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Impacts of Altitude on Expectation Maximization-based Data
Association and Orbit Estimation

Daniel Sakson∗

Georgia Institute of Technology, Atlanta, GA, 30332

Given the current number of resident space objects (RSO) and growing concerns over space
debris and collisions, efficient methods of multiple target tracking and data association are
required. The robustness of an expectation maximization (EM) based technique proposed
by Bernstein was evaluated for its suitability to meet this need. A model was developed to
simulate optical measurements from a space-based observer to multiple RSOs in various
orbits. These measurements were used in the proposed algorithm to estimate data association
probabilities and orbital states. In the process of validating the algorithm implementation it was
found that the orbital estimates did not converge to expected levels; However, the algorithm’s
classification exceeded an adjusted Rand index (ARI) and Rand index (RI) of 90% indicating
good performance. The estimation and classification performance were considered decoupled
and a study was then performed to understand the affects of various observer-object geometries
on the algorithm’s classification ability. Objects were placed into orbits of varying altitudes in
two observer configurations. It was found that algorithm performance was positively correlated
to object altitude. Further analysis found an additional correlation between performance and
the measurement-to-clutter ratio (MCR). When this ratio exceeds a value of 5, performance in
excess of 80% ARI and 90% RI can be attained. Two linear models were build to predict the
Rand indices as a function of the CMR. The study was concluded with a discussion of potential
future improvements to the simulation and estimation scheme including higher order dynamics
and sensor models.

I. Nomenclature

𝑧 = altitude
Z = states estimates in expectation maximization
_ = spherical normal measurement concentration
Θ = object initial orbital states
𝜋 = mixing proportions for expectation maximization
𝑟 = position
¤𝑟 = velocity
𝐸_ = absolute concentration error
𝐸Θ,𝑟 = mean position error
𝐸Θ, ¤𝑟 = mean velocity error
𝐸𝜋 = norm of mixing proportion error
𝑅 = Rand index
𝑅𝐴 = adjusted Rand index
𝑀𝐶𝑅 = measurement-to-clutter ratio
𝜌𝑦 = measurement concentration
𝑁 = number of measurements
\ = measured azimuth
𝜙 = measured elevation
𝑟 = observer to object pointing vector
𝐶 = spherical normal normalization parameter
𝑡 = time
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𝑌 = set of all available measurements
𝑦𝑖 = measurement at time 𝑡𝑖
𝑤 = mixing weights for expectation maximization
𝑄 = mixing model complete-data log-likelihood function
` = Earth’s gravitation parameter
ℎ = EM iteration
𝑙 = mixing model marginal log-likelihood function

II. Introduction
The challenge of detecting and tracking resident space objects (RSO) has been a topic of interest for a large part of

the 21st century [1]. Particularly of interest is simultaneous tracking of multiple objects. This interest is spurned by the
rise in the number of large satellite constellations [2] and concerns over the impacts of debris on operational satellites
and constellations [3]. Multiple object tracking is a mature field, but the rate of increase in the number of RSOs is
quickly outpacing the ability of existing techniques [4]. This calls to attention the need for new techniques that can
be leveraged across a number of sensing platforms and/or networks of these platforms to associate large quantities of
measurements and estimate precise RSO orbits.

A recently developed technique that falls in line with this need is the application of expectation-maximization (EM)
to the data association and orbit determination problem. In general, expectation-maximization, aims to iteratively
determine a maximum likelihood estimate (MLE) from incomplete data [5]. This technique has been applied a number
of times to the data association and orbit determination problem [6–10], and was recently refined by Bernstein through
the proposal of two EM-based algorithms [11].

Bernstein’s algorithms provide methods that address multiple challenges in this space. First, they are able to classify
measurements not just among multiple tracked objects, but also measurements originating from various types of clutter.
Second, in using a model of the objects dynamics, they are able to provide a MLE for each objects initial orbital state.
Lastly, the techniques are data agnostic. The initial work was done with generalized optical angle measurements, but the
technique could be extended to any number of sensor configurations so long as a pointing vector can be determined.

The first of these algorithms, a single-stage EM approach, falls in line with traditional mixture models such as the
Guassian Mixture Model [12]. It aims to provide an MLE of the orbit states, 𝑋 , the measurement concentration, _, and
the mixing proportions, 𝜋, between the objects and clutter. A key assumption of this method is the apriori knowledge of
the number of orbits to be fit to the data. The second algorithm, a multi-stage EM approach, does away with the need for
this apriori knowledge by extended the single-stage approach with additional iterations while removing successfully
associated measurements. Both algorithms are described in detail in [11].

Although promising, these EM based approaches are not without potential challenges. The techniques were validated
against an observer and objects in mid-Earth orbit (MEO). In this region dynamics are slow between the observer and
objects by nature of the slower orbital velocities in this region. This provides the EM technique consistent data from all
objects under track and, periodically, clutter. In lower-altitude scenarios the clutter-to-measurement ratio may skew
greatly towards clutter. Additional challenges may stem from the lack of higher-order dynamics in the orbit model.
These dynamics, especially atmospheric drag and non-spherical earth effects, add to the computational complexity
associated with propagating the orbital state forward in time. When added to the iterative nature of EM, and the large
number of possible objects and measurements, the computational complexity of this technique may make it unfavorable
compared to existing methodologies.

The goal of this work is to assess the impacts of the orbital altitude single-stage EM methodology. Impact on errors
from the validation performed in [11] will be assessed as well as association performance. If possible, regions of
expected performance will be defined and reasons for degraded performance discussed.

III. Methodology
Both the single-stage and multi-stage EM implementations are described in detail in [11]. For completeness, and to

highlight key differences in implementation, a summary of the single-stage algorithm is presented in Section III.A. Once
implemented and validated, testing will focus on two key orbital altitude regions: low-earth orbit (LEO) and mid-Earth
orbit (MEO). The observer and objects will be initialized in these regions and measurements collected and processed
through Algorithm 1. Selected test points are summarized in Table 1.

These points were chosen to provide variable resolutions in the regions of interest. Five points were placed linearly
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between 150km and 2000km altitude. This provides a resolution of 462.5 km in this region. In MEO, five points are
also linearly spaced between the LEO boundary at 2000 km and 13621.9 km. One of these points overlaps with a LEO
test points resulting in four total MEO points with an altitude resolution of 2905.5 km.

Point 𝑧𝑜𝑏𝑠 (km) 𝑧𝑜𝑏 𝑗 (km) Point 𝑧𝑜𝑏𝑠 (km) 𝑧𝑜𝑏 𝑗 (km)
1 13621.9 150 10 1000 150
2 13621.9 612.5 11 1000 612.5
3 13621.9 1075 12 1000 1075
4 13621.9 1537.5 13 1000 1537.5
5 13621.9 2000 14 1000 2000
6 13621.9 4905.5 15 1000 4905.5
7 13621.9 7810.9 16 1000 7810.9
8 13621.9 10716.4 17 1000 10716.4
9 13621.9 13621.9 18 1000 13621.9

Table 1 Test Points

Results will be evaluated separately for estimation and classification performance. To do so several key values must
be defined. First is the list of parameters to be estimated.

Ẑ =

[
_̂, Θ̂, �̂�

]
(1)

In this set we see the concentration, _̂, the initial orbital state estimates, Θ̂, and the mixing proportions, �̂�. Both Θ̂

and �̂� are matrices or vectors in their own right.

Θ̂ =

[
Θ̂𝑟 Θ̂ ¤𝑟

]
=


𝑟𝑥,1 𝑟𝑦,1 𝑟𝑧,1 ¤̂𝑟𝑥,1 ¤̂𝑟𝑦,1 ¤̂𝑟𝑧,1
...

...
...

...
...

...

𝑟𝑥,𝐽 𝑟𝑦,𝐽 𝑟𝑧,𝐽 ¤̂𝑟𝑥,𝐽 ¤̂𝑟𝑦,𝐽 ¤̂𝑟𝑧,𝐽


(2)

�̂� =

[
�̂�0 . . . �̂�𝐽

]
(3)

J here represents the total number of orbits to be estimated. In this investigation J will be set to 4 to match the
original work [11]. To assess the impacts of the altitudes imposed by the test points in Table 1, we define error terms for
each of the parameters.

𝐸_ = |_̂ − _ | (4)

𝐸Θ𝑟
=

1
𝐽

𝐽∑︁
𝑗=1
| |Θ̂𝑟 , 𝑗 − Θ𝑟 , 𝑗 | |22 (5)

𝐸Θ ¤𝑟 =
1
𝐽

𝐽∑︁
𝑗=1
| |Θ̂ ¤𝑟 , 𝑗 − Θ ¤𝑟 , 𝑗 | |22 (6)

𝐸𝜋 = | |�̂� − 𝜋 | |22 (7)

Listed in order here are the concentration error, mean position error, mean velocity error, and the mixing proportion
error. These will be plotted with respect to the altitude of the objects, 𝑧𝑜𝑏 𝑗 . This analysis will show how effective the
algorithm is in estimation at each altitude of interest.
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Additionally the algorithms are analyzed in their classification through the Rand and adjusted Rand indices [13, 14].
These metrics assess how measurements are labeled by the algorithm compared to the true labels for said measurement.
The difference between these two metrics can be seen by analyzing their formulations.

𝑅 =
𝑎 + 𝑏(𝑛

2
) (8)

𝑅𝐴 =

∑
𝑖 𝑗

(𝑛𝑖 𝑗
2
)
−
[ ∑

𝑖

(𝑎𝑖
2
) ∑

𝑗

(𝑏 𝑗

2
) ]/ (𝑛

2
)

1
2

[ ∑
𝑖

(𝑎𝑖
2
)
+∑ 𝑗

(𝑏 𝑗

2
) ]
−
[ ∑

𝑖

(𝑎𝑖
2
) ∑

𝑗

(𝑏 𝑗

2
) ]/ (𝑛

2
) (9)

Both are based on the contingency matrix. This matrix represents how the true labels compare to those predicted by
a classification algorithm [15]. 𝑛 represents the total number of labels while 𝑛𝑖 𝑗 is the individual overlap between the
group labeled as 𝑋𝑖 and the true label 𝑌 𝑗 . Then 𝑎 is the sum of all overlaps in the predicted direction, and 𝑏 the sum in
the true direction. With this we see that the ARI is adjusted to account for the baseline similarity in the data through
possible permutations. This allows the ARI to better score dissimilar groupings as would be the case if a different
number of labels are predicted from truth. This change makes the algorithm more robust for the possible inclusion of
multi-stage EM where the number of labels is an estimated quantity rather than pre-determined.

In addition to analyzing the results of the algorithm and the associated errors, the generated measurements will
be analyzed to gain insight into phenomena potentially affecting the estimation scheme. The first focus will be the
proportion of measurements to the clutter in the true set of labels. To assess this we define a new quantity, the
measurement-to-clutter ratio (MCR)

𝑀𝐶𝑅 =

∑𝑁
𝑖=1

{
1 if (yi ∉ J = 0)
0 otherwise∑𝑁

𝑖=1

{
1 if (yi ∈ J = 0)
0 otherwise

(10)

This defines the ratio between measurements and clutter in a formulation similar to a signal-to-noise ratio (SNR)
used in traditional astronomical sensing [16]. This metric will assist in identifying impacts caused by increased (or
reduced) object occlusion due to Earth. Since a reduction in the number of measurements classified as objects also
implies fewer measurements it is possible that a low MCR could degrade algorithm performance.

The final metric to be considered is the elevation range of the measurements, and moreover the density of
measurements. Elevation is strictly a function of the observer-object geometry. Objects at lower altitudes will be
dispersed across a smaller range of elevations and vise-versa for observers at higher altitudes. We can then define the
measurement density as the number of measurements normalized by the solid angle [17] formed by the azimuth and
elevation ranges.

𝜌𝑦 =
𝑁

(\𝑚𝑎𝑥 − \𝑚𝑖𝑛) (sin(𝜙𝑚𝑎𝑥) − sin(𝜙𝑚𝑖𝑛))
(11)

Classification and estimation performance will be assessed against both of these metrics to quantify and correlation
and identify any possible causation between them.

A. Single-Stage EM
The single-stage EM methodology leverages directional statistics in combination with the general EM methodology.

The algorithm is initialized with the assumption that equal proportions of each object and clutter exist. Then, the EM
iterations begin. During the expectation step (E-Step) the current estimates of the object states are leveraged to calculate
the pointing vector from the observer to each object as:

𝑟 (𝑡, 𝑋) = 𝑟 (𝑡, 𝑋) − 𝑟𝑂 (𝑡) (12)

Where 𝑟 (𝑡, 𝑋) is the position of a particular object at time 𝑡 and 𝑟𝑂 (𝑡) is the corresponding position of the observer.
It is assumed that the position of the observer is perfectly known in this formulation and thus is not part of the estimation
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scheme. Next, the pointing information, along with the current estimate of the measurement concentration, is used to
parameterize a spherical normal [18], conditional probability density function .

𝑝(𝑦𝑖 |𝑋𝑖 = 𝑗) = [𝐶 (_)]−1 exp
(
− _

2
arccos2

(
𝑦𝑇
𝑖
𝑟 (𝑡; 𝑋 𝑗 )

| |𝑟 (𝑡; 𝑋 𝑗 ) | |

))
(13)

In this equation 𝐶 (_) is the normalization term for the conditional probability. The function 𝐶 (_) is non-linear and
defined in further detail in the supplement to [18]. This value was approximated (14) in the referenced work due to the
difficulty in solving the function through maximization.

𝐶 (_) ≈ 2𝜋
_

(14)

Also in Equation (13), we have the angle measurements 𝑦𝑖 . These are represented as a unit Cartesian pointing vector.
Measurements are generated according to the methodology laid out in the supplement to [11]. Orbits are propagated for
6 days and measurements sampled every ten minutes during that period. A random object is sampled at each time-step.
If said object is occluded by Earth, as defined by Vallado [19], clutter is sampled instead from a uniform spherical
distribution.

𝑝(𝑦𝑖 |𝑋𝑖 = 0) = (4𝜋)−1 (15)

When not occluded, the objects are sampled from the spherical normal distribution [18] treating the pointing vector
as the mean vector and setting the concentration parameter, _ = 107. Labels for each measurement are recorded such
that clutter is assigned a label of 0 and objects are labeled from 1 to J depending on the quantity.

With this information, the mixing weights are calculated for each measurement and each orbit estimate. These
define the association probabilities between each measurement and each object (or clutter).

𝑤𝑖 𝑗 =
𝑝(𝑦𝑖 |𝑋𝑖 = 𝑗)𝜋 𝑗∑𝐽
𝑗=0 𝑝(𝑦𝑖 |𝑋𝑖 = 𝑗)𝜋 𝑗

(16)

Once the mixing weights are computed the E-Step is complete and the maximization step (M-Step) begins. In the
M-Step, parameter estimates are updated either in closed form or by maximizing the complete-data log-likelihood
(CDLL) function. A closed form update for the mixing proportion is possible through the column-wise mean of the
mixing weights.

𝜋 𝑗 =

𝑁∑︁
𝑖=1

𝑤𝑖 𝑗 (17)

The orbital state estimate and the concentration estimate cannot be updated in closed form. For these parameters, an
optimization scheme is employed to maximize the CDLL function.

𝑄(Z, Z (ℎ−1) ) =
𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=0
[log (𝑝(𝑦𝑖 |𝑋𝑖 = 𝑗)) + log (𝜋 𝑗 )]𝑤 (ℎ−1)

𝑖 𝑗
(18)

In this formulation Z represents the parameters being estimated (e.g. Z = [_, 𝑋, 𝜋]). Although not complex in
appearance, this optimization is made non-trivial by the 𝑝(𝑦𝑖 |𝑋𝑖 = 𝑗) term’s dependence on being able to calculate
the position of each object at each measurement time. This is complex computationally as these positions must be
recomputed on each evaluation of the CDLL. In this CDLL are also the first deviations from the original algorithm as
proposed in the referenced work.

Unlike the referenced work the Earth-centered inertial (ECI) position, 𝑟, and velocity, ¤𝑟, are used to parameterize
the orbit. These are used in a numerical integration scheme to compute the position and velocity of the orbit at all
measurement times. A Runge-Kutta 4 based integrator [20] is used to integrate the time derivative of the state vector.

𝑋 =

[
𝑟, ¤𝑟

]𝑇
=

[
𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 , ¤𝑟𝑥 , ¤𝑟𝑦 , ¤𝑟𝑧

]𝑇 (19)
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𝑑𝑋

𝑑𝑡
=

𝑑

𝑑𝑡

[
𝑟, ¤𝑟

]𝑇
=

[
¤𝑟𝑥 , ¤𝑟𝑦 , ¤𝑟𝑧 ,− `

| |𝑟 | | 𝑟𝑥 ,−
`

| |𝑟 | | 𝑟𝑦 ,−
`

| |𝑟 | | 𝑟𝑧
]𝑇 (20)

This is in contrast to the formulation used in [11]. There, the equinoctical orbital elements [21] were used to
parameterize the orbit which was propagated through solving Kepler’s equation. The smaller number of state variables
in the equinoctical representation allow for a smaller number of objective function evaluations during optimization.
However using the position and velocity, as noted by the author, allows for the introduction of higher order dynamics.
Although higher order dynamics were not introduced in this work, Cartesian state representation was used to facilitate
future growth.

The final difference between this implementation and the original algorithm is the optimizer. The referenced work
utilized a Lavenberg-Marqardt [22] weighted least squared formulation to obtain estimates of the state. Lavenberg-
Marqardt is well suited for this problem, but not implemented widely in common toolsets. A different, Quasi-Newton-
based, solver [23] was used for this work. This difference adds complexity to validating the original algorithm as two
dissimilar optimizers are unlikely to return similar state estimates. These differences and their impact on the results are
discussed in subsequent sections. Regardless of solver, the following problem was solved.

Zℎ = max
Z

𝑛∑︁
𝑖=1

𝐽∑︁
𝑗=0

𝑤
(ℎ−1)
𝑖 𝑗
[log(𝑝Z (𝑌𝑖 |𝑋𝑖 = 𝑗)) + log(𝜋 𝑗 )] (21)

An important portion of the optimization scheme is the value of _. Although not immediately evident in equation
(21), the conditional probabilitiy term for 𝑗 ∈ [1, 𝐽] is a function of _. The concentration itself is a non-linear function
[18] that is difficult to obtain through the optimization process alone. For this reason an approximation is used to
estimate its value as a function of the current orbital states and the measurements.

_ℎ ≈
∑𝑁

𝑖=1
∑𝐽

𝑗=1 𝑤
(ℎ−1)
𝑖 𝑗

1
2
∑𝑁

𝑖=1
∑𝐽

𝑗=1 arccos2
(
𝑌𝑇
𝑖
𝑟 (𝑡𝑖 ,𝑋ℎ

𝑗
)

| |𝑟 (𝑡𝑖 ,𝑋ℎ
𝑗
) | |

)
𝑤
(ℎ−1)
𝑖 𝑗

(22)

Once the optimization converges on a solution, state variables are compared to their values in the previous iteration
for convergence of the EM algorithm. Additionally, the marginal log-likelihood function is evaluated and compared to
its value in the previous iteration.

𝑙𝑌 (Z) =
𝑁∑︁
𝑖=1

log
( 𝐽∑︁

𝑗=0
𝑝(𝑦𝑖 |𝑋𝑖 = 𝑗)𝜋 𝑗

)
(23)

Algorithm 1 provides an overview along with specifics on stopping criteria used in data gathering and model
validation.
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Algorithm 1 Single-Stage Expectation Maximization
ℎ← 1
𝑋(ℎ−1) ← 𝑋0
_ (ℎ−1) ← _0
𝑙 (ℎ−1) ← 999999
𝜋 𝑗 ← (𝐽 + 1)−1∀𝐽
while ℎ ≤ 25 and (|𝑙ℎ − 𝑙 (ℎ−1) | ≥ 10−8 or | |Zℎ − Z (ℎ−1) | | ≥ 10−8) do

𝑤
(ℎ−1)
𝑖 𝑗

← 𝑝 (𝑦𝑖 |𝑋𝑖= 𝑗) 𝜋 𝑗∑𝐽
𝑗=0 𝑝 (𝑦𝑖 |𝑋𝑖= 𝑗) 𝜋 𝑗

⊲ E-Step

𝑝𝑖ℎ
𝑗
← ∑𝑁

𝑖=1 𝑤𝑖 𝑗 ⊲ BEGIN: M-Step
Zℎ ← minZ

∑𝑛
𝑖=1

∑𝐽
𝑗=0 −𝑤

(ℎ−1)
𝑖 𝑗
[log(𝑝Z (𝑌𝑖 |𝑋𝑖 = 𝑗)) + log(𝜋 𝑗 )] ⊲ END: M-Step

𝑙ℎ ← ∑𝑁
𝑖=1 log

( ∑𝐽
𝑗=0 𝑝(𝑦𝑖 |𝑋𝑖 = 𝑗)𝜋 𝑗

)
ℎ← ℎ + 1

end while

B. Model Validation
To validate the algorithm, results were compared to the original work. The object and observer orbits are detailed in

the supplement to [11] as sets of classical elements. The estimation errors along with classification metrics are compared
to those in the original reference in order to claim that recreated algorithm is functioning similarly. Measurements and
true orbits generated for validation are plotted for a first stage-comparison the the original implementation.

(a) Orbits (b) Measurements

Fig. 1 Data generated for algorithm validation

Both sets of generated data are well in family of the original work. Measurements range between ±80 degrees
elevation and exhibit the same characteristic sinusoidal patterns. The sinusoidal pattern in the generated measurements is
flipped when compared to the original author. This can be attributed to a different starting epoch for the orbits compared
to [11]. These measurements were fed into the single-stage EM algorithm and run six times with six different initial orbit
estimates to facilitate convergence. An initial concentration estimate of 102 was used to initialize the algorithm which
matches the tests performed previously. Results are plotted below and highlight the quantities of interest: log-likelihood,
position errors, velocity errors, concentration errors, Rand index, accuracy, and clutter false discovery rate.
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(a) Log-Likelihood (b) Position Errors - Run 4

(c) Velocity Errors - Run 4 (d) _ Error

(e) Validation Results - Adjusted Rand Index (f) Validation Results - Clutter Detection Accuracy

(g) Clutter False Detection Accuracy

Fig. 2 Model Validation
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We see that the implemented algorithm converges, but does not do so on a precise initial orbital state. With four
objects, there is little change in the position state. The position error remains near 500 m for all objects in all runs. The
velocity estimate improves from 10𝑚

𝑠
of initial error to an average of 3𝑚

𝑠
of initial error with the exception of the second

object which converged to an error of 40𝑚
𝑠

. Although log-likelihood remains in family with the expected results, the
estimates of the other parameters do not build confidence that the algorithm is identical to the reference. This is in
contrast with how well the algorithm performs as a classifier.

The three measures of classification performance demonstrate that, as a classifier, this implementation of the
single-state EM algorithm performs comparable to the original implementation. Both algorithms converge to ARIs and
Accuracies over 96% while maintaining low clutter false discovery rates.

These results are mixed for the purposes of validating the correct implementation of the algorithm. This is likely
due to the difference in optimizer used in this work. Regardless, it is possible to decouple the two portions of the
algorithm. Analyzing the classification, which is shown to be comparable in Figures (2e, 2f, 2g), will be the focus of the
subsequent performance evaluation. This is based on the assumption that resolving the issue with the maximization that
result in sub-optimal estimation performance would only serve to improve the results of the classification. Therefor any
positive results in favor of the single-stage EM algorithm would still stand regardless of the challenges of this particular
implementation.

IV. Results
With the model’s classification ability validated, measurements were generated according to Table 1. A subset of

these measurements are plotted in Figure 3 to visualize different trends at altitude. Each set of measurements contained
433 total points, with varying proportions of measurements and clutter.

(a) Test Point 1 - Observer 13622 km - Objects
13622 km

(b) Test Point 9 - Observer 13622 km - Objects
1000 km

(c) Test Point 10 - Observer 1000 km - Objects
13622 km

(d) Test Point 18 - Observer 1000 km - Objects
1000 km

Fig. 3 Measurement Examples
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In these points we see the measurements vary as a function of the altitudes. High-altitude co-orbital scenarios, Figure
3a, show tightly grouped "streaks" of measurements with clutter scattered throughout the field-of-view. Scenarios with
a large altitude difference between the observer depend on observer altitude. When the observer is at a higher altitude
than the objects, Figure 3b, we see the measurements are more tightly grouped in elevation. The inverse of this is true
when the observer is at a lower altitude with respect to the objects. In that scenario, Figure 3c we see the measurements
span a larger range, encompassing nearly the entire ±90 degree field of view. Additionally, in this configuration we
again see tighter groupings of measurements similar to those in the high-altitude co-orbital case. The final configuration
is an overall low-altitude scenario with relatively close observer and objects. We see here the measurements span the
range of ±70 degrees and exhibit fewer defined patterns than other configurations. To further display the impact of the
geometry on the measurements we take a look at the true mixing proportions in these same four scenarios.

(a) Test Point 1 (b) Test Point 9

(c) Test Point 10 (d) Test Point 18

Fig. 4 True Measurement Mixing Proportions

From the true mixing proportions we see there is a variable proportion of clutter at the different test points.
Comparing all points this value ranges from a minimum of 5% to a maximum of 22.5%. This variability in the clutter
proportion is further highlighted by plotting the MCR at each object altitude for both observer altitudes along with the
measurement density.
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(a) Clutter-to-Measurement ratio per test point (b) Measurement density per test point

Fig. 5 Measurement properties

Both measurement metrics show impacts from altitude. The MCR is directly correlated to object altitude. As the
object altitude increases the MCR grows from a value of 3.97 to 9.31 for the LEO observer and from 6.73 to 17.04 for
the MEO observer. Measurement density does not show the same trend. The measurement density for the low altitude
observer mirrors the MCR for the same case, but the high-altitude observer shows nearly the reverse trend. As altitude
increases the density trends from a value of 46.0941 𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠−1 at 150 km to 31.8227 𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠−1 at 7810.9 km.
Past that point the measurement density begins to increase again to a final value of 35.0863 𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠−1 at 13622 km.

Moving on from the measurements themselves, the estimation and classification results of the algorithm were
analyzed. Each of the quantities of interest are plotted with respect to altitude. Individual points are averages of ten runs
with different initialization.

(a) Position (b) Velocity

Fig. 6 Mean Position and Velocity Errors

As mentioned in the discussion on algorithm validation, position and velocity do not match the level of convergence
demonstrated in the original implementation. That being said, we do see a trend in the velocity error. For both observer
altitudes, as object altitude increases, the mean velocity error tends to decrease. With the initial error set at ten meters,
objects closest to Earth had errors ranging from 44.22 to 53.09 m/s. Meanwhile, objects furthest from earth had errors
ranging from just 5.39 to 16.32 m/s. Given the magnitude of the differences observed for the position error, a trend
cannot be similarly identified. While reviewing the position and velocity errors it was also import to quantify the other
estimated quantities: concentration and mixing proportion.
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(a) Concentration (b) Mixing Proportion

Fig. 7 Mean Concentration and Mixing Errors

Concentration is similarly impacted in this scheme by the issues in algorithm implementation. Although a trend in
decreasing error could be argued, there is insufficient confidence in the estimation scheme to support it. On the other
hand, as the mixing proportion is independent of the maximization in the EM algorithm we see a trend of decreasing
error with increasing altitude. Errors exceed 30% closest to earth and achieve values between 4.09% and 16.9%.
This decay appears more stable with higher observer orbits than with the LEO observer. Moving onto classification
performance, we continue to see correlation with altitude.

(a) Adjusted Rand Index (b) Rand Index

Fig. 8 Rand and Adjusted Rand Indices

Both the Rand and Adjusted Rand indices are plotted. The former is used as a point of comparison to the original
work while the adjusted rand to act as a new data point. Both metrics predict good performance at high altitudes and
predict degraded performance as altitude decreases. Comparing the relative magnitude of the two indices, we see that
the ARI is nearly a shifted version of the RI. Points on both follow the same general patterns but the ARI is lower by
over 20% in low altitude regions. This is trend is even clearer if the results are overlaid.
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Fig. 9 Overlay of Rand Indices

Lastly, we look at the relation between the ARI, RI, and the MCR. Both metrics are plotted with respect to the MCR
and a linear regression is done to aid in prediction. The data point with a MCR of 30 is treated as an outlier due to its
originating from the test-point that encountered errors during computation. Equations for the linear regression lines are
presented in Equations 24 and 25.

(a) Adjusted Rand Index (b) Rand Index

Fig. 10 Rand vs. MCR

𝑅 = 0.0071 ∗ 𝑀𝐶𝑅 + 0.8658 (24)
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𝑅𝐴 = 0.0181 ∗ 𝑀𝐶𝑅 + 0.6541 (25)
Both equations are rearranged to calculate predicted MCR values for a given RI or ARI. These predictions are

tabulated in Table 2 utilizing four common rules-of-thumb for Rand index evaluation: 𝑅 ≥ 90 corresponds to excellent
recovery, 90 > 𝑅 ≥ 80 is good recovery, 80 > 𝑅 ≥ 65 is moderate recovery, and 𝑅 < 0.65 is poor recovery. In this
context, recovery refers to the algorithms ability to recover the true labels of each measurement.

𝑀𝐶𝑅 =
𝑅 − 0.8658

0.0071
(26)

𝑀𝐶𝑅 =
𝑅𝐴 − 0.6541

0.0181
(27)

Desired RI (%) Minimum MCR Desired ARI (%) Minimum MCR
100 18.8393 100 19.1105
90 4.8008 90 13.5856
80 -9.2378 80 8.0608
65 -30.2956 65 -0.2290

Table 2 MCR Thresholds to Single-Stage EM Predicted Performance

V. Discussion
The results paint a picture of the dependence of single-stage EM algorithm on observer altitude. Focusing strictly on

classification performance based on assumptions outlined in Section III.B, we see clear correlation between altitude and
the different formulations of the Rand index 9. This is also made evident with the mixing proportion error, Figure 7b, in
quantifying the amount of miss-classification at each of the test points. Moving from point to point these trends do not
necessarily hold, but this is believed to be a result of insufficient sampling and is discussed in Section VI.

The correlation between these two parameters is insufficient to claim a cause, but reviewing the measurement
properties in Figure 5 allows us to draw further conclusions. Looking at the data we see the MCR, 5a grows as a function
of altitude.Based on Equation 10, for its value to increase the number of object measurements must increase or the
number of clutter measurements must decrease. Our knowledge of the clutter model tells us that there is no direct way
to increase the former but the latter could be decreased if the probability of occlusion for a given object was reduced.

The other property calculated directly from the measurements, density, does not provide the same clear conclusions.
Looking at equation 11, we see for the density to increase, either the number of non-clutter measurements must increase,
or the solid angle that contains all non-clutter measurements must decrease. The latter is a function of the elevation
range of the measurements which we see varies based on altitude in Figure 3. The former, similar to, MCR is a function
of the probability of occlusion. A higher probability of occlusion will increase the number of non-clutter measurements
and in-turn increase measurement density. Applying this understanding of the phenomena to the values of density
observed in Figure 5b, with a low-altitude observer, the density grows with altitude supporting the argument that density
can serve as a performance predictor. When looking at the high-altitude case, this same trend is not existent. This
is likely due to the factor of the solid angle. Although it is shown to vary with altitude, its evolution was not fully
quantified in this study. Although an interesting metric to track in future work, the predictive power of the MCR was the
focus of this study moving forward.

Before continuing our evaluation of performance, we must first resolve the discrepancy between the two variations of
the Rand index. Both metrics quantify the classification accuracy, but the two formulations make different assumptions
on the possible variability in the labels. The ARI assumes that the number of labels is not a fixed quantity and adjusts
the score for possible permutations in the number of labels and the quantity of measurements distributed among them.
With a fixed quantity of possible object orbits and clutter, this causes the ARI to overly penalize the score. For this
reason, in the single-stage formulation, the standard Rand index is a better measure of classification performance than
the adjusted Rand index. In future work with the multi-stage formulation, the ARI will be a powerful tool. This is due to
the multi-stage formulations ability to predict the number of orbits to fit rather than requiring that information to be
provided.
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Treating the Rand index as our primary classification metrics we review the tabulated MCR thresholds for algorithm
performance. Since a negative MCR implies that the quantity of object measurements or clutter measurements is
negative, the implication of this first order model is that the qualitative recovery of the labels will always be either
"good" or "excellent". This may be true for the simplified version of the algorithm implemented here, but is unlikely
broadly true to the EM methodology. Improvements to model fidelity, as discussed in Section VI, and an increased
understanding of the algorithm overall will allow this performance model to be refined to more correctly predict the
expected Rand index given the MCR.

The final point to discuss is the MCR itself. The MCR is not a quantity that would be known in an operational
environment to help predict performance. However, in this study it serves as an analogue for a quantity that can be
derived as a function of expected object and observer orbits, the probability of occlusion. Deriving this quantity will
allow for one to quantify the expected performance of the algorithm given some set of objects or general orbital regions.

VI. Future Work
In order to fully develop this technique for autonomous measurement association and orbital determination several

further iterations are required. These advancements will resolve questions in several areas of the algorithm. These areas
are listed below.

1) Sampling
2) Higher-Order Dynamics
3) Observability/Sensor Modeling
4) Object Maneuvers

A. Sampling
The experiments performed during this study were done with a limited sample size of 18 test points and 10 runs per

point. This resolution is insufficient to fully characterize the affects of altitude on the algorithm. Although sufficient for
first order predictions, a greater number of test points would help reduce the affects of outliers on the data. Similarly a
greater number of runs per point would help reduce the uncertainty in those mean values and improve overall prediction
quality.

B. Dynamics
The two body problem is insufficient to precisely determine the orbit of an object [19]. Perturbations from various

sources affect the orbit and add complexity to the EM algorithm by requiring numerical integration of the orbital state.
Two major perturbations should be studied to further build confidence in the EM methodology.

Atmospheric drag plays a major role in orbit evolution, especially for objects in the LEO regime where the
methodology exhibited performance degradation. Simple models exist to represent Earth’s atmosphere. Models
such as the exponential atmosphere could be implemented quickly to increase overall accuracy with minimal impact
on computation complexity [19]. More complex models can also be implemented such as Jacchia-Roberts [24] or
Jacchia-Bowman [25]. These models would improve fidelity, especially, in LEO, but at the cost of computation time and
algorithm complexity. Both of these models require tracking of additional parameters that would have to be assumed
known or estimated in some fashion.

Although a good first approximation, a spherical Earth does not accurately represent the gravitational forces
exhibited on objects in orbit. The original author showed good results with the inclusion of the oblateness perturbation
(J2). Although a step in the right direction, higher order gravity terms would be ideal to completely validate this
methodology and quantify its potential in estimation and classification. Spherical harmonics provides a vector for
implementing this type of model [19]. The optimal degree and order for this model would have to be determined as a
trade between computational complexity and model accuracy. Even so, a modest degree and order would still constitute
an improvement over the most complex gravitation model used to date with the EM methodology.

Other perturbations could be studied with this methodology. Effects such as lunar perturbations and solar radiation
pressure would have a non-zero impact on state evolution [19]. Compared to the aforementioned techniques however,
their impact would be of a much smaller order of magnitude that may not warrant the additional computational
complexity for this problem.
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C. Observability/Sensor Modeling
In this section, observability is defined as the ability of the observers sensor(s) to measure the desired objects.

In the original reference, and in this paper, there was no maximum range, azimuth, or elevation that was imposed
on the sensor. Although an unconstrained azimuth is possible with a satellite capable of body axis rotation, most
optical sensors have some elevation constraint as well as practical range limitations [26]. These restrictions impose
limits on the observer-object geometries that produce valid measurements instead of clutter. Based on the observed
dependence on MCR to produce good performance, a realistic sensor model could reveal additional shortcomings in the
methodology. A similar impact would be seen from the measurement rates. These are unlikely to be at the constant rate
of 1 measurement per 10 minutes as used here and in the original work. Both of these enhancements, would alter the
number and mixing proportion of measurements depending on the geometry of the problem. As this algorithm has so
far only been tested with stable geometries and constant measurement rates, this would be a key area to continue testing
to verify that different time-series of data did not cause adverse effects.

D. Object Maneuvers
It is often necessary for satellites, especially members of constellations, to adjust their orbits for collision avoidance

and general station keeping [1, 2]. These types of maneuvers would introduce a step to the observations that could prove
challenging to associate to an orbit model. The algorithm could fail to converge or converge to an average state that is
not representative of either the initial or the final orbit. This type of phenomena could prove a significant limitation to
this algorithm, however methods to inject known maneuvers could be inserted into the estimation scheme. The affect of,
and any possible mitigation to, object maneuvers needs to be further studied to support the use of this technique in
operational environments.

VII. Conclusion
The single-stage EM algorithm, developed by Bernstein, was recreated in an effort to quantify the impacts of various

observer and object altitudes on algorithm predictive ability. Of interest was the correct prediction of the initial orbital
state to a sufficiently small level of position and velocity error. Additionally, the measurement concentration estimate
and the data association metrics are of interest as orbits were varied between 1000km and 13622 km altitude. Validation
was conducted to ensure that performance was in line with what was achieved by Bernstein. This validation yielded
mixed results. The algorithm did not display the same ability to estimate position, velocity, and concentration compared
to the results of the original author. However, it’s ability to correctly classify and associate measurements met the
performance criteria.

Assuming high classification performance will be maintained as the algorithm implementation is refined, the
performance was analyzed for a set of 19 test points consisting of various observer and object altitudes. Data showed
that classification performance, as quantified by the ARI and RI, had a positive correlation with both object and observer
altitude. As objects were placed higher and higher the ability of the algorithm to converge to a near-truth association
increased. Although not fully validated, the estimates of other parameters showed similar trends where smaller errors
were correlated with higher altitudes. This type of correlation to altitude is not unexpected for such an algorithm as the
relative dynamics between the observer and the objects will be impacted by the difference in altitude.

In addition to altitude in general, the measurement-to-clutter ratio was quantified at each altitude. This metric
showed a strong positive correlation to altitude. Based on this metric a first order model was derived, through linear
regression, to predict the RI and ARI as functions of the MCR. Given the dependence on MCR, techniques to minimize
the sampling of clutter could be studied. If the algorithm’s performance is more so related to the MCR rather than
altitude directly, then these techniques would allow performance in the low-altitude region to be improved and the
number of feasible observer configurations expanded.

Without such techniques, the data implies that taking measurements from an observer to objects at lower altitudes
poses some risk. Consistent measurements from orbits lower than 1000 km would begin to impact the single-stage
EM scheme as those orbits posses lower estimation and classification performance. The proportion of measurements
originating from the high-altitude region, to that in the low-altitude region required to maintain performance was not
derived as part of this study. However, this value would be important to quantify in follow-on work. It would help
further refine the known constraints of the algorithm. Additionally, the multi-stage EM approach could provide benefits
in a mixed altitude scenario, but was not implemented as part of this study.

In general, this EM algorithm and its extensions remain an interesting area of development for multi-object tracking.
The methodology requires additional maturation and generalization to account for various types of orbits as well as the
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behaviors of the object in those orbits. Investigation of this technique should be continued to explore greater complexity
and to quantify any remaining uncertainty in performance.
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