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SUMMARY 

The drastically changing climate system plays a critical role in modulating emission 

and distribution conditions of air pollutants including greenhouse gases, aerosols, and 

tracer gases, while these air pollutants exert significant feedback to the climate system 

through multiple biogeophysical, biogeochemical, and hydrological pathways. These 

interactions occur at different spatial and temporal scales that increase the difficulty for a 

clear and comprehensive understanding. To shed light on complex interactions between 

climate variability and air pollution, I used statistical and numerical modeling approaches 

to investigate the interactive relationship between climate variability and air pollution in 

the context of severe haze pollution in China and large wildfires worldwide. I identified 

the key climatic and meteorological forcing factors for the spatial and temporal variations 

of the two typical air pollution events including severe haze in winter over eastern China 

and biomass burning in fire-prone regions using statistical detection and attribution 

methods. Then I improved and employed the state-of-the-art Community Earth System 

Model (CESM) to investigate the underlying mechanisms driving their variability as well 

as to understand interactive feedback pathways. Based on comprehensive statistical 

analysis, dynamic diagnosis, and numerical sensitivity simulations, I found a close 

connection between deteriorating winter atmosphere ventilation in China and rapidly 

changing boreal cryosphere in preceding months. I proposed a physical mechanism to 

explain the teleconnection relationship for the China’s winter haze pollution problem. I 

also developed a region-specific fire model with climate and ecosystem feedback in CESM 
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and utilized this new fire model to evaluate complex climate-fire-ecosystem interactions 

as well as to predict decadal climate variability with fully interactive fire disturbances. 

In the first part of this research, I analyzed series of extreme haze pollution events 

over eastern China in recent winters and found an increasing trend in regional air stagnation 

conditions throughout the past three decades. I examined the influence of multiple climate 

forcing factors and identified the key synoptic circulation patterns contributing to these 

unfavorable ventilation conditions. I quantified the climate impacts on regional circulation 

and ventilation by principal component analysis and regression methods as well as 

numerical sensitivity experiments using multiple climate models. It was found that 

unprecedented air stagnation accompanied by the weakening winter monsoon over eastern 

China was one of the main causes of extreme haze pollution in recent years in addition to 

high intensity of anthropogenic emissions over this region. Such weakening ventilation 

capability was attributed to winter circulation changes with disturbed winter monsoon 

activities. The latter was further related with boreal cryosphere changes including Arctic 

sea ice declining in preceding autumn and Eurasian snow expansion in early winter. Multi-

decadal changes in sea surface temperature (SST) might also play important roles in 

modulating regional circulation. I investigated the physical processes involved in these 

teleconnection relationships and proposed that the external climate forcing changes such 

as Arctic sea ice and Eurasian snow contributed to inter-decadal to intra-seasonal variations 

of prominent atmosphere modes in the Northern Hemisphere, which further modulated 

winter circulation as well as air pollution ventilation over eastern China and resulted in 

severe haze pollution due to increasing occurrence probabilities of extreme air stagnation. 

Such increasing trends were also considerable in future projections following 
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Representative Concentration Pathway 8.5 (RCP8.5) based on 11 climate model ensembles 

from the fifth phase of the Coupled Model Inter-comparison Project (CMIP5), in which 

extreme air stagnation probability in winter over eastern China increased by 100% by the 

end of the 21st century due to global warming and declining Arctic sea ice. 

In the second part, I looked into global wildfires, which are another example of 

climate-air pollution interactive systems with profound climate, ecosystem, and 

socioeconomic impacts, by using the state-of-the-art Community Earth System Model 

(CESM). I developed a REgion-Specific ecosystem feedback Fire model (RESFire) in 

CESM that provides modelling capability to understand the complex climate-fire-

ecosystem interactions. Compared to the default fire model in CESM, the new RESFire 

model prevailed by better simulation performance of fire dynamics due to process-based 

heterogeneous natural and anthropogenic constraints, online plume rise parameterization, 

and fire weather modelling bias corrections. Driven by either offline observation-reanalysis 

combined meteorological inputs or online Community Atmosphere Model version 5 

(CAM5) simulation data, the RESFire model properly reproduced burned area of the latest 

version of Global Fire Emissions Database (GFED4.1s) and the observed distributions of 

fire radiative power by the Moderate Resolution Imaging Spectroradiometer (MODIS). 

Evaluation results based on the International Land Model Benchmarking (ILAMBv2) 

package showed significant improvements in fire simulation performance relative to 

previous fire models. The overall modelling score of burned area increased from 0.50 of 

the default Community Land Model version 4.5 fire model (CLM4.5-fire) to 0.61 of offline 

RESFire (RESFire driven by observation-reanalysis atmosphere data) and 0.60 of online 

RESFire (RESFire driven by the CAM5 atmosphere model), respectively, with improved 
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spatial and temporal variability. The model also includes an integrated fire impact module 

to estimate direct fire emissions as well as disturbances on ecosystems and surface radiation 

budget with land cover changes. The RESFire model enables future climate projections 

with interactive climate-fire-ecosystem processes using CESM. I conducted decadal 

predictions following Representative Concentration Pathway 4.5 (RCP4.5) with both 

active and inactive fire disturbances in the model and found roughly 19% and 100% 

increases in global burned area and fire carbon emissions, respectively, from the present 

day to the middle of the 21st century. By comparing different prediction experiments, I 

isolated multiple climate-fire-ecosystem interactions in terms of climate feedback 

associated with fire emissions and ecosystem feedback associated with fire induced land 

use and land cover change (LULCC). It is concluded that fire aerosol emissions generally 

show positive feedback to fire activities through perturbations on precipitation and 

hydrological cycles while fire induced LULCC shows negative feedback through 

perturbations on fuel load supply. These results demonstrated the latest progress of global 

fire modelling development and applications in climate model studies and improved our 

understanding of the role of fires in the climate system.  

To sum up, I investigated the two-way interactions between climate change and 

typical air pollution cases such as extreme haze and large wildfires and revealed the 

underlying mechanisms for observational variations as well as future predictions. These 

studies represent the advanced efforts to answer the intriguing question of the interactive 

relationship between climate variability and air pollution, and the knowledge obtained 

through these efforts would benefit both the regulation practice of regional air pollution 

control and the design of mitigation strategies for future climate change risks. 
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CHAPTER 1. INTRODUCTION 

1.1 Statement of the Problem 

Air pollution and climate change are closely related with each other. Figure 1 

illustrates the interactions between climate change and air pollution through simplified 

pathways [1]. On the one hand, climate change can affect air pollution severity by changing 

meteorological conditions for primary emission sources, secondary chemical formation, 

and physical accumulation and deposition of air pollutants and their precursors. On the 

other hand, several air pollutants can modulate regional to global climate by perturbing 

radiation budget, hydrological cycles, and ecosystem functionality. These interactions are 

complex and not well understood given numerous synergistic and competing feedback 

processes in and between each side. A practical way to understand their interactions is to 

concentrate on a specific air pollution category and go through all relevant characteristics 

and interactive processes. These efforts would provide mutual benefits for both air 

pollution and climate change research communities with a more well-rounded perspective. 

They also lay the foundation for more effective air pollution and climate change mitigation 

strategies with higher socioeconomic benefit-cost ratios. Therefore, I specifically looked 

into two types of air pollution cases―severe haze pollution in China and large wildfires 

worldwide―to improve the knowledge of their interactive relations with climate change 

in this work. 
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Figure 1 – A schematic diagram describing the interactive relations between air 

pollution and climate change. Adopted from State of the Environment NSW 2000 [1]. 

1.1.1 The Impact of Climate Change on Winter Haze Pollution in China 

A consequence of rapid economic growth in China is a deterioration of air quality. 

Series of heavy haze pollution events have occurred over eastern China in recent winters, 

which drew broad domestic and international attention given their profound public health 

[2, 3], socioeconomic [4], and climatic impacts [5]. Though the historical air quality 

observation data are very limited in this region due to insufficient monitoring capability 

and network before 2014, the current available air pollutant measurements in Beijing and 

surrounding cities (Figure 2) still shed some light on the temporal evolution of regional air 



 3 

quality and its relationship with fossil fuel consumption. It is interesting to note that the 

time series of air pollutants and coal consumption as one of their primary sources are not 

always coupled with consistent variations throughout the period. The PM concentrations 

in Beijing also show divergent changes in winter seasonal mean and annual mean values 

in the last decade, with a decreasing rate of 3.36μg/m3 in the annual mean PM2.5 but an 

increasing rate of 1.3μg/m3 in the winter seasonal mean PM2.5 of Beijing over the last 10 

years [6]. These divergences suggest another invisible hand that is modulating interdecadal 

to intra-seasonal variations of regional air quality besides natural and anthropogenic 

emissions. Previous studies have indicated strong dependence of air quality on weather and 

climate change, though the effect of climate change on the particulate matter (PM) 

pollution is more complicated and uncertain than other species [7].  Such complexity is 

partly derived from diversified interactions between climate variability and PM pollutants. 

Both long-term climate and short-term meteorological conditions could influence primary 

aerosol emissions like dust and wildfires, secondary formation rates with perturbed 

atmospheric chemistry, and aerosol sink through transport, deposition, and ventilation. In 

return, different aerosol species could modulate regional to global climate by changing 

direct and indirect radiative forcing and consequent meteorological and hydrological 

responses. It has been found that China contributes 10%±4% of the current global radiative 

forcing with 12%±2% relative contribution to the positive (warming) component by well-

mixed greenhouse gases and black carbon aerosols and 15%±6% relative contribution to 

the negative (cooling) component by sulfate and nitrate aerosols [5]. The severe haze 

pollution induced by high PM concentrations in China is also linked to 959,338 premature 
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deaths in China and more than 64,800 premature deaths in other regions due to 

transboundary pollution transport in 2007 [8]. 

 

Figure 2 – Time series of air pollutant concentrations and fossil fuel consumption in 

Beijing. (a) annual concentrations of air pollutants in Beijing from 1998 to 2013. (b) 

annual fossil fuel consumption in Beijing from 1998 to 2013. (c) winter (December-
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January-February, DJF) seasonal mean concentrations of PM10 in Beijing from 2001 

to 2017. (a) and (b) are adopted from the UNEP 2016 report [9]. (c) are produced 

based on daily air pollution index (before 2013) and air quality monitoring data (2014-

2017) for 11 eastern China cities collected from the Chinese Ministry of 

Environmental Protection. 

To unveil the mist of severe air pollution problems in China for advanced air quality 

management, numerous studies investigated the haze formation mechanism from various 

perspectives such as primary emissions, secondary formation, and regional circulation 

changes. Though most air pollution studies in China emphasized large contributions from 

heavy regional anthropogenic emissions [10-13] and rapid chemical formation [10, 14, 15], 

it is reported that climate change might also play an important role in providing conducive 

meteorological conditions with deteriorated regional ventilation for severe air pollution 

[16-20]. Since emission changes in a specific region are relatively slow with stable intra-

seasonal fluctuations and long-term inter-decadal variations, stagnant meteorological 

conditions favoring high aerosol formation and accumulation appear to be a major factor 

affecting both the long-term trend and the short-term fluctuation of haze pollution episodes 

[7]. Recent studies indicated a decadal weakening trend of the East Asian Winter Monsoon 

(EAWM) [21] and consequently decreasing wind speed [22] and increasing aerosol 

concentrations [16], but the underlying mechanism of internal variability and external 

climate factors modulating air stagnation related circulation changes are still not well 

understood. Other studies examined the future projections of air stagnation conditions 

using the CMIP5 high emission scenario (RCP8.5) data [23] but ended up with 

contradictory conclusions over the eastern China region. In 2014, Horton et al. [24] firstly 
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used an air stagnation index based on an ensemble of bias-corrected climate model 

simulations to quantify the response of stagnation occurrence and persistence to global 

warming. They found increased air stagnation occurrence that covered 55% of the current 

global population with major increasing areas over the tropics and subtropics but 

nonappreciable or even decreasing changes in extreme stagnation event duration and 

exposure in China based on the CMIP5 RCP8.5 projections [24]. To the contrary, Cai et 

al. [19] also used the RCP8.5 ensemble projections and suggested a 50% increase in the 

frequency and an 80% increase in the persistence of extreme stagnation events in Beijing. 

Their results were estimated from three air quality related meteorological indices including 

vertical temperature difference between the lower (850hPa) and upper (250hPa) 

troposphere, near surface (850hPa) southerly anomalies around Beijing, and a latitudinal 

difference in 500hPa zonal winds between north of Beijing and south of Beijing. Though 

the projected changes in the synthesis haze weather index were quite prominent, the 

increases in the haze weather index were mainly driven by increasing temperature gradient 

due to strong warming in the RCP8.5 scenario rather than near surface anomalous southerly 

winds. The latter wind factor that directly affects pollution transport and ventilation showed 

nonappreciable changes. Given drastic changes of global and regional climate (especially 

strong warming over the high latitude regions as so called Arctic amplification [25, 26]) 

and its pervasive influence on middle latitude circulation and weather extremes [27], it is 

imperative to identify the specific driving force of conducive circulation changes for severe 

air pollution and to understand detailed physical mechanisms of these teleconnection 

relationships for a better interpretation of future predictions. 
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In the first part of this study, I specifically investigated the China’s severe haze 

pollution problem in winter in terms of the following three aspects: 

1.1.1.1 The Long-term Variations of Regional Air Stagnation in China 

I first examined the long-term variations of air stagnation conditions in winter over 

eastern China to tackle the haze pollution problem from the meteorological perspective. 

The scientific question I’d like to answer is how the regional ventilation is changing and 

contributing to extreme haze pollution in the past few years. 

1.1.1.2 The Key Climate Driving Factors 

After an examination of temporal variations of regional ventilation, I further 

investigated its covariant relations with multiple internal and external climate forcing 

factors including Arctic Oscillation (AO), El Niño/Southern Oscillation (ENSO), Arctic 

sea ice concentration (SIC), and Eurasian snow cover extent (SCE), etc., in order to identify 

the key forcing factors driving these changes. 

1.1.1.3 A Dynamic Mechanism for the Teleconnection Relation  

At last, I conducted comprehensive statistical analysis and dynamic diagnosis based 

on observational and reanalysis data as well as numerical sensitivity experiment results to 

understand how the remote climate changes affect regional air ventilation in eastern China 

during winter. I proposed a physical mechanism to explain the observed and simulated 

relations between climate forcing and regional responses in this section. 

1.1.2 Interactive Relations of Climate Change and Wildfires 
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In the second part, I focused on another example of interactive systems involving 

climate change and air pollution―wildfires. Wildfires are widespread phenomena around 

the world with a long history of interactions with climate, ecosystems, and human society 

[28]. Global fire activities are strongly influenced by four key factors: fuel availability, fire 

weather, ignition agents and human activities [29], and fire exerts profound feedbacks to 

earth systems through direct emissions of mass and energy fluxes as well as disturbances 

on biogeochemical and hydrological cycles [28]. These interactions occur at multiple 

spatial and temporal scales that increase the difficulty to simulate fires in climate models. 

At short term and regional scales, local weather changes modulate burning frequency and 

intensity through lightning ignition, drought enhancement, and rainfall suppression, while 

vegetation distributions determine fuel availability and combustibility. In a recent study, 

Veraverbeke et al. [30] identified lightning as a major drive of large fires in North 

American boreal forest and found increasing trends of lightning ignitions in the past four 

decades and future projections. In Africa, opposite burning trends over southern and 

northern Africa were attributed to precipitation changes driven by the transition from El 

Niño to La Niña over the study period [31]. Such meteorological and hydrological 

influence on fires was also found in other fire-prone regions including Southeast Asia [32] 

and South America [33]. Meanwhile, fire concurrently gives feedback to both weather and 

ecosystems by releasing large amounts of gaseous, particulate, and energy emissions, 

perturbing atmospheric chemical and thermodynamic processes and radiative forcing, and 

reshaping vegetation structures, composition, and distributions [34, 35]. For instance, fire 

aerosols have been found to have significant impacts on clouds and precipitation in a 

nonlinear manner [36].  Fires also reshape local ecosystems by vegetation mortality and 

restoration [37, 38] and further disturb regional to global carbon balance [39]. In fire 

seasons, large wildfires often induce severe air pollution and pose a high risk to public 

health and human society in many regions [40-42]. 
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At longer term and larger spatial scales, these fire-climate interactions are 

manifested as shifts of fire regimes in response to changes in the climate system and 

ecosystems as well as consequent fire feedback changes in biogeochemical cycles, land 

cover, and hydrological cycles [35]. Paleoclimate records suggested clear links between 

fire activities and abrupt climate change in North America during the last glacial-

interglacial transition period [43]. Another fire history study suggested driving forces of 

the global fire regime shifted from precipitation-driven during the preindustrial period to 

anthropogenic-driven after the Industrial Revolution, and then to a temperature-driven 

global fire regime in future projections [44]. Several observational and modeling studies 

also showed the occurrence of shifting fire regimes in many regions such as increasing 

large wildfires over the contiguous U.S. due to the changing climate in the past centuries 

[45, 46].  Besides climatic driving forces, fire is also affected by human activities in terms 

of fire ignition and suppression [47, 48]. The declining trend of global burned area in the 

last century was attributed to human activities such as agricultural expansion and 

intensification, especially in tropical savanna regions [49, 50]. In return, fire not only 

contributes directly to global warming through large amount of greenhouse gas and 

carbonaceous aerosol emissions but also disturbs radiative forcing by changing surface 

albedo with aerosol deposition and postfire regeneration. Currently several global fire 

emission datasets have been developed using different methods based on satellite retrievals 

[51-55]. Though the differences among these emission estimations are large due to 

uncertainties in emission factors and the lack of satellite sensitivity to small fires [53], 

biomass burning is still considered as one of the largest source sectors contributing to 

global warming over both short (20-year) and long (100-year) time scales [56]. It is also 

reported that the net effect of all agents would reverse with increasing radiative forcing in 

the burring year but decreasing radiative forcing over a long-term (80-year) fire cycle due 

to multidecadal increases in surface albedo [57].  
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To understand these complex climate-fire-ecosystem interactions and better 

evaluate fire impacts on human society, multiple fire models have been developed in the 

past few decades. The modeling complexity increases from simple statistical models with 

empirical algorithms to advanced process-based parameterizations coupled with terrestrial 

ecosystem models (TEMs) and dynamic global vegetation models (DGVMs). Statistical 

models are developed based on empirical relationship between contemporary climate and 

fuel conditions and fire characteristics to investigate the climatic driving forces of fires 

[33] and to examine future fire projections [58]. Process-based models are usually 

implemented in TEMs and DGVMs to explicitly simulate fire related processes including 

ignition, spread, and impacts with complex interactions between fire and ecosystems. 

Detailed global fire modeling history and development status were summarized in Hantson 

et al. [59]. In the Fire Model Intercomparison Project (FireMIP) initialized in 2014, 

multiple process-based fire models were reviewed in the context of fire occurrence, fire 

spread, and fire impact parameterizations [59]. One problem with the current generation of 

fire models found in that study is the ill-represented fire disturbances on ecosystem 

dynamics and land-use changes [60]. The LPX-Mv1 model [61], which simulates 

resprouting after fires, is the only fire model in the FireMIP study with some explicit fire-

triggered ecosystem regeneration modeling capability. While fire ignition and spread are 

relatively better represented, the fire models have limited modeling capacity to simulate 

diversified fire regime characteristics at regional scales [59] . Such limitations are due in 

part to using homogenous fire parameterizations at coarse spatial and temporal scales that 

do not account for the regional distinctions of fire behavior and impacts [62]. Moreover, 

most fire models mainly consider one-way perturbations from weather to fire with 

incomplete feedback mechanisms from fire to weather and climate systems, while fire 

assessment studies usually use prescribed fire emissions without the consideration of fire 

weather interactions [63]. The two-way interactions between climate and fire are 

indispensable in fire related research and merit more attention in advancing fire model 
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development. Therefore, I came up with the following three questions and conducted series 

of analytical and numerical studies to answer them sequentially in this part. 

1.1.2.1 The Key Meteorological, Ecological, and Demographic Variables Driving Fire 

Activities 

The first problem I need to resolve is to identify the key driving factors that 

determine fire intensity and severity in each fire-prone region and biome. By screening out 

the critical natural and anthropogenic variables, I can implement these region-specific 

constraint relations into a new fire model to improve fire simulation performance.  

1.1.2.2 The Interactive Climate-Fire-Ecosystem Feedback Pathways 

The second question I need to consider is how do different components in the 

system interact with each other and how to simulate these interactive feedback processes 

in the new fire model. Specifically, I highlighted the underrepresented fire feedback 

pathways in current fire models and incorporated them into the new fire model to improve 

fire modeling capability. 

1.1.2.3 Decadal Climate Variability with Fully Interactive Fire Disturbances 

The last question I am going to answer is how does the whole system is likely to 

change with fully interactive fire disturbances. With the help of the newly developed fire 

model, I am capable to design and conduct multiple sensitivity experiments to predict 

future changes of the climate system and fire activities with quantitative feedback 

contributions. 
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1.2 The Research Framework 

As introduced in the previous section, the entire research is separated into two 

major parts and organized accordingly following the specific research questions. 

Chapter 2. “Winter Haze Pollution in China and Its Relationship with Decadal 

Climate Variability” analyzes the temporal variations and covariant relations of regional 

air stagnation and severe haze pollution in winter over eastern China plains. It is found 

the recent haze extremes in winter are closely related to unfavorable atmosphere 

ventilation conditions, which are unprecedented in the past few decades with 

deteriorating tendencies in extremes. These changes are linked to boreal cryosphere 

changes such as melting Arctic sea ice and heavy Eurasian snow in preceding months. 

The conducive synoptic patterns for severe air stagnation are also identified and 

evaluated through advanced statistical analysis. 

Chapter 3. “Numerical Modeling Studies of the Impact of Boreal Cryosphere 

Changes on Regional Air Stagnation” evaluates the hypothetic statistical connections 

among climate forcing factors, synoptic circulation changes, and regional air ventilation 

responses with comprehensive dynamic diagnosis and numerical sensitivity simulations. 

A physical mechanism is proposed to explain the statistical relations in both observation 

and reanalysis data as well as numerical modeling results. Future projections based on 

multiple climate models are also examined throughout the teleconnection linkage, which 

proves out its robustness in both historical diagnosis and future predictions. 

Chapter 4. “Development of a REgion-Specific ecosystem feedback Fire model 

(RESFire) in the Community Earth System Model” introduces the development of major 
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components including fire occurrence, fire spread, and fire impact modules in the 

RESFire model. The model performance is also evaluated from various perspectives such 

as simulations of burned area, fire emissions, and ecosystem disturbances. The new 

features like online bias corrections in the model are highlighted given their critical 

impacts on the following prediction studies. 

Chapter 5. “Understanding Climate-Fire-Ecosystem Interactions using RESFire 

and Implications for Decadal Climate Variability” demonstrates the application potential 

of the new RESFire model in the climate modeling research. Series of sensitivity 

experiments are conducted to quantify the impact of complex interactions among each 

component as well as to predict future changes in the climate system and fire activities. 

Modeling results show significant increases in global burned area and fire emissions with 

enhanced climatic and ecological impacts in future.  

Chapter 6. “Conclusions and Implications” summarizes the research findings of 

previous chapters and concludes with implications and suggestions for the future work. 
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CHAPTER 2. WINTER HAZE POLLUTION IN CHINA AND ITS 

RELATIONSHIP WITH DECADAL CLIMATE VARIABILITY 

To meet the increasing needs for clean air and blue sky from the public, the Chinese 

government has been lifting the priority of air pollution control in its regulation with 

strengthened governance capability [64]. Those efforts were accelerated after an extreme 

haze event in January 2013, which marked as a tipping point for the public awareness of 

severe air pollution as well as Chinese government’s environmental regulation. In that 

month, a record of air pollution was set with unprecedented large-scale haze lasting almost 

an entire month. During this so-called ‘airpocalypse’ period, ~70% of the seventy-four 

major cities exceeded the daily PM2.5 (particulate matter with size < 2.5μm) ambient air 

quality standard of China (75 μg·m-3), with the maximum daily PM2.5 reaching 766 μg·m-

3 and the monthly mean concentration as high as 130 μg·m-3 [65]. Exposure to such high 

particulate matter (PM) concentrations endangered public health with increasing risks of 

cardiovascular and respiratory morbidity, which might have caused 690 (95% confidence 

interval (CI): 490~890) premature deaths, 45,350 (95% CI: 21,640~57,860) acute 

bronchitis, 23,720 (95% CI: 17,090~29,710) asthma cases in Beijing as well as 253.8 (95% 

CI: 170.2~331.2) million US$ economic losses [66].  

In this study, we placed the occurrence of recent winter haze extremes in China in 

the context of historical ventilation conditions in the last 35 years. The East China Plains 

(ECP, 112° E -122° E, 30° N - 41° N, Figure 3a) are the focus of this study. The region 

hosts a large portion of the Chinese population and suffers from severe air pollution 

problems. It resembles a horseshoe–shaped basin where the ventilation of air pollutants 
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relies on large-scale weather systems [67]. Pollutant ventilation can be either horizontal or 

vertical. We first computed normalized near-surface wind speed index (WSI) for horizontal 

ventilation and potential air temperature gradient index (ATGI) for vertical ventilation, 

respectively, and then constructed a synthetic meteorological index—Pollution Potential 

Index (PPI)—to better quantify the synergistic effect of ventilation on regional air 

pollution. We then explored the relationship between PPI and regional climate variability 

through comprehensive statistical approaches including Maximum Covariance Analysis 

(MCA) [68], Principal Component Analysis (PCA) [69], and wavelet coherence analysis 

[70]. Using these analysis as a guide, we identified the key synoptic circulation patterns 

that determined the pollution ventilation capability in the ECP region and investigated how 

these anomalous circulation patterns were related with drastically changing climate forcing 

factors including declining Arctic sea ice and anomalously heave Eurasian snow.  

2.1 Materials and Methods 

2.1.1 Observation and Reanalysis Datasets 

The air pollution data for this study consist of four sources: ground in situ PM10 

monthly concentrations (2005-2015) retrieved from the daily Air Pollution Index (API) of 

five major cities (Zibo, Jining, Kaifeng, Pingdingshan, and Jinzhou given the longest time 

series in these cities) in the ECP region collected from the Chinese Ministry of 

Environmental Protection 

(http://datacenter.mep.gov.cn/report/air_daily/air_dairy.jsp?&lang=), ground in situ PM2.5 

concentrations in Beijing (2009-2015) collected from the Mission China air quality 

monitoring program of the U.S. Department of State 
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(http://www.stateair.net/web/post/1/1.html), the RH-corrected meteorological visibility 

inverse (ViI, 1981-2013) [71] at the 45 plain ground sites (altitude < 300m) in the ECP 

region calculated from the Global Surface Summary of Day database (GSOD, version 8) 

provided by the National Climatic Data Center (NCDC), and the monthly Aerosol Optical 

Depth (AOD, 2001-2015) at 550nm derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) onboard the Aqua and Terra satellites [72]. All these datasets, 

which are the currently available aerosol observations with the longest time series for the 

ECP region, have been widely used to study aerosol pollution in China [12, 73].  

We examined two reanalysis datasets to evaluate ventilation conditions over the 

ECP region in January of the past three decades (Figure 4). The first one is the reanalysis 

data provided by the National Centers for Environmental Prediction and National Center 

of Atmospheric Research (NCEP/NCAR) [74], and the second one for cross-validation is 

the ERA-Interim data from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) [75]. On the basis of 1981-2015 reanalysis data, we computed the horizontal 

ventilation index in Equation 1: 

 𝑊𝑆𝐼𝑖
𝑗
= (𝑊𝑆𝑖

𝑗
− 𝑊𝑆𝑚𝑒𝑎𝑛

𝑗
)/𝑊𝑆𝑠𝑡𝑑

𝑗
 (1) 

where 𝑊𝑆𝐼𝑖
𝑗
 is the normalized wind speed index (unitless) for the j-th grid point of the ECP 

region in the i-th year, 𝑊𝑆𝑖
𝑗
 is the monthly mean wind speed (m/s) at 1000hPa for the j-th 

grid point in the i-th year derived from zonal and meridional winds of the reanalysis data, 

𝑊𝑆𝑚𝑒𝑎𝑛
𝑗

 is the climatological monthly wind speed (m/s) for the j-th grid point averaged 

from 1981 to 2010, and 𝑊𝑆𝑠𝑡𝑑
𝑗

 is the standard deviation of wind speed (m/s) for the j-th 
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grid point from 1981 to 2010. Gridded atmospheric temperature gradient anomalies as the 

vertical ventilation index were normalized in the same manner based on the monthly 

potential temperature gradient between the fields at 925hPa and 1000hPa. We then 

obtained WSI and ATGI for the ECP area by regional averaging. It is necessary to have 

one ventilation index for the ECP region to simplify the interpretation of the multivariate 

statistical analysis results, so we calculated PPI as a synthetic meteorological index for 

each grid point to obtain the spatial distribution and then averaged over the ECP region to 

obtain monthly time series, using a weighted average of WSI and ATGI in Equation 2: 

 
𝑃𝑃𝐼 =

𝑟1 × 𝑊𝑆𝐼 + 𝑟2 × 𝐴𝑇𝐺𝐼

|𝑟1| + |𝑟2|
 (2) 

where r1 and r2 are the Person correlation coefficients of WSI (r1 = -0.73) and ATGI (r2 = 

0.70) with in situ PM10 observations (Table 1). The diagnostic ventilation indices (WSI, 

ATGI, and PPI) derived from the two reanalysis datasets agree well with each other and 

the correlation between the two PPIs is 0.80 (Figure 4).  
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Table 1 – Correlations among ventilation indices, PM observations, and cryosphere 

forcing factors 

Index 
Data WSI  

(1981-2015) 

ATGI  

(1981-2015) 

PPI  

(1981-2015) 

 Availability r p-value r p-value r p-value 

PM10–ECP 2005-2015 -0.73 <1E-2 0.70 <1E-2 0.92 <1E-3 

PM2.5–BJ 2010-2015 -0.80 0.01 0.58 0.09 0.79 0.07 

ViI  1981-2013* -0.63 <1E-3 0.36 0.17 0.62 <1E-3 

Terra AOD  2001-2015 -0.43 0.08 0.33 0.26 0.44 0.08 

Aqua AOD 2003-2015 -0.43 0.21 0.30 0.48 0.39 0.34 

Arctic SIC  1980-2014 0.45 0.01 -0.26 0.29 -0.43 0.04 

Asian SCE 1980-2014 -0.42 0.01 0.55 <1E-3 0.64 <1E-3 

Boreal CFI 1980-2014 -0.51 <1E-2 0.49 0.01 0.65 <1E-3 

To investigate the association of climate factors to the ventilation condition, we 

collected multiple climate variables for the past three decades (1980-2015) in Table 2. The 

first three meteorological indices were calculated based on the NCEP/NCAR reanalysis 

data [74] to describe characteristics of the EAWM system [76-78]. The next two climate 

indices, Arctic Oscillation (AO, internal atmospheric variability) [79] and El 

Niño/Southern Oscillation (ENSO) [80], were collected from the Climate Prediction 

Center (CPC) of the National Oceanic and Atmospheric Administration (NOAA). The last 

two cryosphere forcing factors are Arctic Sea Ice Concentration (SIC, Figure 3a) in the 

preceding autumn from the Met Office Hadley Centre (HadISST) [81], and boreal Eurasia 

Snow Cover Extent (SCE, Figure 3a) in early winter from the global snow lab at Rutgers 

University [82]. The cryosphere indices, SIC and SCE, were normalized in the same 

manner as WSI and ATGI. We first averaged the Arctic sea ice concentration within the 
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Arctic Circle (north of the 66.6° N, Figure 3a) in the preceding Autumn and early winter 

seasons (August-November) and Eurasian snow cover extent over the boreal region (60° E 

-150° E, 40° N - 75° N, Figure 3a) in early winter (October-November) for each year (1980-

2014). We then normalized both variables with respect to their climatology (1981-2010) to 

obtain SIC and SCE in Equation 3, 

 𝐼𝑛𝑑𝑒𝑥𝑖 = (𝑋𝑖 − 𝑋𝑚𝑒𝑎𝑛)/𝑋𝑠𝑡𝑑 (3) 

where 𝑋𝑖  is the i-th year’s cryosphere variable such as Arctic sea ice concentration or 

Eurasian snow cover extent, 𝑋𝑚𝑒𝑎𝑛  is the climatological average, 𝑋𝑠𝑡𝑑  is the standard 

deviation for the same period, and 𝐼𝑛d𝑒𝑥𝑖 is the normalized index in the i-th year.  
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Table 2 – Climate and synoptic weather indices in the PCA analysis 

Component Index Description Equation/Data Source 

Atmosphere 

SHI 

Normalized regional 

mean of the sea level 

pressure (SLP) in the 

center of the Siberian 

High in January 

𝑃𝑠𝑙𝑝
̅̅ ̅̅ ̅ (40°𝑁 − 60°𝑁, 70°𝐸 −

120°𝐸) [74] 

ALI 

 

Normalized regional 

mean of the SLP in 

the center of the 

Aleutian Low in 

January 

𝑃𝑠𝑙𝑝
̅̅ ̅̅ ̅ (40°𝑁 − 60°𝑁, 160°𝐸 −

160°𝑊) [74] 

V850 

 

Normalized regional 

mean meridional wind 

speed at 850hPa in 

January 

𝑉850hPa
̅̅ ̅̅ ̅̅ ̅̅ ̅ (30°𝑁 − 60°𝑁, 105°𝐸 −
150°𝐸) [74] 

   

AO 
Arctic oscillation 

index in January 
NOAA CPC[79] 

Ocean MEI 

 

Multivariate ENSO 

Index (MEI) in 

previous November-

December  

NOAA CPC[80] 

Cryosphere 

SIC 

 

Arctic Sea Ice 

Concentration (SIC) 

index in previous 

August-November  

HadISST[81] 

SCE 

 

Eurasian Snow Cover 

Extent (SCE) index in 

previous October-

November 

GSL at Rutgers Univ.[82] 

2.1.2 Statistical Analysis Approaches 

We used multiple trend analysis approaches to examine the long-term trends in 

daily and monthly PPI time series. We first applied the quantile regression method [83] to 

daily PPI to obtain the trend information for each quantile of the variable with more 
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robustness against outliers. In comparison to the ordinary least square regression, the 

quantile regression enables a more comprehensive evaluation of the variability along the 

whole range of the variable distributions including extremes, which may have more 

sensitive responses to climate and meteorological drivers than mean values [84]. We then 

used the Matlab package for ℓ1 trend filtering provided by Kim et al. [85] 

(http://web.stanford.edu/~boyd/l1_tf/) to estimate long-term trends of monthly SIC and 

teleconnection time series. The ℓ1 trend filtering method produces piecewise linear trend 

estimation that is well suited to analyze abrupt changes in the underlying dynamics of the 

time series.  

Statistical significance tests were used extensively throughout this study. We 

applied the moving-block bootstrap method [83] to examine if the January wind speed, 

temperature gradient, 850hPa geopotential height daily data of 2013 are statistically 

different from the 30-year (1981-2010) climatological January data in Figure 3. The 

moving-block bootstrap method removes biases introduced by autocorrelation of the data 

of time length L or shorter [83]. We collected the daily NCEP/NCAR reanalysis data [74] 

first and then regenerated the moving-block bootstrap samples for each grid point with the 

block length of L=5 days and a sampling size of 5000. The null hypothesis here was that 

the 2013 data and the 30-year data are statistically from the same probability distribution 

with equal means. For those grid points with p-values less than 0.01 (or 0.05), we rejected 

the null hypothesis and concluded that the values in 2013 over these areas were 

significantly different from the climatology at the 0.01 (or 0.05) significance level. We 

used the Student’s t-test [83] to estimate the significance of correlation coefficients in Table 
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1, Table 3, Table 4 and composite differences in Figure 9 since all the data used here were 

the monthly mean values of each year.  

We applied the Maximum Covariance Analysis (MCA) [68] to PPI and the 

geopotential height field at 850hPa (Z850) and 500hPa (Z500) to identify dominant 

circulation patterns affecting PPI over the ECP area. The MCA method performs a singular 

value decomposition of the covariance matrix of two variables to generate the coupled 

modes for the two variables separated in space and time dimensions. The temporal matrices 

are shown in Figure 6a and the spatial matrices are shown in Figure 6b and Figure 6c. The 

covariance of the two variables is maximized in the first mode. In our case, the first coupled 

MCA modes explain 33% of the covariance between Z850 and PPI fields, 23% of the Z850 

variance, and 35% of the PPI variance. These MCA modes and results remain consistent 

in a sensitivity test, in which the 2013 data were excluded. 

We examined the covariant relationship between PPI and all the climate indices for 

the last 35 years listed in Table 2 using the PCA analysis. PCA is a dimension reduction 

method [69] in order to identify the major factors contributing to the variation of the 

variable of interest, which is PPI in this study. All the climate data (Table 2) used in the 

PCA analysis were first detrended. We added these data into a 35×7 matrix and computed 

the PCs. For attribution analysis, we applied the Principal Component Regression (PCR) 

method [69] to regress the detrended PPI against the PCs and examined their regression 

coefficients in Equation 4, 
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Y(𝑡) = ∑𝛽𝑗

7

𝑗=1

Z𝑗(𝑡) (4) 

where Zj(t) is the jth PC as a function of time, 𝛽𝑗(𝑗 = 1,… ,7)  is the corresponding 

regression coefficient, and Y(t) is the regional ECP PPI as a function of time.  

Lastly, we evaluated the phase relationship between two time series by using the 

wavelet coherence analysis package provided by Grinsted et al. 

(http://www.pol.ac.uk/home/research/waveletcoherence/) [70]. The wavelet analysis 

method is well suited to explore the linkage of two time series in time frequency space that 

is suggestive of causality between them [70]. To circumvent the influence of strong 

seasonality in SIC, we deseasonalized the monthly SIC data first and then analyzed its 

phase relationship with the teleconnection index from 1950 to 2016 in Figure 8. 

2.2 Statistical Analysis Results 

2.2.1 Temporal Variations of Winter Pollution Ventilation in China 

In winter, horizontal ventilation of pollutants is through near surface wind 

advection, while the vertical dispersion is controlled by atmospheric stability, which is 

quantified by potential temperature gradient in the lower atmosphere. We examined the 

changes of horizontal and vertical ventilation from 1981 to 2015 using 1000hPa wind speed 

index (WSI) and the potential air temperature gradient index (ATGI) between 1000hPa and 

925hPa, respectively, on the basis of the NCEP/NCAR [74] and ECMWF [75] reanalysis 

data. Both reanalysis data suggest decreasing WSI and increasing ATGI throughout the 

past three decades in Figure 4, indicating deteriorating ventilation conditions over the ECP 

http://www.pol.ac.uk/home/research/waveletcoherence/
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area in winter. As expected, the two ventilation indices (WSI and ATGI) are well correlated 

with historical haze observations including PM10 over the ECP region, PM2.5 in Beijing, 

Visibility Inverse (ViI) [71], and satellite column Aerosol Optical Depth (AOD) data [72] 

(Table 1). Although precipitation is also an important factor removing PM through wet 

scavenging, previous studies indicated less significant dependence of PM concentrations 

on precipitation in winter [86], which was corroborated in our analysis. Therefore, we 

constructed a synthetic meteorological index, Pollution Potential Index (PPI), as a 

correlation weighted average of WSI and ATGI to simplify the multivariate statistical 

analysis (see Methods for details). The PM10 data suggest roughly equal weighting of 

horizontal ventilation (WSI) and vertical ventilation (ATGI) indices in PPI. The new proxy 

(PPI) correlates better with ground observations such as PM10 (r = 0.92), PM2.5 (r = 0.79) 

and ViI (r = 0.62) than satellite AOD data (r = 0.39~0.44, Table 1 and Figure 3b), indicating 

that PPI is more representative for near-surface air quality than column aerosol loading. In 

general, we found an increasing trend in monthly PPI that is consistent with the weakening 

ventilation conditions. Such increasing trends are more significant at high quantiles of daily 

PPI (Figure 3b), suggesting more severe stagnant conditions favorable for extreme haze 

episodes in recent winters. 

Since 2013 stands out clearly as an extreme case in terms of both strongly 

suppressed horizontal and vertical ventilation, we examined the air stagnation condition in 

that month specifically. In January 2013, the ECP region was characterized by large 

negative WSI (weakened horizontal ventilation, Figure 3c) and positive ATGI (stable 

atmosphere and weakened vertical dispersion, Figure 3d). In fact, the January ECP regional 

WSI < -2 and ATGI > 2 only occurred in 2013 in the past three decades (Figure 4). Those 
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unfavorable horizontal and vertical conditions contributed to a sharp peak of PPI in January 

2013 that coincided well with haze observation peaks (Figure 3b). To reveal the underlying 

climate forcing factors, we applied the principal component analysis (PCA) to multiple 

climate indices in Table 2 including the EAWM intensity, the Arctic Oscillation, El Niño–

Southern Oscillation, Eurasian snow cover extent (SCE), and Arctic sea ice concentration 

(SIC), for the past three decades (1980-2015) and then regressed PPI onto the key principal 

components. It is noted that the construction of PPI is not directly related to any 

atmospheric variable or forcing factor used here. By connecting PPI with critical climate 

factors through the key principal components, we are capable to decompose the PPI inter-

annual variability into contributions from major climate variables and to identify dominant 

climate factors affecting PPI in the ECP area. 
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Figure 3 – Winter haze pollution and ventilation conditions over East Asia. (a) 2013 

monthly Aqua satellite AOD (unitless) at 550nm; (b) time series of aerosol 

observations, PPI, and cryosphere forcing index; The long-term quantile trend in 

daily PPI is shown in the inlet; (c) 2013 distributions of normalized surface wind speed 

index (unitless); (d) 2013 distributions of normalized air temperature gradient index 

(unitless). In (c) and (d), black dots (crosses) denote the 0.01 (0.05) significance level. 

The red rectangular box in (a) and the black box in (c) and (d) show the ECP region. 

All results are for January. 
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Figure 4 – Time series of monthly WSI, ATGI, and PPI over the ECP region for 

January. 

2.2.2 Climate Driving Force Attribution 

Table 3 shows the PCR regression coefficients and their p-values. We followed the 

principal component selection rule by Fekedulegn et al. [87] and found 3 major PCs (PC2, 

PC5, and PC6) that contributed to the ECP PPI significantly.  Using the results from the 

PCR analysis, we found that these 3 PCs accounted for 53% of the ECP PPI variance while 

the inclusion of all PCs accounted for 57% of the variance. 
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Table 3 – PCR regression coefficients of detrended PPI onto PCs 

PCR PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Reg. coef. 0.03 -0.23 -0.05 -0.10 0.21 -0.44 -0.03 

p-value 0.42   <1E-3     0.51     0.24    0.05  0.01  0.88 

The correlation coefficients of PCs with detrended PPI in Table 4 show similar 

results that PC2, PC5, and PC6 are most significant. Also shown are the correlation 

coefficients of PCs with climate indices. Of particular interest to this study are the high 

correlations of SCE with PC5 (r = 0.83) and of SIC with PC6 (r = -0.80). Note that the 

PCA analysis is applied to climate indices only. The relationship between climate PCs and 

detrended ECP PPI is established using the PCR analysis. Therefore, the PCs explaining a 

large portion of the variance of climate indices are not necessarily correlated with PPI. For 

example, PC1 contributes most to the total variance of the matrix of climate indices, but it 

does not make significant contribution to the variance of detrended PPI. 
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Table 4 – Correlation statistics among PCs and climate indices 

r PPI SHI ALI V850 AO SIC SCE MEI 

PC1 0.10 -0.50* 0.71* 0.75* 0.84* 0.45* -0.22 -0.03 

PC2 0.53* -0.74* -0.41* 0.43* -0.39* 0.30 0.26 0.60* 

PC3 0.08 0.02 0.37* 0.42* -0.35* -0.19 0.15 -0.62* 

PC4 0.15 -0.32 -0.35* -0.18 0.05 -0.04 -0.45 -0.50* 

PC5 0.58* -0.59* -0.22 0.07 -0.16 0.18 0.83* 0.20 

PC6 0.34* -0.07 0.08 -0.03 0.01 -0.80* -0.04 0.07 

PC7 0.02 0.09 -0.24 0.16 0.07 -0.18 0.11 -0.05 

* denotes the 0.05 significance level. 

We highlighted the PCA results in Figure 5. PC6, related to Arctic sea ice forcing, 

is the most important, contributing 29% to the 2013 ECP PPI extreme and explains 12% 

of the total variance in detrended PPI. PC5, related with Eurasian snow forcing and the 

Siberia High variability, is the second most important, contributing 13% to the 2013 

extreme as well as 34% to the total variance. PC2, related to El Niño/Southern Oscillation, 

is the third most important, contributing 8% to the 2013 extreme and 28% of the total 

variance. We added the PPI linear trend back to the contributions in Figure 5b. The PCR 

reconstructed PPI explained most of the variation of the original regional ECP PPI time 

series as well as the extreme in 2013, thereby placing the 2013 extreme in the context of 

the changes in the last 35 years. From 1981 to 2015, it was only in 2013 that the 

contributions of all three PCs are relatively large and more importantly all positive. 
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Figure 5 – PCA decomposition and reconstruction of PPI. (a) attributions of 

detrended PPI to PCs; percentages in the inner ring are contributions to the extreme 

PPI in January 2013 (without parentheses) and the total variance (with parentheses) 

by each PC; the climate indices most correlated with PC2, PC5, and PC6 are shown 

on the external ring; (b) comparison of original PPI and PCA reconstructed PPI; the 

PPI trend is added back to the reconstructed PPI. The correlation coefficient is shown 

in parenthesis. 

The two cryosphere forcing factors correlate strongly with PC5 and PC6, which 

have larger contributions to the 2013 extreme than the other PCs. To facilitate the 

subsequent analyses, we combined the two forcing factors into a single normalized 

cryosphere forcing index, CFI, by weighted averaging SIC and SCE in a manner similar to 

the PPI formulation (Equation 5): 

 
𝐶𝐹𝐼 =

𝑟1 × 𝑆𝐼𝐶 + 𝑟2 × 𝑆𝐶𝐸

|𝑟1| + |𝑟2|
 (5) 
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where r1 and r2 are the correlation coefficients of SIC (r1 = -0.43) and SCE (r2 = 0.64) with 

PPI, respectively, and the correlation between CFI and PPI is r =0.65 (Table 1). The CFI 

explains 45% of the PPI total variance, and the large CFI extreme corresponds well to the 

PPI extreme in 2013 (Figure 3b). 

2.2.3 Synoptic Weather Patterns Conducive to Regional Air Stagnation 

To examine the atmospheric processes linking cryosphere changes to PPI, we 

applied the Maximum Covariance Analysis (MCA) [68], totally independent from the PCA 

analysis, to analyze the association of mid- to high-latitude synoptic circulation 

(Z850/Z500) with PPI (see Methods for details). We note that the formulation of PPI is not 

directly related to the geopotential height field, that the region of interest for PPI (ECP) is 

of smaller domain than the height field, and that the MCA modes remain the same if 2013 

data are excluded from the analysis. Since the EAWM system is mainly in the lower 

atmosphere, we first focused on Z850 to examine its relationship with PPI changes. The 

most dominant coupling modes of Z850 and PPI account for > 30% of the total covariance. 

The highest Z850 and PPI mode intensity also correspond to the extreme PPI value in 2013 

(Figure 6a). The spatial pattern of the first MCA Z850 mode (Figure 6b) resembles the 

circulation anomaly in 2013 (Figure 6d). Similarly, the spatial pattern of the first MCA PPI 

mode resembles the PPI distribution in 2013 (Figure 6c). Furthermore, the time series of 

the intensity of the first MCA PPI mode is highly correlated with the average PPI over the 

ECP region (r = 0.93). Therefore, the extreme condition of 2013 can be understood using 

the more general MCA mode, i.e., the poor ECP ventilation condition represented by the 

first MCA PPI mode is driven by the regional circulation pattern represented by the first 

MCA Z850 mode. In contrast to the climatology characterized by large pressure gradients 
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between the continent and the oceans (Figure 6b), the first MCA Z850 mode shows a 

reversed northeast-southwest pressure gradient with anti-cyclonic anomalies in the Arctic 

and northeast Asia and a cyclonic anomaly over central Siberia, leading to weakened 

monsoon wind and increased PPI over the ECP region. 

 

Figure 6 – Influence of the regional circulation on PPI. (a) The first MCA mode 

intensity (dots; unitless) of January PPI and Z850; color shading (unitless) denotes 

PPI values of 1981-2015; (b) the spatial pattern of the first Z850 MCA mode (color 

shading; unitless) and Z850 climatology (contour lines; units: m); (c) the spatial 

pattern of the first PPI MCA mode (color shading: unitless) and PPI (contour lines; 

unitless) over the ECP region in 2013; (d) the 2013 Z850 anomalies (color shading; 

unit: m) and Z850 climatology (contour lines; unit: m). In (d), black dots denote the 
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0.05 significance level; green rectangles denote the regions of subplots (b) and (c), 

respectively; H/L indicates the location of the Siberia High and the Aleutian Low, 

respectively. All results are for January. 

 We also applied MCA to Z500 and PPI to investigate the connection between the 

middle troposphere circulation and near surface ventilation. It turns out that the first MCA 

mode of Z500 resembles a regional manifestation of the East Atlantic (EA) teleconnection 

pattern [88]―the second prominent mode of atmospheric variability over the North 

Atlantic―with high spatial and temporal correlations (Figure 7). Therefore, we replaced 

the MCA mode with the EA pattern and reconfirmed its relationship with both Arctic sea 

ice forcing and PPI over the ECP region. We examined the phase relationship between time 

series of Arctic sea ice and  EA from 1950 to 2016 using wavelet coherence analysis[70]. 

Figure 8 shows the continuous wavelet power spectrum of deseasonalized monthly Arctic 

sea ice concentration[81], monthly EA index [88], and cross wavelet transform of these 

two time series. There are clearly common features in the wavelet power spectrum of the 

two time series such as the significant peak around the 36-month (3-year) band after 2010. 

Both series also have high power in the 132- to 240-month (11- to 20-year) band in the last 

four decades, though parts of the time series are in the cone of influence (COI) region with 

possible distorted edge effects due to limited data length. We further examined the cross 

wavelet transform of SIC and EA and found significant common power mainly in the 32- 

to 64-month band from 1970 to 2000 and after 2005, the 96- to 128-month band between 

1955 and 1980, and the 128- to 240-month band after 1990s. Since the decline of Arctic 

sea ice occurs significantly in the last three decades, we focused on the 128- to 240-month 

band and calculated the mean phase difference between the two time series based on data 
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within the 5% significance regions and outside the COI. In general, there is a 3- to 6-month 

lag in EA in response to SIC changes, which is consistent with the previous study [70]. 

 

Figure 7 – Spatial and temporal comparisons of the EA teleconnection pattern and 

the MCA mode1 at 500hPa. (a) spatial distributions of the EA pattern identified in 

the NCEP reanalysis data; (b) spatial distributions of the MCA Z500 mode1; (d) time 

series of the MCA Z500 mode1 and the EA indices from the Climate Prediction 
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Center (CPC) and the identification of (a). r values in the parenthesis denote the 

correlation between each index and the EA index identified in (a). 

 

Figure 8 – Wavelet coherence analysis of the monthly SIC and EA indices. 

(a)continuous wavelet power spectrum of the monthly deseasonalized SIC index from 

1950 to 2016; (b) same as (a) but of the monthly EA index; (c) cross wavelet transform 

of the deseasonalized SIC and EA time series. The black thick contour in (a)-(c) 

denote the 0.05 significance level. The arrows in (c) denote the relative phase 

relationship with in-phase pointing right, anti-phase pointing left, and SIC leading 

EA by 90° pointing straight down.   

2.2.4 Hypothetical Connections from Climate Change to Air Stagnation 

At last, we integrated the three climate forcing and regional stagnation datasets 

together in Figure 9 and compared their temporal variations and composite differences. In 

general, we have decreasing Arctic sea ice concentrations in autumn and early winter with 

accelerating decline rates after 2000 (Figure 9a). Meanwhile, EA shows a continuously 

increasing trend through the past three decades with more significantly positive shifts in 

the last ten years (Figure 9b). Considering different sea ice forcing intensity, we separated 

the whole winter time from 1981 to 2016 into two periods: before 2000 (P1, 1981-1999) 
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and after 2000 (P2, 2000-2016), and conducted composite analysis of ECP mean PPI and 

visibility inverse (ViI) [71] in terms of two periods and different EA phases (Figure 9c).  

Both PPI and ViI show consistent responses with increasing tendencies during the positive 

phase of EA and decreasing tendencies during the negative phase of EA. Such shifting 

tendencies are more significant in P2 with larger increases of PPI and ViI between positive 

and negative EA (regional mean ΔPPI=0.59 and ΔViI=0.02 km-1, both significant at the 

0.05 significance level), which are attributed to stronger Arctic sea ice forcing and more 

positive EA during this period. We also examined the temporal composite of PPI between 

P2 and P1 and found considerable enhancement of PPI over the East Asia coastal regions 

with ECP mean PPI increase by 0.37 in P2 (Figure 9d).  Such PPI temporal variations are 

dominated by these P2 years in concurrence with positive EA since there is no significant 

change in winter PPI over the East Asia region between these P2 years with negative EA 

and P1 years (Figure 9e). When EA is in positive phase during the P2 period, the whole 

Eastern China region shows strong enhancement of PPI with drastically deteriorated 

ventilation conditions comparing to the P1 period as a benchmark (Figure 9f). 
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Figure 9 – Time series of observational Arctic sea ice concentrations and reanalysis-

based EA index and their relationship with PPI and ViI over Eastern China. (a) Arctic 

sea ice concentrations in autumn and early winter (ASON) of 1980-2015 and their 

long-term trends; Note that the year axis in (a) shifts with 1 year lag for time 

alignment with (b); (b) monthly EA indices in winter (DJF) of 1981-2016 (year of 

January) and their long-term trends; (c) comparisons of ECP regional averaged PPI 
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and ViI in response to different phases of EA during two periods; The two periods 

are indicated by P1/P2 in (a); The numbers indicate the ensemble mean values; (d) 

spatial distributions of PPI differences between P2 and P1; the black box denotes the 

ECP region; (e) same as (d) but for PPI differences with concurrence of negative EA; 

(f) same as (d) but for PPI differences with concurrence of positive EA. In (d), (e), and 

(f), the black dots indicate the 0.05 significance level. 

2.3 Conclusions 

In this chapter, we applied multiple statistical analysis approaches to investigate the 

trend of regional air stagnation over the ECP area and its relationship with winter haze 

pollution and climate forcing variability. We revealed the increasing trend in air stagnation 

as suggested by the PPI time series and identified the key climate forcing factors driving 

PPI inter-annual variations. We found close relationship between deteriorating regional 

ventilation and preceding boreal cryosphere changes including declining Arctic sea ice and 

increasing Eurasian snow. We also analyzed the unfavorable synoptic circulation patterns 

that were conducive to deteriorated region ventilation and quantified their impacts on air 

stagnation and pollution in the ECP region. We concluded that more severe air stagnation 

and haze pollution over ECP in winter would occur during the positive phase of the East 

Atlantic pattern, which might be enhanced by the declining Arctic sea ice in autumn and 

early winter with a time lag of 3-6 months. We will conduct numerical modeling sensitivity 

experiments to evaluate these statistical relations and further reveal the underlying physical 

mechanisms with comprehensive dynamic diagnosis in the next chapter. 
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CHAPTER 3. NUMERICAL MODELING STUDIES OF THE 

IMPACT OF BOREAL CRYOSPHERE CHANGES ON 

REGIONAL AIR STAGNATION 

 The observational and reanalysis data suggested a potential linkage between Arctic 

sea ice forcing and regional PPI through the phase change of EA. We validated the 

hypothetical teleconnection pathway with ensemble numerical sensitivity experiments 

using the Community Earth System Model (CESM) [89] and the modeling dataset from 

the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) under 

Representative Concentration Pathway 8.5 (RCP8.5) [23]. Following the analysis 

framework in the previous chapter, we extended our analysis to the entire boreal winter 

season (December-January-February, DJF) and calculated the monthly Pollution Potential 

Index (PPI) [18] over the ECP region (110-122° E, 30-41° N) based on surface wind speed 

and near surface vertical air temperature gradients of the NCEP/NCAR reanalysis data [74] 

and modeling results, respectively. We revisited the connection between China’s air 

stagnation and boreal cryosphere changes and elucidated the teleconnection mechanism 

with comprehensive dynamic diagnosis. These dynamic analyses are imperative to identify 

the specific driving force of circulation changes and to understand detailed physical 

mechanisms for better interpretation of future predictions. 

3.1 Sensitivity Simulation Experiments 

We employed multiple climate models including the state-of-the-art Community 

Atmosphere Model version 5 (CAM5) [90] and the Whole Atmosphere Community 

Climate Model (WACCM) [91] under the modeling framework of CESM [89]. The 

Community Earth System Model (version 1.2.2) is a fully-coupled global climate model 

maintained by the Climate and Global Dynamics Laboratory (CGD) at the National Center 
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for Atmospheric Research (NCAR). It is composed of five major components of the earth 

system including atmosphere, land surface, ocean, sea ice and land ice, plus one central 

coupler component. As the atmosphere components of the CESM modeling system, CAM5 

and WACCM provide low-top and high-top atmosphere simulation capabilities, 

respectively. The low-top CAM5 model has 30 vertical levels spanning the range of 

altitude from 1000hPa to 3.6hPa, while the high-top WACCM model has 70 vertical levels 

ranging from 1000hPa to 6×10-6hPa. They are both coupled with an active Community 

Land Model version 4 (CLM4.0) at a horizontal resolution of 1.9°×2.5°. We compared 

different modeling outputs to better understand the impact of different modeling settings. 

We also examined the ensemble simulation results based on the 11 CMIP5 climate models 

(Table 5) to generate future predictions as well as to evaluate the modeling uncertainties 

more comprehensively. 

3.1.1 Numerical Climate Models 

1. CAM5 

We designed four experiments to investigate impacts of the cryosphere forcing on 

PPI over the ECP region using the component set of the Community Atmospheric Model 

version 5 (CAM5) and the Community Land Model version 4.0 (CLM4.0) at a horizontal 

resolution of 1.9°×2.5°. In the control experiment (CTRL), we conducted a 30-year 

simulation (with another 1-year simulation as spin-up) with prescribed climatological 

(averaged from 1981 to 2010) Arctic sea ice concentrations (Figure 10a) and sea surface 

temperature from the Met Office Hadley Centre (HadISST) [81]. In sensitivity simulations, 

we used July of each modeling year from the CTRL simulation as initial conditions for the 

corresponding sensitivity ensemble member and conducted an 8-month simulation with 

different cryosphere forcing. In the first sensitivity experiment (SENS1), we replaced the 
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climatological SIC and SST data from August to November, which were used in the CTRL 

experiment, with observed cyclical (August 2012-November 2012) HadISST data [81] 

over the Arctic region (Figure 10b/c) following the method of Peings et al. [92]. In the 

second sensitivity experiment (SENS2), we introduced early winter snow forcing over 

boreal regions (60° E -150° E, 40° N -75° N, Figure 10d) by perturbing October to 

November snowing rates of each ensemble simulation based on the observed snow water 

equivalent (SWE) relative anomaly [93] in 2012 with the same climatological SIC/SST in 

the CTRL scenario. Therefore, we consider the snow forcing including the surface albedo 

effect and the insulation-related effect (e.g., thermal conductivity and latent heat flux due 

to snow depth changes) in SENS2, both of which can cause significant local temperature 

response [94]. The perturbation on modeling snow rates was performed using Equation 6, 

 𝑆𝑛𝑜𝑤1 = 𝑆𝑛𝑜𝑤0 ∗ (1.0 + 𝑠𝑤𝑒𝑓𝑟𝑎𝑐) (6) 

where 𝑆𝑛𝑜𝑤0  is the default modeling snow rate without perturbations, 𝑆𝑛𝑜𝑤1  is the 

perturbed snow rate, and 𝑠𝑤𝑒𝑓𝑟𝑎𝑐 is the observation-based SWE fractional anomaly by 

comparing 2012 anomalous SWE with the climatology (averaged from 1999 to 2010 due 

to limited dataset availability; 𝑠𝑤𝑒𝑓𝑟𝑎𝑐 ≥ −100%; Figure 10d). In the third sensitivity 

experiment (SENS3), we added both Arctic sea ice and boreal snow perturbations into the 

ensemble simulations to investigate their synergistic effects. Previous studies highlighted 

the importance of the tropical stratosphere representation in the model to capture the 

teleconnection between boreal cryosphere forcing and the subsequent winter 

circulation[95], therefore we designed the fourth sensitivity experiment (SENS4) with the 

same nudging method in Peings et al. [95] to account for the critical role of realistic 
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background flow in the tropical stratosphere. We implemented the nudging by adding an 

extra term to temperature (T) and horizontal wind components (u and v) in the equatorial 

stratosphere (top 11 levels above 150hPa within 20° S-20° N) at each time step in the model 

prognostic equations using Equation 8, 

 𝜕𝑋

𝜕𝑡
= 𝐹(𝑋) − 𝜆(𝑋 − 𝑋𝑟𝑒𝑓) (7) 

where 𝑋  is the modeling state, 𝑋𝑟𝑒𝑓  is the reference field based on the temporal-

interpolated NCEP/NCAR reanalysis data [74], and λ is the relaxation rate. The relaxation 

rates stay the maximum for the highest seven vertical levels (λ=1 above 80hPa) and 

decrease gradually to zero for the next four levels. The same smoothing process was also 

applied at the horizontal directions. Based on above sensitivity simulation settings, we 

analyzed the continuous December-January-February (DJF) data at the end of each 

sensitivity simulation to examine the seasonal impact of the cryosphere forcing. 
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Figure 10 – Cryosphere forcing specifications used in the CESM numerical 

experiments. (a) Arctic SIC climatology (1981-2010) averaged from August to 

November (ASON); (b) Arctic SIC anomalies in autumn and early winter of 2012 

(ASON averaged); (c) SST anomalies corresponding to SIC anomalies in (b); The red 

circles in (a), (b), and (c) denote the prescribed sea ice forcing region within the Arctic 

Circle (66.6 ° N); (d) Boreal SWE fractional anomalies averaged from October to 

November of 2012; the red polygon in (d) denotes the prescribed snow forcing region 

at mid- to high-latitudes (60° E-150° E, 40° N-75° N) in SENS2/3; 

After numerical simulations, we calculated WSI, ATGI, and PPI over the ECP 

region for each scenario using the same method as those for reanalysis data. The CAM5 

model uses a hybrid sigma-pressure vertical coordinate, so we extracted the modeling 
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outputs at the nearest pressure levels to the reanalysis data in the calculation. The 30-year 

CTRL results were used as the climatological condition against which sensitivity results 

were compared. To evaluate the seasonal impact of cryosphere forcing, we estimated the 

empirical Cumulative Density Function (CDF) based on N=90 ensemble members 

(December-January-February) for each sensitivity simulation.  

To obtain the intensity of the dominant MCA modes in simulated Z850 and PPI 

fields, we projected the modeling fields onto the spatial patterns of the first MCA modes 

identified in the reanalysis data (Figure 6b/c) and estimated the MCA mode intensity of 

each ensemble member. The density distributions of the first pairwise MCA modes in 

Figure 11 were estimated by using the two-dimensional Kernel Density Estimation (kde2d) 

function included in the math package of R. By comparing density distributions of the 

sensitivity experiments to the control experiment, we evaluated the response sensitivities 

of both geopotential height and PPI fields to the specific cryosphere forcing.  

2. WACCM 

We used the same experiment settings with the CAM5 experiments in the WACCM 

sensitivity simulations under the common CESM numerical framework. We conducted 30-

year simulations (with another 1-year simulation as spin-up) as the CTRL run with 

prescribed climatological (averaged from 1981 to 2010) Arctic sea ice concentrations and 

sea surface temperature from the Met Office Hadley Centre (HadISST) [81]. We then 

branched an 8-month simulation from each July of the CTRL run with observed Arctic 

SIC/SST data [81] in autumn and early winter of 2012 (August-November) as the SENS 

run. We chose 2012 since it has the lowest level of Arctic sea ice concentrations through 
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the satellite era of the last few decades and provides strong enough disturbances to climate 

systems in sensitivity experiments. We analyzed the continuous December-January-

February (DJF) data at the end of each sensitivity simulation to examine the seasonal 

impacts of the Arctic sea ice forcing in comparison with observation and reanalysis results. 

The EA indices were estimated by projecting modeling differences (SENS-CTRL) onto the 

reanalysis-based EA pattern, and the PPI indices were calculated using the same method 

of the reanalysis ones. We also quantified the snow impact on regional air stagnation in 

Figure 12 by identifying those SENS members with anomalously large snow 

(SENS_EA+snow: SENS months with both positive EA and standardized snow amounts 

> 0.5 standard deviation) over the ECP region.   

3. CMIP5 

Table 5 lists the 11 CMIP5 models used to verify the sensitivity relationship among 

Arctic sea ice, the EA teleconnection pattern, and regional PPI in China. We collected 

historical simulations (1980-2005) and future projections (2006-2100) under a high 

greenhouse gas emission pathway (RCP8.5) [23] for each model to keep consistent with 

previous future prediction studies [19, 24]. We then calculated time series of regional 

averaged Arctic SIC, northern hemisphere EA based on geopotential height anomalies at 

500hPa, and PPI over the ECP region for all 11 model to get ensemble means and standard 

deviations. It’s worth noting that the trend of Northern Hemisphere mean 500hPa 

geopotential height fields were removed from the height anomalies before EA calculation 

for better comparisons among different climate periods. We then projected the detrended 

height anomalies onto the EA pattern identified in the reanalysis data to obtain its time 

series. PPI of each model was calculated following the same method of the reanalysis data.  
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Table 5 – the 11 CMIP5 models used in this study 

Model Name Modeling Center Institute ID Ensemble  

CanESM2 Canadian Centre for Climate 

Modeling and Analysis 

CCCMA r1i1p1 

CCSM4 National Center for Atmospheric 

Research 

NCAR r1i1p1 

CMCC-CM Centro Euro-Mediterraneo per I 

Cambiamenti Climatici 

CMCC r1i1p1 

CNRM-CM5 Centre National de Recherches 

Meteorologiques / Centre Europeen 

de Recherche et Formation 

Avancees en Calcul Scientifique 

CNRM-

CERFACS 

r1i1p1 

GISS-E2-R NASA Goddard Institute for Space 

Studies 

NASA GISS r1i1p1 

HadGEM2-CC Met Office Hadley Centre MOHC r1i1p1 

INM-CM4 Institute for Numerical Mathematics INM r1i1p1 

IPSL-CM5A-LR  Institut Pierre-Simon Laplace IPSL r1i1p1 

MPI-ESM-MR Max Planck Institute for 

Meteorology  

MPI-M r1i1p1 

MPI-ESM-LR Max Planck Institute for 

Meteorology  

MPI-M r1i1p1 

NorESM1-M  Norwegian Climate Centre NCC r1i1p1 

 

  



 47 

3.1.2 Statistical Analysis Methods 

We used statistical functions in NCL 

(http://www.ncl.ucar.edu/Applications/extreme_value.shtml) to estimate the cumulative 

distribution functions (CDFs) of the Generalized Extreme Value (GEV) distributions [96] 

as well as the probability of extreme events based on reanalysis and modeling samples. We 

estimated the CDF parameters for the GEV distributions based on the reanalysis and 

modeling benchmark data to determine the threshold of positive extremes (≥ 0.95 

percentile), and then calculated the probability of extreme events based on fitted GEV 

CDFs of corresponding scenarios. These extreme value analyses provide us another 

perspective from the traditional ensemble mean statistics to better understand the 

atmosphere response to climate disturbances. we employed the bootstrap method [83] to 

estimate the statistical significance of EA and PPI positive extreme value probabilities in 

P2 and SENS in Figure 14. We first used the GEV fitting [96] to estimate the CDFs of EA 

and PPI based on the P1 and CTRL data, which serve as the benchmark for the reanalysis 

and modeling results, respectively. We then determined the thresholds of positive extremes 

of EA and PPI as the 95th percentiles of P1 and CTRL (EAP1
95th,PPIP1

95th;EACTRL
95th , PPICTRL

95th ) 

for the reanalysis and modeling data. We refitted the GEV distributions for both EA and 

PPI in P2 and SENS using the bootstrap method with nboot=5000 and compared the 

generated CDFs to the above 95th extreme value thresholds to estimate the statistics of 

positive extreme occurrence probabilities. All other statistical significance of reanalysis 

and simulation results were evaluated by the Student’s t-test throughout this chapter. 

3.1.3 Dynamic Diagnosis Tools 
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We employed multiple dynamic diagnostic tools including the Extended Eliassen-

Palm vectors [97] (hereafter referred to as E), eddy-induced geopotential height tendency 

at 250hPa [98], phase-independent 3-dimensional wave activity flux (WAF) [99], and a 

piecewise potential vorticity (PV) inversion method [100] to understand the teleconnection 

relationship revealed by the statistical analysis. The horizontal components of the 2-8 day 

band-pass-filtered daily E were given by Trenberth [97] in Equation 8 to describe transient 

eddy properties: 

 1

2
(𝑣′2̅̅ ̅̅ − 𝑢′2̅̅ ̅̅ ) 𝐢 − 𝑢′𝑣′̅̅ ̅̅ ̅̅ 𝐣 (8) 

where u and v are the zonal and meridional wind components, respectively, and the prime 

denotes the bandpass-filtered quantities. 

The daily fields of the 250hPa geopotential height tendency induced by the 

convergence of transient eddy vorticity flux were given by Lau and Holopainen [98] and 

estimated in Equation 9, 

 
(
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)
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=
𝑓

𝑔
∇−2[−∇ ∙ (𝑉′𝜁′̅̅ ̅̅ ̅̅ )] (9) 

where f is the Coriolis parameter, g is the gravity acceleration rate, V is the horizontal wind 

vector, and 𝜁 is the relative vorticity. 

Equation 10 shows the phase-independent 3-dimensional wave activity flux[99] 

based on the monthly reanalysis and modeling data to diagnose zonal propagation of locally 
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forced wave packet induced by small amplitude quasi-geostrophic eddy disturbances on a 

zonally varying basic flow.  
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(10) 

Here U and V are the horizontal and meridional wind vectors, respectively. 𝐔 =

(𝑈, 𝑉, 0)𝑇  is a steady zonally inhomogeneous basic flow.  𝑝 =  (pressure/1000hPa) is 

normalized pressure, 𝜓′ is a perturbation streamfunction, (∅, 𝜆) are latitude and longitude, 

𝑎 is the earth’s radius, f is the Coriolis parameter, 𝑁2 = (𝑅𝑎𝑝𝜅/𝐻)(𝜕𝜃/𝜕𝑧) is the squared 

buoyancy frequency, 𝐂𝑈 represents the phase propagation in the direction of 𝐔, and M can 

be interpreted as a generalization of small-amplitude pseudo-momentum for QG eddies 

onto a zonally varying basic flow. 

Lastly, we quantified the influence of circulation anomalies at different levels using 

a piecewise potential vorticity (PV) inversion method [100]. The PV anomalies were 

calculated with reanalysis and simulation data for all pressure levels from 1000hPa to 

100hPa in Equation 11, 
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where q is the potential vorticity, Φ is the geopotential height, f is the Coriolis parameter, 

and a prime represents the deviation from the smoothed climatological annual cycle. We 

then inverted individual PV “pieces” at different levels to evaluate near surface circulation 

responses (850hPa) to these PV anomalies. The horizontal anomalous wind field in Figure 

16 was derived from the geopotential height field based on geostrophic balance. We 

partitioned the influence of lower troposphere (1000-850hPa) and middle to higher 

troposphere (700-100hPa) PV anomalies and compared their differences in the next 

section. 

3.2 Numerical Results and Discussion 

3.2.1 CAM5 Sensitivity Simulations 

To diagnose the response of regional circulations to cryosphere forcing, we first 

examined the cumulative distributions of PPI and the strength change of the first pairwise 

MCA modes of Z850 and PPI shown in Figure 11 in each CAM5 sensitivity experiments. 

The empirical cumulative distribution function (CDF) in the CTRL scenario shows a 

similar distribution with the NCEP data except at two tails (Figure 11a), suggesting a 

positive-skewed distribution in the reanalysis due to strengthening cryosphere forcing. All 

sensitivity scenarios shift towards the positive direction comparing to the CTRL case, 

especially at larger percentiles with high PPI values, implying higher probabilities of 

unfavorable meteorological conditions and deteriorated ventilation under strong 

cryosphere forcing. In the high percentile interval with extreme PPI values, SENS4 

demonstrates the largest increase in both numbers and magnitudes of extremes that is 

comparable with the NCEP data. These changes in PPI distributions are attributed to 
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variations in the strength of MCA modes in each scenario. For instance, CTRL in Figure 

11b shows a symmetric distribution in the strengths of the first MCA modes and a higher 

population density towards the origin. When SIC and SST in August-November are 

prescribed with 2012 observations, SENS1 shows a clear shift towards positive Z850 and 

PPI modes relative to CTRL (Figure 11b). However, there is only a non-significant increase 

of PPI values of 0.09 on average (p = 0.18). The number of extreme members with PPI 

above the 95th percentile of the CTRL results (PPICTRL
95th

= 1.05) remains the same in 

SENS1 with that in CTRL. Prescribing October and November snow data as observed in 

2012 induces a larger increase in ensemble average PPI of 0.23 (p = 0.01) and the number 

of extreme members increases by a factor of ~2. But there is no clear shift pattern in the 

MCA modes of SENS2 (Figure 11c), implying deviated variations in PPI and the 

corresponding modes. Actually, the correlation between the Z850 mode and PPI is 

nonsignificant (r=0.15, p=0.17) and the increase of PPI values in SENS2 can only be 

explained by snow-induced temperature inversion rather than by unfavorable regional 

circulations. The inclusion of prescribed 2012 sea ice and snow observations in SENS3 

leads to a significant increase in the mean PPI value (∆PPI=0.20, p=0.01) and the number 

of extremes (×2.3). The same cryosphere forcing under a more realistic representation of 

tropical stratosphere in SENS4 results in the largest increase of ensemble mean PPI to 0.29 

(p=1.9×10-3) and an increase by a factor of 3.5 in the number of extreme PPI members. 

Both increases of PPI values in SENS3 and SENS4 are closely related with the positive 

shift of the MCA modes (Figure 11d/e), suggesting synergic impacts of unfavorable 

circulations and local temperature inversion contributed by the cryosphere forcing. 
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Figure 11 – The sensitivity response of PPI to cryosphere forcing. (a) empirical 

cumulative distribution function (CDF) of PPIs in NCEP reanalysis and CESM 

sensitivity scenarios; the red solid line denotes the 95th percentile value of PPI in the 

CTRL case (𝑷𝑷𝑰𝑪𝑻𝑹𝑳
𝟗𝟓𝒕𝒉

); (b) the two-dimensional kernel density estimation of the first 

MCA modes in CTRL (contour lines from 2% to 12% at intervals of 2%) and density 
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differences between SENS1 and CTRL (color shading; units: %); (c)-(e) the same 

with (b) but for differences between SENS2, SENS3, SENS4 and CTRL, respectively. 

There appears to be an increasing trend of winter cold extremes in the northern high 

latitudes [101], which is partially attributable to the Arctic sea ice loss [102-104]. 

Meanwhile, winter snowfall over Eurasia has also increased [105, 106]. In 2012, most 

boreal regions suffered a chilly early winter with anomalously heavy snowfalls following 

a record-breaking decline of Arctic sea ice in September 2012. The cold anomaly is 

particularly apparent in the northern Eurasia in subsequent months and model sensitivity 

results suggests its formation is attributable to both Arctic sea ice and Eurasia snow forcing 

(Figure 12). Some of the dynamic response to cryosphere forcing can be explained by the 

strengthening of upward propagation of Rossby wave into the stratosphere and the 

weakening of the stratospheric polar vortex as well as stratosphere-troposphere coupling 

processes (Figure 13) [27, 107]. However, this analysis tends to emphasize the more 

zonally symmetric forcing of Arctic sea ice and likely underestimates the asymmetric 

Eurasia snow forcing. Our numerical experiments suggest higher sensitivity of ECP 

ventilation to boreal snow enhancement in SENS2/3/4 than to Arctic sea ice loss in SENS1, 

especially under the specific background flow in the tropical stratosphere to build up the 

teleconnection [95]. Both higher statistical correlation and modeling sensitivity imply the 

dominant role of asymmetric snow forcing in modulating the regional ventilation over 

Eastern China, though sea ice melting also constructively facilitates the adverse 

circulations to a certain extent. Nonetheless, Figure 11 provides clear evidence that the 

concurrence of Arctic sea ice decline and boreal snow expansion contributes most to the 

reinforcement of the unfavorable circulation pattern such as the Z850 MCA mode1 as well 
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as strong local temperature inversion, which further induces the enhancement of PPI as 

well as the deterioration of ECP ventilation. 
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Figure 12 – Comparison of Surface Air Temperature (SAT) in December in NCEP 

reanalysis data and numerical simulations. (a) SAT climatology (1981-2010) in 

reanalysis; (b) SAT anomalies in December 2012 in reanalysis; (c) differences in SAT 
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climatology between the CTRL simulation and the reanalysis; (d) ensemble averaged 

SAT responses in SENS1 (SENS1-CTRL); (e) the same with (d) but in SENS2; (f) the 

same with (d) but in SENS3; In (b), (d), (e), and (f), black dots (cross) denote the 0.01 

(0.05) significance level. 
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Figure 13 – Comparison of anomalous wave activity flux (WAF) and zonal winds in 

reanalysis and modeling simulations. (a) zonal mean WAF anomalies over East Asia 

(60° E -180° E, vectors; units: m2/s2) and anomalous zonal winds in December 2012 

(color shading; units: m/s); (b) the same with (a) but for January 2013; (c) zonal mean 
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WAF differences over East Asia (vectors; units: m2/s2) and zonal wind differences 

(shading; units: m/s) between SENS1 extreme members and CTRL ensemble mean 

in November; (d) the same with (c) but for modeling December-January in SENS1; 

(e)-(f) the same with (c)-(d) but for SENS2; (g)-(h) the same with (c)-(d) but for 

SENS3; (i)-(j) the same with (c)-(d) but for SENS4. All the vertical components of 

vectors in (a)-(h) are scaled by 100 for clear illustration. 

3.2.2 WACCM Sensitivity Simulations 

We then used the high-top WACCM model with higher vertical resolutions instead 

of the low-top CAM5 model to verify the modeling sensitivity results. We compared the 

winter geopotential height fields at 500hPa between SENS and CTRL and projected the 

DJF monthly differences (SENS-CTRL) onto the reanalysis based EA pattern (Figure 14). 

We then fitted the 90 (30 years × 3 months) ensemble samples using the Generalized 

Extreme Value (GEV) distribution [96] and examined changes of both ensemble mean and 

positive extremes between SENS and CTRL. It’s clear that the winter EA in SENS shifts 

towards its positive phase comparing to EA in CTRL with ensemble mean increase of 0.12 

and positive extreme occurrence probability increased by 60% (8%±2%; Figure 14a). Such 

simulated positive shifting extent is weaker than that of the reanalysis data from P1 to P2 

(18%±5%) but still significant at the 0.05 significance level. It is worth noting that we only 

changed the surface boundary conditions (SIC/SST) at these modeling grids with sea ice 

changes larger than 10% and kept other ocean grids unperturbed. Such static data ocean 

setting results in a lack of ice-ocean-atmosphere coupling and may attenuate the sea ice 

forcing as discussed in previous studies[108]. Considering the PPI responses, a similar 

positive shift is also observed in SENS in comparison to CTRL. The ensemble mean PPI 
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increases to 0.07 and the positive extreme probability of PPI increases to 9% (9%±2%)with 

a fold change of 0.8, both of which are smaller than the changes in the reanalysis data 

(mean change:0.37; extreme probability:16%±6%; Figure 14b). Figure 14c shows the 

comparison between ensemble members in different EA phases of CTRL and SENS, which 

confirms increasing PPI from CTRL to SENS as well as the enhancement effect of positive 

EA on PPI changes in both CTRL and SENS experiments. Moreover, PPI increases further 

to the highest ensemble mean of 0.42 with the concurrence of all unfavorable conditions 

including declined sea ice, positive EA, and anomalously heave snow over the ECP region 

(SENS_EA+snow, see Methods for details), which agrees well with the previous 

findings[18]. The PPI spatial distributions clearly demonstrate significantly positive 

enhancement over the whole Northern China regions (Figure 14d), which is dominated by 

these members with positive EA (Figure 14f) rather than those with negative EA (Figure 

14e). It’s also noted that negative EA has much stronger impacts on regional PPI in 

sensitivity simulations (Figure 14e) than that of the reanalysis data (Figure 14e), which 

could partly explain the damped response in the ensemble mean PPI with all members 

(Figure 14d). 
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Figure 14 – Variations of winter (DJF) EA and PPI in the reanalysis data and 

numerical sensitivity experiments. (a) CDFs of EA in P1 and P2 of the reanalysis data 

and in CTRL and SENS experiments; The inlet shows the positive extreme changes; 

The numbers indicate the ensemble mean values and positive extreme occurrence 

probabilities;  (b) same as (a) but for PPI changes; (c) comparisons of ECP regional 

averaged PPI in responses to two different phases of EA in CTRL and SENS 
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experiments; The numbers indicate the ensemble mean values for each case; (d) 

spatial distributions of ensemble averaged PPI differences between SENS and CTRL; 

the black box denotes the ECP region; (e) same as (d) but for PPI differences with 

concurrence of negative EA; (f) same as (d) but for PPI differences with concurrence 

of positive EA. In (d), (e), and (f), the black dots indicate the 0.05 significance level. 

To elucidate the dynamic processes from the Arctic sea ice forcing to EA phase and 

PPI changes, we examined the transient eddy variations over the upstream region and 

quantified their impacts on regional circulation using the potential vorticity (PV) inversion 

method [100](see Methods for details). We plotted the E vectors―the indicators of 

transient eddy properties and their local interactions with the time-mean flow[109]―and 

the eddy-induced geopotential height tendency at 250hPa based on the 30 strongest positive 

EA years (10 maximums for each DJF month) in the reanalysis and the 30-year modeling 

DJF ensemble differences between SENS and CTRL in Figure 15. The divergence of E 

over the Atlantic Ocean leads to eddy-induced acceleration of the jet stream as well as 

negative tendencies in the 250hPa geopotential height field of both reanalysis and 

simulations (Figure 15a/b). Such negative tendencies result in cyclonic anomalies in the 

upper troposphere over the Atlantic Ocean and trigger wave train propagation to the 

downstream regions as shown in the winter averaged wave activity flux (WAF) and 

anomalous geopotential height fields in both reanalysis and modeling data (Figure 15c/d), 

which resembles a positive EA pattern (Figure 7). We then used PV inversion to examine 

the impact of the downstream manifestation of the positive EA pattern on regional 

circulation over the ECP area. We found significantly weakened winter monsoon in ECP 

that is attributed to the EA induced circulation anomalies. In contrast to strong 
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climatological northwesterly winds at 850hPa over Northeast Asia (Figure 16a/b), positive 

EA related PV anomalies in the middle to upper troposphere induce anomalous 

southeasterly winds in the lower troposphere over the East China coastal regions in both 

reanalysis and modeling results (Figure 16c/d), which suppress the air ventilation 

capability by the northerly monsoon winds and result in severe air stagnation over the ECP 

area. We also compared the impact of PV anomalies at different levels and found that such 

ventilation suppression effects in both reanalysis and simulation data are dominated by 

anomalous PV in the middle to upper troposphere (above 850hPa) rather than that in the 

lower troposphere (below 850hPa). In contrast to anomalous southeasterly winds induced 

by the middle to upper level PV anomalies (Figure 16c/d), those PV anomalies in the lower 

troposphere mainly lead to strong northerly winds with enhanced wind speed and air 

ventilation over the ECP region (Figure 16e/f). The overall impact of circulation anomalies 

depends on the counteraction between anomalies in the lower levels and those in the middle 

to higher levels. In the reanalysis data based on the strongest EA ensembles (Figure 17), 

the ventilation suppression effect due to middle and upper level circulation anomalies 

overwhelms the enhancement effect due to lower level anomalies with generally 

suppressed monsoon winds in total fields, and the sensitivity simulations reproduce such 

suppression effects in both actual anomalous fields and PV inversion fields but to a less 

extent (Figure 17). The simulated responses are more comparable to the temporal 

composite between P2 and P1 of the reanalysis data (Figure 17). All in all, we conclude 

that the Arctic sea ice decline in the preceding autumn and early winter induces strong 

transient eddy forcing with cyclonic anomalies in the upper troposphere over the Atlantic 

Ocean. Such disturbances trigger wave train propagation to the downstream regions with 
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positive EA-like responses in the upper and middle troposphere. Positive EA related 

circulation changes finally attenuate the winter monsoon intensity over the East Asia 

coastal regions and results in severe air stagnation in the ECP area. 

 

Figure 15 – Comparisons of transient eddy forcing, wave activity flux, and 

geopotential height anomalies in the NCEP reanalysis data and WACCM simulations 

in winter (DJF). (a) horizontal components of E (arrows) and geopotential height 

tendencies (shading) at 250hPa based on the 30 strongest positive EA cases of the 

reanalysis data; (b) same as (a) but based on the ensemble averaged difference of 

SENS and CTRL simulations; (c) wave activity flux (arrows) and geopotential height 
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anomalies (shading) at 250hPa based on the 30 strongest positive EA cases of the 

reanalysis data; (d) same as (c) but based on the ensemble averaged difference of 

SENS and CTRL simulations. The red box in (a) denotes the predominant anomalous 

transient eddy source region. The red box in (d) denotes the region of anomalous fields 

used for the PV inversion in Figure 16. See main text for details. 

 

Figure 16 – Comparisons of winter (DJF) circulation over East Asia in the reanalysis 

data and sensitivity simulations. (a) 30-year (1981-2010) averaged climatological wind 

vectors (arrows) and wind speed (shading) at 850hPa based on the NCEP reanalysis 

data; (b) same as (a) but based on the ensemble averaged CTRL simulations; (c) 

anomalous wind vectors (arrows) and speed (shading) at 850hPa inversed by the 
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middle to upper troposphere PV anomalies (700-100hPa) over the red box region in 

Figure 15(d); (d) same as (c) but inversed by the middle to upper troposphere PV 

anomalies (700-100hPa) of the sensitivity simulations; (e) same as (c) but inversed by 

the lower troposphere PV anomalies (1000-850hPa) over the red box region in Figure 

15(d); (f) same as (e) but inversed by the lower troposphere PV anomalies (1000-

850hPa) of the sensitivity simulations. The ECP region is denoted by the red box in 

(c). The simulation data interpolated below the ground surface over the high-altitude 

regions are removed in (b), (d), and (f). 
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Figure 17 – Comparisons of composite anomalies and PV inversion by all level 

troposphere (1000-100hPa) anomalies in the reanalysis data and sensitivity 

simulations. (a) wind vectors (arrows) and speed (shading) anomalies in the 30 

strongest DJF EA years of the reanalysis data; (b) same as (a) but based on the PV 

inversion of all level (1000-100hPa) anomalies of the 30 strongest EA years; (c) same 

as (a) but based on DJF differences between SENS and CTRL simulations; (d) same 

as (b) but based on the PV inversion of all level differences between SENS and CTRL; 

(e) same as (a) but based on the P2 years after 2000 (2000-2016); (f) same as (b) but 

based on the PV inversion of all level anomalies of the P2 years.   

3.2.3 CMIP5 Future Projections 
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We further examined the CMIP5 RCP8.5 future projections of SIC, EA, and PPI 

based on 11 climate models (Table 5) to validate such teleconnection relationship on ECP 

air stagnation extreme events (see Methods for details). Similar with the previous analysis 

in Figure 14, we separated the whole CMIP5 time series into three periods―P1 from 1980 

to 2020, P2 from 2021 to 2060, and P3 from 2061 to 2100―to isolate climate impacts of 

Arctic sea ice with different forcing intensity (Figure 18a). P1 shows the weakest ice 

forcing with slowly declining Arctic sea ice concentrations, while P2 shows moderate ice 

forcing and P3 shows the strongest ice forcing. We first compared the total winter EA 

responses to the ice forcing by separating all modeling samples into two groups, one with 

positive ice forcing (SIC+: months with standardized SIC > 0.5 standard deviation) and 

one with negative ice forcing (SIC-: months with standardized SIC < -0.5 standard 

deviation). It’s clear that EA distributions in the SIC- group shift towards its positive phase 

comparing to EA in the SIC+ group, especially over the positive tail with the probability 

of positive extremes increased to 12% with a fold change of 1.4 (Figure 18b). By checking 

EA responses in different periods, we reconfirmed such positive shifting tendency of EA 

in P2 and P3, and the shifting magnitude is proportional to the forcing intensity with the 

probability of positive EA extremes increases to 8% in P2 (a fold change of 0.6; Figure 

18c) and 9% in P3 (a fold change of 0.8; Figure 18d). Accordingly, PPI also shows strong 

positive shifting tendencies given positive EA (EA+: months with standardized EA > 0.5 

standard deviation and vice versa in EA-), and such tendencies are significant in both 

ensemble mean value and probability of positive extremes that increase by 0.40 and 8% (a 

fold change of 1.6), respectively (Figure 18e). The probability of PPI positive extremes 

increases to 7% in P2 (a fold change of 0.4) with moderate ice forcing (Figure 18f), while 
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it increases to 10% in P3 (a fold change of 1.0) with strong ice forcing (Figure 18g). More 

frequent positive PPI extremes will pose higher risk on regional air quality, but they also 

provide strong incentives for the Chinese government to implement more stringent 

emission control policies on both greenhouse gases and aerosol pollutants to avoid the 

worst scenario into reality.   

 

Figure 18 – Historical and future simulations of Arctic sea ice, EA, and PPI indices 

based on ensemble mean of 11 climate models in CMIP5 historical and RCP8.5 

scenarios. (a) time series of ensemble mean SIC, EA, and PPI from 1980 to 2100. Color 

shadings denote ±1 standard deviation. The three time windows are listed and 

separated by black dash lines; (b) comparisons of EA CDFs in anomalously positive 

and negative SIC scenarios; the percentages in parentheses denote the probabilities 

of positive extremes (≥𝑬𝑨𝑺𝑰𝑪+
𝟗𝟓𝒕𝒉 );  (c) comparisons of EA CDFs in P1 and P2 periods; 
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the percentages in parentheses denote the probabilities of positive extremes 

(≥𝑬𝑨𝑷𝟏
𝟗𝟓𝒕𝒉); (d) same as (c) but for comparisons of P1 and P3; (e) comparisons of PPI 

CDFs in positive and negative EA cases; the percentages in parentheses denote the 

probabilities of positive extremes (≥𝑷𝑷𝑰𝑬𝑨−
𝟗𝟓𝒕𝒉); (f) comparisons of PPI CDFs in P1 an 

P2 periods; the percentages in parentheses denote the probabilities of positive 

extremes (≥𝑷𝑷𝑰𝑷𝟏
𝟗𝟓𝒕𝒉); (g) same as (f) but for comparisons of P1 and P3. The inlets in 

(b)-(g) show distributions of positive extremes. 

3.3 Conclusions 

We conducted series of numerical sensitivity modeling experiments with multiple 

climate models and analyzed the modeling results based on the CMIP5 models in this 

chapter. The modeling results corroborated the statistical findings in the previous chapter 

that boreal cryosphere changes such as declining Arctic sea ice and increasing Eurasian 

snow would lead to more positive phase of EA in winter and suppress regional air 

ventilation over the ECP area. The suppressed ventilation finally resulted in severe haze 

pollution in winter in concurrence with large amounts of anthropogenic emissions over this 

region. Such teleconnection relationship will keep exacerbating in future with air 

stagnation extremes increased by 100% by the end of the 21st century according to the 

CMIP5 RCP8.5 ensemble projections based on the 11 climate models. This climate penalty 

would simultaneously pose high pressures and strong incentives for the Chinese 

government to conduct its air quality regulations with more stringent emission controls. 

The dynamic diagnosis for the teleconnection pattern and climate sensitivity relationship 

also provides useful tools for operational air quality forecast at medium-range to short-term 

time scales. A clear understanding of regional air stagnation and its relationship with 

preceding remote climate forcing would benefit the environmental governance and 
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emission control practice by the Chinese government to achieve a more practical and 

sustainable cost-effective solution in routine atmosphere environment management. 
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CHAPTER 4. DEVELOPMENT OF A REGION-SPECIFIC 

ECOSYSTEM FEEDBACK FIRE MODEL (RESFIRE) IN THE 

COMMUNITY EARTH SYSTEM MODEL 

4.1 Fire Model Development 

In this chapter, we developed a REgion-Specific ecosystem feedback Fire model 

(RESFire) in the Community Earth System Model (CESM) to extend the fire modelling 

capability such that the interactions of fire with climate and ecosystems could be simulated 

and investigated by climate models. The major innovative features in RESFire include: (1) 

region and ecosystem dependent updates of  natural/anthropogenic constraints for fire 

occurrence and spread; (2) fire emissions in forms of mass (gases and aerosols) and energy 

(sensible and latent heat) fluxes; (3) incorporation of fire disturbances on ecosystems 

through vegetation mortality, regrowth, and associated land cover changes; (4) climate 

model bias corrections to ensure the consistency of online simulation performance under 

fully coupled model settings with using offline reanalysis and observation data. We also 

incorporated online plume rise parameterization to better simulate vertical distribution and 

long-range transport of fire aerosols and their effects on weather and climate. The fire 

model development was described in the first section. RESFire modeling performance was 

evaluated using the ILAMB system and other benchmarks in the following section. We 

drew the conclusions in the last section. 

4.1.1 The Community Earth System Model 

CESM is a fully-coupled global climate model maintained by the National Centre 

for Atmospheric Research (NCAR) [89]. It is composed of five major components of the 

earth system including atmosphere, land surface, ocean, sea ice and land ice, plus one 
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central coupler component. As the latest release of CESM, CESM version 1.2.2 

(CESMv1.2.2) has numerous new key features to improve our modelling capability to 

understand and predict the climate system. We developed the RESFire model in 

CESMv1.2.2 with both offline data atmosphere mode and online simulated atmosphere 

mode at a spatial resolution of 0.9° (lat)×1.25° (lon) and a temporal resolution of 30 

minutes. The offline data atmosphere mode was driven by the combination of atmosphere 

observation and reanalysis data provided by the Climatic Research Unit and National 

Centres for Environmental Prediction (CRUNCEP) [110], while the online atmosphere 

mode was driven by the Community Atmospheric Model version 5 (CAM5) [90], the 

atmosphere component of CESM. RESFire was coupled with the Community Land Model 

version 4.5 (CLM4.5) [111]―the land component of CESM―in both simulation modes. 

We also added data interfaces between CLM4.5 and CAM5 to transport fire model inputs 

and outputs in the online mode. These newly incorporated fire modeling features are 

compatible with multiple major improvements in both CAM5 and CLM4.5 such as a new 

3-mode modal aerosol scheme, a prognostic two-moment cloud formulation, and a revised 

photosynthesis scheme, etc. [90, 111]. Thereby, RESFire provides the state-of-the-science 

simulation capability to examine the physical, chemical, and biological processes through 

which fire interacts with climate and terrestrial ecosystems. 

4.1.2 RESFire Model Framework 

To account for climate-fire interactive processes comprehensively, we developed 

three components of RESFire in CESM (Figure 19):  fire occurrence estimation, fire spread 

optimization, and fire impact parameterization. We started from the maximum fire count 

estimation, which was considered as the maximum fire occurrence potential triggered by 
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both natural and anthropogenic ignitions. Then we added natural constraints on the 

maximum fire occurrence potential to estimate fire counts with consideration of fire 

weather impacts. We further added anthropogenic constraints on fire counts to generate 

final fire count estimation. The final fire count product in combination with fire spread 

parameterization was used for burned area estimation at the next step. The maximum fire 

spread potential for a single fire spot in one grid was estimated by multiplying maximum 

fire spread rates with average fire duration time under an elliptical fire spread shape 

assumption [112]. We added natural and anthropogenic constraints successively on the 

maximum fire spread potential to optimize burned area estimation. The optimized burned 

area product was used in consequent fire impact parameterizations.  In this paper, fire 

impacts consist of direct mass and energy emissions as well as disturbances on ecosystems, 

which include fire induced tree mortality and associated recovery processes. Such 

ecosystem disturbances could further lead to indirect fire impacts on the climate system by 

perturbing hydrological cycles, radiation budget due to surface albedo changes, and 

terrestrial ecosystem greenhouse gas budget. 
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Figure 19 – A schematic diagram of the RESFire model development 

To represent the diversified fire sensitivity due to different vegetation 

characteristics, regional climate and socioeconomic conditions, we divided the global land 

areas into 8 sub-regions based on combinations of the 14 GFED regions (Figure 20;Table 

6) [55] and characterized the Plant Functional Types (PFTs) into 5 major groups (Figure 

20; Table 7). We then developed region- and PFT-specific fire parameterizations for 

biomes in these sub-regions to improve fire modeling capability in the RESFire model. 

Such region- and PFT-specific parameterizations were used in the three RESFire 

components (Figure 19) with considerations of refined natural and anthropogenic 

constraints on fire occurrence and spread as well as various aspects of fire impacts.   
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Figure 20 – Geographical regions (a) and predominant PFT groups (b) used by the 

region- and PFT-specific RESFire model. Each CLM grid has multiple PFT types at 

sub-grid level. Only predominant PFT types with largest fractions are shown in (b). 

The acronyms of region and PFT are listed in Tables 1 and 2, respectively. 

Table 6 – Regions used in the fire model development 

Region Abbreviation Full Name 

R1 NTHA North America 

R2 STHA South America 

R3 EURA Eurasia excluding Middle East and 

South Asia 

R4 MENA Middle East and North Africa 

R5 NHAF Northern Hemisphere Africa 

R6 SHAF Southern Hemisphere Africa 

R7 SSEA South and Southeast Asia 

R8 OCEA Oceania 



 76 

Table 7 – Plant Functional Type groups used in the fire model development 

PFT groups Abbreviation Full Name 

- BLND Bare land 

P1 NTREE Needleleaf tree  

P2 BTREE Broadleaf tree 

P3 SHRUB Shrub 

P4 GRASS Grass 

P5 CROP Crop 

4.1.3 Fire Occurrence 

Fire can be triggered by either natural or anthropogenic ignitions. The maximum 

fire ignition potential (𝑁𝑐𝑙𝑚
0 , count/grid/time step) in RESFire is given in Equation 12, 

 𝑁𝑐𝑙𝑚
0 = (𝐼𝑛 + 𝐼𝑎)𝐴𝑔 (12) 

where 𝐼𝑛 and 𝐼𝑎 are the number of maximum natural and anthropogenic fire ignitions 

(count/km2/time step), respectively. 𝐴𝑔 is the grid area (km2).  

The natural fire ignition is a function of the cloud-to-ground fraction of lightning 

flashes 𝐼𝑙 and latitude 𝜆 [112, 113] (Equation 13), 

 
𝐼𝑛 =

1

5.16 + 2.16cos (3𝜆)
𝐼𝑙 (13) 
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and the anthropogenic fire ignition is a function of population density 𝐷𝑝 [114, 115] 

(Equation 14), 

 
𝐼𝑎 =

𝛼𝐷𝑝6.8𝐷𝑝
−0.6

𝑛
 (14) 

where 𝛼 = 3.89 × 10−3(𝑐𝑜𝑢𝑛𝑡 𝑝𝑒𝑟𝑠𝑜𝑛−1 𝑚𝑜𝑛−1) is the number of potential ignition 

sources by a person per month, and n is the number of time steps in one month. 

The fire ignition potential (𝑁𝑐𝑙𝑚
0 ) is considered as the maximum fire spot number 

estimation without fire weather influences. It does not take account of the diversity of fire 

related social production and living habits or variable fire management capability among 

regions with different socioeconomic conditions either. Therefore, we next conducted the 

observation based regression analysis to incorporate both natural and anthropogenic 

constraint relationship into the fire model. 

4.1.3.1 Natural Constraints on Fire Occurrence 

On top of the maximum fire ignition potential, we added region- and PFT-specific 

natural and anthropogenic constraints successively to capture multiple enhancement and 

suppression effects on fire activities. The natural constraint factors consist of three fire 

weather variables: T10, PREC10, and WF (Table 8) [29]. The first two meteorological 

variables were used by several drought indices to characterize the atmosphere and 

hydrological drought conditions [116]. We considered these drought-related variables in 

a continuous time window (10-day running mean) to better represent the probability of 

fire occurrence as a consequence of cumulative effects in ambient environment and 
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biomass conditions. The last hydrological variable was used by a previous study [112] to 

characterize fuel combustibility. For training purposes, we obtained monthly fire weather 

data from the CLM land model outputs driven by the CRUNCEP observation-reanalysis 

data. We then used the observation-reanalysis combined weather data and satellite 

observed fire spot data to train the regression model. 

Table 8 – Fire weather factors used as natural constraints on fire occurrence 

Fire weather factors Description Notes 

T10 10-day running mean of 2-m 

temperature 

A meteorological variable to depict 

drought conditions [116] 

PREC10 10-day running mean of total 

precipitation 

A meteorological variable to depict 

drought conditions [116] 

WF Soil water fraction for top 0.05m layers A hydrological variable to 

characterize fuel combustibility [112] 

Given the large discrepancies between the maximum fire ignition potential and 

observed fire counts, we defined a common logarithm-based natural scaling factor for fire 

counts (NS𝑛) in Equation 15, 

 NS𝑛 = 𝑙𝑜𝑔10(𝑁𝑚𝑜𝑑𝑖𝑠/𝑁𝑐𝑙𝑚
0 ) (15) 

where 𝑁𝑚𝑜𝑑𝑖𝑠 is the monthly MODIS climate modeling grid (CMG) fire count product 

(MYD14CMH) on board of the EOS-Aqua platform [117]. It’s noted that the MODIS 

CMG fire products are generated at 0.5° spatial resolution from 1km pixel level active 

fire products with cloud cover corrections, which provides an approximate estimation for 

the modeling counterpart of the maximum fire ignition potential if assuming 

independence of detected fire pixels [118]. We used 4 years of monthly MODIS 

observational data (2003-2006) to investigate the natural constraint relationship while the 
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other years of data were used for validation. The inter-annual variability of these 4 years’ 

observations was relatively small so that we reduced the influence of extreme samples in 

model training.    

We examined the region-specific relationship between NS𝑛 and fire weather 

factors using multi-linear ridge regression models (Equation 16),   

 

NS𝑛
𝑖,𝑗

= ∑ 𝛽𝑘
𝑖,𝑗

∙ 𝑋𝑘

3

𝑘=1

 (16) 

where 𝑋𝑘 are the three spatial and temporal variable fire weather factors in Table 8 and 

𝛽𝑘
𝑖,𝑗

 is the corresponding regression coefficient of the kth factor associated with the ith PFT 

group in the jth sub-region. NS𝑛
𝑖,𝑗

 is obtained by filtering out gridded NS𝑛 in the jth sub-

region with the fraction of the ith PFT group greater than 30% in the monthly 

observational data from 2003 to 2006. To separate the temporal and spatial variations in 

the relationship, we trained the regression models with spatial averaged and temporal 

averaged data, respectively. Specifically, we first regionally averaged the monthly fire 

weather factors 𝑋𝑘(𝑥, 𝑦, 𝑡) and the corresponding NS𝑛
𝑖,𝑗

(𝑥, 𝑦, 𝑡) in the jth sub-region with 

gridded observational burned area as averaging weights. We used weighted averaging to 

highlight major burning areas vulnerable to fire. Therefore, we generated monthly time 

series of fire weather factors �̅�𝑘(𝑡) and natural scaling factors NS̅̅̅̅
𝑛
𝑖,𝑗

(𝑡) for each sub-

region, and then estimated the regression coefficients �̅�𝑘
𝑖,𝑗

 using ridge regression for 

temporal variability. Similarly, we regressed annually averaged NS̃𝑛
𝑖,𝑗

(𝑥, 𝑦) on annual 

mean weather factors �̃�𝑘(𝑥, 𝑦) (all with monthly burned area as averaging weights) and 
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estimated the regression coefficients 𝛽𝑘
𝑖,𝑗

 using ridge regression for spatial distribution. 

We applied the average of �̅�𝑘
𝑖,𝑗

 and 𝛽𝑘
𝑖,𝑗

 in the RESFire model to capture the spatial and 

temporal variability simultaneously and set the constant terms 𝛽0 as the regional annual 

mean deviations between observational NS𝑛
𝑖,𝑗

 and simulated NS𝑛
𝑖,�̂�

 datasets (Equation 17), 

 

NS𝑛
𝑖,�̂�

= ∑
(�̅�𝑘

𝑖,𝑗
+ 𝛽𝑘

𝑖,𝑗
)

2
∙ 𝑋𝑘(𝑥, 𝑦, 𝑡)

3

𝑘=1

+ 𝛽0 (17) 

We conducted variable selection first to circumvent collinearity problems in the 

regression model. If the correlation between two input variables exceeded the threshold, 

we removed one of them and built the regression model with the rest of input variables. 

Furthermore, the ridge regression method, which is a penalized regression method, has 

low sensitivity to collinearity and shows great potential to reduce the negative impact of 

the collinearity problem in ecological studies [119]. We set a suggested threshold of 

|𝑟| > 0.7 [119] for correlations among the predictor variables in the regression model.  

Figure 21 illustrates the temporal variability of fire occurrence in both observation 

and regression data for each region and PFT group. Since cropland fires are mostly 

controlled by agricultural activities with strong anthropogenic influences on the 

seasonality and spatial distributions [120, 121], we parameterized cropland fires 

separately by focusing on socioeconomic constraints following previous studies [122]. 

Therefore, we only applied the natural and anthropogenic constraining framework to the 

PFT groups 1-4 as shown here. Generally, most of regression data reproduce the 

seasonality in observational data for different PFT groups in each region, which are 

reflected by relatively high correlations between regression and observation data on the 
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top of each subplot (for instance, r=0.97 for PFT group 4 in region 5; Figure 21(P4R5)). 

The Africa regions (R5-6) show the strongest burning seasonality for all PFT groups, 

with peak fire seasons in cold and dry months in both northern and southern hemispheres 

of Africa. The temporal variation models capture well these seasonal changes with 

regression data in good agreement with observation data. The spatial variation models 

describe the spatially heterogeneous burning distributions in a similar manner, though the 

spatial predictability (Figure 22) is not as high as for temporal variation due to larger 

spatial variability in fire occurrence.  

 

Figure 21 – Region- and PFT-specific natural constraints on temporal variation of 

fire occurrence. See Table 6 and Table 7 for the full names of region and PFT 

numbers shown on the top left corners. The correlation coefficient between 

observation and regression data for each PFT group and region is shown. 

 



 82 

 

Figure 22 – Region- and PFT-specific natural constraints on spatial variations of fire 

occurrence. 

4.1.3.2 Anthropogenic Constraints on Fire Occurrence 

We defined a demographic scaling factor for fire count (AS𝑛) in the same manner 

of NS𝑛 after including natural constraints: 

 AS𝑛 = 𝑙𝑜𝑔10(𝑁𝑚𝑜𝑑𝑖𝑠/𝑁𝑐𝑙𝑚
′ ) (18) 

where 𝑁𝑐𝑙𝑚
′  is the fire count estimation with consideration of natural constraints 𝑁𝐶𝑛: 

 𝑁𝑐𝑙𝑚
′ = 𝑁𝑐𝑙𝑚

0 × 𝑁𝐶𝑛 (19) 
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The natural constraint 𝑁𝐶𝑛 in the jth sub-region is a weighted average of 

exponents of scaling factors NS𝑛 for the ith PFT group with the weight of its fractional 

coverage 𝑓𝑖:  

 
𝑁𝐶𝑛 = ∑(10NS𝑛

𝑖,𝑗

× 𝑓𝑖) 

𝑛

𝑖=1

 (20) 

Given high noises with large uncertainties in the raw data, we followed the 

method of Li et al. [122] and resampled the data by averaging AS𝑛 in 50 consecutive bins 

of population density in the log scale, and then generated linear and nonlinear weighted 

fitting functions by setting sampling sizes as weights for the resampled data in each bin. 

We obtained anthropogenic constraints for the 4 PFT groups in the 8 sub-regions based 

on these weighted fitting functions between population and anthropogenic scaling factors 

(Figure 23). The anthropogenic constraint relationship differs among different PFT 

groups and regions. For instance, Eurasia (R3) as the most populated region generally 

shows strong human suppression effects for most PFT groups because of effective early 

detection and prevention of fire danger. On the contrary, South America (R2) 

demonstrates predominant enhancement effects for many PFT groups, especially in less 

populated regions, which could be related with deforestation burning activities over this 

region. In North America (R1), distinctions between prescribed burning in the southeast 
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U.S. and large wildfires in the west U.S. lead to more complex relationship with mixed 

suppression and enhancement effects that are nonlinear for many PFT groups.  

We estimated anthropogenic constraints 𝐴𝐶𝑛 based on anthropogenic scaling 

factors and PFT fractional coverages in the same way like natural constraints 𝑁𝐶𝑛, 

 
𝐴𝐶𝑛 = ∑(10AS𝑛

𝑖,𝑗

× 𝑓𝑖) 

𝑛

𝑖=1

 (21) 

where AS𝑛
𝑖,𝑗

= 𝑓(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) is a fitting function of population density as shown in 

Figure 23. 

After taking account of both natural constraints 𝑁𝐶𝑛 and anthropogenic 

constraints 𝐴𝐶𝑛, we estimated the final fire count estimation N𝑐𝑙𝑚
𝑓

 in Equation 22, 

 𝑁𝑐𝑙𝑚
𝑓

= 𝑁𝑐𝑙𝑚
′ × 𝐴𝐶𝑛 = 𝑁𝑐𝑙𝑚

0 × 𝑁𝐶𝑛 × 𝐴𝐶𝑛 (22) 
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This final fire count estimation is the basis for burned area and fire impact 

parameterizations in the following sections. 

 

Figure 23 – Same as Figure 21 but for the anthropogenic constraints on spatial 

variation of fire occurrence. the color shading denotes sampling density in each bin 

of population density. See detailed explanation in the main text. 

4.1.4 Fire Spread 

To simulate burned area in the fire model, we need to estimate fire spread in 

addition to fire occurrence. We generated the gridded maximum burned area potential 

(𝐵𝐴𝑐𝑙𝑚
0 ) as a function of fire count (𝑁𝑐𝑙𝑚

𝑓
) and maximum spread area per fire spot (𝐴𝑚𝑎𝑥):  

 𝐵𝐴𝑐𝑙𝑚
0 = 𝑁𝑐𝑙𝑚

𝑓
× 𝐴𝑚𝑎𝑥 (23) 

The maximum spread area per fire spot (𝐴𝑚𝑎𝑥) was parameterized under the 

assumption of an elliptical spreading shape [112] and passive suppression due to terrain 
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impedance and landscape fragmentation [123]. Specifically, the elliptical fire spreading 

area 𝐴𝑚𝑎𝑥
𝑒𝑙𝑙𝑖𝑝

 is a function of PFT-dependent maximum fire spread rates (𝑓𝑠𝑟𝑚𝑎𝑥, m/s), 

average fire duration time (𝜏), length-to-breath ratio (𝐿𝐵 = 1.0 + 10.0[1 −

exp (−0.06𝑊)], where W is wind speed, m/s), and head-to-back ratio of the theoretical 

elliptical fire shape (𝐻𝐵 =
𝐿𝐵+(𝐿𝐵

2−1)
0.5

𝐿𝐵−(𝐿𝐵
2−1)

0.5) in Equation 24 adopted from Li et al.[112]: 

 

𝐴𝑚𝑎𝑥
𝑒𝑙𝑙𝑖𝑝 =

𝜋 × (𝑓𝑠𝑟𝑚𝑎𝑥 ×
0.1𝐿𝐵

1 +
1
𝐻𝐵

)

2

× 𝜏2

4 × 𝐿𝐵
(1 +

1

𝐻𝐵
)

2

× 10−6 

(24) 

The passive fire suppression due to terrain impedance was adopted from Pfeiffer 

et al. [123], which describes the scarcity of larger fires in mountain regions. The terrain 

impedance factor (𝑠𝑙𝑓) was determined in Equation 25 as a piecewise function of median 

terrain slope angle 𝛾, which limits the impedance effect only in grid cells with median 

slope angles larger than 1.7°. We calculated the gridded median slope angle 𝛾 following 

the Zhang et al. [124]’s method to aggregate the maximum D8 slope at 1 arc minute 

resolution based on the ETOPO1 global digital elevation model [125] in Equation 25:  

 

𝑠𝑙𝑓 = {

1              𝛾 < 1.7°

1

5
9𝜋𝛾 − 2

      𝛾 ≥ 1.7°   (25) 
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Similarly, we adopted the landscape fragmentation suppression factor (𝐴𝑚𝑎𝑥
𝑓𝑟𝑎𝑔

) 

from Pfeiffer et al. [123] in Equation 26, 

 𝐴𝑚𝑎𝑥
𝑓𝑟𝑎𝑔

= (1.003 + 𝑒(16.607−41.503𝑓𝑛𝑜𝑛−𝑐𝑟𝑜𝑝))−2.169 (26) 

which is approximated as a function of non-crop PFT fractions in grid cells (𝑓𝑛𝑜𝑛−𝑐𝑟𝑜𝑝) 

based on the Monte Carlo simulation results. 

Such fragmentation suppression factors are the average contiguous area fractions 

of natural PFT patches in each grid, which set the upper limit of burned area of individual 

fire spots in Equation 27, 

 𝐴𝑚𝑎𝑥 = min (𝐴𝑚𝑎𝑥
𝑓𝑟𝑎𝑔

, 𝑠𝑙𝑓 × 𝐴𝑚𝑎𝑥
𝑒𝑙𝑙𝑖𝑝) (27) 

We then defined a logarithm-based natural scaling factor for fire spread (NS𝑎) 

based on the ratio of GFED burned area products and simulated maximum burned area 

potential in Equation 28, 

 NS𝑎 = 𝑙𝑜𝑔10(𝐵𝐴𝐺𝐹𝐸𝐷/𝐵𝐴𝑐𝑙𝑚
0 ) (28) 

where 𝐵𝐴𝐺𝐹𝐸𝐷 is the GFED4.1s burned area dataset with contributions from small fires 

[53, 55, 126]. 

4.1.4.1 Natural Constraints on Fire Spread 

In burning events, fire spread is constrained mostly by wind and fuel 

combustibility, the latter of which is a function of moisture content of fuel bed. Since we 
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already encapsulated the wind factor in the elliptical fire spreading area (𝐴𝑚𝑎𝑥
𝑒𝑙𝑙𝑖𝑝

), here we 

used surface air temperature (T), relative humidity (RH), surface soil wetness (SW), and 

the fraction of wet canopy (FWET) as surrogates to characterize fuel combustibility 

(Table 9). T and RH determine the transfer of water vapor into and out of fine fuel and 

control the short-term fuel moisture content, while SW and FWET derived from the 

amount of rainfall affect fire behavior by modulating the fuel moisture content at both 

short (hourly) and long (seasonal) time scales. 

Table 9 – Fire weather factors used as natural constraints on fire spread 

Fire weather factors Description Notes 

TBOT Surface air temperature A meteorological variable to control the short-

term moisture content of fuels 

RH Surface air relative humidity A meteorological variable to control the short-

term moisture content of fuels [Li et al., 2012]  

SW Surface soil wetness factor A hydrological variable to characterize both the 

short-term and long-term moisture content of 

fuels [Li et al., 2012] 

FWET Fraction of wet canopy A hydrological variable to characterize both the 

short-term and long-term moisture content of 

fuels 

We applied natural constraints on fire spread calculation as with fire occurrence by 

conducting ridge regressions of NS𝑎 on the four fire weather factors based on the 2003 to 

2006 monthly observational data. We first determine the collinear input variables. We then 

built two series of regression models for temporal and spatial variations of fire spread based 

on regional averaged and annual averaged regression data, respectively. Figure 24 shows 

region- and PFT-specific temporal variations of natural scaling factors in both observation 

and regression data. Africa regions (R5-6) still have the strongest seasonal variability of 
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fire spread in all PFT groups. The fire spread seasonal variations in other biomes are less 

significant but nonnegligible, especially over the regions with strong weather seasonality. 

It is noted that the fire seasonality could be variable among different PFT groups in the 

same region, such as the pronounced seasonal shift between peak fire months over the 

broadleaf forest areas (P2R8) and the grassland areas (P4R8) in Australia. These 

differences are attributed to different climatic zones and fire regimes of the predominant 

biome. In Australia, broadleaf trees mostly grow in temperate zones of southeast Australia 

with the four-season pattern, while grass mostly grows in the tropical areas of northern 

Australia with the wet and dry climatic pattern just like the southern hemisphere of Africa 

(R6). These so-called “bushfires” tend to be most common and severe during summer and 

autumn (December-March) in forest areas because of higher temperatures and drought 

conditions that are conducive to fire spread, while bushfires in tropical savannas usually 

occur during the dry season (April-October) when the biomass is fully cured and ready to 

burn [127].  
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Figure 24 – Same as Figure 21 but for fire spread. 

 

Figure 25 – Region- and PFT-specific natural constraints on spatial variations of fire 

spread.   

Similar with fire occurrence, the regression models are capable to replicate 

diversified seasonality of fire spread in different biomes. Figure 25 shows the regression 
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results for spatial variations of natural influences on fire spread, which are significant in 

biomes such Africa and Australia savannas. Again, we estimated the natural constraint on 

burned area (𝑁𝐶𝑎) as weighted averaging of natural scaling factors for each PFT group 

(Equation 29): 

 
𝑁𝐶𝑎 = ∑(10NS𝑎

𝑖,𝑗

× 𝑓𝑖) 

𝑛

𝑖=1

 (29) 

After adding natural constraints on both temporal and spatial variability of fire 

spread, we next implemented anthropogenic impacts to finalize fire spread optimization. 

4.1.4.2 Anthropogenic Constraints on Fire Spread 

We defined a logarithm-based demographic scaling factor for fire spread (AS𝑎) to 

characterize human impacts on burned area: 

 
AS𝑎 = 𝑙𝑜𝑔10(𝐵𝐴𝐺𝐹𝐸𝐷/𝐵𝐴𝑐𝑙𝑚

′ ) = 𝑙𝑜𝑔10(
𝐵𝐴𝐺𝐹𝐸𝐷

𝐵𝐴𝑐𝑙𝑚
0 × 𝑁𝐶𝑎

) (30) 

We applied Equation 30 to all regions and PFT groups including cropland areas, 

where agricultural activities determine burning seasonality and intensity of crop 

residuals. It is noted that we only considered anthropogenic constraints on cropland fire 

and set NS𝑎 for cropland fires to zero. NS𝑎 for other PFT fires were described in the 

previous section. We estimated the anthropogenic scaling factor AS𝑎 in each biome by 

separately fitting polynomial functions with gridded population density distribution 

(Figure 26) and Gross Domestic Production (GDP) at country levels. Compared to Figure 

23, Eurasia (R3) again shows suppression effects with increasing population density, 
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though such effect is more significant in grass and cropland regions. South America (R2) 

preserves moderate fire enhancement effects with increasing population density over 

rainforest regions (P2) that can be attributed to anthropogenic burning driven by 

deforestation and agriculture activities in this area. North America (R1) still shows mixed 

effects with both enhancement and suppression effects in many forest and cropland areas, 

which might be contributed by concurrence of prescribed burning and fire prevention 

management.  

 

Figure 26 – Same as Figure 23 but for the anthropogenic constraints on spatial 

variation of fire spread. 

With consideration of both natural and anthropogenic constraint effects, we estimated the 

final burned area 𝐵𝐴𝑐𝑙𝑚
𝑓

 in Equation 31:  

 𝐵𝐴𝑐𝑙𝑚
𝑓

= 𝐵𝐴𝑐𝑙𝑚
0 × 𝑁𝐶𝑎 × 𝐴𝐶𝑎 (31) 
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where 𝐴𝐶𝑎 is the anthropogenic constrain on burned area as 𝐴𝐶𝑎 = ∑ (10AS𝑎
𝑖,𝑗

× 𝑓𝑖) 𝑛
𝑖=1 .  

4.1.5 Fire Impacts 

We consider two types of fire impacts in the RESFire model: the short-term direct 

effect and long-term indirect effect. The direct effects include fire emissions in forms of 

mass and energy fluxes, and the indirect effects include longer term disturbances to 

ecosystems through post-fire changes in land cover and ecosystem structure due to fire-

induced vegetation mortality [128]. 

4.1.5.1 Fire Emissions 

We estimated fire carbon emissions (𝐸𝑐𝑙𝑚
𝑐 , gC/m2/s) as a combination of carbon 

storage (𝐶𝑖, gC/m2), burned area (𝐵𝐴𝑐𝑙𝑚
𝑓

), and PFT-specific combustion completeness 

(𝐶𝐶𝑖):  

 
𝐸𝑐𝑙𝑚

𝑐 = ∑𝐶𝑖 × 𝐵𝐴𝑐𝑙𝑚
𝑓

× 𝐶𝐶𝑖

𝑛

𝑖=1

 (32) 

By multiplying corresponding emission factors [129], we estimated fire emissions 

for 39 gases and aerosols (𝐸𝑐𝑙𝑚
𝑘 , g species/m2/s) in Equation 33: 

 
𝐸𝑐𝑙𝑚

𝑘 =
𝐸𝑐𝑙𝑚

𝑐

𝑐𝑓𝑐
× 𝐸𝐹𝑘 (33) 
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where 𝑐𝑓𝑐 = 480  (gC/kg dry matter) is the carbon to dry matter conversion factor, and 

𝐸𝐹𝑘 is the kth species’ emission factor used by the GFED4.1s data. 

To compute the Fire Radiative Power (FRP, W/m2) estimation, we inversed the 

conversion factor 𝑐𝑓𝑒 used by Kaiser et al. [52] to convert fire carbon emissions to 

sensible heat fluxes: 

 
𝐸𝑐𝑙𝑚

𝑓𝑟𝑝
=

𝐸𝑐𝑙𝑚
𝑐

𝑐𝑓𝑐 × 𝑐𝑓𝑒
 (34) 

where 𝑐𝑓𝑒 is PFT-specific factors ranging from 0.13 to 1.55 𝑘𝑔 𝑑𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 ∙ 𝑀𝐽−1 

(Table 2 in Kaiser et al. [52]). And the fire line intensity (flint, kW/m) was parameterized 

based on released fire energy and fire line length of the ellipse fire shape, 

 
𝑓𝑙𝑖𝑛𝑡 =

𝐸𝑐𝑙𝑚
𝑓𝑟𝑝

1000×𝐵𝐴𝑓
× 𝑓𝑠𝑟𝑑𝑤 × ∆𝑡 ×

2×𝐿𝐵

(𝐿𝐵+√𝐿𝐵
2−1)×(3×(𝐿𝐵+1)−√3×𝐿𝐵

2+10×𝐿𝐵+3)

  

(35) 

where 𝑓𝑠𝑟𝑑𝑤 is the fire spread rate (m/s) at the downwind direction (Equation 36) and ∆t 

is seconds per time step. 

 
𝑓𝑠𝑟𝑑𝑤 = 𝑓𝑠𝑟𝑚𝑎𝑥 × 𝑁𝐶𝑎 × 0.05 ×

2 × 𝐿𝐵

1 +
1
𝐻𝐵

 
(36) 
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The associated moisture fluxes (𝐸𝑐𝑙𝑚
𝐻2𝑂

, mm H2O/s) were estimated based on 

stoichiometry by using Equation 37 adopted from Jacobson [130]: 

 
𝐸𝑐𝑙𝑚

𝐻2𝑂
= 𝐸𝑐𝑙𝑚

𝐶𝑂2 ×
𝑀𝐻2𝑂

𝑀𝐶𝑂2

×
𝑐𝑓𝐻2𝑂

𝜌𝐻2𝑂
 (37) 

where 𝑐𝑓𝐻2𝑂 = 0.83
𝑚𝑜𝑙 𝐻2𝑂

𝑚𝑜𝑙 𝐶𝑂2
, and  𝜌𝐻2𝑂 = 1000 𝑘𝑔/𝑚3. 

Finally, we obtained the latent heat flux (𝐸𝑐𝑙𝑚
𝐿𝐻 ,W/m2) by multiplying the 

moisture flux with latent heat of evaporation (Equation 38): 

 𝐸𝑐𝑙𝑚
𝐿𝐻 = 𝐸𝑐𝑙𝑚

𝐻2𝑂
× 𝐻 (38) 

with 𝐻 = 2.501 × 106 𝐽/𝑘𝑔 𝐻2𝑂 . 

4.1.5.2 Ecosystem Disturbances 

We consider both vegetation mortality and whole-plant mortality in the ecosystem 

disturbance parameterization. The vegetation mortality simulation is that of the default 

fire model in CLM [112, 122] (hereafter indicated as LL2013) by transferring a part of 

unburned plant tissues (leaf, stem, root, etc.) to the litter pool with fixed tissue-mortality 

factors, while the whole-plant mortality is parameterized by multiplying simulated FRP 

with observation-based sensitivity relationship between plant mortality rates and FRP. 

Though plant traits like bark thickness and tree size are also found to influence fire-

induced tree mortality [131], such detailed information is unavailable in the CLM model 

because of its PFT-based modeling structure. We collected multiple fire induced plant 

mortality rates from field measurements and satellite observations worldwide and 
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implemented the sensitivity relationship with fire intensity into the fire model. The plant 

mortality rates are region and PFT dependent to reflect the nature of variable heat 

endurance capability of plant species to fire scorching, which could remedy the missing 

plant trait information in the model to some extent. The newly incorporated whole-plant 

fire mortality and associated land cover changes are essential in climate-fire-ecosystem 

feedbacks revealed by previous studies [132].  

Table 10 lists the fire induced mortality rates (MR, 100%/year/grid) for each PFT 

except grass and crops. Usually grassland would recover in a relatively short time period 

after burning due to reduced self-shading and competitive pressure[133], and previous 

studies indicated positive feedback processes in the grass-fire cycle over many 

transitional forest edge and savanna regions [134-136]. For cropland, it is mainly 

managed by agricultural practices instead of natural ecological succession. Therefore, we 

assume less fire induced perturbation in these two PFT groups. For shrubs, we used the 

fixed whole plant mortality of 30% once FRP exceeded a threshold value based on the 

averaged literature data [137-139]. For broad leaf trees, the fire induced whole plant 

mortality was estimated as a linear function of fire line intensity (flint, W/m) based on 

field measurements [38, 131, 140].  For needleleaf trees in boreal regions, the fire 

induced tree mortality was parameterized by region-specific nonlinear functions of FRP 

based on satellite observed sensitivity relationship [62]. 
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Table 10 – Fire induced whole-plant mortality rates for each PFT group 

PFT Mortality Rates Equations 

Shrub Fixed 𝑀𝑅 = 30%, if 𝑓𝑙𝑖𝑛𝑡 ≥ 50 𝑊/𝑚 

Broadleaf tree f(flint) 𝑀𝑅 = 0.000885 × 𝑓𝑙𝑖𝑛𝑡 

Needleleaf tree f(FRP) 𝑀𝑅

= {
 0.0444 × log10(𝐹𝑅𝑃) + 0.64, 𝐹𝑅𝑃 > 0,𝑁𝑜𝑟𝑡ℎ 𝐴𝑚𝑒𝑟𝑖𝑐𝑎

0.0783 × log10(𝐹𝑅𝑃) + 0.26, 𝐹𝑅𝑃 > 0, 𝐸𝑢𝑟𝑎𝑠𝑖𝑎
 

We illustrate the sensitivity relationship between fire induced tree mortality and 

FRP over the two boreal continental regions in Figure 27. Previous studies showed that 

boreal Eurasian forest fires are less intense than that in North America [141], and different 

fire dynamics and plant traits would have significant impacts on tree survival in those 

regions [62]. These regional characteristics of fire intensity and burn severity are present 

in satellite measurements [142]. Therefore, we used satellite observed FRP and tree 

mortality data in post-fire boreal forest regions and fitted a nonlinear function for each 

biome based on the medians of statistically resampled data (Figure 27). By implementing 

region specific relationship, the RESFire model could capture these regional differences 

and capture the effects of fire disturbances on the ecosystem structure and vegetation 

population. Considering that actual tree death is not an instantaneous event, we deposited 

the fire induced tree morality into a mortality potential pool (MP, 100%/grid) and then 

withdrew a fraction of it at a specified fire mortality rate (fmr, 100%/second/grid) per time 

step (Equation 39),  

 𝑑𝑀𝑃

𝑑𝑡
=

∑ 𝑀𝑅𝑖 × 𝐵𝐴𝑓 × 𝑓𝑖3
𝑖=1

∆𝑡
− 𝑓𝑚𝑟 =

∑ 𝑀𝑅𝑖 × 𝐵𝐴𝑓 × 𝑓𝑖3
𝑖=1

∆𝑡
−

𝑀𝑃

𝑡𝑠𝑐
 (39) 
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where ∆t is seconds per time step, and fmr is the instantaneous whole plant mortality rate 

due to fire estimated by the contemporary mortality potential pool MP over a temporal 

scaling constant tsc as seconds per year. 

The whole mortality potential pool would almost run out within the following two 

to three years if no new mortality potential being added after burning. For those fractional 

tree/shrub patches that were burned to death, we deducted the mortality fraction at the grid 

level from the original PFT fraction value and added the same deducted fraction to 

grassland if it exists in the same grid, or bare land if no grassland exists in the grid. In this 

way, we are capable to simulate simplified land cover changes with fire induced dynamic 

vegetation variations in the RESFire model. Such variable PFTs with accordingly updated 

optical properties would influence surface albedo estimation in the land model and other 

PFT-related ecosystem structure and function, and further trigger series of radiation, 

biogeochemical, and hydrological feedbacks after fire burning. 
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Figure 27 – Relations between FRP and boreal tree mortality. (a) The spatial 

distribution of correlation coefficients between satellite observed FRP and tree 

mortality; (b) raw gridded data (grey dots), statistical samples (red boxes) and fitted 

sensitivity relationship (blue line) of FRP and tree mortality over boreal Eurasia; (c) 

same as (b) but over boreal North America. 

Besides mortality, we also considered post-fire recovery processes over burned 

regions. Previous studies suggested that the post-fire recovery is mostly a self-replacement 

process in many burned regions [137, 143]. We only considered stand-replacing processes 

without interspecific competitions during secondary succession and post-fire recovery in 

RESFire. We collected and averaged the PFT-specific annual recovery rates (RR, 
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100%/year/grid) from several in-situ and satellite based observations for secondary 

succession in Table 11.  

Epting and Verbyla [137] found that sever burning speeds up vegetation recovery 

due to reduced competition pressure in the post-fire environment. To incorporate such a 

positive feedback mechanism, we adjusted the natural PFT fraction recovery rate (frr, 

100%/second/grid) according to the contemporary tree mortality fractions (MF, 

100%/grid), which is a surrogate of burn severity (Equation 40),  

 
𝑓𝑟𝑟 = 10 × 𝑀𝐹 ×

𝑅𝑅

𝑡𝑠𝑐
 (40) 

We applied these adjusted PFT-specific recovery rates in combination with the 

estimated mortality rate to allow burned ecosystem to regrow back. Since we do not 

consider complete vegetation dynamics here, the gridded PFT fractions can only decrease 

by fire induced mortality, and then restore back to default pre-fire levels at a full recovery 

if there is no further fire disturbance. The instantaneous change in PFT fractions (dfr, 

100%/second/grid) at the grid level is a function of fire induced plant mortality reduction 

and post-fire recovery (Equation 41), 

 
𝑑𝑓𝑟 = −

𝑑𝑀𝐹

𝑑𝑡
= 𝑓𝑟𝑟 − 𝑓𝑚𝑟 (41) 
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Table 11 – Post-fire recovery rates for each PFT group 

PFT Recovery Rates References 

Shrub 10%/year/grid Rydgren et al. [144] 

Broadleaf tree 

(tropical regions) 

5%/year/grid Chazdon [145]; Finegan [146]; Guariguata and Ostertag 

[147] 

Broadleaf tree 

(boreal regions) 

8%/year/grid Beck and Goetz [148]; Epting and Verbyl [137] 

Needleleaf tree 15%/year/grid Epting and Verbyla [137]; Goetz et al. [149]; Jin et al.` 

[143] 

4.1.6 Weather/Climate Modelling Bias Corrections 

The fire modeling performance depends strongly on the quality of fire weather 

variables. When CAM5 simulation results were used in the fire model, model 

meteorological biases lead to significant biases in burned area estimates`. These model 

biases, especially precipitation related hydrological biases, are common in the current 

generation of climate models [150]. To reduce the negative impacts from climate model 

biases, we introduced bias corrections in the online fire mode on the basis of a statistical 

distribution mapping method [151, 152]. In general, we first evaluated the online CAM5 

modeling performance of gridded fire weather variables (Table 8 and Table 9) against the 

offline counterparts based on the CRUNCEP data of the training period (2003-2006). For 

grids cells with significant modeling biases, we then obtained the cumulative distribution 

function (CDF) of the offline daily value based on the observation-reanalysis combined 

data and the online daily value driven by the CAM5 model. We fitted linear mapping 

functions based on the two sets of distribution in each biased grid cell. Lastly, we used 

the mapping function to project the CAM5 fire weather variables onto the corresponding 

values at the same quantile in the reanalysis data (Figure 28). In this way, we reduced the 
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climatology mean biases of CAM5 model simulations while keeping the variability 

simulated by the model. We transformed the precipitation data in a logarithm scale before 

fitting mapping functions since precipitation intensity spectra usually follow the 

exponential distribution [151].   

Figure 28 demonstrates examples of online bias corrections for simulated surface 

temperature and precipitation data, in which we find significantly cool and wet biases 

over most African regions as well as biased drought conditions over South American 

rainforest and savanna regions in CAM5 results (Figure 28a/b). The CDFs in Figure 

28c/d corroborate such bias tendencies across all quantiles of CAM5 simulated surface 

temperature and 10-day running mean precipitation in a selected grid cell of South 

America. We then used the mapping functions shown in Figure 28e/f to project the 

CAM5 simulations onto the reanalysis data such that the online weather biases were 

reduced. In the next section, we further evaluate the effectiveness of fire weather bias 
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corrections on fire regime simulations by comparing both raw and bias corrected fire 

model products with benchmarks. 

 

Figure 28 – Online fire weather biases and corrections using the distribution mapping 

method. (a) Spatial distributions of online biases in surface temperature (unit: K); 

only biases at the 0.05 significance level are shown. (b) same as (a) but for 10-day 

running mean precipitation biases (unit: 10-5 mm/s). (c) CDF of daily surface 

temperature in a sample grid cell from CRUNCEP and CAM5; (d) same as (c) but 

for 10-day running mean precipitation in the same sample grid cell. (e) samples of 

daily surface temperature in the sample grid cell from CRUNCEP and CAM5 

(circles) and the corresponding mapping function (green line); (f) same as (e) but for 

logarithmic 10-day running mean precipitation. 

4.2 Fire Simulation and Evaluation 
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We conducted 3 sets of fire simulations using RESFire with both CRUNCEP data 

atmosphere forcing and CAM5 simulated atmosphere forcing. The first simulation set 

(RESFire_CRUNCEP) was driven by the 1997-2010 CRUNCEP observation-reanalysis 

combined atmospheric data including global 6-hourly surface temperature, wind speed, 

specific humidity, air pressure, precipitation and surface downward solar radiation [110] 

with a steady state in initial spun-up files after several hundred years’ simulation. The 

second simulation set (RESFire_CAM5nc) was coupled with the active CAM5 atmosphere 

model without fire weather bias corrections and run for 10 years from the same initial 

conditions. The third simulation set (RESFire_CAM5c) was branched by coupling with 

bias-corrected CAM5 atmosphere model and running for 10 years. All three sets used the 

same prescribed climatological cloud-to-ground lightning data, population density, 

nitrogen and aerosol deposition, and land cover data at the 2000 year values. The cyclical 

3-hourly lightning data was interpolated from the NASA LIS/OTD grid product v2.2 2-

hourly climatological lightning data with the cloud-to-ground lightning fractions calculated 

based on Prentice and Mackerras [113]. The population density data was derived from the 

Gridded Population of the World version 3 (GPWv3) [153]. The semi-static land use and 

land cover change data was based on version 1 of the Land-Use History A product 

(LUHa.v1) at the 2000 values [154] except fire induced PFT disturbances in RESFire. The 

monthly nitrogen and aerosol deposition data were based on simulations with the CESM 

atmospheric chemistry and transport model and provided with CESMv1.2 [89]. All these 

modeling settings are similar with previous CLM4.5-fire simulation studies [112, 122, 

128].  
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Afire fire simulations, we used the International Land Model Benchmarking 

(ILAMB) system [155] to evaluate the RESFire modeling results associated with fire 

behavior and impacts. The ILAMB system is an integrated land model benchmarking 

system designed to improve the performance of land models and to reduce key 

uncertainties in land surface processes. As one of the major uncertainty sources in land 

models, fire simulation has considerable influences on the modeling of biogeochemical, 

biophysical, and hydrological processes. We evaluated the RESFire results in the context 

of burned area, fire emissions, and ecosystem disturbances to provide a comprehensive 

evaluation of fire modeling performance. Table 12 lists the benchmark metrics and their 

references. 

Table 12 – Fire model benchmark metrics and references 

Category Variable Dataset Source 

 Burned area GFED4.1s ftp://fuoco.geog.umd.edu 

Giglio et al. [126]; Randerson et al. [53] 

Intensity Emissions GFED4.1s ftp://fuoco.geog.umd.edu 

Giglio et al. [126]; Randerson et al. [53];  

van der Werf et al. [55] 

 FRP MODIS active fire 

products 

ftp://fuoco.geog.umd.edu 

Giglio et al. [117] 

Impacts Plant mortality Satellite data Rogers et al. [62]   

 Ecosystem resilience In-situ data Goulden et al. [156]  

4.2.1 Burned Area 

We examined both spatial distributions and seasonal variations of global and 

regional burned area data in offline and online modes in Figure 29.  In general, the spatial 

distribution of burned area simulations agrees well with the GFED4.1s dataset (Figure 

ftp://fuoco.geog.umd.edu/
ftp://fuoco.geog.umd.edu/
ftp://fuoco.geog.umd.edu/
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29a) with spatial correlation coefficients of 0.68~0.75 in coupled and uncoupled modes, 

which are comparable with the LL2013 uncoupled fire model performance (r=0.71) 

[128]. The offline modeling results driven by the CRUNCEP atmosphere data (Figure 

29c, RESFire_CRUNCEP) outperform the online results driven by CAM5 weather inputs 

(Figure 29e, RESFire_CAM5c with bias corrections; Figure 29g, RESFire_CAM5nc 

without bias corrections); after bias corrections in fire weather (RESFire_CAM5c), the 

online results show considerable improvements in all seasons over most regions, 

especially over Africa and South America. For instance, the high bias in surface 

temperature and low bias in precipitation over the central South America region result in 

an unrealistic drought environment in the CAM5 simulation, which leads to a high bias in 

burned area estimates. The bias correction module in RESFire reduces biases in CAM5 

fire weather factors and improves the fire modeling performance with reduced deviation 

from the benchmark over this region. The seasonal variation estimates are also 
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significantly better in offline (Figure 29d) and online bias corrected products (Figure 29f) 

than raw online results (Figure 29h).  

 

Figure 29 – Comparisons of spatial distributions and seasonal variations of burned 

area in the observations and simulations. (a) GFED4.1s burned area fractions (%) 

averaged from 1997 to 2010; (b) seasonal variations of averaged GFED4.1s burned 
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area (km2) in the 8 sub-regions; (c)-(d) same as (a)-(b) but from RESFire_CRUNCEP; 

(e)-(f) same as (a)-(b) but from RESFire_CAM5c; (g)-(h) same as (a)-(b) but from 

RESFire_CAM5nc. The spatial correlation coefficients between simulated burned 

areas and GFED4.1s data are shown on the bottom left corners of (c), (e), (g). 

To provide a more quantitative understanding of modeling performance, we applied 

the ILAMB system to the RESFire results from different modes and quantified burned area 

modeling scores using multiple metrics, which include absolute and relative biases, 

seasonal phase, interannual variability, RMSE, and Taylor score in Table 13. For 

comparison, we also listed the evaluation results of the default CLM LL2013 fire scheme 

driven by the same data atmosphere forcing named as CLM45bgc_CRUNCEP. It’s noted 

that the default CLM LL2013 fire model was calibrated using different atmospheric 

reanalysis data [157] with an old version of the GFED dataset (GFED3) as benchmarks 

[54, 158], and the simulation period was also different from this work (1997-2004 in Li et 

al. [128] vs. 1997-2010 here). Though Li and Lawrence [159] recalibrated the LL2013 fire 

model in CLM recently, the updated CLM-fire model is not available until the release of 

the new version of CESM. Therefore, our CLM45bgc_CRUNCEP run is based on the same 

version of LL2013 without recalibration and its burned area result (316Mha/yr) is very 

close to the published one (322Mha/yr) in Li et al. [128], which suggests the equivalence 

of our CLM45bgc_CRUNCEP simulations with the previous published ones [122, 128]. 

As shown in the table, the burned area simulations from the RESFire model in both offline 

and online modes outperform the default fire scheme in most benchmarking metrics, such 

as absolute and relative annual mean biases and phase variations. The smaller spatial and 

temporal biases and higher scores in the RESFire results corroborate the previous 
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comparisons in Figure 29. By comparing the evaluation results between online modeling 

results with (RESFire_CAM5c) and without bias corrections (RESFire_CAM5nc), we also 

find significant improvements in all benchmarking metrics after implementing fire weather 

bias corrections. In general, the overall modeling score increased from 0.50 of 

CLM45bgc_CRUNCEP to 0.61 of RESFire_CRUNCEP and 0.60 of RESFire_CAM5c, 

respectively. These results illustrate the improved modeling capability of the RESFire 

model driven by either offline reanalysis or online simulation data, which is necessary for 

both fire hindcast or future projection studies.  

Table 13 – ILAMB evaluation results for burned area estimates 

Annual Mean Units GFED4s CLM45bgc 

_CRUNCEP 

RESFire 

_CRUNCEP 

RESFire 

_CAM5c 

RESFire 

_CAM5nc 

Annual Mean Mha/yr 485.49 315.66 427.66 471.77 1033.62 

Bias Mha/yr ─ -169.84 -57.83 -13.72 548.13 

Relative Bias 100% ─ -0.35 -0.12 -0.03 1.13 

RMSE Mha/mon ─ 87.19 77.84 82.95 126.52 

Phase months ─ 1.35 0.34 0.55 0.58 

Global Bias 

Score 

─ ─ 0.50 0.59 0.57 0.53 

RMSE Score ─ ─ 0.42 0.45 0.45 0.39 

Phase Score ─ ─ 0.75 0.80 0.82 0.82 

Taylor Score ─ ─ 0.36 0.81 0.78 0.56 

Interannual 

Score 

─ ─ 0.55 0.55 0.55 0.52 

Overall Score ─ ─ 0.50 0.61 0.60 0.53 

4.2.2 Fire Emissions 

We evaluated the interannual variability of fire mass emissions and compared both 

online and offline annual mean carbon emissions with the GFED4.1s data over each sub-
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region (Figure 30). Similar with the burned area estimates, the RESFire_CRUNCEP fire 

carbon emission also agree well with the benchmark data, which showed two major 

fluctuation periods around 2000 and 2008 with a temporal correlation of 0.80. It is worth 

noting that we only trained the RESFire model with the four-year data from 2003 to 2006, 

which show less interannual variation than the other years. The successful reconstruction 

of large variations in the other years demonstrated the effectiveness of RESFire. Since 

CAM5 simulated atmosphere internal variability does not necessarily represent the 

interannual variability of real atmosphere, we only examined the statistical characteristics 

of RESFire online results with bias corrections (RESFire_CAM5c). The 10-year averaged 

RESFire_CAM5c carbon emissions are larger than the GFED4.1s and 

RESFire_CRUNCEP by 18% and 16%, respectively. High bias region includes temperate 

North America, northern hemisphere of South America, Europe, and Middle East. (Figure 

30b). One consequence is that the tendency of underestimating fire induced aerosol loading 

[63] was not as severe in the online CAM5 simulations. The published LL2013 CLM4.5-

fire carbon emission is 2.1Pg C yr-1 averaged from 1997 to 2004 [128], which is lower than 

our results here, but we should point out again that such biases could result from different 

atmosphere forcing data and benchmarks used in LL2013. 
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Figure 30 – Comparisons of interannual and regional fire carbon emissions. (a) 

Temporal variations of annual fire carbon emissions from GFED4.1s and 

RESFire_CRUNCEP with the correlation coefficient shown in the parenthesis. The 

red dots denote the years used for fire model training. Statistical results from 

RESFire_CAM5c under the 2000-year climate condition are shown in the box for 

comparison. (b) Regional and global annual fire carbon emissions from GFED4.1s, 

RESFire_CRUNCEP, and RESFire_CAM5c. The 14 regions are the same with GFED 

dataset [55]. BONA: Boreal North America; TENA: Temperate North America; 

CEAM: Central America; NHSA: Northern Hemisphere South America; SHSA: 
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Southern Hemisphere South America; EURO: Europe; MIDE: Middle East; NHAF: 

Northern Hemisphere Africa; SHAF: Southern Hemisphere Africa; BOAS: Boreal 

Asia; CEAS: Central Asia; SEAS: Southeast Asia; EQAS: Equatorial Asia; AUST: 

Australia and New Zealand. 

In Table 14, we examined the averaged fire emissions (1997-2010) of specific trace 

gases and aerosol species. The default CLM45bgc_CRUNCEP does not provide fire 

emissions for each species, so we only compared the offline RESFire_CRUNCEP and 

online RESFire_CAM5c results with the GFED4.1s data. Both modeling outputs agree 

well with the benchmark data in most species. It is also noted that RESFire_CAM5c results 

have lower interannual variability than GFED due to the suppressed internal variability 

with fixed external forcing in CAM5 atmosphere. 

Table 14 – Comparisons of annual averaged fire emissions with standard deviations 

of interannual variability 

Units: Tg yr-1 GFED4s RESFire_CRUNCEP RESFire_CAM5c 

Carbon 2235±346 2271±221 2629±106 

CO2 7574±1133 7665±1081 8421±426 

CO 365±81 423±92 446±23 

CH4 16±6 21±6 21±1.2 

NMHC 18±2 24±1 27±1.2 

H2 10±1.9 11±0.7 12±0.6 

NOx 15±1.8 14±1 16±0.8 

N2O 0.95±0.15 0.75±0.05 0.87±0.04 

PM2.5 37±6 35±2 40±2 

TPM 48±8 52±3 59±3 

TC 19±3.7 18±1 21±0.9 

OC 17±3 18±3 19±0.9 

BC 1.9±0.3 2.4±0.2 2.7±0.1 
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We also compared spatial distributions of simulated FRP against satellite 

observations (MYD14CMH) onboard Aqua MODIS [117] in Figure 31. All data are annual 

averaged from 2003 to 2010. The uncertainties in the conversion factors also contribute to 

the discrepancies between the observations and simulation results. Both offline and online 

simulation results had low biases in most regions except over Africa, where the simulation 

results were overestimated to some extent. However, the discrepancies at such degree are 

acceptable because the simulated FRP mostly affect the fire-induced tree mortality 

estimation, which bears larger uncertainties in the ecosystem responsive relationship to fire 

disturbances as we saw in Figure 27. We examined the fire related tree mortality and 

regrowth in the next section to demonstrate the RESFire modeling capability regarding 

ecosystem feedbacks to fire.  
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Figure 31 – Comparisons of observed and simulated FRP. (a) Annual average FRP 

(mW/m2) from Aqua MODIS observations; (b) and (c) are same as (a) but from 

RESFire_CRUNCEP and RESFire_CAM5c, respectively. 

4.2.3 Ecosystem Disturbances 

Given the sparsity of global fire induced mortality data, we only compared the 

simulated tree mortality with the satellite data over boreal regions [62]. Similar to the 

satellite observations, the RESFire mortality results show higher mortality in North 

America regions and lower mortality over Eurasia (Figure 32). Such distinctions are 

derived from different fire behaviour and plant traits. To be specific, American fires are 

characterized by more crown fire with higher intensity and severity, while Eurasian fires 

are dominated by surface fires with lower intensity and severity [62]. The tree species with 

stronger burning endurance are also predominant in Eurasia. Both factors determine the 

different tree mortality rates in response to fire. The model therefore captures the contrast 

of tree mortality rate between the two regions, though the model underestimates the 

mortality rates in Alaska and Siberia due to the low biases in model estimated burned area 

and FRP. Such low biases are derived from a shortage of sufficient natural and 

anthropogenic fire triggers in the model with low lightning and population density over 

these regions. While the current implementation of tree mortality will require further 

improvements, we note that if only partial vegetation mortality is included, the model 

simulated recovery rate would be artificially fast since the reduction of leaf area index (LAI) 

would enhance light use efficiency of photosynthesis. When the whole plant mortality is 

included, the regrowth time will be longer and more realistic. 
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Figure 32 – Comparisons of fire induced tree mortality rates (%) in satellite 

observations and model simulations. (a) Annual averaged tree mortality rates based 

on satellite observations from 2001 to 2009; (b) annual averaged tree mortality rates 

in the fire seasons over the same period from RESFire_CRUNCEP; (c) same as (b) 

but from RESFire_CAM5c 10-year averaging results under the 2000 climate 

condition. 

To evaluate temporal variability of post-fire ecosystem recovery, we followed 

previous studies [61] and designed an idealized burning scenario by introducing single-

year burning events in fire peak months of each typical fire region. Figure 33 shows the 

simulated fire disturbance and post-fire evolution of vegetation characteristics and 

ecosystem production in the context of carbon stock, production, respiration, and efficiency 

in a sample grid of Canadian boreal forest region (Manitoba: 261° E, 56° N). We chose 

this site to compare modeling results with theoretical trends as well as in-situ and satellite 

observations in previous studies [156, 160].  The dominant boreal tree species of Manitoba 
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are black spruce, jack pine, and trembling aspen, while vegetation varies with stand age 

and soil drainage [161]. Goulden et al. [156] examined the temporal variations of boreal 

forest production and respiration during secondary succession after stand-replacing crown 

fire. They compared the stand observations with theoretical trends and concluded the 

transition of post-fire forest stands from carbon source to sink within 11-12 years. Hicke et 

al. [160] assessed the impact of fire on NPP in the North America boreal forest using 

satellite observations and estimated a similar mean NPP recovery period of about 9 years. 

The model simulation showed that the total vegetation carbon (TOTVEGC) decreases 

substantially after fire disturbances because of the implemented plant mortality and fire 

carbon emission losses. In contrast, the coarse woody debris carbon (CWDC) was 

estimated to increase as a result of plant mortality. With more loss of productive vegetation, 

the simulated photosynthesis capability of the ecosystem decreased considerably, leading 

to significantly decreased gross primary production (GPP) and net ecosystem production 

(NEP). However, the net primary production (NPP) changes were less significantly than 

GPP due to reduced competition and respiration consumption after large fractions of plant 

mortality in the model. Given the estimates of similar reductions in both GPP and 

autotrophic respiration (AR), simulated NPP only had minor changes, which led to 

enhanced production efficiency in NPP/GPP. The simulated rates of above changes 

decreased with time after the fire disturbance and the ecosystem properties were restored 

to the pre-fire condition around two decades later except TOTVEGC since the vegetation 

carbon accumulated slowly and required more years to fully restore to the pre-fire level. 

The post-fire ecosystem evolution showed similar variations in other regions, though the 

recovery rates are different for other PFT groups (Figure 34). In general, the mean recovery 



 118 

period of post-fire forest is about 3~18 years with transition from carbon source to sink in 

each PFT region. These simulations in the idealized experiment agreed well with both 

theoretical trends and observed variations in previous studies [156, 160], demonstrating 

good modeling performance in ecosystem responses to fire.  

 

Figure 33 – Simulated post-fire temporal evolution of carbon budget and ecosystem 

productivity in Manitoba based on the idealized burning experiment. (a) total column 

carbon (TOTCOLC, gC/m2), coarse woody debris carbon (CWDC, gC/m2), total litter 
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carbon (TOTLITC, gC/m2), and total vegetation carbon (TOTVEGC, gC/m2); (b) Net 

ecosystem production (NEP, gC/m2/yr); (c) Net primary production (NPP, gC/m2/yr) 

and gross primary production (GPP, gC/m2/yr); (d) total ecosystem respiration (ER, 

gC/m2/yr), heterotrophic respiration (HR, gC/m2/yr), and autotrophic respiration 

(AR, gC/m2/yr); (e) ecosystem carbon storage efficiency (NEP/NPP, unitless) and 

plant production efficiency (NPP/GPP, unitless). The time of fire disturbance is at 

year 0. 
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Figure 34 – Simulated post-fire temporal evolution of carbon budget in different PFT 

regions based on the idealized burning experiment. (a) spatial distributions of annual 

averaged NEP (gC/m2/yr); (b) temporal variations of post-fire NEP in each disturbed 

grid. 
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Figure 35 – Comparisons of fire induced spring albedo changes (unitless) based on 

satellite observations and model simulations. (a) annual averaged spring albedo 

changes based on MODIS satellite observations from 2003 to 2006; (b) annual 

averaged spring albedo changes based on RESFIRE_CRUNCEP simulations from 

2003 to 2006; (c) same as (b) but from RESFIRE_CAM5c under the 2000-year climate 

condition. 
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Figure 36 – Comparisons of fuel loads (unit: t/ha) in CLM (contour shading) and in-

situ measurements (white circles). 

4.3 Conclusions and Discussion 

In this work, we developed a region-specific ecosystem feedback fire model that 

fully considers regional differences in fire behavior and impacts. We refined the fire 

occurrence and spread parameterization and added online fire weather bias corrections as 

well as ecosystem disturbances in the model. The RESFire model performed well 

according to the ILAMB benchmarking results, which suggest significant improvements 

of burned area simulation in both offline CRUNCEP data atmosphere driven mode and 

online CAM5 driven mode. The overall fire modeling scores increase from 0.50 of the 

default CLM LL2013 fire scheme to 0.61 of RESFire_CRUNCEP and 0.60 of 

RESFire_CAM5c with improved spatial and temporal distributions of fire activities. The 
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fire impact evaluation results also demonstrated good modeling capability in fire emissions 

in forms of mass and energy fluxes. The mean annual fire carbon emissions of RESFire 

agreed well with the latest GFED4.1s data within 12% in offline and online modes. Fire 

emissions for gaseous and aerosol species as well as energy fluxes showed generally good 

agreement with benchmarking data. With the implementation of whole plant mortality and 

recovery, the simulations of fire disturbances on ecosystems and land cover were more 

comprehensive to capture multiple post-fire impacts such as increasing surface albedo in 

boreal forest with decreasing radiative forcing in a long-term time scale [57] (Figure 35). 

We summarized the comparison between the RESFire model in this work and the default 

CLM LL2013 fire model in Table 15. These advanced modelling features with fully 

interactive climate-fire-ecosystem mechanisms are essential to understand the role of fire 

in the climate system and ecosystem changes. 
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Table 15 – Comparisons between the RESFire model and the LL2013 fire model 

Fire model The LL2013 fire model RESFire 

Occurrence Ignition climatological lightning 

and anthropogenic triggers 

climatological lightning and 

anthropogenic triggers 

Flammability a global function of fuel 

load, RH, and soil wetness 

region- and PFT-specific 

functions of fuel load, T10, 

PREC10, and soil water 

Suppression a function of population 

density and GDP 

region- and PFT-specific 

functions of population density 

and a global unified function of 

GDP 

Spread Spread rate a function of wind speed 

and fuel wetness 

functions of wind speed and 

fuel wetness 

Duration fixed (1 day) fixed (1 day) 

Combustibility a function of root zone soil 

wetness and RH 

region- and PFT-specific 

functions of T, RH, SW, and 

FWET 

Suppression a function of population 

and GDP 

region- and PFT-specific 

functions of population and 

global unified function of GDP 

as well as passive constraints 

from terrain and landscape 

fragmentation 

Impact Emissions carbon emissions at surface carbon, trace gases and aerosols 

with dynamic plume rise 

Ecosystem 

disturbance 

vegetation mortality with 

fixed mortality rates for 

each part (leaf, stem, root, 

etc.) 

vegetation mortality and fire 

intensity sensitive whole plant 

mortality, PFT dependent 

recovery, and land cover 

changes 

Radiation 

budget 

none sensible and latent heat fluxes 
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CHAPTER 5. UNDERSTANDING CLIMATE-FIRE-

ECOSYSTEM INTERACTIONS USING RESFIRE AND 

IMPLICATIONS FOR DECADAL CLIMATE VARIABILITY  

 In the previous chapter, we developed a region- and PFT-specific fire model 

(RESFire) with comprehensive climate and ecosystem feedback mechanisms in the CESM 

modeling framework. The RESFire model performs well driven by either offline data 

atmosphere and online CAM5 simulated atmosphere, which enables the advanced 

modeling capability to investigate the complex climate-fire-ecosystem interactions as well 

as to predict future climate change with fully interactive fire disturbances. Therefore, we 

designed and conducted series of numerical experiments using the RESFire model to 

explore the role of fire in the climate system and its influence on decadal climate variability. 

5.1 Modeling Experiments 

 RESFire includes two major fire impact pathways: the direct fire disturbances 

through fire emissions and the indirect fire disturbances through land use and land cover 

changes (LULCC). These two pathways correspond to two disturbance objects, the climatic 

radiative forcing and the terrestrial carbon balance. To quantify fire impacts on these two 

terms in different climate background, we designed two groups of sensitivity simulations 

for present day and future scenarios in Table 16. In each simulation groups, we conducted 

one control run (CTRLx) and two sensitivity runs (SENSxA/B). The CTRL runs were 

designed with fully interactive fire disturbances such as fire emissions with plume rise and 

fire induced LULCC with different boundary conditions for present day (CTRL1) and a 

moderate future emission scenario (CTRL2) of the Representative Concentration Pathway 

4.5 (RCP4.5), respectively.  In each scenario, we successively turned off the direct and 

indirect fire disturbance mechanism in the sensitivity runs to isolate each fire feedback 
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influence. For instance, we estimated the direct impact of fire emissions on radiative 

forcing at present day (RCP4.5 future scenario) by comparing SENS1A (SENS2A) with 

CTRL1 (CTRL2). We also estimated the indirect impact of fire induced LULCC on 

terrestrial carbon balance at present day (RCP4.5 future scenario) by comparing SENS1B 

(SENS2B) with SENS1A (SENS2A). The total fire impact was evaluated by differencing 

CTRL runs with SENSxB runs since both fire feedback mechanisms were turned off in the 

latter. Using these sensitivity experiments, we are capable to evaluate the two-way climate-

fire-ecosystem interactions that are beyond the scope of previous one-way perturbation 

studies in terms of either climate impacts on fires [118, 162, 163] or fire feedback to climate 

[63, 128, 164, 165].  

Table 16 – Fire sensitivity simulation experiments for the present-day and RCP4.5 

future scenarios 

Scenario Present day (2000) Future (RCP4.5) 

Name CTRL1 SENS1A SENS1B CTRL2 SENS2A SENS2B 

Time 2001-2010 2001-2010 2001-2010 2051-2060 2051-2060 2051-2060 

Atmosphere CAM5 CAM5 CAM5 CAM5 CAM5 CAM5 

Land CLM4.5 CLM4.5 CLM4.5 CLM4.5 CLM4.5 CLM4.5 

Ocean Climatology Climatology Climatology RCP4.5 data RCP4.5 data RCP4.5 data 

Sea ice Climatology Climatology Climatology RCP4.5 data RCP4.5 data RCP4.5 data 

Non-fire 

emissions 

ACCMIP ACCMIP ACCMIP RCP4.5 RCP4.5 RCP4.5 

Fire 

emissions 

Online fire 

aerosols with 

plume rise 

─ ─ Online fire 

aerosols 

with plume 

rise 

─ ─ 

Land cover Fire 

disturbance on 

present-day 

conditions 

Fire 

disturbance on 

present-day 

conditions 

Fixed present-

day conditions 

in 2000 

Fire 

disturbance 

on RCP4.5 

conditions 

Fire 

disturbance 

on RCP4.5 

conditions 

Fixed RCP4.5 

conditions in 

2050 
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5.1.1 Climate Models 

1. CAM5 

As the latest version of the atmosphere model in CESM, CAM5 is coupled by the 

dynamical core and the physical parameterization suite. There are four options for the 

dynamical core [90], including the Finite-Volume (FV) dynamical core, the Spectral 

Element (SE) dynamical core, the Eulerian dynamical core, and the semi-Lagrangian 

dynamical core. The total parameterization package in CAM5 also consists of four primary 

components that are precipitation processes, clouds and radiation, the surface model, and 

turbulent mixing [90]. Each of them is then divided into various sub-components. The 

major improvements in CAM5 include: 

(1) A new moist turbulence scheme [166] that explicitly simulates stratus-radiation-

turbulence interactions; 

(2) A new shallow convection scheme [167] using a realistic plume dilution equation 

and closure; 

(3) A prognostic, two-moment formulation [168] for cloud droplet and cloud ice with 

mass and number concentrations that represents stratiform microphysical processes; 

(4) A revised cloud macrophysics scheme [169] that provides a more transparent 

treatment of cloud processes and imposes full consistency between cloud fraction and 

cloud condensate; 
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(5) An updated radiation scheme (the Rapid Radiative Transfer Method for GCMs 

(RRTMG), [170, 171]) that employs an efficient and accurate modified correlated-k 

method for calculating radiative fluxes and heating rates; 

(6) A new 3-mode modal aerosol scheme (MAM3, [172]) with internally mixed 

representations of number concentrations and mass for Aitkin, accumulation, and coarse 

aerosol modes; 

(7) A full inventory of observationally based aerosol emission mass and size; 

These physical enhancements permit new research capabilities to assess aerosol 

impacts on cloud properties and radiative forcing. As such CAM5 represents the first 

version of CAM with the modelling capability of cloud-aerosol indirect radiative 

effects[90], which are of great interest of this climate-fire interaction study. 

2. CLM4.5 

As the latest version of the land model for CESM, CLM represents several land 

surface aspects regarding surface heterogeneity. It consists of multiple sub-models for land 

biogeophysics, biogeochemistry, the hydrological cycle, human dimensions, and 

ecosystem dynamics [111]. The major improvements in CLM4.5 include: 

(1) A revised canopy radiation scheme and canopy scaling of leaf processes [173]; 

(2) A revised photosynthesis scheme [174]; 

(3) Improved cold region hydrology and optional VIC-based hydrology [175, 176]; 

(4) A new snow cover fraction parameterization [177]; 



 129 

(5) A new lake model [178]; 

(6) A newly introduced surface water store that permits prognostic wetland distribution 

modeling [177]; 

(7) A Century-like vertically resolved soil biogeochemistry scheme with revised 

denitrification and biological fixation processes [179]; 

(8) A revised fire model including anthropogenic triggers and suppression as well as 

agricultural, deforestation, and peat fires [112, 122], which was further improved as is 

shown in the previous section; 

(9) An updated biogenic volatile organic compounds model (MEGAN2.1, [180]); 

(10) A methane production, oxidation, and emission model [181]; 

(11) An extension of the crop model including interactive fertilization, organ pools 

[182], and irrigation [183]; 

(12) 13C and 14C isotope fractionation [179]; 

(13) Newer and higher resolution input datasets; 

All the improvements together with the new RESFire model and other modeling 

features in CAM5 and CLM4.5 provide the state-of-the-science simulation capability to 

examine the physical, chemical, and biological processes by which global fires interact 

with climate and terrestrial ecosystems. 

5.1.2 Model Input Data 

 We used the simulation results from the last chapter as the initial conditions for the 

present-day sensitivity experiments (CTRL1/SENS1x) in this chapter to save the spin-up 
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time. The boundary conditions including the prescribed climatological (1981-2010 

average) sea surface temperature and sea ice data for the present-day scenario were 

provided by Met Office Hadley Centre (HadISST) [81]. Similarly, the nitrogen and aerosol 

deposition rates were also prescribed from a time-invariant spatially varying annual mean 

file for 2000 and a time-varying (monthly cycle) globally-gridded deposition file, 

respectively, as the standard data sets necessary for the present-day CAM5 simulations 

[89]. The climatological 3-hourly cloud-to-ground lightning data via bilinear interpolation 

from NASA LIS/OTD grid product v2.2 (http://ghrc.msfc.nasa.gov) 2-hourly lightning 

frequency data and the world population density data were fixed at the 2000 levels for all 

the present-day simulations. The non-fire emissions from anthropogenic and other sources 

at present-day were based on ACCMIP [184] for the 2000 year. We replaced the old 

prescribed GFED2 fire emissions [185] in the default setting with online coupled fire 

emissions generated by the RESFire model in the CTRL runs. We then turned the coupled 

fire emissions off in the SENS runs to evaluation fire direct impacts on radiative forcing. 

We used the fixed historical land use and land cover change data for 2000 based on version 

1 of the Land-Use History A product (LUHa.v1) [154] for the CTRL1 run. We then 

perturbed the LULCC data in the sensitivity experiments as described in RESFire model 

development to evaluate fire indirect impacts on terrestrial ecosystems.  

 For the future scenario experiments, we replaced all the present-day datasets with 

the RCP4.5 prediction datasets including the prescribed boundary conditions of global SST 

and sea ice data in 2050, the cyclical non-fire emissions and deposition rates fixed in 2050 

under the RCP4.5 scenario, and the annual LULCC data for the RCP4.5 transient period in 

2050 based on the Future Land-Use Harmonization A products (LUHa.v1_future) [154]. 

All these datasets were described in the technical note of CAM5 [90] and the introduction 

of CESM [89] and stored on the NCAR Yellowstone system. It is worth noting that we 

kept the climatological lightning data and the population density data in the future scenario 

http://ghrc.msfc.nasa.gov/
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experiments the same with the present-day scenario due to data availability and great 

uncertainties in those future projection data. In other words, we did not consider the 

influence of demographic changes and lightning frequency changes in our future projection 

simulations but focused on the impact of climate change other than lightning. 

The global mean GHG mixing ratios in the CAM5 atmosphere model were fixed at 

the 2000 levels (CO2: 367.0ppmv; CH4:1760.0ppbv; N2O:316.0ppbv) in all present-day 

experiments and they were provided by the prescribed RCP4.5 projection datasets with the 

well-mixed assumption and monthly variations in the future scenarios.  These GHG mixing 

ratios were then broadcasted to the CLM4.5 land model in all scenarios. In return, the land 

model diagnosed the balance of all carbon fluxes between net ecosystem production (NEP, 

g CO2/m
2/s, positive for carbon sink) and depletion from fire emissions, landcover change 

flux, and carbon loss from wood products pools etc., and then outputted the net CO2 flux 

to the atmosphere model in forms of net ecosystem exchange (NEE, g CO2/m
2/s, positive 

for carbon source). Though fire emissions could influence the value of NEE, it is often 

assumed that fire carbon emissions are offset by carbon absorption of vegetation regrowth 

and fires are neither a source nor a sink for CO2 [28].  Therefore, we did not consider the 

radiative forcing of fire related greenhouse gases (GHGs) in our sensitivity experiments. 

5.1.3 Model Performance Evaluation Benchmarks 

Multiple observational and simulated datasets were applied to evaluate the 

modelling performance related with radiative forcing. We collected space based and 

ground based column aerosol optical depth (AOD) products from MODIS [72] and the 

Aerosol Robotic Network (AERONET, https://aeronet.gsfc.nasa.gov/) to compare with the 

model simulated AOD. We then followed the Ghan’s method [186] to estimate fire aerosol 

https://aeronet.gsfc.nasa.gov/
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effects on the planetary energy balance through direct radiative forcing, cloud radiative 

forcing, and surface albedo forcing (Equation 42).  

 𝐷𝑖𝑟𝑒𝑐𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑖𝑛𝑔: ∆(𝐹 − 𝐹𝑐𝑙𝑒𝑎𝑛)

𝐶𝑙𝑜𝑢𝑑 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑖𝑛𝑔: ∆(𝐹𝑐𝑙𝑒𝑎𝑛 − 𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛)

𝐹𝑖𝑟𝑒 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑙𝑏𝑒𝑑𝑜 𝑓𝑜𝑟𝑐𝑖𝑛𝑔: ∆𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛

𝑇𝑜𝑡𝑎𝑙 𝑎𝑒𝑟𝑜𝑠𝑜𝑙 𝑓𝑜𝑟𝑐𝑖𝑛𝑔: ∆𝐹 = ∆(𝐹 − 𝐹𝑐𝑙𝑒𝑎𝑛) + ∆(𝐹𝑐𝑙𝑒𝑎𝑛 − 𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛) + ∆𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛

𝐿𝑎𝑛𝑑 𝑐𝑜𝑣𝑒𝑟 𝑐ℎ𝑎𝑛𝑔𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑙𝑏𝑒𝑑𝑜 𝑓𝑜𝑟𝑐𝑖𝑛𝑔: 𝐹𝑆𝐸𝑁𝑆1𝐴 − 𝐹𝑆𝐸𝑁𝑆1𝐵

 (42) 

Here ∆ is the difference between atmosphere simulations with and without fire 

emissions, 𝐹  is the shortwave radiative flux at the top of the atmosphere, 𝐹𝑐𝑙𝑒𝑎𝑛  is the 

radiative flux calculated as an additional diagnostic from the same simulations but 

neglecting the scattering and absorption of solar radiation by all the aerosol, and 𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛 

is the flux calculated as additional diagnostic but neglecting scattering and absorption by 

both clouds and aerosols. The surface albedo forcing is largely the contribution of changes 

in surface albedo induced by fire aerosols and land cover changes, which is small but 

nonnegligible in some specific regions [186]. We compared our online coupled fire 

estimations with previous offline prescribed fire modeling studies [63, 187] and analyzed 

the differences. 

We also examined the fire modeling performance regarding terrestrial carbon 

balance such as burned area and fire carbon emissions, gross primary production (GPP, 

positive for carbon sink), net primary production (NPP, positive for carbon sink), net 

ecosystem productivity (NEP, positive for carbon sink), and net ecosystem exchange 

(NEE, positive for carbon source). These carbon budget related variables were calculated 

in Equation 43-44 and compared against the satellite based GFED4.1s datasets [53, 55, 
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126], the MODIS primary production products [188, 189], and the previous modeling 

results used for terrestrial model comparison projects [190, 191] to generate a 

comprehensive evaluation.  

 GPP = NPP + 𝑅𝑎 = (NEP + 𝑅ℎ) + 𝑅𝑎 (43) 

 NEE = 𝐶𝑓𝑒 + 𝐶𝑙ℎ − NEP (44) 

Here 𝑅𝑎 is the total ecosystem autotrophic respiration (g C/m2/s), 𝑅ℎ is the total 

heterotrophic respiration (g C/m2/s), 𝐶𝑓𝑒 is the fire carbon emissions (g C/m2/s), and 𝐶𝑓𝑒 is 

the carbon loss (g C/m2/s) due to landcover change, wood products, and harvest.  

5.2 Modeling Results and Analysis 

5.2.1 Radiative Forcing 

Figure 37 shows the comparison between CAM5 simulated column AOD and 

satellite retrieved MODIS AOD at 550nm. It’s noted that both AOD data resulted from all 

emission sources including fire and non-fire emissions, and significant differences are 

found in specific regions due to large biases in modeling emissions. In the MODIS AOD 

data, the most predominant hot spot regions include eastern China as discussed in Chapter 

2 and 3, South Asia such as India, and Africa. The first two hot spots are contributed mostly 

by anthropogenic emissions, while the last hot spot region is dominated by fire emissions. 

Since the non-fire emissions used in CAM5 simulations are biased low, these hot spots in 

east and south Asia regions are not as appreciable as those observed in remote sensing data. 

However, the model well captures the high AOD regions over the north and south Africa, 
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where have large biomass burning contributions. It’s also noticeable that the CAM5 model 

overestimates the dust emissions significantly since some spuriously high AOD hot spots 

emerge over the Sahara and Arabian desert regions.     

 

Figure 37 – Comparison of annual averaged MODIS retrieved column AOD at 550nm 

(top) aboard the Aqua satellite and CAM5 simulated column AOD at 550nm (bottom) 

in 2000. 

 To further evaluate the fire related AOD modeling performance, we compared the 

difference between CTRL1 and SENS1A to isolate the contributions from fire emissions 

in Figure 38. The spatial distributions clearly reveal African savanna as the major biomass 
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burning region around the world. We also compared the monthly AOD at 6 fire-prone sites 

with AERONET in situ observations to get a better understanding of temporal variations. 

Most sites show strong seasonal variations in monthly AOD as observed by AERONET, 

and the fire model well captures fire seasons in these regions with certain biases in 

simulated AOD. Generally, the CAM5 AOD results show low biases in most regions, 

especially over the Southeast Asia rain forest regions like Chiang Mai, where deforestation 

and agricultural related burning activities prevail.   
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Figure 38 – Annual averaged fire related AOD at 550nm and comparisons with 

AERONET in situ observations in 2000. 

 Lastly, we estimated the radiative forcing of fire induced aerosol and land cover 

changes and compared with previous studies in Figure 39 and Table 17. As expected, the 

fire aerosol direct radiative forcing is most prominent in tropical Africa and downwind 

ocean regions, where show the strongest warming effects due to burning activities in 

African savanna. In contrast, the fire aerosol induced cloud radiative forcing shows 

generally cooling effects in most regions due to enhanced cloudiness, and such cooling 

effects are more pervasive over high latitude regions such as boreal forest in North America 

and eastern Siberia. The surface albedo RF shows similarly spatial patterns with moderate 

cooling effects in boreal regions. The global averaged values for the fire aerosol direct, 

cloud, and surface albedo RF in 2000s are 0.08±0.04 W/m2, -1.0±0.09 W/m2, and -

0.08±0.10 W/m2, respectively, and the surface albedo RF related with fire induced land 

cover changes is 0.06±0.11 W/m2. After combining all these forcing terms, we ended up 

with a total RF of -0.94±0.17 W/m2 for the present day scenario, which is much larger than 

the estimates of around -0.55 W/m2 in the previous fire RF studies [63, 187]. It’s noted that 

both Ward et al. [63] and Jiang et al. [187] conducted uncoupled fire sensitivity simulations 

with prescribed fire emissions from CLM3 model simulations [162, 163] and different 

versions of GFED datasets [126, 192], respectively. The annual fire carbon emissions in 

Ward et al. [63] ranged from 1.3Pg C yr-1 for present day simulations to 2.4Pg C yr-1 for 

the future trajectory with ECHAM atmospheric forcing, while the daily fire BC, POM and 

SO2 emissions in Jiang et al. [187] were based on the GFEDv3.1 dataset with an annual 

averaged fire carbon emission of 1.98Pg C yr-1[192]. Both of their fire emissions were 
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lower than our RESFire model simulations of 2.6Pg C yr-1 (Table 18), which might lead to 

the differences in fire aerosol radiative forcing estimation. It’s also worth noting that all 

fire emissions were released into the lowest CAM level as surface sources in Ward et al. 

[63], and the default vertical profile based on the AeroCom protocol [193] was used in 

Jiang et al. [187]. In our simulations, we developed a simplified plume rise 

parameterization [194] in RESFire and applied online vertical profiles with diurnal cycles 

to the vertical distribution of fire emissions. It’s reported that our plume rise results 

suggested higher plume rise heights and penetration rates of fire aerosols to planetary 

boundary layer (≥50%) in the late afternoon than previous studies [193, 195, 196]. These 

higher elevated fire plumes with higher penetration rates affected the vertical distribution 

and lifetime of fire aerosols and further influenced optical properties and radiative forcing. 

We also compared the future scenario results with the present-day conditions in Table 17, 

which suggests a ~47% enhancement of total fire aerosol and land cover change radiative 

forcing from -0.94±0.17W/m2 at present day to -1.38±0.15W/m2 in the RCP4.5 future 

scenario. Such enhanced negative radiative forcing is dominated by the increasing fire 

aerosol cloud radiative forcing at a similar changing ratio with Ward et al.’s CCSM future 

projection results [63]. 
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Figure 39 – Fire contributed (a) aerosol direct radiative forcing, (b) cloud radiative 

forcing, and (c) surface albedo radiative forcing.  
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Table 17 –  Comparisons of fire contributed radiative forcing in present-day and 

future scenarios based on this work and previous studies 

Unit: W/m2 This work Jiang et al. 

[187] 

Ward et al. [63] 

Time 2000s 2050s 2000s 2000s 2100s 

(CCSM/ECHAM) 

Aerosol-Radiation Effect 0.08±0.04 0.05±0.04 0.16±0.01 0.10 0.12/0.25 

Aerosol-Cloud Effect -1.00±0.09 -1.40±0.05 -0.70±0.05 -1.00 -1.42/-1.74 

Snow/Ice Albedo Effect -0.08±0.10 -0.06±0.05 0.03±0.10 0.00 0.00/0.00 

Land Albedo Effect 0.06±0.11 0.03±0.10 ─ -0.20 -0.23/-0.29 

Total -0.94±0.17 -1.38±0.15 -0.55±0.07 -0.55* -0.83/-0.87* 

*: the total radiative forcing includes other effects such as GHGs and climate-BGC feedback;  

5.2.2 Carbon Balance 

After radiative forcing, we evaluated the RESFire modelling performance 

regarding terrestrial carbon budget in Table 18.  We used the previous modelling studies 

and the latest GFEDv4.1s datasets as the benchmarks and examined fire related variables 

including global burned area, fire carbon emissions, GPP, NPP and NEE in the present-

day scenario of 2000s.  The RESFire model results performs well in global burned area 

and fire carbon emissions driven by either offline CRUNCEP atmosphere data 

(RESFire_CRUNCEP) and online CAM5 simulated atmosphere data with bias corrections 

(RESFire_CAM5c). The annual averaged burned area results are very close to the 

GFEDv4.1s benchmark value of 510Mha yr-1, while the default fire model in CLM shows 

significant low biases. When it comes to fire carbon emissions, the offline 
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RESFire_CRUNCEP result is still consistent with the GFEDv4.1s benchmark of around 

2.2Pg C yr-1, and the online RESFire_CAM5c result show a 18% higher value than the 

benchmark, which is still within the uncertainty range of the benchmark data. It’s worth 

noting that the GFED datasets has low bias issues in fire emissions and modelling studies 

[41, 63], a moderate increase in fire carbon emissions would alleviate such low bias 

problems in fire modelling studies and reduce the need for rescaling.   

We then compared the CLM simulated carbon budget variables such as GPP and 

NEE against 10 process-based terrestrial biosphere models that were used for the IPCC 

fifth Assessment Report [191]. Both the offline and online CLM GPP results are around 

142Pg C yr-1, which are higher than the MODIS primary production products (MOD17) of 

109.29Pg C yr-1 [189] and near the upper bound of ensemble modelling results (133±15Pg 

C yr-1) [191]. Such high GPP estimation leads to ~11% higher NPP in the CLM simulations 

than the mean MODIS product of 56Pg C yr-1 from 2001 to 2003 as well as the old CLM 

results by Li et al. [128]. These differences may result from the different atmosphere 

forcing data used to drive the CLM land model. However, the NEE results based on the 

RESFire model in CLM are consistent with the benchmarks from the IPCC AR5 and 

ensemble modelling results, indicating the robustness of the fire and land modelling 

performance. 
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Table 18 – Comparisons of RESFire modeling results of carbon budget with previous 

studies 

Variables Time This work Li et al. 

[128] 

Benchmark Sources 

Models RESFire-

CRUNCEP 

RESFire-

CAM5 

DATM-

CLM4.5 

Burned Area 

(Mha/yr) 

1997-

2004 

508±15 472±14 322 510±27 GFED4.1s [53, 

126] 

Fire Carbon 

Emissions (Pg C/yr) 

1997-

2004 

2.3±0.2 2.6±0.1 2.1 2.2±0.4 GFED4.1s [55] 

NEE (Pg C/yr) 1990s -2.6±0.6 -2.0±1.3 -0.8 -1.1±0.9 

-2.0±0.8 

IPCC AR5 [197] 

10 models 

average [191] 

GPP (Pg C/yr) 2000-

2004 

142±2 142±1 130 133±15 10 models 

average [191] 

NPP (Pg C/yr) 2000-

2004 

62±1 63±0.7 54 54 Zhao and 

Running [188] 

After the evaluation of carbon budget in the CLM land model, we further 

decomposed the components in NEE and compared the new RESFire simulation results 

with the old fire model simulations by Li et al. [128]. We isolated the fire contributions to 

each carbon budget variables by differencing the fire-on and fire-off experiments driven 

by the data atmosphere in Table 19 following the same setting in Li et al. [128]. We found 

a 58% increase in fire induced NEE variations simulated by RESFire than the old LL2013 

fire model. This increase is mainly contributed by both enhanced fire emissions and 

suppressed NEP by RESFire. As discussed in the previous section, RESFire simulated 

higher annual averaged fire carbon emissions (2.08Pg C yr-1) than the LL2013 fire model 

(1.9Pg C yr-1) in CLM, which contributed 31% of the difference. Meanwhile, RESFire 

simulated smaller NEP changes due to fire, which could be attributed to newly added fire 
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induced land cover changes. In RESFire, we considered fire induced whole plant mortality 

and post-fire vegetation recovery as discussed in Chapter 4, both of which were missing in 

the default LL2013 fire model. The newly incorporated fire induced land cover changes 

would influence ecosystem productivity and respiration as shown by carbon budget 

variables in Table 19. To be specific, the fire induced whole plant mortality and recovery 

would moderate the variations in ecosystem productivity and respiration of either 

autotrophic and heterotrophic species and further suppress fire induced NEP changes. The 

suppressed NEP change explains 52% of the total difference in simulated NEE changes. 
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Table 19 – Diagnosis of carbon budget variables in the data atmosphere driven 

RESFire-CRUNCEP and the default CLM-LL2013 fire simulations 

Variables RESFire-CRUNCEP Li et al. [128] 

(Pg C/yr) ΔFire Fire on Fire off ΔFire Fire on Fire off 

NEE 1.58 -2.67 -4.25 1.0 -0.1 -1.1 

Cfe 2.08 2.08 0.0 1.9 1.9 0.0 

-NEP+Clh -0.5 -4.75 -4.25 -0.9 -2.0 -1.1 

NEP 0.5 4.8 4.3 0.8 3.0 2.3 

NPP 0.4 61.7 61.3 -1.9 49.6 51.6 

Rh -0.1 56.9 57.0 -2.7 46.6 49.3 

GPP -0.1 142.3 142.4 -5.0 118.9 123.9 

Ra -0.5 80.6 81.1 -3.1 69.3 72.4 

Clh 0.0 0.05 0.05 -0.1 1.0 1.1 

 Similar with radiative forcing, we examined changes of the carbon budget variables 

in RCP4.5 future scenarios in Table 20. In general, the global burned area increases by 

19% from the present-day scenario in CTRL1 (464±19Mha yr-1) to the RCP4. 5 future 

scenario in CTRL2 (551±16Mha yr-1). Accordingly, the annual averaged fire carbon 

emission increases by 100% from 2.5±0.1Pg C yr-1 at present to 5.0±0.3Pg C yr-1 in future. 

This increase is larger than the previous CLM modeling study of 25%~52% by Kloster et 

al. [162, 163], which might result from different climate sensitivity between RESFire and 

old CLM fire models. The carbon budget variables including GPP, NEP, and NEE increase 

by 4%, 7%, and 33%, respectively. These carbon variables affect terrestrial ecosystem 

productivity as well as fuel load supply for biomass burning. The complex climate-fire-

ecosystem interactions will be discussed in the next section.  
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Table 20 – Comparisons of carbon budget variables in the sensitivity experiments of 

present-day and future scenarios 

Variables This work Kloster et al. [162, 

163] 

Time 

(scenario) 

2000s 

(CTRL1) 

2050s 

(CTRL2) 

2000s 

(SENS1A) 

2050s 

(SENS2A) 

2000s 

(SENS1B) 

2050s 

(SENS2B) 

2000s 2050s 

Burned 

Area 

(Mha/yr) 

464±19 551±16 

(↑19%) 

437±17 

(↓6%) 

535±19 

(↓3%) 

458±18 

(↓1%) 

545±18 

(↓1%) 

176-

330 

─ 

Fire Carbon 

Emissions 

(Pg C/yr) 

2.5±0.1 5.0±0.3 

(↑100%) 

─ ─ ─ ─ 2.0-

2.4 

2.7(↑25%)/ 

3.4(↑52%) 

GPP (Pg 

C/yr) 

141±1.2 146±1.1 

(↑4%) 

143±1.0 

(↑1%) 

149±1.3 

(↑2%) 

142±1.5 

(↑1%) 

150±1.3 

(↑3%) 

─ ─ 

NEP (Pg 

C/yr) 

1.4±0.04 1.5±0.04 

(↑7%) 

1.4±0.04 

(→0%) 

1.6±0.04 

(↑7%) 

1.4±0.02 

(→0%) 

1.6±0.05 

(↑7%) 

─ ─ 

NEE (Pg 

C/yr) 

1.2±0.03 1.6±0.05 

(↑33%) 

1.2±0.02 

(→0%) 

1.6±0.05 

(→0%) 

1.2±0.02 

(→0%) 

1.6±0.05 

(→0%) 

─ ─ 

5.2.3 Climate-Fire-Ecosystem Interactions 

In the last section, we found a 19% increase of annual mean global burned area in 

the RCP4.5 future scenario compared to the present-day scenario. We examined the driving 

force and spatial distributions of this increase in Figure 40. The fuel load distribution shows 

heterogeneous changes with significant increases in boreal forest regions over Eurasia as 

well as rain forest regions in Africa and south American savanna and decreases in southeast 

Asia and Australia, while the fire spread distribution shows more clear patterns of 

increasing fire spread rates over middle- to high-latitude regions but decreasing fire spread 

rates over tropical regions. The burn area changes are mainly driven by fire weather 

changes as suggested by fire spread rates since the increasing and decreasing areas in 



 145 

burned area resemble the spatial pattern in fire spread rate changes. In another word, fire 

weather changes dominate fire regime changes in future and determine the varying 

tendencies of burned intensity in each region.  
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Figure 40 – Changes in fire related variables between the RCP4.5 future scenario 

(CTRL2) and the present-day scenario (CTRL1). (a) changes in annual averaged fuel 

loads; (b) changes in annual averaged fire spread rate factors (FSF); (c) changes in 

annual averaged burned area; The net grids denote the 0.05 significance level.  

To understand changes in specific fire weather variables, we compared the 

differences of fire aerosol AOD, surface temperature, and precipitation in Figure 41. Those 

regions with significantly increased burned areas also show enhanced fire aerosol AOD 

over boreal forest regions, southeast Asia, and downwind regions of central America. The 

enhanced AOD over these regions also reduce surface temperature in these regions while 

the other regions show neutral to positive surface temperature changes. The boreal forest 

region in north America show the strongest warming effect that may contribute to the large 

increases of biomass burning over this region. We also found suppressed precipitation over 

north America and southeast Asia, which also partly explain increasing tendencies of 

biomass burning over the same regions.  

 The examination of fire, ecosystem, and climate variables suggest different 

feedback mechanisms in their interactions. To quantify these distinct feedback pathways, 

we compared the sensitivity experiment results with the control runs and isolated direct 

and indirect feedback mechanisms in Figure 42. The comparison of the fire emission 

sensitivity experiments (CTRL2 vs SENS2A) suggests a positive feedback mechanism in 

that fire aerosol emissions tend to suppress precipitation in most regions (Figure 42a) and 

result in a 15.7Mha yr-1 increase in global burned area (Figure 42b). In the contrary, the 

comparison of fire induced land cover change experiments (SENS2A vs. SENS2B) 

suggests a negative feedback mechanism due to reduced fuel load supply with 
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consideration of fire induced LULCC. After the incorporation of fire disturbances on land 

cover, the global fuel load reduces in mang post-fire regions (Figure 42c) and leads to a 

10.2Mha yr-1 decrease in global burned area (Figure 42d). The total interactive effect 

depends on the counteraction of these two contradictive feedback mechanisms, which 

increases the complexity of climate-fire-ecosystem interactions at regional and global 

scales.   
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Figure 41 – Changes in annual averaged climate variables between the RCP4.5 future 

scenario (CTRL2) and the present-day scenario (CTRL1). (a) changes in column 
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AOD; (b) changes in surface temperature; (c) changes in precipitation rates; The net 

grids denote the 0.05 significance level. 

 

Figure 42 – Comparisons of climate-fire-ecosystem interactions in fire sensitivity 

experiments in the future scenario. (a) differences of 30-day running mean 

precipitation between fire emission sensitivity experiments (CTRL2-SENS2A); (b) 

same as (a) but for differences of annual mean burned area; (c) differences of fuel 

loads between fire induced land cover change sensitivity experiments (SENS2A-

SENS2B); (d) same as (c) but for differences of annual mean burned area; The net 

grids denote the 0.05 significance level.    
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5.3 Conclusions and Discussion 

In this chapter, we conducted series of fire modeling sensitivity and future 

prediction experiments with the consideration of different climate-fire-ecosystem feedback 

mechanisms. We evaluated the RESFire modeling performance in the context of radiative 

forcing and terrestrial carbon balance. We summarized the fire radiative forcing results for 

the present-day and the RCP4.5 future scenarios in Figure 43. We mainly considered fire 

induced radiative forcing changes related with fire aerosols and land cover changes. It’s 

found that the fire radiative forcing increased from -0.94±0.17 W/m2 in 2000s to -

1.38±0.15 W/m2 in 2050s, which was dominated by increased global biomass burning 

intensity and subsequent fire aerosol cloud radiative forcing changes. The global burned 

area and fire carbon emissions increased by 19% and 100%, respectively, with large 

amplification at boreal regions due to strong warming and enhanced fire spread rates. The 

fire aerosol emissions and fire induced land cover changes lead to contradictive feedback 

mechanisms in climate-fire-ecosystem interactions, manifesting a positive feedback 

induced by fire aerosol effects and a negative feedback related with fire induced land cover 

and fuel load changes. These two distinct feedback mechanisms competed with each other 

and increased the complexity of interactions among each component. We suggest more 

comprehensive examinations at regional scales to reveal these complex interactions for 

each fire-prone region. More evaluation metrics such as extreme values related with large 

wildfires should also be considered in the following studies to obtain a complete 

understanding of fire activities and their relationship with decadal climate change in future.  
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Figure 43 – Comparisons of fire related radiative forcing in (a) the present-day and 

(b) the RCP4.5 future simulations. 
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CHAPTER 6. CONCLUSIONS AND IMPLICATIONS 

 Here I summarized the major findings of all chapters and discussed the implications 

for relevant climate change and air pollution research. Some recommendations for future 

work are also listed in the end to encourage more follow-up studies.  

6.1 Research Summaries 

6.1.1 An Active Attempt to Understand the Impact of Climate Change on Regional Air 

Quality 

The extraordinary severity of China’s haze pollution in recent winters drew our 

close attention in the first place. I never saw such suffocating heavy smog in my several 

years’ living experience in Beijing and other Chinese cities. It was believed that some kind 

of “tipping point” had been passed for both human society and climate systems. 

Preliminary results derived from pure meteorological variables corroborated these 

conjectures that the recent unfavorable weather conditions conducive to extreme haze were 

unprecedented in the past several decades. We tracked back much further than previous 

studies and tried to understand the role of climate change in these pollution extremes. Based 

on comprehensive statistical analysis and numerical modeling results, we concluded that 

the extreme haze pollution in recent winters was closely related with boreal cryosphere 

changes such as declining Arctic sea ice in preceding autumn and increasing Eurasia snow 

in early winter. These boreal cryosphere changes, especially the decreasing Arctic sea ice 

in autumn, modulated regional circulation to a large extent through perturbations on 

prominent teleconnection patterns in the Northern Hemisphere. Specifically, declining 

Arctic sea ice in autumn and early winter induced strong anomalous warming over the 
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Arctic and enhanced transient eddy forcing in the upper troposphere over the Atlantic 

Ocean during the following months. These changes tended to shift the East Atlantic 

teleconnection pattern to its positive phase, which further excited anomalous planetary 

wave propagation in downstream regions and altered near surface circulation with 

weakened east Asian winter monsoon activities. Suppressed monsoon winds finally 

attenuated atmosphere ventilation over eastern China and gave rise to severe haze pollution 

in concurrence with heave anthropogenic emissions of primary air pollutants and 

precursors in this region. Projections based on the 11 CMIP5 climate models also revealed 

exacerbating weather conditions with nearly tripled probability of extreme air stagnation 

by the end of the 21st century in the RCP8.5 future scenario. These findings have mixed 

implications for all stakeholders including the public, the Chinese government, and 

industry. They may serve as an easy excuse by the major polluters and environment 

regulators to absolve themselves from necessary responsibility for air pollution. They may 

also serve as a strong incentive for the Chinese government and the public to promote more 

stringent pollution reduction and more clean energy utilization. Since we have entered an 

era of rapid climate change, we are experiencing more and more influences of climate 

change on daily life, and we will witness people’s choice of how to cope with those great 

challenges for the future.  

6.1.2 A Productive Progress to Improve Fire Modelling Capability in the Earth System 

Model 

The fire model development practice is another attempt to tackle the complex 

system problem with multiple components and intriguing interactions. This time we not 

only evaluated the impact of climate change on fire activities but also considered fire 
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feedback to the climate systems. This is a more integrated example of how climate change 

interacts with air pollution cases such as wildfires. We improved the modeling capability 

of fire occurrence, fire spread, and fire impacts in the RESFire model with satisfactory 

performance in different simulation modes. The RESFire model showed robust fire 

modelling performance driven by either offline reanalysis-observation combined 

atmosphere data or online CAM5 simulated atmosphere data, which laid the foundation of 

future prediction studies. The newly incorporated fire impact module also completed the 

feedback pathways between fire activities and the climate systems and enabled two-way 

interactive modelling studies. Based on the RESFire numerical prediction experiments in 

Chapter 5, we found 19% increases in global burned area and 100% increases in fire carbon 

emissions in the middle 21st century under the RCP4.5 moderate emission scenario. These 

changes lead to more than 40% enhancement of fire aerosol radiative forcing, which is 

dominated by fire aerosol cloud radiative forcing changes. We also analysed the sensitivity 

experiments and proposed two competitive feedback pathways of fire activities, a positive 

feedback related to fire aerosol suppressed precipitation and a negative feedback related to 

fire induced land use change and fuel supply reduction. All these results demonstrate the 

effectiveness of the RESFire model and the latest development in interactive climate-fire-

ecosystem modelling studies, which are essential for a clear understanding of decadal 

climate variability.  

6.2 Future Work 

6.2.1 Climatic Extreme Event Attribution 

The great complexity in the climate system and the air pollution problem 

themselves limits our insight into the connections from remote boreal cryosphere changes 

to regional haze pollution. Such connections transmit through too long chains to generate 

a clear and easy-to-understand signal. The answer to the problem also requires 
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interdisciplinary knowledge given its transdisciplinary characteristics. Here I list 

suggestions for follow-up studies to uncover more details in the teleconnection 

relationship: 

(1) More sensitivity experiments should be designed and conducted to understand 

climate impacts of declining Arctic sea ice in different seasons at sub-regional 

scales. Previous studies have suggested high nonlinearity in atmosphere responses 

to Arctic sea ice forcing with quite different responses to regional sea ice losses 

from pan-Arctic sea ice loss [198]. More climate forcing factors such as SST 

changes in specific regions should also be examined carefully for a comprehensive 

understanding of climate change effects. 

(2) Besides forcing factors, more connections with other potential responses can be 

built based on current observational datasets and numerical modeling results. Arctic 

warming has been linked to several observed vegetational changes in boreal regions 

such as Eurasian Arctic greening in recent decades [199-201]. These changing 

biomes may reshape local ecosystem productivity and biomass fuel conditions and 

further interplay with local fire activities. Fire emissions like GHGs and 

carbonaceous aerosols also show strong impacts on Arctic climate change. It is an 

interesting question that how would melting Arctic sea ice and increasing fire 

activities interact with each other in a warming world. We can integrate the two 

problems in this work together by answering the above question.  

6.2.2 Fire Model Development and Application 
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Data availability was a major limiting factor in the fire model development to 

representing complex interaction processes. Despite the advances of fire modeling in 

global models made in this work, there are several areas that future fire model development 

should consider:  

(1) Large uncertainties in fuel load and emission factors would undermine the accuracy 

of fire emission products. Figure 36 compares the CLM fuel load simulation against 

176 in-situ measurements worldwide [202]. The comparison results reveal 

generally well modeled biomass fuel, though some discrepancies are still 

appreciable in regions such as western North America. Reducing fuel load biases 

and emission factor uncertainties would better complement the improved burned 

area simulation in the fire model;    

(2) More detailed burning process parameterization is needed to simulate different fire 

combustion stages. It is known that flaming and smoldering are two burning stages 

that have very different emission characteristics. Such emission features will 

determine fire emission species, timing, and transportation and improve the model 

simulations of more complete fire gaseous and particulate emissions (such as brown 

carbon from biomass burning) and their effects on weather and climate.  

(3) Fire impact parameterization for fire induced plant mortality and regrowth can be 

improved by including multiple plant properties such as tree species, stem size, and 

bark thickness. The detailed vegetation demographic information under the PFT-

based modeling structure would further improve the modeling capability of 

regional differences in fire disturbance and ecosystem responses. Approaches such 
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as “cohorts” by aggregating plant individuals with similar size, type, and 

successional status [203] will further improve the fire model; 

(4) More fire related observations for plant mortality and recovery are needed to 

improve fire impact simulations by considering variable recovery rates and 

interspecies competition. Integration of the fire model with DGVMs will be needed 

to fully reproduce fire-vegetation dynamics in the model. 
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APPENDIX A. AUXILURY MATERIALS  

 This appendix includes a summary of statistical metrics used in the ILAMBv2 

benchmark system [155] for evaluation of the fire simulation performance in Chapter 4. 

A.1  Metrics in the ILAMBv2 Benchmark System  

A.1.1 Global Bias Metric 

 
𝑀𝑖 = 1 − |

𝐴𝑀𝑚𝑜𝑑,𝑖 − 𝐴𝑀𝑜𝑏𝑠,𝑖

𝐴𝑀𝑜𝑏𝑠,𝑖
′ | (45) 

 𝑀𝑖
′ = 𝑒𝑀𝑖/𝑒 (46) 

 𝐴𝑀𝑜𝑏𝑠,𝑖
′ = 𝐴𝑀𝑜𝑏𝑠,𝑗 − min(𝐴𝑀𝑜𝑏𝑠) × 𝐹𝐶 (47) 

 
𝑀 =

∑ 𝑀𝑖
′ × 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖

𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

∑ 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖
𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

 (48) 

ILAMBv2 uses Equations 45-48 to calculate global bias metric score Mi at ith grid 

cell and its global mean M with mass weighting, respectively. 𝐴𝑀𝑚𝑜𝑑,𝑖and 𝐴𝑀𝑜𝑏𝑠,𝑖  are 

annual mean of the model and the observation at ith grid cell, separately. FC is a factor 

coefficient to force 𝐴𝑀𝑜𝑏𝑠,𝑖
′  being positive everywhere. 𝐴𝑖  is the area for ith grid cell. 

𝑀𝑜𝑏𝑠,𝑖is adjusted mass (𝐴𝑀𝑚𝑜𝑑,𝑖
′ ) for mass weighting to calculate global mean score M. 

ncells is the number of all land grid cells where observation data is available. 

A.1.2 Root Mean Square Error (RMSE) Metric 
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𝑀𝑖 = 1 −

𝑅𝑀𝑆𝐸𝑖

Φ𝑜𝑏𝑠,𝑖
 (49) 

 𝑀𝑖
′ = 𝑒𝑀𝑖/𝑒 (50) 

 𝐴𝑀𝑜𝑏𝑠,𝑖
′ = 𝐴𝑀𝑜𝑏𝑠,𝑗 − min (𝐴𝑀𝑜𝑏𝑠) × 𝐹𝐶 (51) 

 
𝑀 =

∑ 𝑀𝑖
′ × 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖

𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

∑ 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖
𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

 (52) 

ILAMBv2 uses Equations 49-52 to calculate root mean square error metric score 

𝑀𝑖 at ith grid cell and its global mean M, respectively. Where Φ𝑜𝑏𝑠,𝑖 is the root mean square 

for monthly mean annual cycle of the observation at ith grid cell, and 𝑅𝑀𝑆𝐸𝑖 is the root 

mean square error between model and observation. 𝐴𝑀𝑜𝑏𝑠,𝑖  is annual mean of the 

observation at ith grid cell. FC is a factor coefficient to force 𝐴𝑀𝑜𝑏𝑠,𝑖
′  being positive 

everywhere. 𝑀𝑜𝑏𝑠,𝑖is adjusted mass (𝐴𝑀𝑚𝑜𝑑,𝑖
′ ) for mass weighting to calculate global mean 

score M. ncells is the number of all land grid cells where observation data is available. This 

metric is used to compare magnitude and phase difference of the monthly mean annual 

cycle between the model and the observation. 

A.1.3 Spatial Distribution Metric 

 
𝑀 =

4(1 + 𝑅)

(𝜎𝑓 + 1 𝜎𝑓⁄ )2(1 + 𝑅0)
 (53) 

ILAMBv2 uses Equation 53 to calculate spatial distribution metric score 𝑀. 𝑅 is 

the spatial correlation coefficient of the annual mean between model and observation. 𝑅0 
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is their ideal maximum correlation. Here, we set 𝑅0 equal to 1 for all models. 𝜎𝑓 is ratio for 

standard deviation of model to that of observation (Taylor, 2001). This metric is used to 

compare magnitude and spatial pattern of annual mean of model with observation. 

A.1.4 Seasonal Cycle Phase Metric (BA) 

 𝑀𝑖 = (1 + 𝑐𝑜𝑠𝜗𝑖)/2 (54) 

 𝐴𝑀𝑜𝑏𝑠,𝑖
′ = 𝐴𝑀𝑜𝑏𝑠,𝑗 − min (𝐴𝑀𝑜𝑏𝑠) × 𝐹𝐶 (55) 

 
𝑀 =

∑ 𝑀𝑖
′ × 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖

𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

∑ 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖
𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

 (56) 

ILAMBv2 uses Equations 54-56 to calculate seasonal cycle phase metric score 𝑀𝑖 

at ith grid cell and its global mean 𝑀, respectively. 𝜗𝑖 is the difference of the angle between 

the month of the maximum value for the model and that for the observation at ith grid cell. 

𝐴𝑀𝑜𝑏𝑠,𝑗 is annual mean of the observation at ith grid cell. 𝐹𝐶 is factor coefficient to force 

𝐴𝑀𝑜𝑏𝑠,𝑖
′  being positive everywhere. . 𝑀𝑜𝑏𝑠,𝑖is adjusted mass (𝐴𝑀𝑚𝑜𝑑,𝑖

′ ) for mass weighting 

to calculate global mean score M. ncells is the number of all land grid cells where 

observation data is available. This metric is used to compare phase difference of the 

monthly mean annual cycle between the model and the observation. 

A.1.5 Interannual Variability Metric 

 
𝑀𝑖 = 1 − |

𝜎𝑚𝑜𝑑,𝑖 − 𝜎𝑜𝑏𝑠,𝑖

𝜎𝑜𝑏𝑠,𝑖
| (57) 
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 𝑀𝑖
′ = 𝑒𝑀𝑖/𝑒 (58) 

 𝐴𝑀𝑜𝑏𝑠,𝑖
′ = 𝐴𝑀𝑜𝑏𝑠,𝑗 − min (𝐴𝑀𝑜𝑏𝑠) × 𝐹𝐶 (59) 

 
𝑀 =

∑ 𝑀𝑖
′ × 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖

𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

∑ 𝐴𝑖 × 𝑀𝑜𝑏𝑠,𝑖
𝑛𝑐𝑒𝑙𝑙𝑠
𝑖=1

 (60) 

ILAMBv2 uses Equations 57-60 to calculate interannual variability metric score 

𝑀𝑖  at ith grid cell and its global mean 𝑀 , respectively. 𝜎𝑚𝑜𝑑,𝑖  and 𝜎𝑜𝑏𝑠,𝑖  are standard 

deviation at ith grid cell for model and observation. 𝐴𝑀𝑜𝑏𝑠,𝑗  is annual mean of the 

observation at ith grid cell. 𝐹𝐶  is factor coefficient to force 𝐴𝑀𝑜𝑏𝑠,𝑖
′  being positive 

everywhere. 𝑀𝑜𝑏𝑠,𝑖is adjusted mass (𝐴𝑀𝑚𝑜𝑑,𝑖
′ ) for mass weighting to calculate global mean 

score M. ncells is the number of all land grid cells where observation data is available. This 

metric is used to compare interannual variability of specific variables between the model 

and the observation. 

A.1.6 Overall Score Metric 

ILAMBv2 calculates a couple sets of overall scores in this diagnostic package, one 

for individual variable (G1), one for all variables mean (G2), one for all variable to variable 

relationships mean (G3), and the last one (G4) for the overall score combined both G2 and 

G3. ILAMBv2 uses unequally weighting functions to calculate G1 and G2, while it uses 

simply straight averaging to calculate G3 and G4. G4 is the final score for each model. 

Please refer to Table 2 of the support information in Luo et al. [155] for detailed 

information of the rule system for scoring system.   
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