustive. As the trajectory intersects with a

cell, the original data is replaced by the symbol associated with this cell. By using this map-

ping, the continuous data are transformed into sequences of symbols, and as a result, they

are in discrete format. These sequences are then used to construct a D-Markov machine.

The corresponding transitional matrix and stationary state probability are viable candidates

to represent the new features for the anomaly detection step. The concept of SDF can be

found in Figure 1.14, which is illustrated by Rao et al. [26].

Figure 1.14: Symbolic Dynamic Filtering [26]

To verify the DMKD [23], a dataset that contains 25,519 flight segments from the phase

of landing with the same destination was tested. Further, the authors investigated a reduced

set of flight parameters within each flight segment, including both continuous and dis-

crete variables. They discovered that using the SDF for feature extraction can detect more

anomalous flights compared to not using the SDF. Also, they found that the anomalous

events detected using the DMKD are associated with those defined in the FOQA program.
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Li et al. [27] came up with a data-driven method called ClusterAD (Cluster-based

Anomaly Detection) to compare multiple flights within selected flight phases. The analysis

was conducted for flight segments under the same flight phases because a normal event in

one phase might be abnormal in the other phase. Unlike the supervised learning approach,

ClusterAD is designed to find the abnormal behaviors without knowing the nominals in

advance. The dominant structure observed from most of the flights should define the nom-

inal pattern. There are three significant steps in the ClusterAD: (1) data transformation

(2) dimensional reduction and (3) clustering analysis. In data transformation, multivariate

time-series data are stacked into a gigantic vector to ensure that all variables’ effects are

included in the analysis. In order to perform the analysis in a relatively low-dimensional

space, principal component analysis (PCA) is applied to capture the essential features in

the step of dimensional reduction. For the clustering analysis, the algorithm of Density-

Based Spatial Clustering of Applications with Noise (DBSCAN) is selected, and it has the

benefit of no need for specifying the number of clusters in advance. In the test of Clus-

terAD, 365 B777 flights were investigated, and the selected flight phases are the takeoff

and the approach. Among all approach segments being analyzed in this study, two anoma-

lies were detected: the deviation from the nominal approach speed and the abnormal flap

position. Two events were identified for the takeoff segments, including the reduced power

takeoff and change of takeoff power. In [28], the performance of ClusterAD was compared

with MKAD and exceedance detection(ED), which is the current standard used by airlin-

ers. Results showed that ClusterAD and MKAD outperform ED in identifying significant

operational anomalies. Moreover, ClusterAD worked well for continuous flight data, while

the MKAD had more detection power when dealing with discrete sequence data. In [29],

Li et al. developed a variant of the ClusterAD called ClusterAD-DataSample, which uses a

Gaussian Mixture Model (GMM) instead of a clustering algorithm for anomaly detection.

The revised framework is capable of finding local anomalies in specific timestamps. As

a result, the detected anomalies are more interpretable than those that all timestamps are
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tagged as anomalies.

In the general aviation domain, Puranik et al. [30] used energy metrics along with raw

flight data records as the features to perform the task of anomaly detection on flights in the

approach phase. In this method, the Euclidean distance is selected as the similarity measure

for feature comparison, and DBSCAN is applied to detect outliers. Several anomaly scores

were implemented, including the local outlier factor and the average KNN distance. If the

flights are associated with high anomaly scores, they are tagged as outliers in the group.

The proposed framework was demonstrated to detect anomalies in simulated and real flight

data records.

Deshmukh et al. [31] developed a temporal logic-based learning method called Tem-

pAD to detect anomalies for flights in terminal airspace operations. First, the flights with

similar patterns in horizontal trajectories are placed in the same group using DBSCAN

clustering. Once the flights are separated into distinct trajectory patterns, a discrete struc-

ture search and a continuous parameter search are performed to construct the upper / lower

bounds for a flight parameter. These linear boundaries acquired from the analysis can then

be used to detect anomalies retrospectively and monitor the flight parameters in real-time.

This method is different from the exceedance analysis because the thresholds are learned

through the data rather than pre-defined based on experiences.

Jarry et al. [32] applied Functional Principal Component Analysis (FPCA) to detect

anomalies for commercial fixed-wing flights in the approach phase. In this method, a slid-

ing window is designed to move through the energy profile to extract the first k principal

component coefficients. Then, to calculate the outlier score for a particular segment, the

Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) is

applied to the extracted coefficients. In the study, some atypical events, such as the devia-

tion in ground speed, were detected, and these events do have an impact on the operation.

Memarzadeh et al. [33] used a convolutional variational autoencoder (CVAE), which

is one of the deep generative models, to detect anomalous commercial flights in the takeoff
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phase. This method falls into the realm of unsupervised learning; thus, no labeled dataset

is required for the training. The structure of CVAE consists of one encoder followed by a

decoder, and flight data records are compressed and recovered in the process. The flights

with reconstruction errors higher than the threshold are regarded as anomalies. The method

was first tested using a benchmark dataset with labels, and then its capability of detecting

anomalous flights was demonstrated on the flights in a FOQA dataset.

Two studies are noteworthy in reviewing data mining techniques on flight data records.

Gavrilovski et al. [13] conducted an extensive review on some prior work in the field and

also pointed out some challenges and opportunities for leveraging the methods developed

in the general aviation domain. More recently, Basora et al. [34] categorized the method-

ologies used for anomaly detection in the context of flight data monitoring and predictive

maintenance. They also indicated a growing trend of using neural networks and deep learn-

ing to detect anomalies in large datasets.

1.3.2 Data mining on time series and trajectory data

Flight data records consist of various flight parameters, and they are typically in the form

of multivariate time series and trajectory data. Therefore, it is useful to review some studies

relevant to pattern mining of these data types. In [35], Liao did a comprehensive survey

on the techniques used in time series clustering. He first reviewed some standard methods

used to cluster static data and then explained different routes for transitioning to time series

clustering. Potential approaches for clustering time series are summarized in Figure 1.15,

which is extracted from [35]. Unless the raw time series are used directly, additional steps

like feature extraction or time series modeling are required to retrieve representative infor-

mation before performing clustering analysis. A few recent studies in time series clustering

were organized into the categories mentioned above and can serve as references for future

research.
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Figure 1.15: Different approaches for time series clustering [35]

Aghaborzorgi et al. [36] surveyed a large number of studies on the application of

time series clustering in a variety of fields. In this review, four key aspects of time se-

ries clustering were discussed. Further, as pointed out by the authors, two mainstream

approaches were taken by the majority of the studies: (1) transform high-dimensional time

series data into a low-dimensional representation and then apply traditional clustering al-

gorithms (2) apply similarity measure for calculating distances between time series without

extracting features out of raw time series. Blazquez et al. [37] provided a review on studies

of detecting anomalies in time series. In this research, a taxonomy of anomaly detection in

time series was proposed, and the techniques used for detecting different types of outliers

were discussed and summarized.

For finding patterns in trajectory data, Zhang et al. [38] performed trajectory clustering

using different similarity measures on a labeled outdoor surveillance dataset. They found

that more straightforward measures such as the Euclidean distance can outperform other

complex metrics in terms of detection efficiency. Zheng [39] provided a comprehensive
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overview of the process for trajectory data mining. A roadmap, which includes several

essential steps such as data preprocessing, data management, data mining, and data trans-

formation, was given as guidance for researchers. Different similarity measures for trajec-

tories were introduced with the application of various clustering strategies. In the section

on anomaly detection, some studies related to finding outliers in road traffic patterns were

mentioned. Su et al. [40] compared the effectiveness and efficiency of several similarity

measures for comparing trajectories. To account for the issue of poor data quality in a real

scenario, trajectory transformations, such as point shift, shape stretching, and noise addi-

tion, were applied in the experimental test. The measures capable of handling most of the

transformations were identified, and it was shown that their effectiveness comes at the cost

of efficiency.

1.3.3 Optimal control in autorotation

The optimal control problem (OCP) is an optimization problem attempting to find the

preferable control profiles in functional space for a dynamical system. The computed con-

trol profiles optimize one or more designed objective functions and satisfy the constraints.

The OCP has its roots in the calculus of variation, and the first OCP, the Bachistocrhone

problem (path with the shortest time) posed by Bernoulli in 1696, is the first one inves-

tigated by the mathematician at the time. However, the optimal control theory was not

fully-fledged until the modern era (1960), and this field of study is primarily based on

the works by Pontryagin (Minimum principle) and Bellman (Hamiltonian-Jacobi-Bellman

equation). An example of an OCP could be moving a cart with an inverted pendulum from

one location to another in minimum time, or finding the trajectory for a rocket from the

earth to the moon with minimum fuel.

Over the past 30 years, researchers have shown great interest in tackling the autorotation

problem. A substantial effort has gone into finding the safety boundary and optimal path for

a safe landing. These studies explored different aspects of the problem, including the type
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of vehicle, model complexity, operating condition, and the strategy for computing optimal

control. Some highlights of these studies noted below were presented in chronological

order, and to better characterize these studies, they were grouped by the methodology or

the research team.

Indirect Method

Johnson [41] was the first to investigate the controls required to land the rotorcraft under

power loss. A two-dimensional point-mass model was used to study the autorotation. In

the study, hovering autorotation was the primary focus because the helicopter is expected

to perform better in cases with initial forward velocity. Here, an indirect method that calcu-

lates the controls through minimizing the Hamiltonian was implemented. As a result, the

study found that the optimal trajectory for hovering autorotation is a vertical descent. The

effects of different entry altitudes and lock numbers on state variables, such as touchdown

velocity, were also explored.

Lee [42] used a model similar to [41] and extended the work by including cases with

a forward velocity at the time of engine failure. It is also postulated that the area of the

restriction zone in an H-V diagram discovered from the actual flight tests can be reduced

by leveraging the nonlinear optimal control technique. The performance index was chosen

as the square of the terminal speed, and the optimization is subject to equality and inequal-

ity constraints. The equality constraints are the equations of motion, while the inequality

constraints are imposed to prevent the rotor stall and the excessive sink rate. The optimal

control problem was solved using a two-step iterative process called Sequential Gradient

Restoration Algorithm (SGRA). The objective function and constraint errors are minimized

in the gradient and restoration phases separately. In the case of hovering autorotation, the

author noted that the technique used in the flight tests was different from the controls com-

puted by the algorithm. In the flight tests, pilots would attempt to achieve zero vertical

speed a few feet above the ground before touchdown, and it usually took a longer flight
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time for the entire maneuver compared to the trajectory calculated by the algorithm. In the

cases of the autorotation with a forward velocity, the effects of different entry speeds and

altitudes were studied and compared. The maximum entry height was set as 400 feet, and a

metric called most critical entry height (MCEH) was proposed. If the initial altitude devi-

ated from the MCEH, the available rotational energy would be better retained. The author

also pointed out potential directions for future research, including adding wind shear effect

and developing pilot-guided systems for autorotation.

Okuno et al. [43] aimed to predict the H-V diagram using optimal control theory.

The helicopter was modeled as a two-dimensional rigid body with an additional degree of

freedom in pitching angle compared with the point-mass model. The increased induced

velocity in the vortex ring state and the effect of blade stall are included in its aerodynamic

module. In this study, the author tried to accomplish two tasks: (1) to use an optimization

process to predict the H-V curve, and (2) to find the optimal control procedure for landing

the aircraft given an initial condition. The first task was achieved by minimizing the region

covered by representative points (high hover, low hover, and knee points). In contrast, the

second task was accomplished by minimizing the sum of square of the touchdown speed.

The solution method adopted here is the SGRA, which is the same as [42]. The predicted

shape of the H-V diagram is similar to the one derived from the actual flight tests. The

effect of different model fidelity on the shape of the H-V diagram was also examined. One

exciting aspect mentioned in the study is that the predicted knee points would be located

at different spots in the H-V space for different initial flight path angles. When the engine

fails during a climb phase, the restriction zone becomes larger (the knee point is located

more to the right) than when the engine fails during a descent phase.

Before Zhao et al. [44], the work on optimal autorotation focused solely on single-

engine helicopters. This research extended prior studies by investigating the condition of

one engine inoperative (OEI) for a multiengine helicopter using a two-dimensional point-

mass model of UH-60A. Four different scenarios were investigated, including rejected take-
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off, continued landing, continued takeoff, and balked landing. The objective function for

the rejected takeoff and the continued landing is to minimize the horizontal distance be-

tween the takeoff and the landing. For the cases of continued takeoff and balked landing,

an additional objective function, which serves to minimize the altitude drop, was added to

the formulation. The SGRA was applied to find the solution of optimal trajectory for state

and control variables. It was found that more power is required for vehicles with a higher

gross weight for landing or achieving a steady climb rate in OEI conditions.

Direct Method

In [45], Carlson et al. worked on analytically predicting the H-V diagram using optimal

control theory but shifted the focus from a helicopter to a tiltrotor vehicle (XV-15). The

vehicle was modeled as a two-dimensional rigid body with only longitudinal motion. Aero-

dynamic forces and moments on different components are calculated through aerodynamic

coefficients, which are prepared as a table based on the curve-fitting results on the ex-

perimental data. The tiltrotor vehicle has two operational modes that can be modified by

controlling the nacelle angle. Two kinds of autorotation maneuvers were mentioned in the

study. For low-altitude autorotation, the vehicle would tend to come straight down and

cushion before touchdown. For high-altitude autorotation, the vehicle initially would build

up some forward speed and then flare before the end of the maneuver. The solution method

used in this study is direct collocation, and it transforms the optimal control problem into a

nonlinear programming problem by stacking all state and control variables in discrete-time.

In comparison with the indirect method used in [41] - [44], it does not need to construct the

necessary and sufficient conditions for the optimal control problem. Besides, it is reported

from Betts [46] that the basic indirect method has a robustness issue on the initial guess

of the adjoint variables. From the results of predicting the H-V diagram in the condition

of one engine inoperative (OEI), the higher the gross weight of the vehicle, the larger the

restricted zone. For predicting the H-V diagram in cases of all engine inoperative (AEI),
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the author noted a convergence issue of high hover points for the vehicle with higher gross

weights. Sensitivity analysis was also conducted to investigate the effects of various pa-

rameters, such as the number of nodes in the discretization process, delay in pilot control

actions, and modification of model parameters.

In [47], Bachelder et al. developed a pilot-guided system for the autorotation training

program using an optimal control approach. With the guidance given to pilots, the program

aimed to reduce their workloads and increase the probability of a safe landing. A two-

dimensional point-mass model similar to [42] was adopted with the addition of a first-

order response equation for the engine. The objective function used in the formulation

contains two parts: (1) a terminal cost for minimizing the touchdown speed and (2) a

running cost used to regulate rotor rpm and the tilt of tip-path-plane (TPP). The direct

collocation method was applied to find optimal trajectories, and the resulting parameter

optimization problem was solved using a commercially available software program. In the

paper, the framework was first validated by comparing its results with the flight test data of

the OH-58A. Then the H-V diagrams of the OH-58A and the SH-60B were predicted and

the calculated touchdown speeds were compared with the maximum speeds documented in

the flight manual. The authors found that H-V restriction zones computed by the optimal

control technique are significantly smaller for both of these helicopters than the results

derived from the actual flight tests. This finding supported the hypothesis posed by [42].

In [48], Jhemi et al. demonstrated the usage of the direct collocation method for finding

the optimal control for autorotation. The paper briefly explained the process of transform-

ing the optimal control problem into a parameter optimization problem. It also addressed

the challenge of computing controls in real-time given higher model fidelity and the exis-

tence of external disturbances. Two cases were investigated in the study, including (1) flight

path optimization of helicopters under power loss and (2) the prediction of the H-V diagram

for tiltrotor vehicles.

In [49], Carlson et al. used an analytical method in conjunction with flight test data to
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predict the H-V diagram for upgraded helicopters. Again, a two-dimensional longitudinal

point-mass model with the first-order response of the engines was selected. This generic

helicopter model was verified by comparing the power required at different trimmed con-

ditions with the values found in the flight tests. , The direct collocation was selected to

compute the optimal control trajectories due to its larger convergence radius and straight-

forward problem formulation. The H-V diagram was predicted by minimizing an objective

function, which is constructed based on the distance between a reference point inside the

envelope and the points at the edge. As a result, the shape of the H-V diagram can be

parametrized by the power ratio, which is the ratio between the power available at the

OEI and the power required for the hovering out of ground effect (HOGE). For different

operating conditions, pilots can use the power ratio value to find the corresponding H-V

diagram.

Differential Dynamic Programming (DDP)

Pieter et al. [50] developed an autonomous controller for a remote-controlled (RC) heli-

copter under the condition of power failure. This paper had demonstrated the first con-

troller being implemented in an actual autorotative flight, although it was not dedicated for

a full-scale, human-crewed vehicle. Instead of using a physics-based model for controller

development, several test flight data were acquired to construct a three-dimensional rigid-

body model through system identification. The model contains 13 state variables, which

include translational positions and rates, rotational positions and rates, and rotor speed. For

the control variables, lateral cyclic and rudder were added to address this three-dimensional

model’s roll and yaw motions. There are three primary stages for autorotation, namely the

glide, the flare, and the touchdown. The expected vehicle behavior in an autorotative glide

is to maintain a steady descent to better retain the remaining rotational energy. The vehicle

would end in a level position with no forward velocity for an ideal autorotative touchdown.

The flare is the most demanding task out of the three, and appropriate control for pitching
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the nose is essential to avoid the tail boom strike and a hard landing. In the study, the

target trajectories of the flare were provided by expert demonstration, and the Differential

Dynamic Programming (DDP), a non-linear version of Linear Quadratic Regulator (LQR),

was used to track these trajectories. The resulting controller was able to land an RC heli-

copter 25 times, and it was shown that the simulated results were close to the ones from

the flight tests. Although it demonstrated several successfully autorotative landings for an

RC helicopter, the validity of the controller for other strenuous initial conditions has not

yet been verified.

Reinforcement Learning

In [51][52], Lee et al. used Reinforcement Learning (RL) to tackle the autorotation landing

problem. In the methodology, a reward function is designed to drive the agent, which is a

helicopter in this case, to a designated goal with optimal / sub-optimal state and control tra-

jectories. In the process of learning, the agent would adapt itself through several iterations

of trial and error. In this analysis, a model-free reinforcement learning approach called

Q-learning was selected, and the radial basis function (RBF) was used to approximate the

value function to circumvent the issue of the curse of dimensionality in Dynamic Program-

ming (DP). A two-dimensional point-mass model similar to [42] was used, and the controls

were modified to second derivatives of the thrust coefficient and the TPP tilt for shrinking

the size of the action space. The reward function was designed to award the agent if the

final touchdown speed is within the acceptable limit. The agent would be penalized in cases

like hard landings and descending too fast during the maneuver. Two test cases, including

the hovering autorotation and the autorotation with little initial forward velocity, were used

to demonstrate the methodology. The strategy for the hovering autorotation found in this

study was to increase the thrust coefficient gradually without changing the TPP tilt. For the

cases with little initial forward velocity, the TPP was required to tilt backward for slowing

the vehicle at the touchdown. The policies learned in both cases were valid for an altitude
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lower than 100 feet above ground level with low airspeed. If the initial conditions are out-

side of the specified region, the agent might need to be re-trained. Further, there was no

guarantee that the computed policies would work under environmental disturbances.

Studies from Penn State University

In [53], Tierney et al. tried to find a set of feasible initial conditions that would guarantee

the helicopter to land successfully on a specific spot at ground level. Instead of investi-

gating the whole process from the start of the engine failure to the touchdown, the study

focused on the second half of the autorotation process, which was the portion starting from

a trimmed steady descent stage to the final landing. By choosing the appropriate steady

descent conditions and the timing for initiating the flare maneuver, pilots could land the

vehicle successfully without power. The author called these feasible initial conditions the

“backward reachable set.” In the study, a two-dimensional point-mass model of a utility

helicopter, which is similar to [47], was adopted and the ground effect was ignored. The

objective function contains both the running cost and the terminal cost. Any exceedance

from the path constraints would be penalized as running cost, and the deviation from the

specified final touchdown condition would contribute to the terminal cost. The result of the

safe landing set was projected onto the space of the horizontal speed/height to construct

the V-h diagram. This V-h diagram is different from traditional H-V diagrams because it

depicts the safety region of trimmed autorotative descent rather than the safe entry condi-

tions. In sum, given the existence of a trajectory following algorithm which can guide the

vehicle from the start of engine failure to the safe landing set, this methodology can assist

in landing the vehicle onto a specific spot successfully.

Yomchinda et al. [54] continued the effort of [53] and tried to find the optimal path of

the vehicle from the entry to the safe landing set using a modified Dubin’s curve. Dubin’s

curve is a trajectory planning method for finding the shortest path between two points for a

wheeled vehicle with a constant velocity/turn rate. The allowable controls of the wheeled
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vehicle are the right turn (R), the stay straight (S), and the left turn (L). It was found that

the possible optimal control sequences are LSR, LSL, RSL, RSR, RLR, and LRL, which

are all three-segment sequences. To account for vertical motion of the vehicle, a modi-

fied Dubin’s curve approach was implemented. For this investigation, a two-dimensional

point-mass model was extended to three-dimensional by introducing additional variables

in both state and control spaces. The whole process was assumed to be in a quasi-steady

state, which means that the horizontal acceleration, the rotor speed, and the bank angle

are constant in each of the segments. Also, the side-slip velocity was assumed to be zero

for simplification. The trajectory planning problem was solved using parameter optimiza-

tion by minimizing the deviation from the specified final altitude and rotor speed. The

author demonstrated several successful cases with different initial and desired end condi-

tions. However, it was noted in the paper that good initial guesses are essential for the

optimization process. Without the proper selection of initial guesses, the solution might

have been trapped in the local optimum or taken a significant amount of time to converge.

Also, to make the flight autonomous, a controller must follow the computed trajectories.

Grande et al. [55][56] increased the complexity of the problem in [53] by introducing

the wind shear effect. The wind shear profile was defined as a logarithmic profile in altitude,

and only the horizontal wind conditions were considered. This effect was evaluated via

different combinations of wind strength and wind direction. The wind velocity was added

to the force balance and kinematic equations in helicopter flight dynamics to account for

the wind shear effect. The study examined two different types of helicopters, the OH-

58A, and an electric-powered helicopter. For the OH-58A helicopter, a safe landing set

can be found in all test cases except those with medium and strong tailwind conditions.

The helicopter would gain excessive horizontal speed in tailwind conditions, making it

harder to slow down at the touchdown point. Further, the authors pointed out that a light

headwind condition was beneficial for autorotation landing since it allowed a wider range

of initial horizontal speeds. A safe landing set only exists in light and medium headwind
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conditions for the electric-powered helicopter due to a higher susceptibility to wind shear

for small-size helicopters.

Other miscellaneous studies

There are other studies relevant to the optimal control for autorotation, and various tech-

niques were applied to the problem. Without elaborating on the details, we will only men-

tion some critical points of each reference. Dalamagkidis et al. [57] proposed to use non-

linear model predictive control (NMPC) with a recurrent neural network (RNN) for calcu-

lating the optimal trajectory in real-time. However, the controller cannot be successfully

demonstrated in real-time due to the model discrepancy and environmental disturbances.

With improved model accuracy, objective function, and better training data, this framework

can potentially work as an online controller. Bibik et al. [58] developed an autorotation

model with higher degrees of freedom and solved for the optimal control using a formu-

lation with a linear system and a quadratic cost. It aimed at deploying the controller for

an autonomous autorotative flight, and different scenarios like AEI and OEI were consid-

ered in the study. The capability of this method was demonstrated in several test cases.

However, because the code is computationally intensive, the method cannot be applied in

real time. Sunberg et al. [59] developed an expert system based on control laws to achieve

successful landing in autorotation. In the process, the autorotation maneuver was separated

into different sub-phases, and for each sub-phase, a PID controller was implemented to

reach the designed objective. The simulation results from two different helicopters demon-

strated the capability of the algorithm. Still, it might be a tedious process for tuning the

parameters for the controllers. Eberle et al. [60] developed a tau-based (time-to-contact)

automatic autorotation controller to generate flare trajectory and to track a landing point.

For the flare trajectory generation, the computed trajectory was compared with several tra-

jectories from pilot-in-the-loop simulations, and it was found that these two are similar

strategically. Two cases with different distances from the flare entry to the touchdown were
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tested for the landing point tracking, and the algorithm can successfully land the vehicle in

both situations.

1.3.4 Design of experiments and surrogates for functional data

The safety envelope of the autorotation can be thought of as a restriction zone in the H-V

diagram. The curves which dictate the restricting areas can vary based on different condi-

tions. The surrogate modeling with the design of experiments can be potentially applied to

find these restriction zones in the operational space. Design of experiments (DOE) is a tool

for efficiently exploring the response of a system. It has been widely used in a variety of

areas, such as system design and industrial / manufacturing processes. For example, to use

this framework for designing a new vehicle, a mathematical representation that captures

the physical system’s behavior needs to be formulated. A corresponding computer model

is then required to be developed for experimentation. If this computer code is computa-

tionally expensive, a surrogate model, also referred to as an emulator or a meta-model in

literature, is required. It can be used for a variety of purposes, such as prediction, optimiza-

tion, and variable screening. In [61], Queipo et al. described the structure and key elements

of a surrogate-based analysis. A few selections of DOEs and surrogate models were intro-

duced in the study. In addition to predicting the system’s response, other applications of

surrogates, such as sensitivity analysis and optimization, were discussed. The methodol-

ogy was substantiated in a test case of designing a liquid-rocket injector, and it is more

effective to incorporate surrogate modeling into the design. Joseph et al. [62][63] proposed

a new type of space-filling design called Maximum Projection Design (MaxPro). In the

study, various space-filling designs suitable for computer experiments were discussed and

compared. It is demonstrated that the MaxPro design has better space-filling property in

subspace projection than the widely used maximin Latin hypercube design (MmLHD). A

machining simulation was provided to illustrate the capability of this new design, and it

was shown that the surrogate model well represents the simulator.
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Since we would like to predict the optimal control for a hazardous event and the controls

are functional responses, some studies relevant to using surrogate models for predicting

functional responses were reviewed. Hung et al. [64] developed a Gibbs sampling-based

Expectation-Maximization (EM) algorithm to tackle function responses in a non-regular

grid. A use case for predicting the residual stress of a machining process was demonstrated

in the paper. Gul et al. [65] proposed an approach to quantify the uncertainty of functional

responses for a milling process. The study also considered the cases with multiple types

of input data, including quantitative and qualitative variables. Mak et al. [66] developed

an efficient emulator to predict the time evolution of the flow field pattern for a rocket

injector. The cross-section velocity field of an injector is in the form of image data, and it

is a step beyond the cases of predicting functional responses. It was stated in the paper that

the emulator could efficiently capture the spatio-temporal pattern of a highly accurate but

time-consuming CFD model.

1.3.5 Observations from literature

From the studies pertaining to using data mining on flight data records, it is observed that

the majority applied the approaches to flight data coming from fixed-wing commercial avi-

ation rather than from general aviation, not to mention from the rotary-wing domain. In

general, rotary-wing flights exhibit more diverse patterns than their fixed-wing counterparts

due to the capability to hover and the ability to satisfy the need for a variety of operations.

As such, it is more challenging to identify the norm and the abnormality of flight data

records without well-defined definitions of homogenous segments for characterizing he-

licopter flights. In addition, the analyses found in the studies were conducted on flight

segments within the same flight phase rather than the entire flight data records. Among the

flight phases investigated in prior work, the most analyzed flight phases are the approach

and the takeoff. Due to differences in operations between rotorcraft and fixed-wing vehi-

cles, phases of flight appropriate for fixed-wing aircraft may not be directly applicable to
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rotorcraft. They may need to be modified or add extra flight phases to the set. It is also

expected that the transitions between flight phases are more frequently observed in certain

rotorcraft operations in comparison with larger fixed-wing aircraft in commercial aviation.

Concerning the practice of anomaly detection in the industry, exceedance analysis is the

most widely-used approach. However, it can only detect the predefined events, and it might

be challenging to have a universal threshold for an event given various helicopter types,

mission profiles, and operators. In this situation, data mining could potentially be applied

to identify patterns in the flight data without specifying thresholds on flight parameters.

Eventually, the pattern recognition activity results may be translated into anomaly detection

after subject matter experts (SME) provide some inputs into what is an anomaly and what is

not. Further, it is time-consuming to build a fully-fledged HFDM program for the operators

due to the development of safety metrics. With the availability of flight data records at a

fleet level over a certain period of time, some insights and knowledge from the data can be

extracted. The information acquired from the analysis can possibly contribute to defining

the thresholds of the events. Thus, the process of building an HFDM program for detecting

anomalies can potentially be shortened through the application of data mining methods.

In general, data mining methods can be separated into two categories, and the literature

reviewed fall into these two sets:

1. unsupervised learning [18][20][23][27][29][30][31][32][33]

2. supervised learning [19][21][22]

The main difference between these two categories is the requirement of a training dataset

for model parameter estimation. For supervised learning approaches, sufficient data with

labels should be provided for training purposes. If rare events and corner cases are included

in the training set, the algorithm can typically produce high accuracy results. However, it is

difficult to obtain a large labeled dataset with high quality in real life, and it is probably why

the majority of the research would adopt unsupervised learning approaches. When dealing
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with an unsupervised learning method, synthetic or simulated data are used for validation

before deploying the algorithm to the actual dataset.

For the exploratory analysis in autorotation, most of the studies mentioned above used a

two-dimensional point-mass model for its simplicity in the formulation. Only a few studies

developed a more sophisticated three-dimensional model for the investigation. Although

the point-mass model has its limitation, such as not being capable of showing the flare

and turn maneuver in autorotation, it is still quite useful in terms of the safety envelope

exploration. Aside from the model complexity, the prediction of the safety envelope for

autorotation in previous studies was made primarily based on the curve fitting of a few

representative points in the H-V space. Suppose more test points are available in the entire

region of the H-V space. In that case, we can better understand the effect of a variety of ini-

tial conditions on the performance metric. Moreover, depending on the selection of model

complexity and optimal control algorithm, solving the problem of trajectory optimization

may be computationally intensive. Last but not least, the safety envelope is constructed

on the space spanned by two variables. Different combinations of variables other than

the height and the horizontal velocity, such as the vehicle weight, should be considered in

operational space exploration.

1.4 Research objectives

In the previous section, various strategies for improving the safety of flight operations from

the literature are reviewed. A few observations from the review are summarized, and the

associated gaps are also addressed. In this section, the overarching research objectives are

stated to fill the gaps and the scope of the study is determined. This study will mainly fo-

cus on two different approaches: retrospective and exploratory analyses. The retrospective

analysis is a data-driven, learn from the past approach. It is intended to identify the norms

and potential anomalies in operation from analyzing sufficient flight data. Some relevant

machine learning techniques would be investigated in the analysis for recognizing patterns
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in the data. Subject matter experts (SME) could potentially review the investigation re-

sults, and then the consensus from SME’s discussion will be forwarded to the management

team/pilots for improvement. This feedback system is similar to the practice in FDM pro-

grams, and it is helpful to keep the rotorcraft operation in a healthy condition.

The first research objective regarding the retrospective analysis is stated as follows:

O1: To improve flight safety specific to rotorcraft operation through retrospectively

discovering potential anomalies in flight data records.

For the exploratory analysis, the overarching goal is to build a viable framework to

explore the safety envelope for a hazardous event efficiently. Therefore, the second research

objective is stated as follows:

O2: To develop an efficient methodology to explore the safety envelope and acquire

the recovery trajectory in a hazardous event.

The exploratory analysis is a model-based, proactive approach. It aims to use a flight

simulator to explore hazardous events that may or may not be observed from flight data

records in an FDM program. Using a simulator for this type of exploration reduces the risk

compared to an actual flight test and can significantly expand the number of scenarios in the

investigation. There are two different tasks that we plan to pursue in the exploratory anal-

ysis: (1) safety envelope exploration and (2) optimal control prediction in the operational

space.

In the following few chapters, several research questions will be formulated separately

to address individual research objectives. For each research question, potential methods

for solving the questions are hypothesized. To substantiate the ideas proposed for tack-

ling the problem, we have designed several experiments to test these hypotheses and to

consolidate those ideas further. Different topics, including phases of flight identification,

anomaly detection on flight data records, and exploratory analysis for the autorotation, will
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be described in chapters 2, 3, and 4 correspondingly.
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CHAPTER 2

PHASES OF FLIGHT IDENTIFICATION

The first research objective for the study is to find the potential anomalies in flight data

records for rotorcraft operations using data mining methods. To initiate the task, we first

emphasize the need for having an algorithm for detecting flight phases of rotorcraft opera-

tions. Several flight phases definitions from different sources are reviewed, and a baseline

definition is established based on the findings. Further, potential techniques useful for the

identification task are presented, and they are compared based on the classification results

of a labeled dataset and the proposed evaluation criteria. The experiment described in this

chapter aims to find the best or combination of methods to detect flight phases for rotorcraft

operations.

2.1 Problem formulation

From the review of the literature as mentioned earlier, it is intuitive to ask the following

research question (RQ1) as the first step to move toward our first research objective:

RQ1: Without reinventing the wheels, can we leverage the anomaly detection meth-

ods used in commercial airliners to general aviation, and more specifically, to the

rotorcraft society?

The hypothesis (H1) corresponds to this research question is stated as follows:
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H1: The anomaly detection tasks in commercial airliners are implemented for flight

segments within the same phase of flight. Given that the homogeneous segments can

be retrieved for helicopter flights in general aviation, those methods can be poten-

tially applied.

Without the enabler that could identify the flight phase information from flight data

records, it is challenging to make a valid comparison among the flights and apply some

practical methods used in commercial aviation for detecting anomalies. Therefore, the

algorithm of phases of flight identification is treated as the cornerstone for the retrospective

analysis. Here, the RQ1 and the H1 are stated to complete the overall logic flow, and thus,

no experiment is conducted. However, the H1 leads to our second research question, and it

is stated as follows:

RQ2: What methods or techniques can be helpful to find the homogeneous seg-

ments, i.e., phases of flight, for the rotorcraft operation?

The hypothesis to address the second research question is constructed as

H2: The phases of flight for the rotorcraft operation can be potentially retrieved

through a filtering approach, regression-based classifiers, and the supervised learning

methods used in the task of classification.

The experiment will be performed for testing the H2 is described in the following:

E2: To find the appropriate method for the task of phases of flight identification,

it is necessary to compare and contrast the methods suggested in the H2 using the

classification accuracy of a labeled dataset and some proposed evaluation criteria.
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2.2 Approach for detecting flight phases for rotorcraft operations

2.2.1 Phases of flight definitions

Survey on available phases of flight definitions in the literature

To start off the task, we first surveyed the available definitions for phases of flight in the

literature. These definitions were gathered from different sources, and some of them are

dedicated to rotorcraft operations [16][67] while others are relevant to flights in commercial

airliners [68][69] or flights in general aviation [70]. The results of the survey are summa-

rized in Table 2.1 and some opinions from subject matter experts along with potential flight

parameters involved for defining the flight phases are included as well for reference.

Table 2.1: Available definitions of flight phases in the literature

After retrieving these definitions on flight phases from the literature, some observations
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are noted here concerning the applicability of these thresholds on helicopter flights. First,

no consensus was found regarding using constraints on flight parameters for defining flight

phases. Thus, it might take some efforts of trial-and-error to determine the thresholds

for defining the flight phases for rotorcraft operations. Further, some definitions such as

the ones in [68] [69] are explicitly designed for larger aircraft for the mission of passenger

transportation. Without modification, they may not be immediately applicable to helicopter

flights.

For flights in commercial airliners, the patterns of flight phase sequences are repro-

ducible because the flights usually follow standard routes in the operations. On the rotor-

craft side, depending on the types of missions, a helicopter flight may go through numerous

climb, cruise, descent phases. Due to the ability to hover, additional flight phases like hover

in-ground/out-of-ground effects, hover lift/descent are required to be included in the phases

of flight identification for the rotorcraft operation.

In [16], one can find the most relevant definitions of flight phases for helicopters. How-

ever, the descriptions are presented in the format of the pilot’s actions for achieving the

maneuvers rather than threshold values on flight parameters. In fact, the sequences of con-

trol inputs may be helpful in retrieving flight phases because they are closely related to the

pilot’s intent for steering the vehicle. However, most flight data recorders do not contain

these signals in the flight parameters. As a result, the approach of using the control inputs

for detecting flight phases for helicopters is excluded in the study, and they are not shown

in the last column of Table 2.1 for conciseness.

In Table 2.1, some flight phases are delineated using qualitative descriptions rather

than quantitative thresholds on flight parameters. A transcription process is required to

have these definitions used in an algorithm for detecting flight phases. Again, the process

might involve a few trial-and-error iterations, and the thresholds chosen may be subjective.

Moreover, the definitions of three flight phases, namely, the descent, the approach, and the

landing, may overlap given they all have the characteristic of loss of altitude in common.
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To differentiate these flight phases, additional logic may need to be provided. For example,

the loss of altitude can only be an approach if the vehicle is heading toward its destination,

not the other points of interest.

Interpretation on the definitions of flight phases from the literature

To build a filtering logic for detecting flight phases for rotorcraft operations, we combined

the definitions in Table 2.1 and transcribed them into quantitative constraints on flight pa-

rameters. The manifolds selected in the flight parameter space for defining the flight phases

should fully cover each data point in flight data records. Otherwise, some timestamps in

the flight data would be labeled as unidentified. Further, these manifolds should not in-

tersect with each other for guaranteeing no timestamp would be simultaneously classified

as multiple phases. In [71], Kelly et al. investigated the concept of using a fuzzy set for

identifying specific flight segments. Although a single timestamp might correspond to sev-

eral potential phases, a membership function that describes the probability of being in each

candidate phase can be used to determine the actual flight phase for that specific timestamp.

This study motivates us to develop a method in which several probable flight phases can be

assigned to a single timestamp in flight data records.

In the last column of Table 2.1, flight parameters that are useful for defining the flight

phases are listed. It is observed that the most commonly used parameters are the horizontal

velocity (either ground speed or airspeed), the vertical velocity (climb or descent rate), and

the altitude. Therefore, a filtering approach which is based on these three flight parameters

will be first attempted, and it is noted that the flight phases are not necessarily confined by

only three flight parameters. The benefit of this choice is twofold: it is easier to visualize

the manifolds for defining flight phases in a three-dimensional space, and these three pa-

rameters can be easily retrieved across all kinds of flight data recorders. For completeness,

we do not exclude the possibility of adding more flight parameters for more accurate iden-

tification in the future study. The following paragraphs explain the selection of threshold
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values for defining flight phases for rotorcraft operations. If the quantitative values can

be extracted from the aforementioned literature, they will be used directly. Otherwise, the

qualitative descriptions will be transcribed based on our own interpretation.

Standing phase

When the helicopter is in a standing phase, the vehicle is on the ground with no horizontal

or vertical velocity. Thus, the ground speed and the altitude are used to capture this flight

phase. Conceptually, we should set these two flight parameters at exact zero, but to account

for noisy signals, they are allowed to vary in the ranges of [0, 0.6) knots and [0, 2) feet,

respectively. The vertical velocity is not involved in the definition because the standing

phase is sufficiently characterized by confining the vehicle on the ground level without a

significant forward motion.

Taxi phases

In [16], the taxi phases are clearly defined, and three kinds of taxis are mentioned in the

handbook. These taxi maneuvers are differentiated through altitude ranges, and for low,

medium, and high altitude ranges, the corresponding taxi maneuvers are surface taxi, hover

taxi, and air taxi. For the horizontal velocity, it is specified that the speed should not exceed

the one for a brisk walk; thus, it is set to vary between 0.6 to 18 knots.

Hover phase

When the helicopter is in a hovering phase, the vehicle is situated at a higher altitude

without significant movement in both horizontal and vertical directions. It can be thought

of as a standing phase at high altitude, and here it is described using three flight parameters.

The horizontal speed constraint is the same as the one in the standing phase, while the

altitude should be higher than the one used for a standing condition. The limitation on the

vertical speed is set as [-90, 90] feet per minute to account for the gust or noisy signals. The

hover phase can be further separated into three sub-categories: (1) hover in-ground effect

(HIGE) (2) hover out-of-ground effect (HOGE) and (3) high altitude hover. The first two

can be identified through a threshold value in height (two times the rotor diameter), while
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the remaining one is recognized when the vehicle is at an even higher altitude.

Climb / Cruise or level / Descent phases

For these three flight phases, the vertical speed is an important parameter for capturing the

corresponding flight segments. In a climb phase, the climb rate should continuously exceed

a threshold value while in a descent phase, the descent rate should always stay higher than

the same threshold value. Anything not a climb or a descent would be assigned to a cruise

or a high altitude hover phase. In this study, a threshold value of 90 feet per minute on

vertical speed is selected based on preliminary testing on a flight school’s data. An altitude

constraint is placed on these three flight phases to distinguish them from other low altitude

flight phases, such as the standing and the taxi phases.

Takeoff / Landing or approach phases

The takeoff and the landing phases are treated as the transitional flight phases between the

low-altitude and the high-altitude flight phases. The low-altitude flight phases consist of

standing and different taxis and hovers. The high-altitude flight phases include the climb,

the cruise or the level, the descent, and the high altitude hover. The takeoff can be realized

as a flight phase when the vehicle is coming from a low-altitude region to a high-altitude

region, and the landing can be defined in a reverse manner. Given the flight phases in low

and high-altitude areas are identified, we can find the takeoff and the landing by labeling

the interim periods. For example, the last portion of a low-altitude flight segment may

be relabeled in conjunction with the first few seconds of the following high-altitude flight

segment as a possible definition for the takeoff. In fact, a takeoff identification algorithm

is proposed in the following subsection, and it is developed based on the aforementioned

flight phases. For the approach detection, Robinson et al. [72] developed an algorithm

to identify different types of approaches such as Visual Flight Rules (VFR) approach and

Instrument Flight Rules (IFR) approach for helicopters. It can be incorporated into our

primary phases of flight for completeness.

In sum, the threshold values used to define each of the flight phases mentioned above are
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provided in Table 2.2. It is our baseline definitions of flight phases for rotorcraft operations,

and a survey dedicated to verifying these definitions will be distributed to subject matter

experts for feedback.

Table 2.2: Baseline definitions of flight phases for rotorcraft operations

A survey to subject matter experts for verifying the baseline definitions

To verify the proposed threshold values in Table 2.2 for detecting flight phases, we sent

a survey to some subject matter experts who are experienced professionals in the field.

The qualifications of the subject matter experts invited to the study are listed in Table 2.3.

From the survey results, the opinions from different experts do not go hand in hand with

the definitions. For instance, one SME would treat the air taxi as a subset of the hover

taxi, and the other would prefer to separate them into two flight phases. Nonetheless, we

incorporated the feedbacks from SMEs and provided a set of updated definitions. The

modified constraints are shown in Table 2.4. We will implement these constraints in a

filtering approach for phases of flight identification, and this approach will be compared

with other candidate methods.

2.2.2 Potential techniques for the identification

As mentioned in the previous subsection, we can retrieve the phases of flight for rotorcraft

operations by applying filters on specific flight parameters. However, it is not the only
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Table 2.3: Qualification of subject matter experts involved in the survey

Table 2.4: Modified definitions of flight phases for rotorcraft operations based on the survey

approach to acquire the information of phases of flight. Given a flight data record, the

task of phases of flight identification is to predict the phase labels for all timestamps from

a subset of flight parameters, and this task is similar to the classification in supervised

learning. If the control inputs are available in the flight data, we can also use them to infer

the flight phases. As a result of brainstorming, potential methods which can assist the task

of identification are listed below:

• Filters constructed from thresholds on flight parameters

• Classification techniques used in supervised learning

• Regression-based classifiers

• Control inputs such as the collective, longitudinal / lateral cyclic, and the pedals
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There are pros and cons associated with each of the approaches. For example, a filter-

ing method is easy to implement once the corresponding threshold values are determined.

However, the chosen values for constraints might need to be modified for a different type

of operation. Sometimes, the flight parameter we would like to monitor may not even exist

in the flight data records. In addition, to achieve high classification accuracy, the approach

in supervised learning may need to have large amounts of data for training. In some in-

stances, it might not have the luxury of accessing the labeled dataset. To eliminate the

dependency on the training data, we can resort to an unsupervised learning approach. Still,

it is not guaranteed that the clusters found from the analysis would be relevant to the phases

of flight that we intend to detect.

We first selected a filtering method in the initial search for the algorithm because of its

simplicity and feasibility. From the results of a preliminary test using the flight data from a

flying school, two issues need to be addressed, and they are (1) unidentified timestamps and

(2) flight phases with short durations. To address these issues, other approaches that may

be potentially suitable for the task are investigated and introduced in the following sub-

sections. These methods are grouped into two distinct categories: (1) the methods can be

used directly without the training process (2) the models that required to be trained before

deployment. An experiment conducted will be described in the following section to test

their effectiveness. The investigation results can guide selecting a method or a combination

of methods that can make a relatively accurate prediction on the phase label.

Flight phases in low and high-altitude regions

From observing flight phase definitions in the literature, it is feasible to divide the entire

flight data record into flight segments into two distinct regions, namely, the low-altitude

and the high-altitude regions. It is assumed that certain flight phases only exist in the low-

altitude region while the remaining flight phases solely happen in the high-altitude area.

The regions are distinguished by a threshold value in altitude, and typically it is set as 100
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feet above ground level. The advantage of making this assumption is that there is no need to

consider flight phases in the high-altitude region for data samples in the low-altitude region

and vice versa. The shrinkage of the set of candidate flight phases for each timestamp

could reduce computation time and improve the overall efficiency of the algorithm. The

flight phases belonging to each of the regions are specified as follows:

• Flight phases in the low-altitude region: standing, surface taxi, hover taxi, air taxi,

hover in ground effect (HIGE), hover out of ground effect (HOGE), hover lift, and

hover descent

• Flight phases in the high-altitude region: climb, cruise, descent, and high altitude

hover

• Transition flight phases between these two regions: takeoff and landing

Figure 2.1 illustrates the idea of placing individual flight phases into one of the two

regions. We can determine the takeoff and the landing phases once all the timestamps in

the flight data are assigned with flight phases either in low or high-altitude regions. In

this study, we would primarily focus on the basic set of flight phases, and the takeoff and

the landing phases are treated as add-on flight phases to the basic set. To substantiate the

applicability of detecting the takeoff from the basic set of flight phases, an implementation

of the takeoff identification will be explained later in the following subsection.

Low-Altitude Phases/Maneuvers Transition Phases High-Altitude Phases/Maneuvers 
Standing Takeoff Climb 
Surface Taxi  Cruise 
Hover Taxi  Descent 
Air Taxi  Hover 
Hover In Ground Effect Landing  
Hover Lift   
Hover Descent   

 

Figure 2.1: Flight phases in low and high-altitude regions along with transition phases
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Piecewise linear regression

Piecewise linear regression (PLR) is an approach derived from the field of time series seg-

mentation, and it is used to represent a profile or a curve in the time domain with a few

small line segments. In [73], Keogh et al. introduced several algorithms, including top-

down, bottom-up, sliding windows, and a mixed approach, to slice a time series into a

handful of entities. Lovric et al. [74] also review on some popular methods used in the

field. Through the PLR approach, we can reveal the general pattern of a time series with-

out being affected by the noisy data points. The process of PLR starts from representing

all data points in a growing window by linear regression, and the window will continue to

expand until the regression line no longer fits the data points. Then, the process will repeat

for the following data points, and it ends when all data points are consumed. A cartoon

that illustrates the operation of the PLR can be found in Figure 2.2, and a pseudo-code is

provided in Appendix A.1 for reference. In this study, this method is applied to the alti-

tude signal for detecting the climb, the cruise, the descent, and the high altitude hover. If

the data points are summarized by a line segment with an ascending trend, then all of the

timestamps associated with these data points will be classified as the climb. The same logic

is applied to detect the descent, and if a segment is not a climb or a descent, it is considered

the cruise or the high altitude hover.
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(1) (2) (3) (4)

(5) (6) (7) (8)

Initiate the process with the 
minimum window size

The size of the window 
continues to expand 

The window would cease to 
expand when a threshold is 

reached

Form a line and continue the 
process

Figure 2.2: The process of the piecewise linear regression method (adapted from [74])

There are three parameters to tune for the PLR method: the initial size of the grow-

ing window, a threshold value on the goodness-of-fit for the regression line, and a slope

threshold for distinguishing the climb, the cruise, and the descent. The first parameter

would dictate the least amount of data points for forming a segment. When picking a larger

value on this parameter along with noisy data points, the window would stop growing due

to exceeding the threshold value on the total residual error. To pick an appropriate initial

window size, we suggest starting from a smaller value and then monitoring the effect when

larger values are applied. The second parameter directly determines how well a regression

line represents the data points. For cases with noisy data, a larger threshold value would

lower the impact of fluctuating signals. The last parameter is the slope threshold, and with

a smaller value on this parameter, the cruise segments would be less likely to trigger than

the cases with a larger slope threshold.

Sliding window regression classification

The sliding window regression classification (SWRC) is a regression-based classifier. It is

motivated by a fuzzy set approach in which a timestamp could belong to multiple candidate
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flight phases. Unlike the PLR method, the window size for SWRC is kept constant, and

this window would slide through consecutive timestamps for performing regression until

reaching the end of the data record. As such, most of the timestamps would be classified

multiple times, and the prevailing label determines the flight phase for a specific timestamp.

An illustration is shown in Figure 2.3. In the figure, the initial six realizations of the method

with a window size of 3 are demonstrated, and the third point is classified as label L since

the majority of the labels are associated with the third point are L. The pseudo-code of

SWRC is presented in Appendix A.2.

Figure 2.3: The process of the sliding window regression classification

Sequence smoother

In the preliminary test of applying filters to detect flight phases, it was found that some

flight phases identified are within short durations, and these short duration phases would

frequently flip from one to another. The same phenomenon is also observed from the test

of the PLR method. To address the issue of flight phases in short duration, we developed an

approach called sequence smoother to eliminate short duration segments. In the sequence

smoother, a flight phase in a short time is combined with a neighboring flight phase in a long
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duration. If there exist multiple flight phases in a short duration consecutively, they are first

combined into a segment in a long duration, and then this new segment will be reclassified.

Two scenarios are presented in Figure 2.4 to illustrate the concept of the sequence smoother,

and the detailed implementation of this approach is documented in Appendix A.3.

Figure 2.4: Using sequence smoother for dealing with short duration segments

Logistic regression

Since the phases of flight identification can be thought of as a classification problem, lo-

gistic regression, which is a method in supervised learning, can predict the flight phase

labels. Compared with linear regression, logistic regression is used when the outputs are

categorical labels rather than numerical values. In this model, the probability of predicting

flight phase k given the observed data, sometimes called the posterior distribution, is taken

the form of a sigmoid function. In the context of phases of flight identification, assuming

there exist K flight phases to be detected, the posterior distribution of a specific phase k

can be expressed in Equation 2.1 and 2.2:

P (Phase = k|X = x) =
exp
(
βk0 + βT

k x
)

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

, k = 1 · · ·K − 1 (2.1)

P (Phase = K|X = x) =
1

1 +
∑K−1

l=1 exp(βl0 + βT
l x)

(2.2)

where β are the regression coefficients which can be derived from the maximum likelihood

estimation and x is a vector formed by explanatory variables or predictors. The x can

be any flight parameters that are relevant for predicting flight phases, such as the altitude,
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the horizontal speed, and the vertical speed. By manipulating Equation 2.1 and 2.2, the

following expression can be formed:

log
P (Phase = k|X = x)

P (Phase = K|X = x)
= βk0 + βT

k x, k = 1 · · ·K − 1 (2.3)

The right-hand side looks exactly the same as linear regression, while the left-hand side

can be interpreted as the probability of being in flight phase k over the likelihood of being

in flight phase K. After all the regression coefficients β are learned in a training process,

the x for each timestamp can be inserted to Equation 2.1 and 2.2 for prediction, and the

phase with the highest posterior probability would be assigned to that specific timestamp.

Naive Bayes classifier

Another approach in supervised learning that can be used for detecting flight phases is the

Naive Bayes classifier, and it is a method based on the Bayes’ theorem. It is a probabilistic

model, and the posterior distribution of being in flight phase k can be formulated as below:

P (Phase = k|X = x) =
P (X = x|Phase = k)P (Phase = k)∑K
l=1 P (X = x|Phase = l)P (Phase = l)

(2.4)

where k is one of the K phase labels and x is a vector comprised of all flight parameters

involved for the prediction. Based on Bayes rule, the right-hand side of the Equation 2.4

is the product of the likelihood function and the prior distribution of being in flight phase

k divided by a normalization constant. In this study, the likelihood function is assumed

to follow a multivariate normal distribution, and it can be factorized into a product of sev-

eral individual univariate normal distributions. Once the hyperparameters for the model

are acquired from the training, the model can be deployed for the prediction. Given the

observation x, if the probability of being in flight phase k is higher than the probability of

being in flight phases l where k ̸= l, then the flight phase k would be the predicted result

for the corresponding timestamp.
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Linear and quadratic discriminant analyses

A variant of the Naive Bayes classifier, which also falls into the supervised learning, is the

discriminant analysis. It has the same formulation as the Naive Bayes classifier but instead

of modeling the likelihood function as fully factorized univariate normal distributions, it

is represented as a multivariate normal distribution. In the linear discriminant analysis, it

is assumed that the multivariate normal distribution from different classes would have the

same covariance matrix. The decision boundary for the linear discriminant analysis can be

computed using the following formula:

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (2.5)

where µk and Σ are the mean and covariance matrix of the multivariate normal distribution

and πk is the probability of observing flight phase k in the data. It is called a “linear

classifier” since the decision boundary is a linear function with respect to the predictors x.

The phase label k is assigned if δk(x) is the highest value among all δl(x) where l ̸= k. In

the quadratic discriminant analysis, the assumption of equal covariance matrix is relaxed

and the decision boundary for the quadratic discriminant analysis has the following form:

δk(x) = −1

2
xTΣ−1

k x+ xTΣ−1
k µk −

1

2
µT
kΣ

−1
k µk −

1

2
log |Σk|+ log πk (2.6)

where Σk is the covariance matrix for each of the flight phase k. The quadratic discriminant

analysis is more complex than its linear counterpart since more hyperparameters have to

be estimated. However, the decision boundary would be more flexible compared with the

linear discriminant analysis.
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K-nearest neighbors

K-nearest neighbors (KNN) is another supervised classification method that may be suit-

able for flight phase identification. The flight phase label for a given timestamp is predicted

by looking at the flight phase labels from its k nearest neighbors. If most of the neighbors

have the flight phase label i, then this label is assigned to the timestamp. Figure 2.5 is an

example illustrated the concept of KNN in a two-dimensional space. If k = 3, then the

red diamond point is assigned to class B, while if k = 6, it is assigned to class A. This

method can be interpreted as using the training data as a knowledge database for predicting

the newly observed data points. It is a non-parametric approach since it does not need to

estimate the parameters for a model or a distribution. For smaller k values, the decision

boundary of the KNN may be highly nonlinear and irregular.

!!

!"
! = 3

! = 6
Class A
Class B

Figure 2.5: An example of KNN method in a two-dimensional space

Decision tree and random forest

The decision tree is a classifier in supervised learning, and it can be interpreted as a model

with multiple layers of filters. In the method, several binary splits are applied to the feature

space for creating several manifolds that correspond to data labels. An example to illus-

trate the concept in a two-dimensional space is shown in Figure 2.6. In this case, the feature

space is separated into five distinct regions in four binary splits. The location of the split is

determined by minimizing the difference between the predicted and the true labels. There
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are two stopping criteria for the binary split: (1) a threshold for limiting the least amount

of data points in the terminal nodes and (2) a threshold for limiting the maximum number

of the terminal nodes for a tree. If a decision tree model is built to fit the training data well,

this model will tend to have a large number of binary splits, and it can also have the issue

of overfitting. Two fixes were proposed to tackle the overfitting problem. One is to use

bagging, the acronym of “bootstrap aggregation”, to reduce the variance of a fully grown

decision tree. In the bagging, several candidate trees are generated in the bootstrap step

while the results from these trees are combined and averaged in the aggregation step. The

other approach is called the random forest, and it consists of several tree models in which

binary splits are performed in a subspace of the feature space. In such a case, individual

trees in the forest would look dissimilar, and thus it reduces the correlation between candi-

date trees. In this study, both a tree model and a random forest model are considered the

candidate methods for the task of the phases of flight identification.
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Figure 2.6: A 2D example of binary splits in a decision tree model (adapted from [75])

2.2.3 Takeoff identification

In this study, the takeoff phase is treated as a transitional phase from low-altitude to high

altitude region, and it is not included in the basic phases of flight identification. However,

once the basic flight phases are identified, the takeoff phase can be obtained from the in-

formation of existing flight phase labels and additional flight parameters. There are four

different types of takeoffs specified in [16], namely, normal takeoff, takeoff from hover,

maximum performance takeoff, and rolling takeoff. We can find several descriptions of the
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takeoff phase from different sources. For example, the takeoff phase has to go through two

sub-phases: the transverse flow effect, which typically happens around 10-20 knots in air-

speed, and the effective translation lift (ETL), which normally occurs around 16-24 knots

in airspeed. From the flight manual of the EC-135 helicopter, suggested airspeeds upon

reaching certain altitudes can be found in the recommended takeoff procedure. However, it

is hard to determine the start and the end of takeoff from these descriptions.

An approach attempted to tackle the takeoff identification is proposed. It is based on the

following input variables: altitude, ground speed, flight path angle, weight on wheels, and

flight phase labels. The first step is to estimate the liftoff point from the weight on wheels

signal, which is regarded as the start of the takeoff. The end of the takeoff is determined

as the timestamp where the altitude signal reaches 150 feet above ground level. If the

ground speed is higher than 10 knots ahead of the liftoff point, it means that the vehicle has

already begun to accelerate on the ground; thus, this segment is tagged as “rolling takeoff”.

If there exists a hovering phase after the liftoff point, then the segment is identified as

“takeoff from hover”. We use two statistical features extracted from the flight path angle

to differentiate the normal and maximum performance takeoffs. A support vector machine

(SVM) is trained on these features, and this classifier can be used to predict these two

takeoffs. A pseudo-code detailed the procedure of this takeoff identification is documented

in Appendix A.4.

2.2.4 Evaluation criteria

Since no flight phase label is attached to the flight data records used in the study, it is

challenging to determine the algorithm’s accuracy and effectiveness. Aside from creating

a labeled dataset for addressing this difficulty, we developed some qualitative measures to

evaluate the results from the algorithm. Here are some criteria that we proposed to judge

the results from an algorithm for detecting flight phases:

1. Mutually exclusive: every single timestamp in the flight data records should only
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belong to one flight phase.

2. Exhaustive: no unidentified timestamp should exist in the result.

3. Minimum duration: for each flight phase identified from the algorithm, the corre-

sponding flight segment should have a minimum duration. If there exist some flight

phases that only persist for less than a second, then the flight phase labels for these

flight segments are required to be re-assigned.

4. Proper transition: only the practical transitions between flight phases are permissible.

For instance, a climb cannot be a precursory flight phase of a takeoff, or a standing

phase cannot be a successor of a cruise phase.

5. Time for computation: the algorithm is required to be efficient when dealing with

flight data records in a larger sample size.

2.3 Experiments for phases of flight identification

In section 2.2, potential methods that are feasible to detect phases of flight for rotorcraft

operations were introduced and presented. To find the most appropriate method or a com-

bination of methods among the ones considered in the study, experiments that can assist

in selecting the method are required. Because the flight phases are separated into two dis-

tinct regions, namely, the high and the low-altitude flight phases, the experiments will be

conducted individually. For detecting the flight phases in the high-altitude region, all the

methods mentioned in section 2.2.2 will be compared and tested. However, we will directly

apply the filters from our baseline definitions for the flight phases in the low-altitude region

due to the availability of well-defined thresholds. In the test, if unidentified data points

exist, we will modify the corresponding thresholds accordingly.
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2.3.1 A test on the methods for detecting the high-altitude flight phases

The experiment conducted in this subsection aims to find the best method or a combination

of methods to identify phases of flight in the high-altitude region. To compare different

methods quantitatively, samples of flight segments with flight phase labels attached are

essential for fulfilling the task. Without the information of flight phase labels, it is not

easy to make a quantitative comparison, and the performance of each method can only

be judged qualitatively. Thus, to acquire the sample data needed for the experiment, we

retrieved 21 flight segments in the high-altitude region from flight data records of two

actual flights, and the flight phases are manually labeled using the following two strategies:

(1) three dimensional flight data replay using Simulink with the integration of Flightgear

and (2) animation of traces from relevant flight parameters (shown in Figure 2.7).

Figure 2.7: Different strategies from retrieving the flight phase information

From the flight data replay, the information of various vehicle representations and the

view on cockpit gauges can assist subject matter experts and pilots in determining the

flight phases for the flight data records. However, as the number of flight data grows,

this reviewing process would become time-consuming. Further, it is difficult to have an

agreement from a group of SMEs on the exact time when a particular flight phase initiates

or ends. As a result, we will first tag the flight phase labels based on both flight replay and

the animation. Then, we submitted the results to a few SMEs and researchers for review
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and verification.

The threshold value in the altitude for slicing the flight data records into the low and the

high-altitude regions is adjustable, and it can vary in the range from 100 to 200 feet AGL.

This value depends on the pattern observed in the altitude, and it is intended to minimize

the total count of the low and the high-altitude samples. Given the existence of fluctuating

altitude data below 200 feet, this flexible threshold can avoid consecutive flipping between

flight phases in the low and the high-altitude flight phases. In our dataset, the available

flight parameters include the position of the vehicle(the latitude, the longitude, and the

altitude), horizontal and vertical speeds, angular position and rates. These parameters are

considered as predictors when building a model in supervised learning.

In the test, the methods for capturing the high-altitude flight phases are grouped into

two classes: (1) the methods can be used directly without training and (2) the methods

dependent on training data. Due to no training being required for the methods in the first

class, we can directly use all the samples for testing. If hyperparameters need to be tuned

for specific methods, the values are selected by minimizing the prediction error. For the

methods in supervised learning, the labeled dataset have to be split into two sets: one for

training and the other for testing. To train the models, we implemented 10-fold cross-

validation for choosing the optimal model parameters. Some details of the settings for each

of the methods considered are described as follows:

1. Filtering approach: The thresholds on flight parameters for detecting the high-altitude

flight phases are summarized in Table 2.4. If the climb rate is higher than 90 feet per

minute, the corresponding timestamps are classified as a climb. If the descent rate is

higher than 90 feet/min, the flight segment is identified in a descent phase. For the

remaining data points, a cruise or a high-altitude hover could be assigned depending

on whether the ground speed is higher or lower than 0.6 knots.

2. Piecewise linear regression: The goodness-of-fit parameter is set to 0.99, and the

slope threshold to differentiate the climb, the cruise, and the descent is 90 feet per
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minute, which is the same as the filtering approach. If the sequence smoother is used

in conjunction with the PLR, the smallest window size is selected to be 10 seconds.

3. Sliding window regression classification: Two tuning parameters are associated with

the SWRC: the size of the sliding window and the slope threshold. An optimization is

performed for these tuning parameters, and the ranges of window size and slope are

selected as 10-200 (equivalent to 2.5-50 sec) and 1-5 (equivalent to 60-300 feet/min),

respectively. The optimal values for the window size and slope threshold are 140 and

2.5, separately.

4. Logistic regression: The idea of using different combinations of flight parameters

as the predictors for the model was tested. As a result, the altitude, horizontal and

vertical speeds were chosen as the predictors.

5. Naive Bayes classifier: The flight parameters selected to be the predictors for the

Naive Bayes classifier are the same as those used for the logistic regression. The

conditional distribution of a flight parameter given being in a particular flight phase

is assumed to follow a normal distribution.

6. Linear and quadratic discriminant analyses: The flight parameters selected to be the

predictors for the discriminant analyses are the same as those used for the logistic

regression.

7. K-nearest neighbors: The features decided on the KNN model are identical to the

methods mentioned above. To find the optimal value of k, we examined the profiles

of training and testing errors. The best k value is determined by balancing these two

types of errors, and the value is set as 15 in the test.

8. Tree model and random forest: The number of splits controls the model complexity

of a tree model. Based on the cross-validation result, the optimal value is set as 20 in
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the test. For the hyperparameters involved in the random forest model, the following

values are chosen:

• In-bag fraction of samples = 0.9

• Number of predictors = 7

• Number of bagged trees = 10

• Maximum number of splits = 10

The classification results for the methods no need for training are displayed in Figure

2.8. On the whole, the piecewise linear regression with sequence smoother and the sliding

window regression classification have lower prediction errors than the other two in the

class. If we only consider the PLR with sequence smoother and the SWRC, the PLR with

sequence smoother did outperform the SWRC in certain cases. Nonetheless, the SWRC

has the lowest classification error on average in this experiment.

To dive further into the detailed difference between individual methods, we selected

the results from a sample flight segment, and they are presented in Figure 2.9 and 2.10.

The subplots on the top row show the actual flight phase labels in each figure, while the

subplots on the bottom display the predicted flight phase labels from the methods. In

Figure 2.9, both the PLR and the approach based on filters are suffered from having flight

phases in short duration and consecutive switches between flight phases. Another issue

for the filtering method is that the cruise phase would exist as an intermediate phase when

going from a climb to descent or in reverse order because vertical speed is a continuous

signal. In the actual scenario, a helicopter flight can go directly from the climb to the

descent without passing through a cruise segment. The piecewise linear regression alone

can capture the flight phases when the altitude data exhibit a smooth pattern. In cases like

having fluctuation in a cruise phase, the PLR would label the bumps and dips in altitude

as individual climbs and descents rather than a whole piece of the cruise. The sequence

smoother is a tool designed to lower the impact when dealing with altitude signals with
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local fluctuations, and it can assist in eliminating the flight phases with short duration for

the PLR method. In Figure 2.10, the results from PLR with sequence smoother and the

SWRC are presented. Although having a minute difference in specific local regions, most

of the flight phases detected using these two methods agree with the true flight phase labels.
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Figure 2.8: The comparison of the methods no need for training
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Figure 2.9: Sample results from the filtering approach and the PLR
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Figure 2.10: Sample results from the PLR with sequence smoother and the SWRC

In Figure 2.11, the identification results from the methods in the second class, which

correspond to the ones in supervised learning, are presented. It is observed that these

methods fulfill the task on samples such as #1, #5, #6, and #10, but they have low accuracy

in prediction for samples #2 and #7. Overall, the logistic regression with three predictors

has the highest accuracy in prediction among the methods in this class. Two potential root

causes can contribute to the inconsistency of prediction accuracy across different samples.

First, the data points being fed into the models in supervised learning are typically assumed

to be independent. However, the flight parameters are in the form of time series, and the

neighboring data points may not be independent. Second, these models were trained under

a relatively small dataset and thus may not be sufficient to work in various scenarios. With

more labeled data acquired in the future, the performance of these methods is expected

to improve. To sum up, an overall comparison among all methods considered is shown in

Figure 2.12. The PLR with smoother sequence and sliding window regression classification

achieve higher prediction accuracy than others. Therefore, they are selected to identify the

high-altitude flight phases.
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Figure 2.11: The comparison of the methods dependent on training data

Figure 2.12: Overall comparison of all methods considered for detecting flight phases

2.3.2 A test on the filters for detecting the low-altitude flight phases

For the low-altitude flight phases, quantitative thresholds on flight parameters can be found

in our baseline definitions in Table 2.4. Without the actual flight phase labels attached to the

data, the results from the filtering approach will be qualitatively evaluated using the criteria

proposed in section 2.2.4. If the results cannot meet the requirements, we will modify

the previously selected threshold values. In the test, we found unidentified data points for

the flight data records examined, which violates the criterion of exhaustivity. Thus, the

following changes are made to the thresholds for detecting the low-altitude flight phases:
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• Increase the upper bound of the ground speed threshold for the air taxi: It was ob-

served that some flight segments belonging to the air taxi phase would have a higher

ground speed than the upper bound specified in our baseline definition.

• Increase the ground speed threshold for distinguishing the standing and the hover

from taxi phases: A higher ground speed threshold can alleviate the frequent flips

between the flight phases with and without motion to account for noisy ground speed

signals.

In Figure 2.13, threshold values on flight parameters for detecting the low-altitude flight

phases are displayed as colored blocks in three-dimensional feature space. The left subplot

in the figure is the constraints specified in the baseline definitions, while the right subplot

shows the modified constraints for addressing the issue of unidentified data points. In the

visualization, the range of the vertical speed is from -200 to 200 feet per minute, and if the

blocks are in contact with these boundaries, it means that no upper or lower bound is placed

on the vertical speed for these flight phases. In the test of using modified constraints, all

the results are satisfied with the proposed evaluation criteria. A handful of sample results

of using the filtering approach to detect the low-altitude flight phases are demonstrated in

Figure 2.14. From the first sample shown on the top subplot, the aircraft is prepared to take

off, and the flight phases for this flight segment are switching between the hover and the air

taxi. For the second sample displayed on the bottom subplot, the aircraft is coming from

an approach. After lingering at the low-altitude region for a moment, it is ready to take

off again. We can see more low-altitude flight phases are involved in this particular flight

segment. In the future, it is envisioned that these constraints might need to be adjusted

based on the operations, and more flight parameters may be added to the feature space for

better capturing the characteristics of flight phases.
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Figure 2.13: Visualization of thresholds on flight parameters for detecting flight phases

Figure 2.14: Sample results of using the filtering approach for detecting the low-altitude
flight phases

2.3.3 Add-ons to the basic phases of flight identification algorithm

We can add several additional flight phases to the basic phases of the flight identification

algorithm. For example, the turn maneuver can be detected using the same method for

differentiating the climb, the cruise, and the descent phases. By switching the flight param-

eter from the altitude to the heading, the piecewise linear regression (PLR) with sequence
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smoother can detect the phases of the right turn, left turn, and stay straight. A sample result

is shown in Figure 2.15, and it is obvious to see that multiple turn events are accurately

captured.
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Figure 2.15: Results of turn detection

Another flight phase that can be incorporated into the basic phases of flight identifica-

tion algorithm is takeoff. As mentioned in section 2.2.3, the takeoff is treated as a transition

phase from the low to the high-altitude region. Once the timestamps corresponding to this

transition are identified, we can assign different takeoff labels based on relevant flight pa-

rameters and flight phase labels in the duration. We have prototyped an algorithm for

detecting the takeoff, and it is intended to use simulated runs for algorithm verification.

These simulated runs were conducted using an X-Plane simulation environment, and an

observer in the cockpit would document all the takeoffs. A snapshot of camera views from

the cockpit for different takeoff maneuvers is shown in Figure 2.16. In the test, we used the

first few batches of simulated runs to tune the parameters in the algorithm, and the remain-

ing simulated data were managed to evaluate the algorithm’s performance. In Table 2.5,

the number of simulated takeoffs in each category available for verification is provided.

From the results of this test, the algorithm performs well in detecting various takeoff types,

especially for the takeoff from hover and the rolling takeoff. For improving the accuracy of

differentiating the normal and the maximum performance takeoffs, we can add more new
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labeled data to the training process of the SVM classifier, and the resulting new decision

boundary can be used to distinguish these two takeoffs more precisely.

Normal Takeoff Takeoff from Hover

Maximum Performance Takeoff Rolling Takeoff   

Figure 2.16: Different takeoff maneuvers conducted in a X-Plane simulation environment

Table 2.5: Results of takeoff identification using simulator

2.4 Summary for the second research question

To move forward in our first research objective, we first addressed the need to define the

phases of flight for rotorcraft operations. Since flight phase identification is a prerequisite

and a pathway that leads to anomaly detection, a methodology that can assist in detecting

flight phases was proposed. Several methods are considered for the task, including a filter-

ing approach, regression-based classifiers, and supervised learning methods. In the high-

altitude flight phases test, the piecewise linear regression (PLR) with sequence smoother
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and the sliding window regression classification (SWRC) are the best among the methods

considered in terms of average accuracy across all labeled samples. We selected a filtering

approach with modified constraints in the low-altitude flight phases test due to the well-

defined thresholds and its simplicity. The combined identification results from these two

regions meet the evaluation criteria that we proposed for judging the algorithm’s perfor-

mance. At last, an implementation to detect the takeoff, which is a flight phase initially

treated as a transitional flight phase, was presented. This add-on logic was verified using

simulated trials, and it is capable of accurately predicting different types of takeoff.
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CHAPTER 3

ANOMALY DETECTION ON FLIGHT DATA RECORDS

In chapter 2, a baseline algorithm is established for detecting the phases of flight for ro-

torcraft operations. Before proceeding to the task of anomaly detection, it is essential to

have a definition of the anomaly we aim to catch. The overarching objective here is to

leverage data mining techniques and use patterns discovered for identifying the norm and

the outliers in a specific group of flight segments. Several methods that can assist the task

will be covered in this chapter, and we also set up a few experiments to test their perfor-

mance. In the end, we will apply the best methods among the ones considered to actual

flight segments for validating the selection.

3.1 Problem formulation

Once we acquired the phases of flight from flight data records, a statistical analysis on

this information can be used to characterize a fleet-level of flights. Moreover, the task

of anomaly detection can be performed on flight segments within the same flight phase.

The exceedance analysis is the traditional approach for finding anomalies in flight data

records. However, the threshold values for exceedances need to be determined either by

the subject matter experts (SME) or by the manufacturers before the analysis, and they

can vary with mission profiles and the types of helicopters. To avoid the step of threshold

determination, we adopted a data-driven approach in this study to detect anomalies by

examining a sufficient amount of flight data records. The third research question relevant

to the task of anomaly detection is stated as follows:
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RQ3: Given that the flight segments belong to the same flight phase and know

the type of anomaly to detect, what techniques can be applied to discover patterns

such that anomaly detection can be performed without the availability of predefined

thresholds?

The hypothesis associated with the third research question is

H3: Due to the unavailability of a labeled dataset, the techniques belonging to unsu-

pervised learning are chosen. A sequential approach that contains feature extraction

and clustering analysis is proposed to tackle both (1) time series data and (2) trajec-

tory data for assisting the task of anomaly detection.

To test the third hypothesis, we have designed some relevant experiments, and they are

described as follows:

E3: Different combinations of feature extraction and clustering techniques will be

first tested using synthetic and simulated data. The ones capable of capturing the

patterns of both types of data will then be applied to the real dataset.

In the following approach section, the type of anomalies to detect is first defined, and

then an overview of the process is presented. The methods used in each step of the process

will be explained as well.

3.2 Approach for anomaly detection on flight data records

Before diving into various methods that may be useful for anomaly detection in flight data

records, it is essential to have a proper definition of an “anomaly”. An anomaly, some-

times referred to as an outlier or a novelty, is an entity that is rarely observed and has a

different behavior or pattern compared to the majority or the normality within a group.
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Based on the work by Chandola et al. [76], three crucial kinds of anomalies, namely point

anomalies, contextual anomalies, and collective anomalies, can be potentially found with

regard to time series. In this study, our focus will be placed on developing a framework for

detecting collective anomalies, in which time series are treated as a whole rather than inde-

pendent sequential observations. It is important to note that anomalies detected using this

framework may not directly correspond to hazardous events. Instead, the segments being

tagged as “anomalous” are better interpreted as being “rare” and “dissimilar” from the rest

of the group. Further, flight segments being investigated in the anomaly detection should

be within the same phase of flight. The extraction of homogenous flight segments can be

performed using the method mentioned in section 2.2 or other algorithms when applicable.

There are some challenges associated with detecting anomalous flight segments in flight

data records we currently have. First, subject matter experts have not investigated the flights

present in the database. No anomalous tag has been placed on an entire flight or specific

timestamps of particular flights. Therefore, supervised learning methods, often used for

classification and anomaly detection, cannot be applied. Instead, unsupervised learning

methods may be helpful in this situation. It is generally harder to handle the unsupervised

learning problem due to the difficulty of evaluating the model performance without labels.

Second, the standard length units for flight parameters are time and nautical mile, and the

flight segments are often in unequal lengths. To reasonably compare homogenous flight

segments, a procedure needs to be developed. The methods that we used to address these

challenges are explained in the following subsections.

To detect anomalies in routine flight data records for helicopter operations, a sequen-

tial approach, which consists of multiple steps, is proposed and is depicted in Figure 3.1.

Prior to the final outlier detection step, several filtering steps are implemented to eliminate

inconsistent segments and make a fair comparison. The approach starts by grouping hetero-

geneous flight data records based on contextual notions, such as the type of operations and

the make and model of rotorcraft. This step ensures that the flights within a given group are
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similar and removes variations between flights due to such categorical factors. Then, the

flights are segmented into comparable pieces, i.e., phases of flight, so that the subsequent

analyses can be conducted on the same fundamental level. Past research on anomaly de-

tection in aviation data showed that the proposed analyses are typically performed on flight

segments within the same flight phase rather than the entire flight data records. Therefore,

a flight phase identification algorithm for rotorcraft is a prerequisite for the task of anomaly

detection.

Raw flight 
data records

Data pre-processing

• Extract flights with the 
same operation / aircraft 
type

• Group flights by takeoff / 
landing sites

• Eliminate invalid flights

Flight phases 
identification

Extract flight 
segments with the 
same flight phase

Trajectory pattern mining

• Distance metrics
• Clustering analysis

Outliers in 
trajectory pattern

Feature extraction

• Functional principal 
component analysis

• Autoencoders

Outlier detection

• DBSCAN
• iForest
• LOF
• KNN

Time series 
length 

analysis

Outliers in length Outliers in shape

Figure 3.1: General framework for anomaly detection of helicopter flight data records

Trajectory pattern mining is used to associate flight segments with similar spatial paths

after the flight phase of interest is identified for each flight data record considered. In this

step, we adopted some distance measures used in the literature to calculate the similarity

between trajectories. The results are then served as the inputs to the clustering analysis for

pattern recognition. Segments that do not follow the primary spatial pattern are marked as

outliers, and the remaining segments are further examined in terms of the flight parameters

involved. These parameters may include native variables like horizontal and vertical speeds

and derived variables such as specific energy and flight path angle. To address the challenge
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of segments in unequal lengths, we characterized these segments by the corresponding

length and shape features. With the availability of these two features, the profile of the

signal in its original domain can be recovered. Some efforts have been put into combining

the length and shape features as one set of features by concatenation or by using feature

scaling/shifting. However, we found two drawbacks to blending those features. The first

one is the difficulty of recognizing why a data point is detected as an outlier. The second one

is that, in some extreme cases, even if two different time series look drastically dissimilar

in shape, they can still be close to one another in the feature space due to the inappropriate

scaling/shifting of the shape features. For example, in the left subplot of Figure 3.2, the

shape information of two sets of curves (represented by red and blue circles) is captured

with features in a two-dimensional space. The curves represented by red circles have a

longer duration than the curves represented by blue circles, and the histogram of segment

duration is shown in the middle subplot. When trying to blend the length information with

the shape features using shifting (shown in the left subplot), these two sets of curves cannot

be differentiated in the blended feature space.
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Figure 3.2: An example of blending shape and length features

Therefore, a two-step approach is taken to tackle segments in unequal lengths. First,

outliers in length are detected if the segment length falls outside of the designed range

[lnominal − 30 sec, lnominal + 30 sec], where lnominal is the nominal length, selected as the most
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observed length or the median length over all the segments considered. Second, the shape

information is extracted for all the segments of comparable lengths, and outlier detection is

performed on the shape features. Ultimately, three distinct types of outliers may be detected

in the process. To obtain the shape information out of time series, we considered several

feature extraction methods, including functional principal component analysis (FPCA) and

various autoencoders (AE), and they are examined and tested. Combinations of these fea-

ture extraction methods and several outlier detection methods form a portfolio of methods

that may be helpful to identify shape anomalies. They are shown in Figure 3.3 and a brief

introduction of each method is provided in the next subsections.

Nonlinear stacked 
autoencoder

1D convolutional 
autoencoder

Convolutional variational 
autoencoder

Functional principal 
component analysis

DBSCAN

Isolation forest

Local outlier 
factor

K nearest 
neighbors

Reconstruction 
error

Feature Extraction Outlier Detection

Figure 3.3: The methods considered for detecting shape anomalies in time series

Finally, due to the lack of actual labels in the real dataset, it is hard to evaluate the

performance of the methods mentioned above in the portfolio and pick the most suitable

combination. To address this issue, synthetic and simulated data are used to test the effec-

tiveness of the methods in the portfolio. It is hypothesized that if there exists a similarity

between synthetic/simulated data and real data, then the methods appropriate for the syn-

thetic/simulated data should also be applicable to the real data. The details of how to create
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synthetic/simulated data and the way they are used for selecting candidate methods are

described in the experiments section.

3.2.1 Methods for trajectory pattern mining

To detect patterns in flight trajectories, distance metrics are applied to trajectories for com-

paring the similarity between different geometric shapes. Then clustering analysis is per-

formed for placing trajectories into relevant groups. There are several distance metrics ap-

plicable to trajectory comparison, and they will be described later. It should be noted that

trajectories within the same flight phase are typically not the same length. If the selected

distance metrics cannot handle segments in unequal lengths, the trajectories considered

should be transformed into consistent lengths using curve interpolation. After calculating

distances between distinct trajectories, a clustering algorithm that can take the pairwise

distance matrix as its input argument is applied to discern patterns in trajectories. Here

we choose hierarchical clustering given its simple implementation and interpretation. The

dendrogram, which is a typical result of hierarchical clustering, shows how clusters are

formed and combined based on the selected linkage. The number of clusters is determined

by selecting a cutoff value for the height of the dendrogram. In general, larger cutoff values

would produce fewer clusters. In this study, the cutoff value was set as the upper extreme

of the Box-Whisker plot for all pairwise distances of trajectories. Through testing a few

sample sets with known labels, this cutoff value allows us to find the valid number of clus-

ters.

Euclidean distance

Suppose there exist two trajectories x and y of the same length n. The Euclidean distance

between these two trajectories is defined as

dED(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (3.1)
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where x = (x1, · · · , xi, · · · , xn) and y = (y1, · · · , yi, · · · , yn). Trajectories of unequal

lengths may be tailored to the same length using curve interpolation under uniformly spaced

points over a chosen interval. To preserve the shape characteristics of the trajectories, the

number of points used for the interpolation should be large enough in order to capture

minute or local variations in the trajectories.

Hausdorff distance

The Hausdorff distance is a measure used to find the dissimilarity between two sets of

points. Assume the first trajectory X = {x1, · · · , xm} consists of m waypoints, and the

second trajectory Y = {y1, · · · , yn} has n waypoints, where m is not necessarily equal to

n. The directed or one-sided Hausdorff distance is defined as

d̃HD(X, Y ) = max
x∈X

min
y∈Y

∥x− y∥ (3.2)

d̃HD can be interpreted as first finding the distance of the nearest point in the set Y for every

point in the set X , and then, taking the maximum as the representative distance between the

two sets. It is not a symmetric metric and a more general Hausdorff distance is expressed

as follows:

dHD(X, Y ) = max(d̃HD(X, Y ), d̃HD(Y,X)) (3.3)

It can be observed that the Hausdorff distance treats waypoints as independent elements

in a set and does not take the order of the waypoints into account. For some edge cases,

the Hausdorff distance can be small while the shapes of the trajectories look drastically

different.

Dynamic time warping

Dynamic time warping (DTW) is a distance measure designed to deal with when two tra-

jectories have similar shapes but are not in sync in the time axis. If the Euclidean distance
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is applied to this scenario, the dissimilarity between these two trajectories would be higher

compared to the case using dynamic time warping. Due to its “time-warping” character-

istics, a waypoint in one trajectory is not restricted to be aligned with its counterpart from

another trajectory in the same timestamp. It can be aligned with other waypoints in the

adjacent timestamps of another trajectory, and thus this measure is suitable for comparing

asynchronous trajectories. To perform dynamic time warping, a grid map that contains the

pairwise distances of waypoints in two trajectories is first constructed. The alignment of

the trajectories is obtained by finding the shortest path from the lower-left corner of the

map to the upper-right corner, and this problem can be solved using a dynamic program-

ming algorithm. Different constraints are often added to the optimization formulation to

reduce the number of viable paths in the search space. A cartoon that explains the concept

of dynamic time warping is shown in Figure 3.4.

Signal A

Time axis

Signal B

Asynchronous matching

Figure 3.4: An illustration of dynamic time warping algorithm

3.2.2 Methods for extracting features from time series

To detect unusual or rare shapes in time series, the representative features are required to be

extracted before performing the outlier detection. These features should capture the essence

of the original time series in a parsimonious fashion. Two valuable methods, functional
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principal component analysis, and autoencoders are introduced as follows.

Functional principal component analysis

Assume the observed time series can be decomposed into the mean and the residual shown

in Equation (3.4)

Si(t) = µ(t) + ϵi(t) (3.4)

where Si(t) is the i-th observed signal, µ(t) is the mean signal, and ϵi(t) is the residual

of the i-th observed signal. Through Karhunen-Loève theorem, the residuals can be rep-

resented as an infinite sum of the products between functional principal component (FPC)

scores and their corresponding eigenfunctions, which is expressed in Equation (3.5)

ϵi(t) =
∞∑
k=1

ξikϕk(t) (3.5)

where ξik is the k-th FPC score for i-th signal and ϕk(t) is the k-th eigenfunctions.

In functional principal component analysis (FPCA), a continuous curve or profile, which

is essentially an infinite-dimensional entity, can be approximately represented by sev-

eral FPC scores through the eigen-decomposition of the covariance function. The eigen-

decomposition is shown in Equation (3.6)

∫ M

0

Ĉ(t, t′)ϕ̂k(t)dt = λ̂kϕ̂k(t
′) (3.6)

where Ĉ(t, t′) is the estimated covariance function, λ̂k is the k-th eigenvalue, and ϕ̂k(t) is

the eigenfunction corresponding to the k-th eigenvalue. With the estimated eigenfunction

ϕ̂k(t), the k-th FPC score for any observed curves can be calculated using Equation (3.7)

ξik =

∫ M

0

ϵi(t)ϕ̂k(t)dt (3.7)

The original signal Si(t) can be approximately recovered using K’s FPC scores where K is
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the number of FPC scores for explaining 95% of the variance observed. The approximation

of Si(t) is shown in Equation (3.8)

Si(t) ≈ µ(t) +
K∑
k=1

ξikϕ̂k(t) (3.8)

The ξik’s are used as the low-dimensional representation of the time series data. It is ob-

served that under a fixed percentage variance explained, higher the variation of the signal

would lead to higher the dimension for the FPC scores.

Autoencoders

An autoencoder is a particular type of neural network which compresses input signals to

a lower-dimensional representation and outputs the decompressed signals resembling the

inputs. Given that the aim is to match the inputs with the outputs rather than to compare

the predicted labels with the true labels, it is an unsupervised learning method, and no label

is required to train the model’s coefficients. It has two major components: (1) an encoder

which projects a high-dimensional input to a representation in low-dimensional embedding

or latent space and (2) a decoder for recovering the original signal. Suppose that x is

the input of an autoencoder, z is the feature extracted from the signal, f(·) represents the

encoder, and g(·) stands for the decoder. The output of the autoencoder can be written as

x̂ = g(z) = g(f(x)), x ∈ Rl, z ∈ Rm,where l ≥ m (3.9)

The weights of an autoencoder are learned through a backward propagation process in

which a designed loss function is minimized. In general, the loss function would take the

following form:

L(Θ) =
n∑

i=1

√
(xi − x̂i)2 + regularizer (3.10)
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where Θ are the coefficients of the autoencoder and n is the number of input signals or the

number of batch signals if choosing stochastic gradient descent as the optimizer. The first

term is the reconstruction error in the form of the mean square error. The second term is a

regularization that can serve different purposes, such as encouraging sparsity on the dimen-

sion of the encoding layer or placing constraints on weights. Autoencoders have a variety

of applications ranging from dimensional reduction to image denoising and generation. In

this study, we will use it for the purpose of anomaly detection. There are two potential

routes that link anomaly detection with an autoencoder. One is to perform outlier detection

on the low-dimensional features acquired from the encoding process. The other approach

would rely on the reconstruction error to measure the tendency toward outliers. The corre-

sponding flight segment would have a higher anomalous score with a higher reconstruction

error. It is noted from previous research that in order to have autoencoders perform well for

anomaly detection, the model should only be trained on normal data. For the data without

labels attached, outliers are likely to be included in the training process, and the perfor-

mance might deteriorate, especially for the cases with a high percentage of outliers. There

are many kinds of autoencoders being studied in the literature. Here, only three types of

autoencoders will be considered: a nonlinear stacked autoencoder, a one-dimensional con-

volutional autoencoder (1DCAE), and a convolutional variational autoencoder (CVAE).

A nonlinear stacked autoencoder is an extension of the traditional principal component

analysis (PCA), which is to some extent equivalent to a single-layer, linear activated autoen-

coder. By introducing nonlinear activation functions such as a rectifier linear unit (ReLU)

and stacking multiple layers, the extracted features in the latent space should better capture

the nonlinear information of the input signals. The second autoencoder considered is a

one-dimensional convolutional autoencoder (1DCAE). The architecture of 1DCAE can be

interpreted as a deck of multiple dense layers wrapped by some custom layers on both sides

of the encoder and the decoder. The custom layer on the encoder side typically consists of

a convolutional layer plus a pooling layer. On the decoder side, the custom layer includes
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a de-convolutional layer with an upsampling layer. These custom layers work in exactly

the opposite manner to serve compression and decompression functionality separately. The

convolutional layer in 1DCAE provides a benefit over the nonlinear stacked autoencoder

by using filters to locally extract temporal information from input signals rather than deal-

ing with points in the signal as independent observations. The last autoencoder examined

is a convolutional variational autoencoder (CVAE). It is similar to 1DCAE for the con-

volutional part, but it has a probabilistic twist for generating features in the latent space.

Instead of directly shrinking the dimension of the latent space using multiple dense layers,

CVAE assumes that the features follow a specific distribution and are constructed through a

sampling process from two sub-layers; one represents the mean, and the other corresponds

to the variance. The loss function of CVAE contains not only the reconstruction error but

also a regularization term in the form of Kullback-Leibler (KL) divergence. This KL diver-

gence is a measure for calculating the distance between two distributions, and the KL loss

encourages the distribution of the features to be closer to the assumed distribution. One

key difference between CVAE and other autoencoders is that it is a generative model; thus,

it can produce new sample data either by following the same pattern as the training data or

other patterns not observed in the training set. For more details of the CVAE, readers may

refer to [77]. For all the autoencoders mentioned above, we assume the dimension of latent

space is restricted to two-dimensional space for better visualization and understanding of

the structure. In this study, we will use the tool TensorFlow [78] for the implementation,

and the layout of each autoencoder is documented in Appendix B.

3.2.3 Methods for outlier detection

DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a clustering

algorithm that supports outlier detection. The abnormality of a data point is determined by

the number of points within its neighborhood. Compared with other clustering algorithms
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like k-means clustering, DBSCAN does not require the number of clusters as its input

argument. Instead, two parameters are needed for DBSCAN: the minimum number of

points (minPts) for defining a cluster, and the radius ϵ for specifying the neighborhood. A

data point is classified as a core point if the number of surrounding points exceeds minPts

within its ϵ neighborhood. If a point has fewer than minPts existed in its neighborhood,

but it is still reachable from a core point, it is categorized as a border point. A point

neither a core point nor a border point is an outlier. A graphical representation of the above

description is shown in Figure 3.5. To set the value for ϵ under a selected minPts, k-distance

graph is used and the distance where the curve has a sharp change is the optimal value for

radius ϵ.

Core point

Border point

Outlier

!
!"#$%& = 3

Figure 3.5: An illustration of DBSCAN clustering

Isolation forest

Isolation forest is an ensemble method developed by Liu et al. [79]. This method leveraged

the idea of a binary search tree (BST). If a data point can be isolated in fewer binary splits

or, in other words, easier to be isolated, then this point is more likely to be an outlier. The

construction of an isolation forest starts from building an isolation tree (iTree). To form

an iTree, a dimension in the feature space and a threshold value for the binary split are

randomly chosen. The binary split on the feature space is repeated until every data point

has been placed in a leaf node. Once the iTree is formed, every data point is associated

with a path length, i.e., the distance from the root node to the corresponding leaf node. The
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anomaly score for the isolation forest is then defined as follows:

S(x, n) = 2−
E(h(x))
c(n) (3.11)

where x is an individual data point, n is the sample size, h(x) is the path length for data

x, and c(n) is the average path length. It should be noted that the expectation that existed

in the numerator of the power term is taken over all the iTree considered in the isolation

forest. If the anomaly score is closer to one, it means that the path length for x is much

shorter compared with the average path length, so x has a higher chance to be an outlier. If

the anomaly score is approaching zero, x is more likely to be a normal point.

Local outlier factor

The local outlier factor (LOF) is a density-based outlier detection method. If a point is

situated in a densely populated region, it is more likely to be treated as a normal point in

contrast to a point located in a sparsely populated region. Assume the distance to its k-th

nearest neighbor for a point x is denoted as dk(x) and the reachability distance to a point

y can be expressed as

dreach(x,y) = max{dED(x,y), dk(y)} (3.12)

If the k closest points to the point x are represented as Nk(x), the average reachability

distance is

d̄reach(x) = Ey∈Nk(x)dreach(x,y) (3.13)

Given the average reachability distance, the LOF is defined as

LOF (x) = Ey∈Nk(x)
1

d̄reach(y)
d̄reach(x) (3.14)
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The LOF can be interpreted as the normalized version of the average reachability distance,

and with a larger value of the LOF, the point would be harder to reach thus it is more likely

to be an outlier.

K-nearest neighbors

K-nearest neighbors (KNN) is a distance-based outlier detection method, and the degree of

anomaly is determined by the separation between a specific point and its neighbors. There

are two popular versions of the anomaly score for the KNN. One is the exact distance to

the k-th nearest neighbor, and the other is the average distance for the closest k neighbors.

With a higher anomaly score, i.e., a larger the distance to the surrounding neighbors, the

higher the chance to be tagged as an outlier for the point considered.

In Table 3.1, all methods mentioned above were summarized in different categories, and

a short description was provided for each method. The effectiveness of these methods will

be examined using both synthetic and simulated data. The candidate methods identified in

the tests will be applied to the real data to assess the validity of the framework.

3.3 Experiments for anomaly detection on flight data records

With the enabler of identifying phases of flight for rotorcraft operations, we can now test

the performance of the methods proposed in section 3.2 on flight segments within the same

flight phase. Due to no anomalous label attached to our current dataset, synthetic and sim-

ulated data with injected anomalies were created to assist in testing the performance of the

methods and providing guidance on selecting the methods suitable to the task. This section

will first describe the processes of generating synthetic/simulated data and constructing

various scenarios. A metric that balances the tradeoff between a false positive and a false

negative was chosen for performance evaluation. Once the best methods were identified

using synthetic/simulated data, these methods are applied to the flight segments in an ac-

tual operation. Results from trajectory pattern mining and time series shape analysis will
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Table 3.1: Summary table for methods in different categories

Method Description
Distance metric

Euclidean distance For trajectories in equal length
Hausdorff distance For trajectories in unequal lengths; not

considering the order of waypoints in time axis
Dynamic time warping For trajectories in unequal lengths; capable of

handling asynchronous trajectories
Feature extraction

FPCA Using FPC scores to represent the original signals
Nonlinear stacked AE A nonlinear extension of the traditional principal

component analysis
1DCAE Capable of capturing temporal information of

time series
CVAE The extracted features in latent space follow the

assumed probability distribution
Outlier detection

DBSCAN A clustering approach supports outlier detection
Isolation forest Ensemble method
Local outlier factor Density-based method
KNN Distance-based method

be presented, and we will include flight segments from different phases, such as initial

climb and the approach. As expected, different types of anomalies are detected in the real

data using this process, and the situations encountered in real data resemble the scenarios

created in the synthetic/simulated dataset.

3.3.1 Using synthetic data for the selection of candidate methods

To test the effectiveness of the methods mentioned in Figure 3.3, we generated synthetic

sample data using Gaussian processes, and different scenarios were constructed to account

for probable situations we might encounter in the real dataset. The procedure for synthe-

sizing data for a specific pattern starts with a mean signal and then adds noise to the mean

to generate sample signals. As shown in Figure 3.6, we have two sets of sample signals

which belong to different smoothness settings. Three distinct patterns within each smooth-
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ness setting can be mixed and matched for scenario creation. To construct scenarios with

injected anomalies, signals from different groups were drawn from this synthetic data pool.

Two scenarios are considered in the test:

(1) synthetic data with one dominant pattern and two outlier patterns

(2) synthetic data with two dominant patterns and one outlier pattern

The outlier or anomaly percentage was set at 5% due to its rarity by definition. An

example of the cases in the first scenario under the smooth setting is illustrated in Figure 3.7.

In this example, the normal signals are composed of all samples from one of the patterns

in the synthetic pool, and the anomalous signals are randomly selected from the remaining

patterns. Another example of the cases in the second scenario under the rough setting is

demonstrated in Figure 3.8. In this example, the normal signals contain all samples from

any two patterns in the synthetic pool, and the anomalous signals are drawn randomly from

the remaining pattern. The methods in the portfolio will be tested using two scenarios with

different smoothness settings, and their performances will be reported on a scenario basis.

Smooth Curves

Rough Curves

Figure 3.6: Synthetic data pool
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Figure 3.7: Scenario 1: 1 dominant pattern with 2 outlier patterns (smooth setting)

Figure 3.8: Scenario 2: 2 dominant patterns with 1 outlier pattern (rough setting)
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For the task of anomaly detection, using accuracy as the metric for evaluating the per-

formance of an algorithm is biased owing to the imbalanced data. If we have an algorithm

that consistently does not predict anomalies in the dataset, it can achieve exceptionally high

accuracy under the assumption of an extremely low percentage of outliers. Instead of using

accuracy, the precision, which stands for the percentage of true anomalies out of all pre-

dicted anomalies, and the recall, which denotes the percentage of anomalies being caught

out of all true anomalies, are more appropriate for the task. To combine the benefits from

the precision and recall, the F1 score, which is the harmonic mean of these two metrics, is

adopted as the performance measure in this study.

The comparison of the F1 scores for methods in the portfolio is summarized in Figure

3.9. These methods generally show better performance in the first scenario regardless of

the smoothness setting. If there is only one pattern for the normal data, the anomalies are

easier to identify than the scenario having multiple normal patterns. When considering the

reconstruction error as the anomaly score, the nonlinear stacked autoencoder outperformed

other types of autoencoders. For other outlier detection methods, DBSCAN and k-nearest

neighbors achieve higher F1 scores overall across different scenarios no matter what fea-

ture extraction methods were used. Therefore, the candidate methods selected from this

test using synthetic data are all the feature extraction methods in the portfolio along with

DBSCAN and k-nearest neighbors, and the nonlinear stacked autoencoder with the recon-

struction error as the outlier indicator. These candidates will be applied to a set of simulated

data for picking the ideal methods for the entire framework.
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Figure 3.9: F1 scores comparison for methods in the portfolio using synthetic data

3.3.2 Using simulated data to test the candidate methods

To further investigate the candidate methods identified from the test using synthetic data, a

trial to simulate normal and abnormal initial climb segments was conducted using an S76-

D simulator. The initial climb segment is the first climb segment right after the takeoff.

Based on the results from phases of flight identification, the starting altitude of these climb

segments may vary from 100 to 200 feet above ground level (AGL). In order to align

these segments, an altitude of 100 feet AGL, which is used as the standard threshold for

differentiating the low/high altitude maneuvers, is chosen as the starting altitude for the

initial climb segments.

From a discussion with the subject matter experts involved in this study, the speeds
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for the best angle of climb and the best rate of climb are 55 and 70 knots, respectively.

Therefore, we assumed that the normal airspeed for the initial climb segments should vary

within the range of 55-90 knots. If the airspeed of a segment falls outside of the specified

range most of the time, the segment would be considered an abnormal one. In the trial,

14 runs of normal/abnormal initial climb segments were simulated, and these samples are

displayed in Figure 3.10. To increase the sample size in the normal/abnormal groups,

we applied Gaussian process regression to generate samples from the labeled simulated

segments. The outlier percentage is set at 5%, which is the same as the test for synthetic

data. In this test, three scenarios are considered and depicted in Figure 3.11:

(1) one dominant normal pattern with multiple abnormal patterns

(2) multiple dominant patterns with one abnormal pattern

(3) multiple normal and abnormal patterns

The performance of the candidate methods on the simulated initial climb segments is

evaluated and presented using an F1 score, and a bar chart that summarizes the results is

shown in Figure 3.12. In all scenarios, two methods outperform the rest in the candidate

methods: the convolutional variational autoencoder (CVAE) with DBSCAN and functional

principal component analysis (FPCA) with DBSCAN. We will apply these two methods

along with a trajectory analysis to detect anomalies on the real initial climb and approach

segments. The results will be qualitatively evaluated and presented in the following sub-

section. Through a test with the actual flight segments, the validity of this framework for

detecting potential anomalies can be further substantiated.
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Figure 3.10: Samples of normal and abnormal initial climb segments from a simulated trial
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Figure 3.11: Different scenarios considered in the test for simulated segments
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Figure 3.12: F1 scores comparison for the candidate methods using simulated data

3.3.3 Results of anomaly detection on initial climb and the approach segments

We have selected two combinations of methods to detect shape anomalies in signals based

on the tests on synthetic/simulated data. Here the flight data from an actual operation will

be used to validate the methodology. The test data come from distinct flight segments be-

longing to the initial climb and the approach. To recap, the proposed framework of anomaly

detection on flight data records consists of three key modules: (1) trajectory pattern min-

ing, (2) time-series length analysis, and (3) shape analysis on the flight parameters. These

flight segments are obtained from an air ambulance operation, and the segments in the first

set correspond to the flight phase of the initial climb. These initial climb segments are pre-

filtered such that they link up with a specific takeoff site. The number of valid segments

for this group is 81, and their trajectories in three-dimensional space are shown in Figure

3.13. The blue and green circles in the figure represent the starting and ending points of
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the initial climb segments, respectively. From the results of trajectory pattern mining, all

the distance measures discussed in section 3.2.1 are feasible to recognize distinct trajectory

patterns. However, we found that Euclidean distance can provide a better and interpretable

grouping of the segments. In Figure 3.14, these segments are separated into five different

groups based on their corresponding trajectory patterns. We can interpret the logic behind

this grouping as trajectory differentiation through the heading direction and the path length.

For example, we can observe that each group in the figure has its own heading direction,

like group 4 headed toward the southwest while group 5 went to the southeast. Moreover,

those with longer path lengths like groups 1 and 3 were placed into their own group as

singletons. Based on our definition of anomaly, the groups with the majority of segments

should be labeled as normal. The ones with the least number of segments would be consid-

ered abnormal in the context of trajectory patterns. In this particular example, the segments

in group 4 are regarded as normal and would be brought into the following analyses.

Figure 3.13: Visualization of trajectory data for initial climb segments
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Figure 3.14: Sample results of trajectory pattern mining on initial climb segments

Following the trajectory pattern mining, the segments tagged as normal would be exam-

ined through the time series length analysis for filtering out the segments with time duration

exceeding the range. Once the segments were within comparable length, the shape anal-

ysis was conducted to detect shape anomalies for the flight parameters of interest. Here

we chose the ground speed as the targeted flight parameter, and the results from FPCA

with DBSCAN and CVAE with DBSCAN are shown in Figure 3.15 and 3.16 separately.

The plots displayed on the left of both figures correspond to the shape features extracted

using FPCA / CVAE, and the results from DBSCAN outlier detection are displayed using

color-coded dots. In the legend from each subplot, the minus one means the data point

is an outlier, while the other positive integers stand for the data points in different normal

groups. The right subplots provide the exact traces of the flight parameter in each cat-

egory. Despite having different representations in the feature space, these two methods

detect similar flight segments as shape anomalies. Compared with the increasing trend ob-

served in ground speed signals from the normal segments, the anomalous segments have
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a profile with a relatively flat beginning followed by a logarithmic growth. From the re-

sults of these two methods, the scenario encountered for this particular group of real flight

segments corresponds to the scenario with multiple normal patterns and a single abnormal

pattern, which was investigated in the tests for synthetic/simulated data. These two meth-

ods successfully indicate the capability for detecting shape anomalies, and since they are

data-driven approaches, it is anticipated to see the growth in performance with the advent

of a larger sample size.

0 20 40 60 80 100 120
Time (sec)

0

20

40

60

80

100

120

G
ro

un
d 

Sp
ee

d 
(k

t)

Group 1

0 20 40 60 80 100 120
Time (sec)

0

20

40

60

80

100

120

G
ro

un
d 

Sp
ee

d 
(k

t)

Group 2

0 20 40 60 80 100 120
Time (sec)

0

20

40

60

80

100

120

G
ro

un
d 

Sp
ee

d 
(k

t)

Outliers in length

814
17

36

44

46

0 20 40 60 80 100 120
Time (sec)

0

20

40

60

80

100

120

G
ro

un
d 

Sp
ee

d 
(k

t)

Outliers in shape

37
53

56
59

-40 -30 -20 -10 0 10 20 30 40

First functional principal component

-15

-10

-5

0

5

10

15

Se
co

nd
 fu

nc
tio

na
l p

rin
ci

pa
l c

om
po

ne
nt

DBSCAN with minpts = 4  = 7.3344
-1
1
2

Figure 3.15: A sample result of the shape analysis on initial climb segments using FPCA
with DBSCAN
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Figure 3.16: A sample result of the shape analysis on initial climb segments using CVAE
with DBSCAN

Aside from analyzing the initial climb segments, this anomaly detection framework can

also be applied to other segments in different flight phases. The algorithm developed by

Robinson et al. [72] was used to extract the approach segments from an air ambulance

operation for a specific landing site. The number of valid segments for this group is 331,

and the three-dimensional trajectories of these segments are shown in Figure 3.17. Now

the blue circles become the starting points of the approaches, and the green circles are the

terminal points of these segments. After the trajectory analysis, ten different patterns are

found, and they are visualized in Figure 3.18. Here we chose to visualize these trajectories

in three-dimensional plots because, for some cases, like groups 3 and 5, their patterns

cannot be easily distinguished in a two-dimensional projection. Again, we select the group

with the largest number of segments, i.e., group 9, for the following analyses. The flight

segments in groups 2 and 4 can be considered outliers in their trajectory pattern. The ground

speed is chosen again as the signal of interest to conform with the previous analysis on the

initial climb segments. The outliers detected using both FPCA + DBSCAN and CVAE +

DBSCAN are reported in Figure 3.19 and 3.20. The flight segments colored in blue from

both figures are tagged as normal, but we found that there is one trace situated above all
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others, which might be an anomalous segment being undetected. The traces colored in

orange are the outliers in shape, and we found that similar flight segments are detected

regardless of which method we use. It is observed that the flight segments in the group

of outliers in shape do have different patterns compared to the norm defined by the flight

segments in group 1.

Figure 3.17: Visualization of trajectory data for the approach segments

Figure 3.18: Sample result of trajectory pattern mining on the approach segments
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Figure 3.19: A sample result of the shape analysis on the approach segments using FPCA
with DBSCAN
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Figure 3.20: A sample result of the shape analysis on the approach segments using CVAE
with DBSCAN

3.4 Summary for the third research question

We proposed a sequential approach that contains elements including trajectory pattern min-

ing, time series length analysis, and shape analysis to detect the collective anomalies from

flight data records for rotorcraft operations. Due to the inaccessibility of a labeled dataset,
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synthetic and simulated data were created to evaluate the performance of methods in the

candidate list. For trajectory pattern mining, using Euclidean distance as the distance mea-

sure along with hierarchical clustering for pattern grouping is a viable approach to place

similar trajectories into the same group. To detect shape anomalies for time series within

comparable length, we found that both functional principal component analysis (FPCA)

and convolutional variational autoencoder (CVAE) are useful for capturing the shape infor-

mation with features in relatively low dimensions. By applying the density-based clustering

DBSCAN on these features, the flight segments not following the majority pattern in the

group are detected. Compared to traditional exceedance analyses, the proposed methodol-

ogy can detect potential anomalies without specifying thresholds on flight parameters.
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CHAPTER 4

EXPLORATORY ANALYSIS ON THE AUTOROTATION

In the previous two chapters, a retrospective analysis that can assist in finding potential

anomalies in flight data records is explained. To move a step forward, a more proactive ap-

proach, which corresponds to the exploratory analysis, aims to avoid hazardous events and

know how to react once entering those events. We picked the autorotation as our hazardous

event because it meets the criteria of time criticality and low occurrences in operation.

However, the methodology does not tailor specifically to the autorotation, and it should

work on other hazardous events as well. In this chapter, we will first formulate the research

questions regarding the exploratory analysis along with the corresponding hypotheses and

experiments. Then, a roadmap of the analysis will be provided. The remaining sections

will explain the main elements in the roadmap and perform the experiments to test the hy-

potheses stated in the problem formulation. In the end, we will summarize the findings

from the exploratory analysis on the autorotation.

4.1 Problem formulation

The second research objective in this study is to develop a methodology for efficiently ex-

ploring the safety envelope and retrieving the action for recovery in a hazardous event. The

autorotation maneuver is selected as the use case for testing and validating the methodol-

ogy. To explore the envelope for the autorotation, a mathematical representation capable

of capturing the physics of the maneuver needs to be developed. Models with different

fidelity ranging from a simple two-dimensional point-mass to a more sophisticated three-

dimensional rigid-body model can be built based upon the task’s requirement. Sometimes,

the selection of model fidelity is a compromise between the computation time and the accu-

racy. To find the boundary of the safety zone and investigate the feasibility of using a surro-
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gate for predicting the required controls, a two-dimensional model in a vertical plane would

be sufficient, and this model has been widely used in the literature [42][44][47][53][52].

Once the model is constructed, it is required to go through a verification process to

make sure it is built correctly. If a human pilot conducts the simulation, multiple paths

exist from an initial condition to the end condition, and these trajectories would depend on

different levels of piloting skills. In order to have a one-to-one mapping between an initial

condition and its corresponding terminal condition, optimal control is a method to generate

the desired trajectory objectively. Further, this one-to-one relationship is vital if we intend

to apply a surrogate-type of analysis for exploring the operational space.

Due to an optimization process being involved in the exploratory analysis, depending

on the complexity of the simulation model and the solver chosen, it might be computation-

ally expensive to get the result from just a couple of scenarios. To tackle this issue, some

techniques in the design of experiments (DoE) and surrogate modeling will be investigated

in the analysis, and they should considerably increase the efficiency of the exploration

process. In general, a space-filling design would be a typical choice for a computer experi-

ment. With the data collected from the chosen experimental design, a surrogate model can

be built for predicting the terminal conditions and the controls for recovery. Suppose the

surrogate does not perform as expected; in that case, augmented points may be added to the

original experimental design for probing more widely on the response surface. Thus, the

performance of the surrogate can be improved. Lastly, a sensitivity analysis can be used to

investigate the relative importance of the input variables on the response considered. The

concept of the methodology described here is summarized in Figure 4.1.
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Figure 4.1: An overview of the methodology for the exploratory analysis

Since we will primarily place our focus on surrogate modeling, the first research ques-

tion posed for the exploratory analysis is stated as follows:

RQ4-A: Among various kinds of surrogate models suitable for computer experi-

ments, which one is appropriate for the task of exploring the operational space?

The corresponding hypothesis is described below:

H4-A: The Gaussian process regression is a flexible method used in computer exper-

iments to create surrogates specifically for expensive-to-evaluate computer codes. It

supports uncertainty quantification and can also predict functional responses.

To test the hypothesis, the following experiment will be conducted:

E4-A: Several candidate surrogate models will be tested on some known functions

in either low or high dimensional space to evaluate the performance.
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Once the surrogate model is selected, the number of design points for the experiment

should be determined. Thus, the following research question is asked:

RQ4-B: How many runs are needed or sufficient for the experiment to approximate

the actual response of an unknown function accurately?

The hypothesis constructed to address the question is stated as follows:

H4-B: A metric that is useful for approximately inferring the trend of the accuracy

is required to provide guidance on the selection of run numbers.

The experiment to test the above hypothesis is briefly described below:

E4-B: Test the effectiveness of the proposed metrics on some known functions used

in E4-A.

In the second research objective O2, we intend to use the surrogate for predicting the

safety envelope and estimating the optimal controls of the entire region. To achieve the

objective, the following research question is posed:

RQ4-C: The computed optimal controls in the designed locations of the operational

space are in the form of functional responses, and they are in different lengths. What

method is useful for predicting this type of response?

The corresponding hypothesis is formulated as follows:

H4-C: A functional response can be characterized by its length and shape. By em-

ploying a surrogate model with two Gaussian processes, the length and shape infor-

mation of the signal can be captured separately.

The experiment to test the above hypothesis is described below:
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E4-C: The proposed surrogate model will be constructed using the data acquired

from a set of experimental runs in the height-velocity space. To evaluate its effec-

tiveness, the predictions from this model will be compared with the results from the

simulation.

Last, more input variables can be added to the surrogate model beyond initial horizontal

speed and initial height. With a more extensive set of input variables, it is essential to know

the key variables affecting the response. Thus, the following question is posed:

RQ4-D: Among all variables being investigated in the operational space, which vari-

able plays the most significant role in the response?

The corresponding hypothesis is formulated as follows:

H4-D: A sensitivity analysis based on functional analysis of variance (ANOVA) and

Sobol sensitivity indices can be used to identify the critical variables.

To test the above hypothesis, the following experiment will be conducted:

E4-D: Perform an experiment on factors including initial height, initial horizontal

velocity, and vehicle weight, and then use the sensitivity analysis to determine the

key variables.

4.2 Methods used in the exploratory analysis

In this section, we will describe the methods used in the exploratory analysis followed the

order of the sequence in the roadmap shown in Figure 4.1. The helicopter model suitable

for investigating the autorotation maneuver is first introduced, and then the approach for

finding the optimal control is presented. Further, a logical rationale for the selection of the

design of experiments is provided, and several candidate surrogates for computer experi-
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ments are put forward for comparison. In the end, we will explain a sensitivity analysis built

upon the surrogate model for identifying the key input variables that affect the response.

4.2.1 Helicopter modeling

In our investigation, a two-dimensional helicopter model in a vertical plane for the autoro-

tation developed in [42] was modified and used to test the validity of the overall framework.

Due to its simplicity, the following assumptions are made to the model:

• The motion of the vehicle is restricted to a vertical plane

• Dynamic inflow is ignored, and the calculation of induced velocity at vortex ring

state is based on an empirical formula

• Rotor compressibility effect and tail rotor power loss are neglected

• Fuselage drag is calculated from an equivalent flat plate area

• The pitch angle of the helicopter is approximated by the tilt of rotor tip-path-plane

• Mean profile drag of the rotor is typically dependent on the angle of attack of the

rotor blade, but it is assumed to be a constant here

• Ground effect, which provides cushioning to the vehicle when it is close to the

ground, is neglected

• No wind encounter and no air density change during the entire maneuver

The free-body diagram of the two-dimensional model in a vertical plane is shown in Figure

4.2 and the physical meaning of each parameter is documented in Table 4.1 . The parame-

ters of the model are based on a Bell OH-58A helicopter.
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Figure 4.2: Free body diagram

Table 4.1: Parameters used in the two-dimensional model in a vertical plane

Parameter Meaning Value
fe equivalent flat plate area, ftˆ2 24
ρ air density, slug/ftˆ3 0.002378
σ rotor solidity 0.048
R rotor radius, ft 17.63
mg weight of helicopter, lb 3000
Ω0 nominal rotor rpm 352
cd mean profile drag coefficient of rotor blades 0.0087
IR rotor inertia, slug-ftˆ2 1344
Kind induced velocity correction factor 1.13

The force balance equations in horizontal and vertical directions are shown below

mẇ = mg − T cosα−D sin θ

= mg − ρ(πR2)(ΩR)2CTz −
1

2
ρfew

√
u2 + w2

(4.1)

mu̇ = T sinα−D cos θ

= ρ(πR2)(ΩR)2CTx −
1

2
ρfeu

√
u2 + w2

(4.2)

where T is the thrust, D is the drag, α is the tilt of tip-path-plane, θ is the flight path angle,
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u is the horizontal velocity, v is the vertical velocity, CTx and CTz are the thrust coefficients

in x and z directions respectively.

Torque balance equation is expressed as follows:

IRΩ̇ = −Qreq = −[ρ(πR2)(ΩR)2R] · CQ (4.3)

where Qreq is the required torque, CQ is the torque coefficient.

The kinematic relations are stated as follows:

ḣ = w (4.4)

ẋ = u (4.5)

here the direction convention in the vertical axis is taken as downward positive.

The non-dimensional quantities used in the formulation are described as below:

CQ ≈ CP =
1

8
σcd + CTλ

CTx = CT sinα

CTz = CT cosα

µ =
u cosα + w sinα

ΩR

λ =
u sinα− w cosα + ν

ΩR

ν = KindνhfIfG

(4.6)

where CP is the power coefficient, CT is the thrust coefficient, λ is the rotor inflow ratio, µ

is the advanced ratio, ν is the induced velocity, νh is the hover induced velocity, fI is the

induced velocity parameter, and fG is the ground effect on induced velocity. It is set to 1

for ignoring the ground effect. The induced velocity parameter fI is calculated using the
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following formula, which accounts for the vortex ring state (VRS) condition:

fI =


1/
√
(b2 + (a+ fI)2), if (2a+ 3)2 + b2 ≤ 1.0.

a(0.373a2 + 0.598b2 − 1.991), otherwise.

a =
u sinα− w cosα

νh

b =
u cosα + w sinα

νh

(4.7)

In order to facilitate the optimization process, the dynamical equations (Equation 4.1 to

4.3) and kinematic relations (Equation 4.4 and 4.5) are standardized such that the variables

are all in the same scale. The resulting equations are shown as follows:

ẋ1 = g0 −m0(u1x
2
3 + f̄x1

√
x2
1 + x2

2)

ẋ2 = m0(u2x
2
3 − f̄x2

√
x2
1 + x2

2)

ẋ3 = −i0x
2
3(c0 + λ

√
u2
1 + u2

2)

ẋ4 = 0.1x1

ẋ5 = 0.1x2

(4.8)

where normalized states and controls are

x1 =
w

0.01Ω0R

x2 =
u

0.01Ω0R

x3 =
Ω

Ω0

x4 =
h

10R

x5 =
x

10R

u1 = 103CTz

u2 = 103CTx
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Two modifications are made to the original formulation. First, the controls are changed

from CTx and CTz to CT and α because only the constraint on CT is known. Second,

without restricting the change rate in controls, it is likely to have highly fluctuating control

signals for some instances. By adding the rate control, additional variables are introduced,

and the resulting formulation is shown as below:

ẋ1 = g0 −m0(x6 cosx7x
2
3 + f̄x1

√
x2
1 + x2

2)

ẋ2 = m0(x6 sinx7x
2
3 − f̄x2

√
x2
1 + x2

2)

ẋ3 = −i0x
2
3(c0 + λx6)

ẋ4 = 0.1x1

ẋ5 = 0.1x2

ẋ6 = u1

ẋ7 = u2

(4.9)

with the new control variables of

u1 = 103ĊT

u2 = α̇

4.2.2 Optimal control

The general formulation of an optimal control problem (OCP) is stated as follows:

Objective functional : J = ϕ(tf ,xf ) +

∫ tf

t0

g(t,x,u)dt

System Dynamics : ẋ = f(t,x,u)

Constraints : cmin ≤ c(t,x,u) ≤ cmax

Boundary conditions : bmin ≤ b(t0,x0, tf ,xf ) ≤ bmax

(4.10)
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where x is a vector of state variables, u is a vector of control variables, subscript 0 and

f represent initial and final conditions, respectively. Generally, it can be thought of as

an optimization problem in the functional space where the computed trajectories need to

satisfy the system dynamics, constraints, and boundary conditions. The problems with a

linear system and a quadratic loss function have a closed-form analytic solution, and it

is called the linear quadratic regulator (LQR) problem. However, most of the dynamical

systems are nonlinear in nature. Thus, we often need to rely on numerical approaches to

solve optimal control problems.

There are two schools of thought for solving an optimal control problem mentioned

above. One is to use an indirect method, and it is a traditional way of obtaining optimal

control through Pontryagin’s maximum principle. It got its name of “indirect” because the

state and control variables are not solved directly in the formulation. Instead, the solutions

are dependent on the necessary and sufficient conditions for optimality. For a simple prob-

lem, constructing the adjoint equations and the Hamiltonian function may be easy. Still,

the task becomes difficult to tackle as the situation gets more complex with path inequal-

ities. Also, there are several issues mentioned in [46] with indirect methods, such as the

calculation of derivatives of the Hamiltonian and the solution robustness. Therefore, direct

methods that specifically minimize the objective function through a transcription process

have recently gained more popularity. In direct methods, the optimal control problem is

transformed into a nonlinear programming problem (NLP) through discretization. It is eas-

ier to solve a parameter optimization than the optimization in functional space. Although

there exist other approaches, such as model predictive control (MPC) and differential dy-

namic programming (DDP) for solving an optimal control problem, in this study, we will

adopt the direct collocation method with trapezoidal quadrature to compute the optimal

control trajectories. The direct collocation method is briefly explained in the following

paragraph.

Assume the time duration of the maneuver from t0 to tf can be discretized into a grid
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with N elements where

0 = t1 > t2 > · · · > tN−1 > tN = tf and tk+1 − tk = hk for k = 1 · · ·N

The corresponding state and control variables in a grid representation are

xi
1 · · ·xi

k · · ·xi
N

uj
1 · · ·u

j
k · · ·u

j
N

where the superscript i and j are the numbers of dimensions in state and control variables.

With the discretization, the original optimal control problem in Equation 4.10 can be trans-

formed into the following form with trapezoidal quadrature for integral:

Objective function : J̄ = ϕ(tf ,xf ) +
N−1∑
k=0

hk

2
(gk + gk+1)

System Dynamics : xk+1 = xk +
hk

2
(fk+1 + fk), k = 1, ..., N − 1

Path and Boundary Constraints : xmin ≤ xk ≤ xmax, umin ≤ uk ≤ umax

(4.11)

If we collocate all variables together as a vector displayed as below:

z = [x1
1, · · · , x1

N , · · · , xI
N , u

1
1, · · · , u1

N , · · · , uJ
N , tf ]

The problem can be formulated in a general form of NLP:

min J̄(z) (4.12)
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subject to

L ≤


z

Az

C(z)


≤ U (4.13)

where A is the coefficient matrix of linear constraints, C is the nonlinear constraint func-

tion, L and U are the lower and upper bounds of the constraints, respectively. The standard

objective function for the autorotation problem is to minimize the speed at the touchdown

point, and this objective function only contains the terminal cost term. To encourage the

convergence in the solution, a running cost that penalizes the deviation from the initial rotor

speed is added to our formulation. The overall objective function is shown below:

J = u(tf )
2 + w(tf )

2 +

∫ tf

t0

(Ω(t)− Ω(t0))dt (4.14)

An open-source solver based on direct collocation method called OptimTraj [80] is used to

assist the task of finding the optimal trajectories. Other commercial software like GPOPS-

II® can achieve the task as well.

4.2.3 Design of experiments

Design of experiments (DOE) is a field of study dealing with how to place experimental

points in the design space meticulously and parsimoniously to gather most of the infor-

mation from an actual function. Combined with a surrogate model, it is a useful tool for

exploring the response of a system, especially when dealing with a computationally expen-

sive model. In this study, the application of the design of experiments has been extended

from designing a novel system to finding the safety envelope for a hazardous event of a

dynamical system. In a hazardous event, the vehicle would start from a hazardous state,

and depending on the control trajectory exerted along the path, it may or may not end in a

safe state. For example, a tire blowout instance for a car driven on a highway can be con-
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sidered as a hazardous state. Based on various factors, such as the states of the vehicle at

the instance of the blowout, and the control strategy selected for steering the car, it may or

may not stop successfully on the curbside without crashing with obstacles. Since multiple

paths exist from the start to the end of the process, it is required to establish a one-to-one

mapping from the initial condition to the terminal condition. The aforementioned optimal

control method would be useful for achieving this mapping. However, the optimal path

calculation may be time-consuming due to the optimization process on a high-fidelity dy-

namical model. Through leveraging surrogate modeling with the design of experiments for

constructing a safety envelope, it can certainly reduce the time for the exploration process.

Traditional methods of design of experiments originated from agricultural and indus-

trial experimentation, and they were developed primarily for physical experiments. With

the advancement in computing technology, more investigations have been moved from

physical to virtual ones, which would rely on computer models. There are several dif-

ferences between physical and computer experiments. First, no noise would be observed in

the response for a deterministic computer model. Therefore, replications of a design point

used in the physical experiment are not required for computer experiments. Second, hid-

den variables do not exist in a computer experiment compared with a physical experiment.

Thus, methods used to alleviate the impact of hidden variables, such as randomization and

blocking, are not necessary for a computer experiment. Third, there is no hard-to-change

variable in a computer experiment. As a consequence, the design points can be selected at

any location within the range for each variable. With all the differences mentioned above,

filling the design space evenly with design points for a computer experiment is intuitive.

A “space filling” design is a type of design suitable for the need of a computer experi-

ment. Joseph et al. [63] provided a comprehensive review on some popular choices for

space-filling designs, and some highlights will be discussed for guiding our selection of the

design of experiments.

Latin hypercube design (LHD) is a type of space-filling design described by Mckay et
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al. [81], and it is constructed through random permutations of evenly spaced points in each

coordinate. An example of two different LHDs in a two-dimensional space with four runs

is shown in Figure 4.3. It is observed that these two designs both have good coverage in

the one-dimensional projection. However, design (A) is superior to design (B) because the

entire space is better filled with points in design (A) than design (B). To find a better LHD

within all possible LHDs, Tang [82] proposed an Orthogonal Array-based Latin Hypercube

Design (OALHD). This design would encourage good coverage in the two-dimensional

projection, and an example of an OALHD in a four-dimensional space with nine runs is

shown in Figure 4.4. We can see that this design provides suitable space-filling property

in the one-dimensional projection and the two-dimensional projection. Nonetheless, this

design does not guarantee to fill the space uniformly for design points in higher dimensional

spaces.

x

x

x

x

x

x

x

x

Design (A) Design (B)

Figure 4.3: Two different Latin Hypercube Designs with four runs in a 2D space

To better fill the space in a high dimensional space, distance measures are used to

determine the locations for design points. Johnson et al. [83] introduced two different

distance-based designs, the miniMax distance design (mM design) and the Maximin dis-

tance design (Mm design). The mM design ensures that all points in the region of interest

are close to the design points as much as possible. On the other hand, the Mm design

ensures that the design points are distributed far away from each other and prevents local

agglomerations of design points. These two distance-based designs provide good coverage

in the full-dimensional space but may not retain this property in the lower dimensional pro-
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Figure 4.4: An example of Orthogonal Array-based Latin Hypercube Design

jections. To account for this issue, Morris et al. [84] combined the advantages of LHD and

Mm distance metric and developed the Maximin Latin Hypercube Design (MmLHD). This

design ensures good coverages in both the full-dimensional space and the one-dimensional

projection, but it does not guarantee having good coverages in the remaining subspaces.

Joseph et al. [62] aimed to resolve the coverage issue in the subspace spanned by factors

and proposed Maximum Projection design (MaxPro). This design modified the MmLHD

criterion with the weighted Euclidean distance, and it adopted the Bayesian framework for

constructing the MaxPro criterion. If the weights on Euclidean distance are assumed to

follow a uniform distribution, then the criterion can be expressed as follows:

min
D

n−1∑
i

n∑
j=i+1

1∏p
k=1 | xik − xjk |2

(4.15)

where D are all the candidate designs, x is the design point with the first subscript as the

index for the design points and the second subscript as the index for the dimension. It
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was shown that computational time for a MaxPro design is comparable to other competing

experimental designs. In Figure 4.5, an example of comparison between MaxPro design

and the MmLHD in a three-dimensional space with 100 runs is provided. It is obvious that

the MaxPro design has better coverage in the two-dimensional subspace compared with the

MmLHD. Another benefit of using the MaxPro design is that it supports a sequential design

in which we can add additional design points after the baseline design is established. With

the capability of augmentation, we can preserve previous results from the baseline design

points, and only a few new points are required to be investigated. In this study, we will

adopt the MaxPro design as our choice for the design of experiments in the exploratory

analysis.

(a) MaxPro Design (b) MaximinLHD Design

Figure 4.5: Comparison of MaxPro design and MaximinLHD in a 3D space with 100 runs

4.2.4 Surrogate models

Several surrogate models can be used in a computer experiment, and they are introduced

in this subsection. We will design an experiment to test their performance under different

scenarios to select the best surrogate model out of all surrogates mentioned here. The

comparison will be presented in section 4.3.2.
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Polynomial regression

Polynomial regression is a linear model with different combinations of polynomial terms

as the predictors. A second-order polynomial is typically used in the application to capture

the interaction effects and avoid overfitting. If we assume the response is y and there exist

p factors from x1 to xp, then the prediction formula can be presented in following form:

y = β0 +

p∑
i=1

βixi +

p∑
j=1

βjjx
2
j +

p−1∑
k=1

p∑
l=k+1

βlkxlxk + ϵ (4.16)

Since it is a linear model, the regression coefficients β can be easily estimated using the

least square method. When pairing with the design of experiments, a space-filling design

may not perform well with this model due to Runge’s phenomenon. Instead, a design of

experiments in which the design points are pushed more toward the boundary or edges is

preferred for this model.

Kernel regression with a Gaussian kernel

Kernel regression is a type of linear smoothers, and it is a non-parametric method. The

prediction of a kernel regression is made through a weighted average of all the neighboring

observations. The weights are determined by the distance from a new data point to all

adjacent points. A higher distance would result in a lower value on the corresponding

weight. A kernel function is typically used for modeling the weights, and a popular choice

of the kernel function is in the form of Gaussian. The prediction formula is shown as

follows:

ŷ = f̂(x̃) =

∑n
i=1 K(x̃, xi)yi∑n
i=1K(x̃, xi)

K(x̃, xi) = exp{−θ ·
p∑

j=1

(x̃·j − xij)
2}

(4.17)
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where x’s and y are the inputs and output from the experiment, x̃ is newly observed data,

and θ is the bandwidth parameter from the Gaussian. The θ parameter can be estimated

by minimizing the mean squared cross-validation error. Equation 4.17 is the result derived

from the following minimization process:

min
ŷ

n∑
i=1

K(x, xi){y − ŷ}2 (4.18)

For the case mentioned above, the ŷ is a constant, and it is called the local constant estima-

tor, which is the original form proposed by Nadaraya and Watson in 1964. By changing the

ŷ to a linear polynomial, the model would turn into a local linear estimator, and it becomes

a more flexible surrogate compared to its counterpart.

Inverse distance weighting

Inverse distance weighting is also a non-parametric method, and it is similar to kernel

regression. By replacing the Gaussian kernel with a reciprocal of a distance metric, the

prediction can be expressed as follows:

ŷ = f̂(x̃) =

∑n
i=1 K(x̃, xi)yi∑n
i=1K(x̃, xi)

K(x̃, xi) =
1

d2(x̃, xi)

(4.19)

It can be shown that the inverse distance weighting model is an interpolator which means

that there is no error on the points where the observations exist.

Radial basis function

Radial basis function (RBF) is a model based on a linear combination of basis functions,

and unlike the polynomial regression, basis functions in RBF are not selected in advance,

and they are dependent on the location of the data. Another property of these basis functions

is that they are radial functions, which provide a mapping from Rp to R. The formulation
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of an RBF with a Gaussian basis function is shown as follows:

y =
n∑

i=1

ciB(x− xi), x ∈ Rp

B(x− xi) = exp
(
−θ · ||x− xi||2

) (4.20)

To write it in the matrix form, assume that

c =


c1
...

cn

 , R =


B(x1 − x1) · · · B(x1 − xn)

. . .

B(xn − x1) · · · B(xn − xn)

 , r(x) =


B(x− x1)

...

B(x− xn)


then Equation 4.20 can be expressed as

y = Rc (4.21)

The coefficients c can be solved as

ĉ = R−1y (4.22)

thus the prediction from the RBF is

f̂(x) = r(x)ĉ = r(x)R−1y (4.23)

To ensure a unique solution exists, R has to be a nonsingular matrix.

Gaussian process regression

Gaussian process regression, sometimes called Kriging, is a method developed by Math-

eron in 1963, and it was first used in the Geostatistics domain. The method follows a

Bayesian framework in which a prior distribution is assumed for the function f(x). With
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data acquired from the experiment, we can make the prediction through the posterior dis-

tribution of the function f(x). Here, the prior distribution is taken as a Gaussian Process

(GP), which is essentially a multivariate normal distribution. The function f(x) with the

data observed from the experiment (x1, y1), · · · , (xn, yn) can be represented using the fol-

lowing expression: 
f(x1)

...

f(xn)

 ∼ Nn(µ1, σ
2R) (4.24)

where µ and σ2 are the mean and variance of the GP, R is the correlation matrix, and 1 is a

column vector of 1. The joint distribution of f(x) and the data observed can be expressed

as 

f(x)

y1
...

yn


∼ Nn+1


 µ

µ1

 ,

 σ2 σ2r(x)T

σ2r(x) σ2R


 (4.25)

where the r(x) is the correlation vector between x and x1 · · ·xn. To derive the posterior

distribution of f(x), a useful lemma is stated as follows:

Lemma 4.2.1 Suppose there exist random vectors V1 and V2 and they are of the size m×1

and n × 1 respectively. If the joint vector of V1 and V2 follows a multivariate normal

distribution, V1

V2

 ∼ Nm+n


µ1

µ2

 ,

Σ11 Σ12

Σ21 Σ22




then the conditional distribution of V2 on the V1 is

V1|V2 ∼ Nm(µ1 + Σ12Σ
−1
22 (V2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21)
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Using this lemma, the posterior distribution of f(x) can be derived as below:

f(x)|y1, · · · , yn ∼ N
(
µ+ r(x)TR−1(y − µ1), σ2

{
1− r(x)TR−1r(x)

})
(4.26)

With the data acquired from the experiment, the mean of the f(x) changes from the as-

sumed value µ. Also, the variance of the distribution, which is a measure of uncertainty,

is reduced. The unknown parameters µ and σ2 can be found using maximum likelihood

estimates, and they have the following forms:

µ̂ =
1TR−1y

1TR−11

σ̂2 =
1

n
(y − µ̂1)TR−1(y − µ̂1)

(4.27)

The correlation parameter θ can be estimated using the empirical Bayes method, and how-

ever, no explicit solution is found. The values have to be retrieved using an optimization

process stated as follows:

θ̂ = argmin
θ

[
n log σ̂2 + log |R|

]
(4.28)

To extend the Gaussian process regression from point data to functional responses in

time, the original formulation can be modified by adding timestamps to the set of input

variables. Assume the number of observations is n and the functional responses can be

segmented into m evenly spaced portions; the prediction formula can be expressed as

f̂(x, t) = µ̂+ r̃(x, t)T R̃(y − µ̂1), R̃ ∈ Rmn×mn (4.29)

The computation cost to inverse the R̃ matrix is in the order of O(m3n3) and as the size

dataset grows more significant along with a higher number of discretization points, this

becomes a time-consuming task and even not tractable in practice. To avoid this issue, one

approach is to assume the separability of the R̃ matrix, and it can be separated into two
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terms through the Kronecker product:

R̃ = Rx ⊗Rt (4.30)

where Rx is the correlation matrix in the input variable space while Rt is the correlation

matrix in the time domain. The inverse and determinant of R̃ matrix can be also be sepa-

rable and they are expressed as follows:

R̃
−1

= R−1
x ⊗R−1

t (4.31)

|R̃| = |Rx|m ⊗ |Rt|n (4.32)

Using the Kronecker product, the computation time reduces from the order of O(m3n3) to

O(m3 + n3). The prediction of the functional response can then be formulated as

f̂(x, t) = µ̂+ (rx(x)⊗ rt(t))
T
{
R−1

x ⊗R−1
t

}
(y − µ̂1) (4.33)

where

µ̂ =
1′ {R−1

x ⊗R−1
t

}
y

1′
{
R−1

x ⊗R−1
t

}
1

σ̂2 =
1

mn
(y − µ̂1)′

{
R−1

x ⊗R−1
t

}
(y − µ̂1)

(4.34)

The correlation parameter can be estimated using the empirical Bayes approach as follow:

θ̂ = argmin
θ

[
mn log σ̂2 +m log |Rx|+ n log |Rt|

]
(4.35)

A model consisting of two Gaussian processes can be used for functional responses in

unequal lengths. One Gaussian process is designed to capture the length information, while

the other is dedicated to estimating the shape of a functional response. With the length and

shape information at hand, we can recover signals in the time domain, and thus predictions
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can be made for this type of response.

4.2.5 Sensitivity analysis

A surrogate model can be used for prediction and can be applied to investigate the impact of

different input variables. In a sensitivity analysis, key variables which play a significant role

in the response can be identified, and we can also estimate the interactions between various

variables. In a linear regression model, we can determine important variables by comparing

the magnitude of the coefficients. However, it cannot be applied when dealing with a

surrogate model like Gaussian process regression. Sobol [85] proposed a methodology

based on functional analysis of variance (ANOVA) to find the sensitivity estimates for a

nonlinear model. Suppose a function f(x) can be decomposed into the following form:

f(x) = f0 +
d∑

k=1

fk(xk) +
∑

1≤j<k≤d

fjk(xj, xk) + · · ·+ f1···d(x1, · · · , xd) (4.36)

With the assumption that zero expected value for fI(xI) with respect to xk if index k is a

subset of I , ∫
fI(xI)dxk = 0 for any k ∈ I (4.37)

the mean effect, main effect, and the two factor interaction can be shown as

• mean effect

∫
f(x)dx =

∫ 1

0

· · ·
∫ 1

0

f(x)
d∏

k=1

dxk = f0

f0 =

∫
f(x)dx

(4.38)
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• main effect (the subscript −i means all x’s except xi)

∫
f(x)dx−i =

∫ 1

0

· · ·
∫ 1

0

f(x)
∏
k ̸=i

dxk = f0 + fi(xi)

fk(xk) =

∫
f(x)dx−k − f0

(4.39)

• two factor interaction

∫
f(x)dx−i,−j =

∫ 1

0

· · ·
∫ 1

0

f(x)
∏
k ̸=i,j

dxk = f0 + fi(xi) + fj(xj) + fij(xi, xj)

fij(xi, xj) =

∫
f(x)dx−i,−j − f0 − fi(xi)− fj(xj)

(4.40)

In the context of the functional ANOVA, total variance for the function f(x) can be ex-

pressed as follow:

Vtotal = E[(f(x)− f0)
2]

= E(f 2(x)− 2f(x)f0 + f 2
0 ) = E[f 2(x)]− f 2

0

(4.41)

The variance for a subset of variables I ⊂ {1, ..., d} can be represented as

VI = E[(fI(xI)− E[fI(xI)])
2] = E[f 2

I (xI)] (4.42)
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From Equation 4.41 4.42, the total variance can be decomposed as

Vtotal =

∫
f 2(x)dx− f 2

0

=

∫ [
f 2
0 +

d∑
i=1

f 2
i (xi) +

∑
i ̸=j

f 2
ij(xi, xj) + · · ·+ f 2

1,...,d(x1, ..., xd) + · · ·

]
dx− f 2

0

=

∫ d∑
i=1

f 2
i (xi)dx+

∫ ∑
i ̸=j

f 2
ij(xi, xj)dx+ · · ·+

∫
f 2
1,...,d(x1, ..., xd)dx

=

∫ d∑
i=1

f 2
i (xi)dx+

∑
i ̸=j

∫
f 2
ij(xi, xj)dx+ · · ·+

∫
f 2
1,...,d(x1, ..., xd)dx

=
d∑

i=1

Vi +
∑
i ̸=j

Vij + · · ·+ V1...d

(4.43)

The Sobol’s sensitivity indices are defined as

SI =
VI

Vtotal

with
∑
I

SI = 1 (4.44)

By comparing the magnitude of these indices, the variables that significantly contribute to

the response can be identified.

4.3 Experiments for the exploratory analysis

In this section, the simulation, which consists of a mathematical model with an optimization

process, will be verified to ensure that it can predict the optimal control in autorotation

maneuvers. To find an appropriate surrogate model for the exploratory analysis, various

known functions in either low or high-dimensional space are used to test the strength of the

surrogates mentioned in section 4.2.4. Once the surrogate model is selected, two metrics

proposed to determine the adequate run size of the experiment are tested. We will use

the metric to pick the proper run size for building surrogates to construct safety envelopes

under various combinations of initial conditions.
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For testing the effectiveness of the surrogate proposed for predicting functional re-

sponses in unequal lengths, an experiment that compares the prediction from the surrogate

and the results from the simulation will be described. Finally, we will conduct a sensitivity

analysis to identify the key parameters that play a significant role in affecting the shape of

the envelope.

4.3.1 Model verification

As mentioned in Section 4.1, the model is required to be verified either through physical

experimentation or through the results from other comparable simulations. The simulation

of computing the optimal control for the autorotation consists of a two-dimensional heli-

copter model in a vertical plane with an optimization process based on direct collocation. In

Figure 4.6, the trajectories of computed controls for different entry altitudes are compared

with the ones found in [42]. Here the entry speed is kept at 12 knots, but the entry heights

can vary among 100 feet, 230 feet, and 420 feet. These curves follow a similar trend and

vary within the same domain, but the calculated flight times are different, especially for

the case starting at 420 feet. The flight times computed in this study are generally larger,

and they are monotonically increasing with higher altitude. In Figure 4.7, the calculated

controls for different entry speeds are compared with the same source. The entry height

remains constant at 100 feet, but the entry speed can change from 12 knots, 38 knots, to 57

knots. Again, the profiles of controls look similar to each other, but the flight times com-

puted are slightly shorter in this scenario. The probable causes for the differences between

the results from the literature and the ones from current implementation may be attributed

to (1) a different objective function and (2) the addition of rate controls in the formulation

for mitigating the possibility of having highly fluctuated controls.
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Figure 4.6: Comparison of results for different altitudes from the literature

Figure 4.7: Comparison of results for different forward speeds from the literature
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The typical outputs of the simulation are shown in Figure 4.8, and they include several

signals, such as the state and control variables. This is a test case with an initial altitude

of 100 feet and an initial speed of 12 knots. The state variables which describe the vehicle

behavior are displayed on the top row of the figure, and the control variables are presented

at the bottom. From the angle of the tip-path-plane, which is one of the controls exerted

to the dynamical system, we can see that the control strategy employed here is first to

speed up the vehicle and then drastically decrease the speed before touchdown. To build

a surrogate model, we need to acquire the following signals: the terminal horizontal and

vertical speeds, and control trajectories of CT and α. They are marked using a red box

or circles in Figure 4.8. The terminal speed is primarily used for envelope exploration,

while the controls obtained from the simulation are subjected to building the surrogate for

predicting the optimal control for unobserved conditions.
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Figure 4.8: Typical outputs from the computer code
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4.3.2 Surrogate model selection

In section 4.2.4, we have introduced several surrogate models that can be used for computer

experiments. An experiment (E4-A) is required to find the appropriate one to support

the exploration of the operational space. In [86], Surjanovic et al. collected a variety of

test functions, and they can be used for many purposes such as optimization, prediction,

and uncertainty quantification, etc. In this test, we have selected three functions in two-

dimensional space (from [86] [87] [88]) and also chosen another four functions in higher

dimensional space (from [86]). The visualization of functions selected in two-dimensional

space is shown in Figure 4.9. We chose to use the MaxPro design with 81 runs to place the

experimental points in the space to be explored. However, for the surrogate of polynomial

regression, a space-filling design is not ideal because it would lead to a higher oscillation

in predictions at the boundary. Thus, the custom design that pushes design points to the

boundary was selected for this particular surrogate rather than using the MaxPro design.

The locations of the design points in this custom design are picked based on Chebyshev

nodes, which can be obtained using the following formula:

dk = cos

(
2k − 1

2n
π

)
, k = 1, · · · , n and dk ∈ [−1, 1] (4.45)

where n is the number of points desired to be placed in each dimension. The designs of

experiments used in the experiment are displayed in Figure 4.10.
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Franke’s function

Mishra’s bird function Townsend’s function

Figure 4.9: Two-dimensional functions used for testing the surrogates

Figure 4.10: Designs of experiments used for testing the surrogates

To measure the performance of a surrogate, a thousand points that are different from the

design points are generated using Sobol sequences, and the predictions on these thousand
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points from the surrogate are compared with the actual values from the true function. Here

we chose the root mean square error (RMSE) as the metric for accuracy. The results of

the experiment on two-dimensional functions are shown in Figure 4.11. Gaussian process

regression consistently performs the best in the group, followed by radial basis function.

Polynomial regression is ranked in third place, but owing to the need for a custom de-

sign and not easy to determine the terms to include for higher dimensional situations, we

eliminate this option for the following test on the high dimensional functions. Figure 4.12

shows the results of comparing the performance of Gaussian process regression, radial basis

function, and kernel regression on high dimensional functions. Gaussian process regres-

sion outperformed the rest in the group for all functions tested except the six-dimensional

function (OTL circuit function). In sum, Gaussian process regression was selected as the

surrogate model used in the exploratory analysis.
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Figure 4.11: Results of comparing different surrogates among two-dimensional functions
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Figure 4.12: Results of comparing different surrogates among high dimensional functions

4.3.3 Determining the run size for an experiment

Given the type of surrogate and the kind of design of experiments selected, we must also

determine the number of runs in the design region before the experiment. A surrogate built

upon fewer runs may be insufficient to capture the details of the actual function and may

have limited prediction capability. In the meantime, it is not prudent to blindly increase the

number of runs because it may drastically increase the time for computation, especially for

resource-intensive simulations. An appropriate number of runs for the experiment should

strike a balance between accuracy and efficiency. It is a challenging task because in the

real scenario, the behavior of an actual function is unknown, and we can only accumulate

the knowledge or information of this actual function through performing experiments. To

tackle this task, Loeppky et al. [89] conducted a study on selecting the sample size for

an experiment, and they suggested that the initial run size should be at least ten times

the dimension of the input variables. In this experiment (E4-B), we will use this value

as the initial run size and sequentially add more runs to this baseline design. With the
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availability of an actual function, we can measure the benefit of conducting additional runs

by calculating the difference between the prediction and the actual function. Nevertheless,

this performance index cannot be obtained in real life because we do not know the behavior

of a system in advance. Therefore, we propose two metrics that could be helpful to infer

the trend of the performance index, i.e., the prediction error:

(1) M1: the sum of absolute differences between the predictions from a surrogate built

upon the baseline design and the predictions from another surrogate constructed using

a design with additional runs

(2) M2: the sum of absolute differences between predictions from two successive designs

in terms of run size

The idea behind the first metric M1 is that we expect the difference between the predictions

from a surrogate built upon the baseline design and the predictions from another surrogate

constructed using a design with additional runs would initially increase with the run size

and then eventually level off. This M1 metric should follow a similar profile of the ac-

tual prediction error, but instead of decreasing with more runs, it would show a growing

trend. The second metric M2 is used to monitor the improvement with each additional run.

We expect the difference in predictions between successive runs would decrease when the

solution convergence is reached.

To test the proposed metrics, the experiment is set up as follows:

1. Initialize the run size as ten times the dimension of the input variables and choose a

value for the maximum number of additional runs. For illustration purposes, an ex-

ample of a system that has two input variables is shown in Figure 4.13. The baseline

design would have twenty runs in this case, and the locations for these runs are dis-

played as black circles. Also, the maximum number of additional runs is selected as

a hundred, and the locations for conducting these runs are depicted in red numbers.
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2. For evaluation, another five hundred points different from the design points men-

tioned above are produced using Maximin Latin Hypercube Design (MaximinLHD),

and their locations are shown as green crosses in Figure 4.13. With these evaluation

points, we can compute the actual prediction error, the proposed M1, and M2 metrics.

3. Compare the trends between the proposed metrics and the actual prediction error

under some known functions in low and high dimensional space. If the profiles of

these metrics have a similar pattern as the ones for the actual prediction error, we can

use them to guide the selection of the run size for an experiment.

Figure 4.13: The setting of the experiment for testing the metrics on run size selection
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The results of the tests for low and high dimensional functions on different run sizes are

shown separately in Figure 4.14 and 4.15. The actual prediction error is shown on the top

row in each figure, while the M1 and M2 metrics are displayed in the middle and the bottom

rows, respectively. From the observation, the M1 metric levels off approximately around

the same number of runs as the actual prediction error flattens out, so it can serve as a proxy

to infer the trend. For the M2 metric, we hypothesize that it would have a decreasing trend,

but this phenomenon only was observed for some low dimensional functions. Most of the

M2 curves obtained in the tests fluctuate as the number of runs grows, and it is difficult

to use this metric to pinpoint the ideal run size. Therefore, the M1 metric is selected to

provide guidance on the determination of a proper run size for an experiment.

Franke’s function Mishra’s bird function Townsend’s function

Figure 4.14: Test results for low-dimensional functions
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OTL Circuit function (6 dim) Piston function (7 dim) Borehole function(8 dim)

Figure 4.15: Test results for high-dimensional functions

4.3.4 Predicting safety envelopes under various conditions

With the experiments (E4-A and E4-B) conducted in previous sections, an appropriate

surrogate model with the corresponding design of experiments and the metric for selecting

proper run size are determined. For exploring the safety envelope of autorotation maneuver,

a Gaussian process regression with 100 runs of MaxPro design is used in the investigation.

The response to be predicted from the surrogate is the terminal speed. Based on [42], the

acceptable touchdown forward speed for OH-58A is 3 knots, and the allowable terminal

vertical speed is 8 feet per second. Thus, the boundary of the envelope will be drawn based

on the value of 10 feet per second on the terminal speed. To verify the envelope found from

our implementation, we compared the results with the safety envelope predicted from [47].

The side-by-side comparison is shown in Figure 4.16. From the left subplot, we can see

that the envelope predicted using optimal control is drastically smaller than the one found

in the flight test. Moreover, the envelope computed in our current implementation (shown

in the right subplot) is similar to the one found in the literature. However, one difference

observed between these two envelopes is that they have different smoothness. The one
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found in the literature seems to be constructed using multiple consecutive line segments

formed by representative points, while the one computed from the surrogate has a more

smooth and continuous shape.

Figure 4.16: Verification of the safety envelope obtained from the surrogate model

To demonstrate the capability of using surrogate modeling for predicting safety en-

velopes in various scenarios, a few parameters were selected and varied to investigate their

effects on the shape of the envelope. In the test, the region of interest in the height-velocity

space is spanned by H ∈ [0, 400] feet and V ∈ [0, 60] knots. Three cases with different

varying parameters are examined:

1. Initial descent velocity is varied from 0 to 300 feet per minute

2. Blade moment of inertia is varied from 236 to 436 slug-ft2

3. Vehicle weight is varied from 3000 to 3400 lbs

The results of the experiment from these three cases are shown in Figure 4.17, 4.18,

and 4.19, respectively. For the case with different entry descent speeds, the envelopes have

a similar shape from hover to a descent rate up to 200 feet per minute. If the descent rate

continues to increase from 200 to 300 feet per minute, a new restriction zone would emerge
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around the corner with high entry forward speed and low entry altitude. For the case of

different blade moments of inertia, a higher value of inertia would result in a smaller area

in the restriction zone. We can interpret it as with a higher blade moment of inertia, the

rotational energy is better kept during the process; thus, it is easier to speed up or slow

down the vehicle as necessary. It is expected that with an even higher blade moment of

inertia, the restriction zone would disappear, and the entire region would be free of risk.

For the case with different vehicle weights, it is observed that the restricted area would be

enlarged in the instance of having a heavier vehicle.

Figure 4.17: Safety envelopes for different entry descent speeds
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Figure 4.18: Safety envelopes for different blade moments of inertia

Figure 4.19: Safety envelopes for different vehicle weights
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4.3.5 Predicting the required controls for recovery in an autorotation

In our exploratory analysis for a hazardous event, we intend to use a surrogate not only for

finding the safety envelope but also for predicting the action for recovery when encoun-

tering the hazardous event. In section 4.2.4, a surrogate model for predicting functional

responses in unequal lengths is proposed. Here, the method will be tested on predicting the

optimal control for the autorotation maneuver. The setup of the experiment (E4-C) is stated

as follows:

(1) A baseline design is constructed in the operational space to be explored, and the sim-

ulations on these design points are conducted to acquire the corresponding optimal

controls. These control signals are in the form of functional responses.

(2) Use the data acquired from the previous step to build the surrogate model. This model

consists of two Gaussian processes that capture both length and shape information of

functional responses.

(3) Find a location in the design space where it is far away from all observed points and

then use the surrogate to predict the functional responses on this specific location.

For verification purposes, we will compare the prediction from the surrogate with the

results obtained from the simulation.

In the experiment (E4-C), the baseline design is chosen as a 20-runs MaxPro design, and

the distribution of the design points is shown as black circles in Figure 4.20. The red cross

in the figure is the run 21 and its location (h0 = 159 feet and u0 = 27 knots) is selected to

be far away from all design points in the space. The ranges of the entry horizontal speed and

the entry height are set as [0, 400] feet and [0, 60] knots, respectively. The computed optimal

control trajectories on these design points from the simulation are thrust coefficients in x

and z directions, and they are displayed in Figure 4.21. The curves colored in red on the

left are the control presented in the time domain, while the curves colored in blue on the
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right are the ones shown with respect to normalized time. The normalized version of these

control trajectories exhibit different shape patterns based on different initial conditions, and

one Gaussian process regression is dedicated to capturing this information. The results of

the experiment is shown in Figure 4.22, which is essentially a comparison between the

predictions from the surrogate and the results from the simulation. We can see that even

with a relatively small run size of 20, the proposed surrogate model can accurately predict

the functional responses in unequal lengths.

Figure 4.20: The setup of experimental runs for testing the predicted controls
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Optimal controls computed from simulation
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Figure 4.21: Data acquired from experimental runs for building the surrogate
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Figure 4.22: Comparison of results from the surrogate and from the simulation

4.3.6 Identifying the key variables in the operational space

To investigate the relative importance of the input variables, a sensitivity analysis built upon

a surrogate model can be employed for identifying the key parameters. In the experiment

(E4-D), three variables are included in the set of input variables: the entry height, the entry

speed, and the vehicle’s weight. The results from the experiment are shown in Figure 4.23

and 4.24. In the main effect plot, we can see that the horizontal velocity and the entry speed

have a higher impact on the terminal speed than the vehicle’s weight. Also, the height and

147



the horizontal speed have a nonlinear effect on the response, while the weight only has a

linear relationship with the response. In terms of Sobol sensitivity indices shown in Figure

4.24, the entry speed has the highest value among all other variables, which means that it

is the deciding factor for the response. The interactions between all combinations of input

variables are shown in a heatmap. It can be seen that the interaction between the entry

height and the entry speed is important, and the impact of this interaction is higher than the

main effect of entry height.

Figure 4.23: Main effect plot for the three input variables considered in the experiment

Figure 4.24: Sobol’s sensitivity indices and the interaction effects on the response

148



4.4 Summary for the fourth research question

The exploratory analysis is a more proactive approach in addition to the retrospective anal-

ysis for enhancing the safety of rotorcraft operations. It aims to find the safety envelope of

a hazardous event and predict the optimal controls in the operational space. A framework

for efficiently tackling these two tasks was proposed, and we extended the idea of surro-

gate modeling from exploring the design space to investigating the operational space. We

addressed four research questions regarding surrogate modeling with the design of exper-

iments on operational space exploration. In the test, it was found that Gaussian process

regression with a MaxPro design is an ideal surrogate for capturing the behavior of low

and high dimensional test functions; thus, it is suitable for modeling the response in the

operational space. To decide the proper run size for an experiment, the M1 metric, which

can serve as a proxy of the true prediction error, is viable to provide guidance on the se-

lection. To predict the functional responses in unequal lengths, such as the optimal control

trajectories, a surrogate with two Gaussian processes was proposed. The results show that

the predictions from the surrogate match the ones from the simulation. In the end, a sen-

sitivity analysis, which is built upon the surrogate created, can identify the key parameters

for affecting the response. In the case of considering three input variables for the autorota-

tion maneuver, we found that the entry height and the interaction between entry height and

entry speed are the dominant factors to affect the terminal speed.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

From recent safety reports, helicopter accident statistics have an increasing trend, and

more attention needs to be directed to the rotorcraft domain. As a strategy for improv-

ing the safety of rotorcraft operations, it is vital to conduct post-flight analysis on flight

data records and then provide retrospective feedback to pilots or the management team on

potential anomalous events for risk mitigation purposes. From the literature, most of the

analyses on anomaly detection found in the studies were performed on flights in fixed-wing

commercial aviation rather than helicopter flights in general aviation. To analyze flight data

records specific to rotorcraft operations, we first identified the need for flight phases detec-

tion, and it is a prerequisite for the anomaly detection pipeline. To start with identifying

flight phases, we conducted a survey on literature regarding the definitions of flight phases.

Next, a set of baseline definitions of flight phases for rotorcraft was established through

transcribing the existing definitions and combining opinions from subject matter experts.

Several evaluation criteria were suggested to judge the identification results, and we can

use them to determine how well the methods perform qualitatively. In the implementation,

a logic that separates flight data records into two regions was proposed, and the associated

flight phases for each region were specified. We introduced several candidate methods for

identifying the flight phases in the high-altitude region. To find the best or a combination

of methods, an experiment for comparing these methods was conducted. In the test, we

found that the piecewise linear regression (PLR) with sequence smoother and the sliding

window regression classification (SWRC) have the highest accuracy in prediction on a la-

beled dataset. The flight phases in the low-altitude region are relatively well-defined in
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the feature space. Thus, the identification is performed using a filtering approach based

on modified thresholds on flight parameters. Combining the labels detected from these

two regions, the flight phase information of the entire flight can be retrieved, and the re-

sults satisfy the evaluation criteria mentioned above. As an extension to the basic flight

phase identification algorithm, turn maneuvers, different takeoffs, or other maneuvers can

be added as an augmentation to the baseline. For the takeoff identification, simulated tri-

als were used to support the prototyping of the algorithm. Through the verification with

another set of simulated runs, the algorithm for detecting takeoffs is validated. The overall

process for identifying phases of flight for rotorcraft operation is summarized in Figure 5.1.

Extract 
relevant 
variables

• Heading
• Altitude
• Ground speed
• Vertical speed

Altitude 
check and 

adjust

Separate data 
into high / low 

altitude 
regions

High 
altitude 

segments

Low 
altitude 

segments

Perform PLR + 
Sequence smoother

Perform Filtering + 
Seqeunce smoother

Combine 
results from 

modules

Perform PLR + 
Sequence smoother

• Climb
• Cruise (Level)
• Descent
• Hover

• Standing
• Surface Taxi
• Hover Taxi
• Air Taxi
• Hover
• Hover Lift
• Hover Descent

• Right Turn
• Straight
• Left Turn

Takeoff 
identification 

Flight phase 
labels

Figure 5.1: Summary of the process for flight phases identification in rotorcraft operations

With the accessibility of flight phase labels in an unlabeled dataset, we continued to

develop a methodology for detecting anomalies on flight segments within the same flight

phase of a routined helicopter operation. Here we characterize the anomalies as rare events

and have different patterns. In the retrospective analysis, a sequential approach was pro-

posed to detect different tiers of outliers. It consists of several elements, including trajectory

pattern mining, time series length analysis, and shape analysis. In trajectory pattern mining,
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we introduced several distance metrics with hierarchical clustering for pattern grouping.

In the time-series shape analysis, several feature extraction and outlier detection methods

were investigated for detecting anomalies on flight segments in comparable lengths. A set

of experiments is required to compare the methods and guide the down-selection process.

To test the methods in the portfolio, we created synthetic and simulated data with

known labels under various scenarios. A subset of methods in the portfolio appropriate

for anomaly detection was identified in the experiment. Ultimately, we applied these meth-

ods to the actual initial climb and the approach segments in an air ambulance operation.

Some highlights from this research topic are summarized as follows:

• To account for the conundrum of verifying results from unsupervised learning meth-

ods, synthetic and simulated data were created to evaluate the performance of meth-

ods and select the candidates out of a portfolio.

• For trajectory pattern mining, using Euclidean distance as the distance measure along

with hierarchical clustering for pattern grouping is a viable approach for placing

trajectories into relevant groups.

• To address the issue of comparing segments with unequal lengths, the segments were

filtered into comparable lengths prior to the time series shape analysis.

• To detect shape anomalies for flight segments within comparable lengths, functional

principal component analysis (FPCA) and convolutional variational autoencoder (CVAE)

are useful for capturing the shape information using low-dimensional features.

• Compared to traditional exceedance analyses, the proposed methodology can detect

potential anomalies without specifying thresholds on flight parameters.

In addition to the retrospective analysis mentioned above, we developed an exploratory

analysis for investigating the safety envelope and the necessary recovery action for a haz-

ardous event. Traditional methods for finding the optimal control rely on optimizing a
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designed objective function. Depending on the combinations of model complexity and

the optimization process, finding a solution may be time-consuming. In the framework,

surrogate modeling is introduced to facilitate the construction of safety envelopes and the

computation of recovery actions.

To demonstrate the feasibility of the framework, the autorotation, which is ranked at

the top two occurrence categories in accidents, is chosen as a use case in this study. We

selected a widely used mathematical model for simulating the autorotation. By combining

this model with an optimal control solver, the control trajectories which encourage a safe

landing can be obtained. For verification, we compare the outcomes from our implemen-

tation to the results found in the literature. In general, these solutions are consistent with

each other. Before exploring the operational space of the autorotation, we conducted an

experiment to find the appropriate combination of a surrogate model and a design of ex-

periments. It was found that the Gaussian process regression with the MaxPro design is

an adequate method for tackling functions in low and high-dimensional space. Further, a

metric that could potentially support the decision-making on the number of runs required

for an experiment was suggested. With the knowledge of picking the surrogate model and

determining the proper run size, we investigated the safety envelopes for the autorotation

under various scenarios, such as different entry descent speeds, blade moments of inertia,

and vehicle weights.

To predict the optimal control trajectories in the operational space, we developed a

surrogate model with two Gaussian processes, one to capture the length information and the

other to learn the shape information. From the results of an experiment for validating this

approach, the predicted controls from the surrogate in an unobserved location are similar

to those derived from the simulation. Finally, we conducted a sensitivity analysis on the

surrogate to investigate key input parameters in a selected set. It was observed that the entry

speed and the interaction between the entry speed and the entry height play significant roles

in affecting the magnitude of the terminal speed, which directly links to the outcome of an
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autorotation maneuver.

5.2 Recommendations and future work

Concerning the work on detecting flight phases for rotorcraft operations, we can display

different visualizations and statistics of flight phase information on a dashboard. This rep-

resentation could assist pilots and the management team in looking at the flights from a

new perspective. In Figure 5.2, an example of a potential dashboard implementation with

statistics on flight phases is presented. Based on the information provided, the relevant

parties could realize the time duration spent in each of the flight phases, and the major tran-

sitions between flight phases are. Further, other homogenous flight segments which are not

discussed in this study, such as different types of approach maneuvers and traffic patterns,

can be added to the current implementation for completeness. Moreover, with the arrival

of eVTOL in the air taxi industry, it would be interesting to see how our current approach

can be applied or adapted to fit the needs for a different aerial architecture.

Figure 5.2: An implementation of the dashbord for displaying flight phase information
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Regarding the work on anomaly detection for flight data records, some future efforts

worth pursuing as the continuation of the current work are recommended as follows:

• To consult with the operators or the SMEs for verifying the potential anomalies found

using our current approach. With the feedback, the algorithm developed can be tuned

for better addressing the need from the relevant parties.

• To develop an automated process for handling the situation without any anomalies in

the flight data records.

• To explore other types of autoencoders, such as the one with long short-term memory

(LSTM) units.

For the exploratory analysis on a hazardous event, the following items are suggested

for future study:

• To enhance the model fidelity of the helicopter from a two-dimensional model in a

vertical plane to a three-dimensional rigid body. For example, we could potentially

use a commercially available software like FlightLab to better represent the dynamics

of a real helicopter.

• To apply this framework on other hazardous events, such as the encounter of vortex

ring state (VRS), and the event of loss of tail rotor effectiveness (LTE).

• The current control trajectories acquired from the surrogate belong to the open-loop

control strategy. They cannot be applied in real-time to a vehicle in an environment

with disturbance. To achieve closed-loop control, the computed controls from the

surrogate may serve as a baseline trajectory for the controller development.
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APPENDIX A

ALGORITHMS

A.1 Piecewise linear regression
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A.2 Sliding window regression classification

158



A.3 Sequence smoother
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A.4 Takeoff identification
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APPENDIX B

LAYOUT OF DIFFERENT AUTOENCODERS USED IN THE STUDY

B.1 Nonlinear stacked autoencoder

Encoder input: Input Layer None input [(NumObs, 100)]
output [(NumObs, 100)]

1st encoded layer: Dense SELU input [(NumObs, 100)]
output [(NumObs, 32)]

2nd encoded layer: Dense SELU input [(NumObs, 32)]
output [(NumObs, 8)]

3rd encoded layer: Dense SELU input [(NumObs, 8)]
output [(NumObs, 2)]

1st decoded layer: Dense SELU input [(NumObs, 2)]
output [(NumObs, 8)]

2nd decoded layer: Dense SELU input [(NumObs, 8)]
output [(NumObs, 32)]

3rd decoded layer: Dense Sigmoid input [(NumObs, 32)]
output [(NumObs, 100)]
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B.2 One-dimensional convolutional autoencoder

Encoder input: Input Layer None
input [(NumObs, 100, 1)]
output [(NumObs, 100, 1)]

1st convoluational layer: Conv1D RELU
input [(NumObs, 100, 1)]
output [(NumObs, 100, 16)]

1st pooling layer: MaxPooling1D RELU
input [(NumObs, 100, 16)]
output [(NumObs, 50, 16)]

2nd convoluational layer: Conv1D RELU
input [(NumObs, 50, 16)]
output [(NumObs, 50, 8)]

2nd pooling layer: MaxPooling1D RELU
input [(NumObs, 50, 8)]
output [(NumObs, 25, 8)]

Flatten layer: Flatten NONE
input [(NumObs, 25, 8)]
output [(NumObs, 200)]

Dense layer: Dense Linear
input [(NumObs, 200)]
output [(NumObs, 2)]

Decoder input: Input Layer None
input [(NumObs, 2)]
output [(NumObs, 2)]

Dense layer: Dense Linear
input [(NumObs, 2)]
output [(NumObs, 200)]

Reshape layer: Reshape NONE
input [(NumObs, 200)]
output [(NumObs, 25, 8)]

1st de-convoluational layer: Conv1DTranspose RELU
input [(NumObs, 25, 8)]
output [(NumObs, 25, 16)]

1st up-sampling layer: UpSampling1D RELU
input [(NumObs, 25, 16)]
output [(NumObs, 50, 16)]

2nd de-convoluational layer: Conv1DTranspose RELU
input [(NumObs, 50, 16)]
output [(NumObs, 50, 32)]

2nd up-sampling layer: UpSampling1D RELU
input [(NumObs, 50, 32)]
output [(NumObs, 100, 32)]

3nd de-convoluational layer: Conv1DTranspose RELU
input [(NumObs, 100, 32)]
output [(NumObs, 100, 1)]
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B.3 Convolutional variational autoencoder

Encoder input: Input Layer None
input [(NumObs, 100, 1)]
output [(NumObs, 100, 1)]

1st convoluational layer: Conv1D RELU
input [(NumObs, 100, 1)]
output [(NumObs, 100, 16)]

1st pooling layer: MaxPooling1D RELU
input [(NumObs, 100, 16)]
output [(NumObs, 50, 16)]

2nd convoluational layer: Conv1D RELU
input [(NumObs, 50, 16)]
output [(NumObs, 50, 8)]

2nd pooling layer: MaxPooling1D RELU
input [(NumObs, 50, 8)]
output [(NumObs, 25, 8)]

Flatten layer: Flatten NONE
input [(NumObs, 25, 8)]
output [(NumObs, 200)]

Dense layer: Dense Linear
input [(NumObs, 200)]
output [(NumObs, 32)]

Latent mu: Dense Linear
input [(NumObs, 32)]
output [(NumObs, 2)]

Latent sigma: Dense Linear
input [(NumObs, 32)]
output [(NumObs, 2)]

Sampling layer None
input [(NumObs, 2), (NumObs, 2)]
output [(NumObs, 2)]

Decoder input: Input Layer None
input [(NumObs, 2)]
output [(NumObs, 2)]

Dense layer: Dense Linear
input [(NumObs, 2)]
output [(NumObs, 200)]

Reshape layer: Reshape NONE
input [(NumObs, 200)]
output [(NumObs, 25, 8)]

1st de-convoluational layer: Conv1DTranspose RELU
input [(NumObs, 25, 8)]
output [(NumObs, 25, 16)]

1st up-sampling layer: UpSampling1D RELU
input [(NumObs, 25, 16)]
output [(NumObs, 50, 16)]

2nd de-convoluational layer: Conv1DTranspose RELU
input [(NumObs, 50, 16)]
output [(NumObs, 50, 32)]

2nd up-sampling layer: UpSampling1D RELU
input [(NumObs, 50, 32)]
output [(NumObs, 100, 32)]

3nd de-convoluational layer: Conv1DTranspose RELU
input [(NumObs, 100, 32)]
output [(NumObs, 100, 1)]
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APPENDIX C

FUNCTIONS USED IN THE TESTS

In appendix C, the functions selected from [86] [87][88] and are used for testing the sur-

rogate models and the metrics proposed for determining the number of runs. They are

documented as follows.

C.1 Franke’s function

f(x) = 0.75 exp

[
−(9x1 − 2)2

4
− (9x2 − 2)2

4

]
+ 0.75 exp

[
−(9x1 + 2)2

49
− 9x2 + 1

10

]
+ 0.5 exp

[
−(9x1 − 7)2

4
− (9x2 − 3)2

4

]
− 0.2 exp

[
−(9x1 − 4)2 − (9x2 − 7)2

]
where xi ∈ [0, 1], for i = 1, 2

C.2 Mishra’s bird function

f(x) = sin(x2) exp
[
(1− cos(x1))

2
]
+ cos(x1) exp

[
(1− sin(x2))

2
]
+ (x1 − x2)

2

where

x1 ∈ [−10, 0]

x2 ∈ [−6.5, 0]

C.3 Townsend’s function

f(x) = −[cos((x1 − 0.1)x2)]
2 − x1 sin(3x1 + x2)
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where

x1 ∈ [−2.25, 2.25]

x2 ∈ [−2.5, 1.75]

C.4 OTL circuit function

f(x) =
(Vb1 + 0.74)x6(x5 + 9)

x6(x5 + 9) + x3

+
11.35x3

x6(x5 + 9) + x3

+
0.74x3x6(x5 + 9)

(x6(x5 + 9) + x3)x4

where

Vb1 = 12x1/(x1 + x2)

x1 ∈ [50, 150]

x2 ∈ [25, 70]

x3 ∈ [0.5, 3]

x4 ∈ [1.2, 2.5]

x5 ∈ [0.25, 1.2]

x6 ∈ [50, 300]

C.5 Piston function

f(x) = 2π

√√√√ x1

x4 + x2
2

x3x5

x7

x6

V 2
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where

V =
x2

2x4

(√
A2 + 4x4

x3x5

x7

x6 − A

)
A = x2x5 + 19.62x1 −

x3x4

x2

x1 ∈ [30, 60]

x2 ∈ [0.005, 0.02]

x3 ∈ [0.002, 0.01]

x4 ∈ [1000, 5000]

x5 ∈ [90000, 110000]

x6 ∈ [290, 296]

x7 ∈ [340, 360]

C.6 Borehole function

f(x) =
2πx3(x4 − x6)

ln(x2/x1)

(
1 +

2x3x7

ln(x2/x1)x2
1x8

+
x3

x5

)
where

x1 ∈ [0.05, 0.15]

x2 ∈ [100, 50000]

x3 ∈ [63070, 115600]

x4 ∈ [990, 1110]

x5 ∈ [63.1, 116]

x6 ∈ [700, 820]

x7 ∈ [1120, 1680]

x8 ∈ [985, 12045]
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C.7 Robot arm function

f(x) =
√
(u2 + v2)

where

u =
4∑

i=1

xi cos

(
i+4∑
j=5

xj

)

v ==
4∑

i=1

xi sin

(
i+4∑
j=5

xj

)

where

x1 ∈ [0, 1]

x2 ∈ [0, 1]

x3 ∈ [0, 1]

x4 ∈ [0, 1]

x5 ∈ [0, 2π]

x6 ∈ [0, 2π]

x7 ∈ [0, 2π]

x8 ∈ [0, 2π]
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