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Abstract 
Sound source localization strategies can be 

traced back to radar and sonar localization 
systems. In the report, we will review the main 
challenges of sound source, especially talker, 
localization problem and current major 
strategies . We proposed a practical peak-
weighted PHAT TDOA method to find reliable 
source location in the Awarehome, which is a 
residential lab in Georgia Tech. Finally, we 
discuss the possible application scenarios and 
propose future direction of our work. 
Keywords: 
Sound Source Localization; PHAT; A/V fusion;  

1 Introduction 
Sound Source Localization system (SSL) is 

to determine the location of audio sources based 
on the audio signals received by an array of 
microphones at different positions in the 
environment.   

Recently, microphone arrays are used in the 
enhancement of SNR for speech signal[1], sound 
source localization[7][9][23][24], echo removal 
[2]. They are also applied in speech recognition 
[3], hearing aids [4]. Portable testbed which 
consists of 8 microphones is reported to have 
been built for different signal processing tasks in 
undergraduate course projects [5]. The future of 
microphone array will be mainly focused on 
various applications, such as voice input in the 
automobile, desktop PC, hearing aids, tele-
conferencing [6]. However, different 
applications have different requirements for 
microphone arrays, such as affordable cost, 
smaller size, less computation requirement, 
robust algorithm, higher accuracy, noise and 
echo cancellation, etc.  

Many researchers have summarized 
challenges in sound source localization with 
microphone array [7][8]. Based on our 
experiences, the main challenges for sound 

source localization lie in five aspects. 1. How to 
enhance signal noise ratio? The background 
noise can be quite complex and varies in 
different environments. In home environment, 
the noise might come from AC, refrigerator, TV, 
fans, etc. 2. The reverberation in a house room 
(Characterized by reverberation time) is  hard to 
model because of multi-paths between the sound 
sources and receptive microphones in the 
environment. Every room might have different 
geometric deployment and walls with different 
acoustic properties. The furniture in the room 
will not be fixed in a location. 3. The speech 
signal is a broadband signal. Many narrowband 
processing methods applied in radar system, 
sonar system will fail here. Different categories 
of sound sources have different characteristics. 
In addition, the volume of speech might vary 
greatly from whispering to shouting. 4. The 
sound sources are usually intermittent and non-
stationary. This makes it hard to use adaptive 
filter that needs long converging time. And if  the 
sound source is moving quickly, the point sound 
source assumption can not work any more. 5. To 
make it more complex, there might be more than 
one sound sources existing in the environment. 
All these challenges make it  a difficult  task to 
track sound sources  in real complex domestic 
environments. As it is  difficult to model these 
different environments,   all the current SSL 
systems are making assumptions about their 
environments or sound sources. When such 
assumptions are not satisfied, the algorithm will 
fail[9].   

Sound source localization has its 
distinguished advantages over other localization 
technologies, like visual tracking, active-badge 
system, RFID location system etc. In some 
environments, such as the restroom, bedroom 
etc, the audio capturing is not as  intrusive as the 
camera system. And sound source location will 
only record the location of the sound source and 
thus decrease the privacy concerns for the users. 
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SSL can provide 3D location information. In 
some application the height of the sound is very 
important.  Sound Source Localization can easily 
recognize some sound-specific  objects such as 
TV, conversation, putting dishes in the 
dishwasher etc. Above all, the data bandwidth 
processed for SSL is relatively lower. Typically, 
one 320*160 camera  with 15 frame per second 
needs to process 2.3Mbyte per second, while for 
high resolution sampling of the stereo audio it 
only needs to process 44.1K *2 = 88.2kByte per 
second.  Compared to active-badge system, SSL 
does not require the users to wear any devices. 

The core algorithms  of sound source 
localization can be traced back to earlier active 
radar and sonar localization system. In these 
active systems, objects send out preset signal to 
the intended objects and compare the echo signal 
in order to compute the location of the object. In 
passive systems, the system only receives signal 
from targets, which is usually moving.  By 
wearing some device that generates preset 
signals, the receiver can compute the location 
with high accuracy because of high SNR in a 
very narrow frequency range. However, for the 
sound sources in a domestic environment, the 
home-made sound are not preset signals and thus 
is a challenging problem.  

The goal of the technical report is to 
summarize the current SSL algorithms , including 
two-step TDOA, high-resolution spectral 
estimation, and steered beamforming methods.  
After the summarization, we will describe the 
hardware platform we build in  our lab that 
captures the real room audio and software that 
access and visualize the captured data. The 
scalable sound capturing platform can capture 
the audio data up to 32 channels . Upon this, we 
provide a platform that can test different SSL 
algorithms with C++ or Matlab in a real home 
environment.  

 We proposed a peak-weighted full 
correlated PHAT-GCC to compute the sound 
source location, which is equivalent to SRP-
PHAT method. Our localization accuracy is 
fairly good with real time processing in one 
room of the residential lab, where we set up our 
system. 

The structure of the paper is organized as 
following. In part 2, we will review current three 
SSL algorithms. In part 3, we introduce the 
algorithm used in our system. Then system 
hardware and software structure are discussed in 
part 4. Finally, some interesting applications are 
discussed.  

 

2 Current SSL Algorithms and 
Systems 

The results of SSL might be affected by four 
factors: (1)The number and content of every 
sound sources as compared with the environment 
noises; (2)The acoustic properties of the 
environment, such as reverberation; (3) Quantity, 
quality and geometric deployment of receptive 
microphone arrays; (4) Algorithms. 

We will divide the current algorithms into 
three main categories, which is quite similar to 
the categories discussed in [7].  (1) Time delay 
of arrival. The locating process is divided into 
two steps: Computing time delay estimation for 
each pair of microphones and searching the 
location of sound sources. (2) Steered 
beamforming power. In this method the 
responses of arrays are normally filtered, 
weighted and summed at different possible 
locations. The position that has the maximum 
power is assumed to be final sound source 
location. (3)High resolution Spectral Estimation 
based on the spatiospectral correlation matrix, 
which is computation intensive but this strategy 
is able to detect multiple sound sources .   

 
2.1 Time Delay Of  Arrival(TDOA) 
 

TDOA or Time of Delay Estimation (TDE) 
is the most explored method among three 
strategies . TDOA strategy has been successfully 
applied to radar, sonar systems , where the signal 
band is narrow and SNR is high. However, for 
talker localization problem, it is usually inside a 
house where the background is  noisy and the 
signal is usually considered as broadband signal. 
The reverberation is also much more complex in 
the room environment than in the sky or sea.  
Many possible supplemental filtering or post-
processing technologies, which is specific in 
certain environment, need to be applied here. 

 In TDOA strategy, accurate computation of 
delay is the basis for final source location with 
high accuracy. In the first step, time delay of 
arrival is estimated for each pair of microphones. 
Traditionally, the general cross correlation 
between two signals is used in time domain [10]. 

Signal received at  microphone i:  
)()()( tntstx iiii +−= τα              (1)  

where:  
)( ii ts τ−  is the delay signal;  

  )(tn i is the noise; 
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 iα  is the attenuation factor for 

microphone i. 
General Cross Correlation between channel 

1 and channel 2 is :   

∫
∞

∞−

+= dttxtxy )()()( 2112 ττ              (2) 

To reduce the computation time, the cross 
correlation is usually implemented in frequency 
domain using equation 3, because FFT can save 
much computation time. 

GCC in Freq domain:  
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where Conj is the complex conjugation 

function.X1(f) and X2(f) are the Fourier transform 
of x1(t) and x2(t). 

However, because of noise and 
reverberation in the environment, some weight 
functions are applied to enhance the quality of 
the estimation, such as Phase Transform(PHAT),  
Roth Processor, ML, Eckart, etc[10][11][12]. 
The general cross correlation with the filter, 

)( fΨ , will be expressed as: 
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The Phat magnitude weighting function is: 
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Roth autocorrelation weighting function 
is: 
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SCOT filter is: 
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Another proposed method to compute 

TDOA is to use time adaptive filter[13][14][15]. 
It assumes the signal to be the convolution of 
pulse response for a particular microphone and 

source. The noises in different microphone are 
independent with each other.             

)()(*)()( tntsthtx iiii +=              … (8) 

A n  adaptive filter is suggested to get the 
direct path between microphones and can cancel 
reverberation in certain amount of time. It needs 
about 250ms converging time, which makes it 
hard to be applied in fast moving sound sources. 
From our experience of implementing it, it 
depends very much one how to select the starting 
point and it is hard to converge.  

 The second step of TDOA strategy is to 
find the location according to the delays 
computed between specific microphones, whose 
positions are already known. One delay-
estimation will make the location subject to one-
half of the hyperboloid of two sheets expressed 
in equation (9). If the sound sources are far away 
from the sensors, we can assume it to be a cone 
in the search space, which will make the search 
space simple.  

soundC
LLLL

TDOA
|||| 21

12

−−−
=        … (9)   

where:  L is potential sound source location; 
L1,L2 is the location of Microphone 1 and 2. 
Csound  is the broadcasting speed in the air, which 
is 340 m/s. 

Theoretically, three pairs of Microphones 
are enough to determine the location of sound 
source[16]. However, more TDOA data will help 
reduce the error of estimation. Many strategies 
can be used to search for the sound source 
location in potential space. Maximum likelihood 
method assumes the error to be Gaussian 
distribution around the true location. [17]. But it 
is difficult to verify whether it is optimal in 
discrete time processing [13].  

The least mean square function can be used 
in evaluating potential locations. The goal is to 
find a location point that minimizes the sum of 
square of difference between expected TDOA 
and measured TDOA. However, this method 
ignores the possible different errors of the delay 
in different pairs.  We provide a weighted TDOA 
LMS method which will be discussed later.  

Different search strategies can be used here. 
Newton-Raphson, Guass-Newton method, 
steepest descent algorithm are among possible 
choices. 

The 2-step TDOA strategy is usually quick 
enough for real-time processing. The 
disadvantage is that it makes a premature 
decision on an intermediate TDOA in the first 
step, thus throwing away useful information.  A 
better approach recently proposed would 
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preserve all the intermediate information to the 
end and make an informed decision at the very 
last step [12]. Conceptually, this approach is 
similar to steered beamforming that finds the 
point in the space which yields maximum 
energy. But they differ in theoretical merits and 
algorithm complexity. 

The window size that is applied to generate 
the location is very important in decreasing noise 
and reverberation effect. Generally, the more 
window size  is used the result should be more 
reliable. The typical reverberation time of a 
moderate reverberation room has a reverberation 
of 200 to 300ms.  So the window size of 400ms, 
which is about 17640 samples for a 44.1kHz 
sampling frequency, is enough to remove the 
reverberation effect.  However, the larger the 
window size, the more latency of the tracking it 
might be, which makes it useless in some 
tracking task that needs the response time to less 
than 20-30ms. And shorter latency algorithms 
are suitable for multi-sound source separation.  

 

2.2 Steered Response Power (SRP) 
In this strategy, the array of the microphones 

will be focused on various locations. It searches 
for possible locations and get the time of direct 
flight from the source location to the respective 
microphone.  

∫ ∑
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Equation (10) is a typical beamforming 
evaluation equation. It will delay and sum certain  
function of the signal at different locations to 
find the optimum location that makes the 
objective function reaches  the maximum. This is 
also called focalization .  Generally speaking, it is 
a non-linear optimization problem. We can use 
Newton-Raphson algorithm or steepest descent 
algorithm that iterates during the procedure in 
order to find the location. However, in the SSL 
problem with beamforming strategy, the 
objective function might have many local 
maximums, which makes the results rely more 
on the initial point where the search starts .  Some 
researcher proposes searching strategy to solve 
multi-local maximums problem [9].The 
computation of objective function and searching 
for maximum peak in the space are two main 
tasks in steered response power method that 
might be computation intensive.  

 

2.3 High Resolution Spectral 
Estimation 

Traditionally, the strategy is mainly applied 
for narrowband signals. It is based upon the 
spatiospectral correlation matrix which can be 
derived from the signals received by the 
microphone array. This category includes 
autoregressive modeling, minimum variance 
spectral estimation. Some of these methods are 
limited to far-field, which means the sensors are 
supposed to be far away from the sound source, 
and  linear array situation, where the microphone 
array are deployed in a line.  It also needs time to 
search in the whole space for maximum. The 
maximum is  supposed to be a sharp maximum 
and can be easily found [9][18].   

3  Energy and Peak-Weighted 
based TDOA 

3.1 PHAT TDOA Signal Processing 
TDOA is the most popular SSL methods. As 

we stated out before, it needs two steps in 
finding the sound source location.  The direct 
cross correlation fails in finding the TDOA in 
our system.  We attribute it to the noise and 
reverberation in our test environment.  

3.2 Peak-weighted PHAT Algorithm 
Our system computes the PHAT-GCC in the 

frequency domain. However, by checking the 
computed delay in the system, we find that 
around 15% of these data are corrupted when the 
sound source is in a fix position. By examining 
these wrong data, we find these errors are mainly 
caused by two reasons. The first the energy of 
sound is too low at that time.  Another reason is 
when which you check the peak of the 
correlation, we find these peaks are not so 
significant. By saying a peak is significant, we 
mean there are some other very high peaks 
around the detected maximum peak.  

 
Figure 1 Typical TDOAs between two microphones 

compared with peak-weights and signal energy. 
The upper sub-graph in Figure 1 shows the 

detected delays between two microphones along 
the time line in samples. In the middle sub-graph, 
the energy of one channel is displayed with the 
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blue curve. The red stem lines are the delays 
(opposite directions) from first sub-graph. The 
lower sub-graph shows weights derived from 
peaks by equation(11).  The window size we 
used is 5120 samples and the sampling rate is  
44.1KHz. 

Based upon above observation, we decide to 
use the ratio of the second peak with the 
maximum peak to convey the reliability of every 
time of delay. Specifically, we define the peak-
weight to be: 

PeakMax peak Second V/ V-1PeakWeight =
…(11) 

The higher the peak-weight, the more 
weight we put on this microphone pair. Then the 
final goal evaluation function E is :  

])(*[ 2
ii

Exp

irsPossilbePai
i TDOATDOAWE −= ∑

∈

…(12) 

 Where Wi is the peak-weight and TDOAExp
i 

is the expected time delay of arrival from a location. 
TDOAi is the calculated TDOA from captured audio 
data. 

 To find the location, we iterate according to 
the steepest gradient of equation (12) until 
minimum required error is satisfied. We find that 
the combination of peak-weight and energy of 
the signally has improved the resolution a lot in 
our environment. The results will be discussed in 
detail in section 4.2. 

4 System Architecture 

4.1 Hardware and sound capturing 
API 

(1)  Environment 
The microphone array is installed in a guest 

room of the first floor in our residential lab, 
which is referred as Aware home  [19].The 
dimension of the room is 360(L) by 305(W) by 
272(H) cm. It has more furniture than a normal 
bedroom, including three large computer desks 
and many noisy computers. The fans of central 
AC are just outside of the room. Generally, it is a 
medium noisy environment as compared to 
normal house environment. See Figure 2.1 for 
the deployment of microphone array in the house.  

 

 
 

Figure 2. Deployment of microphone arrays in 
the room. Each red square represents a Quad. 
 

(2) Geometric  Design of Microphone Array 
Four microphones are grouped together to 

form a microphone Quad. They are fixed at the 
vertex of a rectangle in a thin board. Assuming 
sampling rate to be 44.1Khz, during every 
sampling period, the sound can travel 
340Kmm/44.1K= 7.71mm. In one typical Quad 
of our system, the edge of the square is 43.62cm, 
which corresponds to 80 
samples(436.2mm*1.414/7.71mm = 80). 
Generally, we find the size of 10cm to 80cm is 
suitable for processing with less matching time. 
The microphone we are using is supercircuits-
PA3 mini-microphone, Figure 3a. It is omni-
directional and needs 12V pre-amplified power 
supply. The microphone can pick up the 
frequency range between 20-16KHz with 58db 
signal gain. It costs about $10 each, which is 
relatively much cheaper than some professional 
microphones and we found it is good enough in 
our environment. 

 
 
 
 
 
 
  

Figure 3 (a) Omni-microphone. (b) Tango 24. 
 

(3) Frontier Tango24 A/D converter. 
The Tango A/D converter can convert  

electric sound signal from the microphone into 
the optical signal through ADAT interface, that 
can be connect to capturing device by standard 
optical fiber wire, Figure 3b.  The advantage of 
transmitting through optical signal is to preserve 
the sound signal with least added transmission 
noise. The important properties that Tango 24 
provides are: 
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• 8-ch A/D and D/A converter 
• 44.1 or 48 kHz sampling rate 
• Up to 24-bit quantization 

(3) Frontier 16 channel Dakota sound 
capturing card. 

   Dakota PCI sound capturing card is a 
reliable sound card that reads signal from optical 
fiber wire through ADAT interface, which can 
be run in latest operating system, like Win2000 
and WinXP. Normally, it can capture 16 input 
signals. Dakota is also extendable by using a 
Montana card which will extend it to 32 channels  
processing capability. 

(4) Steinberg Audio Streaming Input 
Output(ASIO) development Kit. 

One advantage of the Dakota is it can 
capture the 16 synchronized audio signals with 
the support of ASIO 2.0 programming API. 
ASIO2.0 is an industrial standard proposed by 
Steinberg software and hardware company in 
Germany.  ASIO programming kit is a generally 
accepted multi-channel programming standard as 
compared with Microsoft’s directSSK. If the 
signal is not synchronized between all the 
channels you want to pair up, you have to do it 
by writing your own code, which needs careful 
multi-threads programming and extensive CPU 
time in real-time processing according to our 
previous trial.  

(5) Signal capturing and visualization. 
Our system can capture the data and store it 

into an extended multi-channel wavefile format 
designed derived from standard wave file format. 
It visualizes different channels  and allows zoom 
in/out both in amplitude and time to check the 
details  of the signal. Figure 4 is the picture of 
captured data of 8 channels with different time of 
delays. 

 
Figure 4 Visualized 8 channels audio signal. 

4.2 Source localization system 
Fig 5 is the sound source location history 

tracked by our system. The room is simulated by 

one front and two lateral walls, as well as a 
ground floor, with OpenGL. Every dot in the 
graph is a detected sound source with timestamp. 
The latest data are rendered with more red color 
and the older data are rendered with more  green 
color.  

  
 Figure 5  SSL history of half an hour conversation. 
 

To test the effectiveness of the system, we 
place a fixed sound source, which is a speaker 
playing online NPR news, and test the result. 
The standard deviation varies with the source 
location.  At these five different locations, we 
point the speaker to the direction of microphone 
arrays to enhance the SNR during our 
experiments. The SNR is around 5-20Db. The 
results are reported in Table 1. 

 
Loc(cm) Description Num Std Error (cm) 
(58,221,83) Desk 5365 (0.8, 1.0,1.7) 
(220,313,179) Right Back Top 3385 (2.1,2.0,1.4) 
(264,15,84) Left Back Desk 1453 (3.0, 3.0,2.2) 
(161,262,11) Ground 465 (4.4, 10.9, 14.6) 
(287,215,104) Lower Closet  3987 (9.0, 1.7,4.0) 

Table 1. The standard errors of peak-
weighted  algorithm used in our system. 

 
We can from the table that the standard 

errors vary with the location of sound sources 
and has larger standard error in those areas 
which have zero TDOA to many microphone 
pairs. We notice that in these areas, even small 
TDOA errors along corresponding axis would 
cause large relative error which consequently 
causes larger location estimation error in that 
axis . Another phenomenon is that, generally, for 
the sound location where it is very close to the 
two Quads, such as on the desk that is closest to 
the two Quads, the standard error is only 1-2 cms. 
However, for those locations which are far away 
from the two quads, it might be 10-14 
centimeters. We suspect it is because in the area 
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which is closer to the microphone array, the SNR 
is higher and thus the result is more accurate. 

We are satisfied with the results in general, 
as the error is enough for us to distinguish 
between different loudest sound sources. In our 
experiment, we are using a Canon VCC3 PTZ 
camera which is driven by the sound source 
locator system. Most time it can exactly point 
toward the current speaker’s mouth when there 
are some guests making conversation in our lab. 
Similar applications are also reported [25]. 

Another interesting property of our system is 
that it is easier to detect pulse sound, such as 
knocking the desk. It is also more responsive to 
woman’s noise and less responsive to mundane 
sound. 

5 Application of Sound Source 
Localization 

An array of microphones bears more power 
than a single directional microphone. 
Microphone arrays are recently used in more and 
more systems , such as  conference systems 
[20][22],  acoustic surveillance, etc.  In [6], the 
authors also provide many conceptual future 
applications with microphone array system. 

 However, the disadvantage of sound source 
tracking is also obvious: it will only track objects 
that produce sound. Basically, it is only a 
dis crete location reporting system.  

Beside the current, PTZ camera demo 
system, we are interested in building more 
applications with sound source localization. 
Below are some possible applications we will try 
to build with source localization abilities. We 
will categorize these applications according to 
the demands of sound processing technologies. 

 
Scenario 1: Single sound source SSL 
There is a map of the floor in the house, 

which is divided into small regions. The map 
will display the history of sound source events in 
corresponding area. The latest source, eg, in the 
past 20 seconds will be flashing with time 
showing freshness. This application can give an 
observer the impression of where sound 
activities mostly happens and frequency of the 
activity in a particular day. It can be fed into 
Digital Family Portrait[21] in Awarehome.  

 
Scenario 2:  Using SSL and speaker ID 
Mr. Philips is at the porch of his home. He 

says “Home manager, I am back!” The door is 
automatically unlocked and says “Welcome 
home, Mr. Philips” according to his speech 
characteristics. The lamp system and display 
system will choose which lamps and displays to 
be turned on according to his footsteps or voice 
command. 

 
Scenario 3: Using SSL, Speech recognition, 

Speaker ID 
Light on: A says “Light On/Off”, the light 

closest to his location is turned on. The intensity 
is tuned to different user’s requirement.   

 “Message”: Displays A‘s message in the 
closest display or voice message through the 
closes speaker. 

Scenario 4: Using multi-talker SSL and 
speaker  

ID- Meeting capturing system: 
 When there are more two talkers in the 

room, the large shared display is turned on. We 
might organize the audio data according to 
different speaker and point the camera to the 
current speaker that automatically captures the 
meeting. 

All the above scenarios require robust sound 
source localization. Our future direction is to 
spend time in providing multi-talker tracking as 
well as building these interesting applications 

6 Conclusions 
In this report, we summarize the current 

main sound source location algorithms and 
introduce the platform we used in our lab 

We find that in our current hardware 
deployment there are still many inevitable errors 
in time of delay calculation. We proposed our 
algorithm which uses peak-weighted goal 
function that detects sound source location in 
real time. Then some possible applications are 
discussed. 

 We are exploring the possibility of taking 
advantage of second peak, with particle filtering 
in order to get more reported sound source 
location data.  
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