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SUMMARY

Variational formulas have been developed and applied to the
analysis of complicated electromagnetic structures where conventional
techniques are difficult or impossible to utilize. Although these
variational approaches make difficult problems tractable, they usually
give rise to a system of nonlinear equations describing the structure.
These nonlinear equations become increasingly difficult to solve as a
more and more accurate analysis 1s attempted. To retain the advantages
of a variational approach, yet avoiding the difficulties of nonlinear
equations, a new variational principle which produces linear equations
is presented in this dissertation. Solving the linear equations ob-
tained from this new approach will require less work than solving the
nonlinear equations from other approaches to the same problem.

The new approach is used to analyze a general class of antenna
problems, and the detailed analysis for a particular antenna, namely
a coated rectangular waveguide slot, is performed. The rectangular slot
is in a ground plane that is transverse to the axis of the waveguide.
The general equations presented in this thesis apply to plasma as well
as dielectric coverings, to lossy as well as lossless coverings, and to
loaded as well as unloaded waveguides. Thus, they apply to a wide
variety of important antenna problems. The application of the general
equations to any of these configurations would only require a change in

integration scheme.



Numerical calculations are performed on four X-band slot antennas,
each having an infinitely wide ground plane and a lossless dielectric
covering. The calculated admittance and far field pattern of each
antenna is compared with experimental measurements on similar antennas
with finite ground planes. The success of the experimental verification
indicates that the new procedure is practical and has wide applicability.
One, three, and ten mode calculations are performed for each antenna.

The test cases considered show that usually a minimum of three modes is
necessary for accurate admittance predictions.

The predicted patterns are smooth curves which decrease monocton-
ically from the maximum value, which is in a direction normal to the
aperture. The measured patterns have ripples superimposed on the pre-
dicted curves. The predicted patterns tend to give the average value of
these ripples. On the basis of the test cases considered, a one mode

analysis seems adequate for pattern predictions.



CHAPTER 1

INTRODUCTION

Solution of Electromagnetic Problems
by Variational Techniques

The classical method of analyzing any electrcmagnetic problem is
by solving Maxwell's egquations subject to the boundary conditions of
the system. Although such an approach is conceptually simple for any
geometry, it is only for elementary configurations--those formed by
coordinate system surfaces--that the mathematical analysis is also rela-
tively easy. For such configurations it is usually possible to find a
simple solution of Maxwell's equations that satisfies all of the bound-
ary conditions. However, as the geometry becomes more complicated, the
mathematical analysis also becomes more difficult. TFor such geometries,
a simple solutlon usually cannot be found, and a Fourier type series
approach must be used in which the fields are expanded in terms of a
complete set of functions with proper weightings. Typical examples of
such expansion functions are sinusoidal and hyperbolic functions in the
solution of Laplace's equation in rectangular coordinates, and spherical
harmonics in the solution of the wave equation in spherical coordinates.

This expansion technique also becomes very difficult to apply for
the even more complicated geometries which often arise in practice. For
such configurations, the variational approach is still analytically

tractable. Collin (1) and Harrington (2) give good accounts of this



approach, which has been extensively applied to practical electromag-
netic probiems during the past 30 years.

The wvariational approach converts a field theory problem into a
calculus of variations problem by showing that the true field which
exists in a system 1s the one that makes some particular integral sta-
tionary. A stationary formula is one that is relatively insensitive to
variations in an assumed field about the correct field. The advantage
of such an approach is that approximations to field quantities, as for
example propagation constant and input impedance, can be obtained rela-
tively rapidly and with much less work than is required by conventional
techniques. In the variational approach a trial function containing
several adjustable parameters is used to approximate the true field.

By adjusting these parameters so that the integral in question is sta-
tionary, the best possible approximation to the field is obtained from
among the class of functions being considered. Inclusion of more trial
functions produces more accurate results but increases the effort needed
to solve the resulting equations.

Variational principles have been associated with Maxwell's equa-
tions for some time. The initial principles, however, had theoretical
rather than practical value. In 1900 Larmor (3) showed that the differ-
ence between the stored magnetic and electric energy densities possessed
a stationary property analogous to similar expressions for mechanical
systems. Henschke (4) in 1913 showed that Maxwell's equations could be
derived from a particular energy function. After Henschke, most authors

interested in statiocnary formulas for electromagnetic problems concen-

trated on deriving Maxwell's equations from various energy functions



rather than on sclving problems associated with particular geometries.

Tt was not until the 1940's that variational formulas found wide
acceptance in the solution of practical problems. The variational method
introduced by Schwinger (5) permits the handling of a large variety of
problems which were very difficult, if not imposgsible, to solve by con-
ventional techniques. Stationary formulas for discontinuities in wave-
guides and for the resonant freguency of cavities began to appear in the
literature. Later, scattering problems and antenna problems were formu-
lated in terms of variational expressions.

This dissertation presents a new variational formula having the
singular characteristic of giving rise to linear algebraic equations.
This characteristic is gquite significant because comparable variational
approaches produce nonlinear equations which rapidly become unmanageable
as the number of adjustable parameters is increased. The linear equa-
tions resulting from this new approach, however, are still manageable as
the number of parameters is increased, thus making possible a more pre-
cise analysis of a broad class of problems. The new approach is used to
analyze a general class of antenna problems. The detailed analysis for
a particular antenna, namely a waveguide slot, is demonstrated, and the

experimental verification of the theoretical results is provided.

Background of the Antenna Problem

Many antennas being used today have dielectric coverings over
them. Antennas under radomes and antennas under heat shields on space
vehicles are two such examples., The dielectric covering is usually

provided to protect the antenna from the external environment, but it



alsc influences the electrical behavior of the antenna.

In the case of space vehicles which must travel through the
earth's atmosphere, a heat shield is placed over the vehicle to protect
it and its antennas from the re-entry heat. As the vehicle re-enters
the atmosphere, the heat shield is ablated away, causing the thickness
and the dielectric constant of the coating to change. It is important
to know what influence the change in dielectric constant and the change
in dielectric thickness will have upon the performance of the communica-
tion system connected to the antenna. In particular, it is necessary to
know what sort of input impedance variations these changes produce in
order to design matching networks for the transmitter. In addition, any
change in the radiation pattern must be known in order to predict the
performance of the communication system.

Because of aerodynamic considerations, a common choice of antenna
for re-entry vehicles is one that can be mounted flush with the surface
of the vehicle. Representative of this group is a waveguide slot
antenna which uses the surface of the space vehicle as a ground plane.
Such an antenna provides a wide radiation pattern giving good coverage
even 1f the vehicle rotates somewhat. It is this antenna configuration
which motivates the particular problem to be studied in this disserta-
tion. The antenna will be analyzed using the new variational principle.

Before the advent of variational techniques, the field distribu-
tion in an antenna's aperture had to be assumed instead of being
analytically calculated. For example, Silver (6) almost always assumes
the form of the aperture distribution, even though it is known that

these assumptions are incorrect and produce errors. However, the



difficulty encountered in attempting to derive the true distribution
usually prevents an exact analytic approach. Even in some recent
studies (7) of slot antennas and coated slot antennas, the aperture
distribution is still assumed instead of being analytically calculated
using existing variational techniques. The predictions from such
approaches are open to question since the assumed aperture distribution

is not exact.

Variational Approaches for Slot Antennas

Several variational formulas have been developed for slot
antenna problems. All of these formulas give rise to nonlinear equa-
tions when the trial field in the aperture is expanded, using more than
one waveguide mode function.

Lewis (8) in 1951 presented a stationary formula for the input
admittance of an open-ended rectangular waveguide with an infinite
flange (ground plane) having no dielectric coating. His formula is in
terms of the aperture distribution of the antenna which can have an
arbitrary form. For numerical calculations, however, he assumes that
only the dominant mode is present. This aperture distribution simpli-
fies his nonlinear equation to a linear one.

Galejs (9-11) has applied Lewin's technique to plasma-covered
slot antennas. His equations are nonlinear, as are Lewin's. He uses a
two-term trial function, having only one adjustable parameter, for the
aperture distribution. His results indicate (12) that the aperture
distribution can differ significantly from that of the dominant mode

alone.



In 1951 Cohen et al. (13) developed a stationary formula for a
dielectrically-loaded rectangular waveguide radiating into half-space.
The development was based on Schwinger's (14) approach, and the result-
ing variational formula was nonlinear. A dominant mode approximation
was made to the aperture field.

Villeneuve (15) applied Rumsey's reaction concept (16) to slot
antennas and also cbtained nonlinear equations. The results he presents
assume that the dominant mode alone is present.

Compton (17) in 1964 developed a variational formula similar to
Lewin's for a rectangular waveguide radiating through a dielectric slab.
This work was corrected by Croswell et al. (18) in 1967 to account for
surface waves that Compton had neglected. Both Compton and Croswell
assumed that only the dominant mode was present. Croswell made experi-
mental measurements which show that the aperture distribution can differ
markedly from dominant mode. Croswell (19) has recently extended his
earlier work to include plasma, as well as dielectric, coverings. This
new study uses a two mode Instead of just a single mode trial field.

A single mode analysis of a dielectric coating on a circular
waveguide has recently been made by Bailey and Swift (20). TFor a
single mode trial field they show that the input admittance of the
antenna can be expressed as a single integral in the circular waveguide
case instead of a double integral, as in the rectangular waveguide case.

Thus, the computation is simpler for the circular waveguide.



Purpose of Research

In contrast to the above approaches, this dissertation presents
a variational formula which produces a system of linear instead of non-
linear equations. This new variational principle is presented in
Chapter II.

The resulting simplification produced by these linear equations
permits a multimode instead of just a one or two mode analysis to be
made of a dielectrically-coated slot antenna. This analysis is pre-
sented in Chapters III, IV, and V and is based on the variational
principle of Chapter II.

Next, the far field of the slot antenna is determined using the
multimode analysis of Chapters III through V. This result is presented
in Chapter VI.

Finally, in Chapter VII an experimental verification is made of

the analysis presented in Chapters III through VI.



CHAPTER 1IT
THE VARIATIONAL PRINCIPLE

Notation

In this chapter a new variational formula will be presented, and
a proof of its stationary character will be given. This formula applies
to the general antenna configuration shown in Figures 1, 2, and 3. The
antenna consists of an irregularly shaped, perfectly conducting feed
structure terminating on an infinitely large, perfectly conducting
sheet. The feed structure in Figure 1 may, for example, be a rectangu-
lar, circular, or elliptical cross section waveguide. The proof for a
coaxial type feed structure can be handled in the same manner as used
for this feed arrangement. An aperture composed of one or more irregu-
larly shaped holes, as shown in Figure 2, is cut in the conducting sheet
to let energy out of the feed region.

Covering the sheet is a series of linear, isotropic, and heomo-
geneous slabs, each of which extends radially outward in a transverse
plane to *«. In each region Vi (i = 1,2,...,M) the electrical param-
eters Mio €4 and o, are all considered to be scalar constants. The
conductivity, g;, may or may not be zero and My and €, can be greater
than, less than, or equal to their free space values. By assumption,

there is no free current or free charge anywhere. Conduction current,

however, may be present.
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Figure 3.

i+l

A Typical Volume Vi for i = 2,3,...,M-1,
The Bounding Surface of Vi is Zj, Which

Consists of Si’ Si+1 and Si
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In Figure 3, Zi (1 =1,2,...,M) is defined as a closed surface
bounding the volume Vi’ and ﬁi is a unit outward normal to Ei. In par-

ticular, the first closed surface I, is composed of the open surfaces

1

S Sa’ the perfectly conducting feed boundary, and that portion of the

l’

perfectly conducting sheet which covers the waveguide-like feed. For

theoretical purposes S, may be arbitrarily placed relatively to Sa' For

1

practical applications, however, S, is placed many feed-structure wave-

1
lengths from Sa to facilitate constraining the trial electric field over
B n
1

For 1 = 2,3,...,M-1, Ei is composed of the open surfaces Si,

Si+l’ and Si’ as shown in Figure 3. The closed surface ZM is composed

of surfaces SM and SM' For convenience, a hemispherically shaped sur-
face of radius R is drawn about some point on Sa' The surface Si

(i = 2,3,...,M-1) is the ribbon-like surface sliced off the hemisphere
by the boundaries Si and Si+l of Vi' Surface SM is that portion of the

hemispherical surface which lies in V The unit vector ér points in

M
the radially outward direction and is normal to each Si.

The radius R in Figure 1 is initially chosen to be finite. Later,
R is made very large so that each Si is in the far field of the antenna,
where the radiation condition (21) applies.

In each region V, e L SRV, [, 08 Ei and ﬁi denote, respectively,
the trial electric field and the trial magnetic field which approximate
the true electric field E, and the true magnetic field H. The true

fields are the ones that satisfy Maxwell's equations and all the bound-

ary conditions. For purposes of this analysis, Maxwell's equations in
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+jwt

raticonalized MKS units will be used, and e time variations will be

assumed.

For the antenna configuration shown in Figures 1, 2, and 3, it

will now be shown that the energy expression

[l E.xH,) * n.da + % [l E.xH a d
7 E.xH, . L §-E.XH:] sada (2-1)

is stationary about the true fields provided that the trial fields
satisfy the following conditions:
(1) In each region Vi ﬁi is obtained from Ei by

yxE,
H, = —=— (i = 1,2,...,M)

(2) Each Ei is a solution of the complex vector wave equation,
7 x ¥ % Ei = _jwui(0i+jwai)ﬁi, in its vespective region %_(i = 15256 wsM)
(3) Each Ei satisfies the radiation condition in its respective
region Vi 1= 2,3,...,M)
(4) The tangential components of the trial electric fields are

continuous, i.e. n, X (E —Ei) = 0, at each point on Sa and at each

i i+l
point on 5.1 (i = 2,3,...,M-1)
(5) ﬁ? X EQ = 0 at each point on the perfectly-conducting,
large, ground surface S5, - S

2 a
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(8) nl % El = 0 at each point on the perfectly-conducting,
feed~structure boundary Zl = Sl = 8
(7) n, x E; = n, x E at each point on S, .

If, in addition, it is required that

(8) The tangential components of the trial magnetic fields are

continuous, i.e. n. x (H., ., -
? i i+l

(i = 2,3,...,M-1),

Hi) = 0, at each point on Si+l

then the stationary energy function WC assumes the simpler form

W= - Jf GExA) - Ajda - [f GExA) - da (2-2)
S 2
1 a

5
4
or
WC = wc + WC + W (2-3)
1 2 ©3
where
- 1. . B
WC = - ff [§-E1XHlj nlda (2-4)
g S
1
W=~ [f GExA) - nda (2-5)
c2 S Al R 1
d

(2-6)

=
]
I
19 B
B
—_
M}]—'
£
s
*
i)
]
—
o
o)
(o ¥
u
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Notice that the above eight conditions on the trial fields are
all conditions which the true fields must satisfy. No conditions have
been imposed on the trial fields which make them violate the behavior
of the true fields. However, not all the conditions that the true
fields satisfy have been imposed on the trial fields. If all of these
conditions could be imposed, then it would be possible to solve the
problem as a boundary value problem. This, however, is not possible.

To prove that wc is stationary, let ﬁﬁi be the corresponding
variation of Ei about E: that is, let 6Ei = Ei - Bl Le¥ swc be the
variation, to first order in éﬁi‘s, of WC about E. Then, since the var-

iation of & sum is the sum of the wvariations, it follows from Equation

(2-1) that
M M
s = .g L A (2-7)
i=1 1=2
where
W, = 6 D (-% E.xf,) + A.da (2-8)
i Pl i
b
1
and
= (L& <F.) - a L,
8, = 6 éJ (5 E;xH,) - ada (2-9)
i

It will be expedient to first show that
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qu

W i = } (ﬁixaéi) « (VxE)da (2-10)
Z

and

(5rxﬁﬁi) . (érxf)da (2-11)

To this end, it will be noted that condition one transforms

Equation (2-8) to

]

1+ = = = = 5 2
T2un; {J [%Li x (VxE) + E x (VxGEii] n.da
z

i

The subscript "i" was dropped from E. in the last equation because the
variation was taken about Ei = E. Applying the divergence theorem to
the last integral in the last equation and a routine vector identity to

the first, yilelds

I T )
My = Tour, ;J (n;x8E;) + (VxE)da (2-12)
1
X
ik
]2L01J ,”.[ v o [Ex(chSHi)]dv

The integrand of the volume integral of Equation (2-12) may be expanded

as
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V o+ [Ex(Vx8E;)] = (WxE) « (Wx6E;) - E « (VxVxSE;) (2-13)
Equation (2-13) may be modified by noting that
Vo« [8EX(VXE)] = (Vx6E,) + (VxE) - 6E, * (VxVxE) (2-14)
which, when substituted into Equation (2-13), yields
V e [Ex(Vx6E;)] = ¥ » [SE, x(VxE)] (2-15)
+ 6Ei ¢ (UxV>sE) - E - (?xVxﬁfi)

Representing the true field, the vector E satisfies the vector wave

equation and, by assumption, so does Ei' Hence, the difference

éfi = Ei - E also satisfies the vector wave equation since this equation

is linear. Equation (2-15) thus becomes

1"

Vo [EX(Vxﬁﬁi)] vV oe [éfix(VxE)] (2-16)

+ 5Ei . [-jwpi(ci+3mei)E]

E - [—jwui(ci+jwei)6Ei]

I

VAR [GEiX(VxE)]
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Now, substituting Equation (2-16) into the integrand of the
volume integral in Equation (2-12) and applying the divergence theorem

once again gives

1 s o " 1 s , -
=] . G &E, VxE * .d
6Wi j2wui {J (nixéEi) (VxE)da + ]QNUi ;J [ lx( xE)}] n.da
b1l Ei

1

.2 {J (3x6E,) + (xE)aa
i

Jou,

which proves Equation (2-10).
Equation (2-11) will be proved next. Substituting

ﬁi = vXEi/—jwui into Equation (2-9) gives

VX E,

« (=3 |- 3 da (2-17)
.._]wui

e
L‘"Jt

8 ff

W,
i

ff ESE x(VxE) + Ex(VxSE, i] + a3 da

i

—]ng

ofs
£

The true field E satisfies the radiation condition over Si’ which is

in the far field of the antenna. By assumption three, E; also satisfies

the radiation condition over Si. Hence, by linearity, so does GEi.

Thus, over Si

- 2/ g ; ..
V xE 3w M. -Jup.o, a % B (2-18)

v x 6Ei = —JYwlyp e ~jmu 0] a, x 8E (2-19)

&

An extension of the standard radiation condition to a lossy o
medium is used here with &£ in the standard condition replaced by ¢ jau
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Substituting Equations (2-18) and (2-19) into Equation (2-17) yields

‘_j /T:Uzuigi‘“jw]-l e

8W, = : LB E.x(a _xE) + Ex(a x6E,)] + a
. =y éf [§E;x(a XE) + Ex(a x6E,)] + & da

1

é{ (a,%6E;) - (4 xE)da
1

which proves Equation (2-11).

Equations (2-10) and (2-11) may now be used to express Equation

(2-7) as
M -
W= ) 'j (7. x6E,) + (B2 )da
i:1 33 1 W
R
1
- ! W om e - =
+ z [j — - ] (a_x8E,) * (a_xE)da
A SU. T
o E
Since I, = S. + 8. + 5. for i = 2,3,...,M, the last expression for &W
i i i+l 1 c
may be written as
L VxE S5 UxE
oW, = §§ (5, x6E) (jmul]da + JJ (5, %6E,) [ijQ)da (2-20)
zl SQ
M"J_ I— = -
o - - VxE = VxE
¥ J ff lGxeE.) « G + (h, %88, .) ¢+ (3 ) la
129 qi+1 1 1 3 Ui 141, i+l jwui*l
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. i - ==
i e (aTX6Ei) . (aer) da

It will now be shown that the first sum in Equation (2-20) is zero. To

this end, it will be recalled that H = ?XE in region V., H = *TEiE_*
o E "I
in region Vi+l’ and that ni+l - —nj over Si+l' Thus, the first sum in
Equation (2-20) becomes
M-1 _ N _ ~ _ =
Y] [}(n.XSE.) - H+ (n,x6E, ) - %Jda (2-21)
iZ0 g i i i i+l

i+l

Since n, x 6E, and n, x SE, then

14 are strictly tangential to Si

+1°

(ﬁiXGEi) « 0 and (ﬁiX5Ei+l) - H involve only the tangential components

of H. Since the tangential components of the true field are continuous

over S.

141 H may be factored out of Equation (2-21) and that equation

rewritten as

.E [f [n,%6E, , - n,*x6E.] + H da (2-22)

The tangential components of the true, and by assumption four,

the trial electric fields are continuous over S, hence,

i+1°?

ﬁi x (8E. Thus, Equation (2-22) is

- 8E,) = 0 at each point on S.
ey gl i i+

T
zero and hence, the first sum in Equation (2-20) is also zero.

Next, it will be shown that the second sum in Equation (2-20) is

zero. By Equation (2-18), the second sum in Equation (2-20) may be
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written as

—.l/ 2 - ._. - . a ><J
_\ Jvw 1.1151 :]w]JlGl a

i s r
1

M
:

iz2

E. a.
i . i - s - = _
TJE- = 3 u.}‘]-.l; (arxﬁEi) (arXE) da = 0

since Ei = a over Si. Thus, the second sum, as well as the first sum,

in Equation (2-20) is zero. As a result, the amended form of Equation

(2-20) is

Now, because of condition six and the fact that ﬁl x E = 0 over

Zl - Sl = Sa, n, X Gﬁl = 0 at each point on the perfectly conducting

waveguide wall surface. The first integral in FEquation (2-23) can be
simplified, accordingly. The second integral can alsc be simplified
since 52 o SEQ = 0 over 82 - Sa' This is true because of condition five

and the fact that ﬁg x E = 0 over §, - 8,. The met result is that Equa-

tion (2-23) becomes

o - _ uxE - - UxL
51 = éf (5 x8E) - [355§Jda + if (n,x$E,) - [jwul]da (2-24)
i Pa

+ é] (o xsE,) - [§ZEﬁ]d

a
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Now, ﬁl x 6Hl = ﬁl X (El—ﬁ) = 0 over Sl by condition seven; hence,

the first integral in Equation (2-24) is zero. Additionally, it will be

recalled that H = .XE in region V., H = -315— in region V., and that
- ul 1 —jwu2 2
ﬁ? = —ﬁl over 8_. These facts permit Equation (2-24) to be written as

W, = -[f (n;x$E)) + Hda + [ (n;x¢E)) + H da (2-25)

S 3
a a

In this equation ﬁl x éﬁl and ﬁl X 622 are strictly tangential to S_,
and the integrands thus involve only the tangential components of H,

which are continuous at Sa. Hence, the two integrals in Equation (2-25)
can be combined, with A as a common factor of the integrands. By condi-
tion four and the fact that the tangential components of true fields are
continuous at S_, it now follows that n. x 8E. = n. x 8E. at each point

1 1 1 2

on Sa' Consequently,
W =0
e

which is the assertion that was to be proved.

If, in addition to conditions one through seven, condition eight
is also satisfied, then WC can be considerably simplified. First, it
will be noticed that the surface integrals over Si in Equation (2-1)
cancel with their corresponding parts from the integrals over Ei' This

permits Equation (2-1) to be written as
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I A= = { Lo o =
) GEom) chee - [ GER) g oo
El S
M-1
1l = = 1 = = -
- 122 y (7 EyE; - 5 Byyp¥figyy) - nyjda
B i+l
where the relation n. = -n. on S, was used in the summation. But

1+l T i+1

conditions four through eight require that the tangential components of
the trial electric and trial magnetic fields be continuous at each point
on each Si (i = 3,4,...,M). Hence, the summation in (2-26) is zero.
Furthermore, since the tangential components of the trial electric
fields are zero over the perfect conductors (conditions five and six),
it follows that Equation (2-26) may be rewritten as

S . 1= -
W= —js'f (5 Ex#,) + 5 da - jq’f (5 E;xf;) + nda
“a

which concludes what was to be shown.

Comments on the Variational Principle

It should be noticed that Equation (2-2) is a stationary formula
since it requires the same seven conditions that Equation (2-1) does,

and since condition eight is not needed to make Equation (2-1)
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stationary. It should alsoc be noticed that the expressions %—Ei X ﬁi’
which appear in the generally complex functional, WC, are not Poynting's
vectors since the latter contains a conjugate of H, that is %~E x H¥,
while the terms in WC do not. A variational principle using Poynting's
vector is discussed by Paris and Hurd (22).

The variational principle states that the trial fields will
adjust themselves as closely as possible to the true fields so that wc
is as close to its true value as possible. The best approximation to
the fields and to wc is obtained when there is no further change in WC
for further small changes in the trial fields.

This gives a method of obtaining approximations to the true
fields by using trial fields containing several adjustable parameters.
These parameters are adjusted to that set of values at which perturba-
tions of the parameter values will produce no additional change in Wc.
Then WC is stationary. This is the same as requiring that the partial
derivative of WC with respect to a parameter be zerc for each parameter.
An approximation to the true fields is obtained by adjusting the param-
eters to the values so determined. Once the fields are known, all of
the electrical characteristics of the antenna can be calculated, in
principle at least.

More precisely, if trial fields of the form
m m

E,=)mae (2-27)
m

are used, where {em} is a set of known mode functions and {am} is a set

of unknown mode amplitudes, then Ei will be a linear combination of the
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unknown am's. The trial magnetic field, ﬁi’ will also be a linear com-
bination of the a_'s since it is obtained from Hi = vXEi/—jwui. Thus,
Wc in Equation (2-2) will be a quadratic function of the am’s. To find
the set of am's that makes WC stationary, the partial derivative of wc
with respect to a is set equal to zero. Repeating this process for
each a produces a system of equations in terms of the unknown am's.

It is important to note that this system of equations will be linear
since taking the partial derivative of the quadratic expression for wc
will reduce the quadratic expression to a linear one. Since the system
of equations for the am‘s is linear, matrix techniques can be used to
solve them, resulting in a considerable savings of time.

Comparable techniques (23-26) use stationary formulas of the form

éf'fl(Ei,Hi)da

¥ ot (2-28)
If f?(Ei,ﬁi)da
2!

where Y stands for the admittance of the antenna and fl and f2 represent
two functions. If Equation (2-27) is used for Ei in Equation (2-28),
then am's will appear both in the numerator and in the denominator of Y.
Nonlinear equations will be produced when partial derivatives of Y with
respect to the am's are taken. Solving these nonlinear equations is
much more time consuming than solving the linear ones obtained by using

the approach presented in this chapter.

In addition to these comments about the new variational principle,

a comment about condition seven is in order. To make an E, = ﬁlx E over
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Sl’ a surface Sl must be found such that the tangential component of

the true field is known over that surface. Then the tangential com-

ponent of El must be forced to be equal to that tangential field over

Sl. Hence, ﬁl x El = ﬁl x B over Sl and condition seven is satisfied.

There is one common situation which allows S, to be easily located,

1

and that is when it is known that only a single mode exists in a certain
region of the waveguide. Then Sl is placed in this region, and the

tangential component of E. is forced to be equal to the tangential

I

component of that mode over that surface.
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CHAPTER III

ANALYSIS OF A DIELECTRICALLY COATED SLOT ANTENNA

Description of the Antenna

The variaticnal principle of Chapter II will now be applied to a
particular practical problem, namely the waveguide slot antenna shown
in Figures 4 and 5. This antenna consists of a perfectly-conducting
rectangular waveguide terminating on an infinitely large, perfectly-
conducting ground plane. A rectangular slot is cut in the ground plane
to couple energy from the waveguide region into the region z > 0. The
portion of the ground plane that covers the waveguide is assumed to be
infinitely thin. Two planar layers of linear, isotropic, and homogene-
ous materials cover the ground plane. One layer fills the region
0 < z £ d and the other layer fills the region z > d. The medium fill-
ing the waveguide is also assumed to be linear, isotropic, and homo-
geneous. All three regions of space are assumed to be charge free.

The antenna just described simulates a slot antenna under a heat
shield of a re-entry vehicle. The ground plane represents the surface

of the vehicle, region V_ represents the heat shield, and region V

2 3

represents free space.

The antenna is operated in the following manner. A transmitter,
producing a dominant mode (TElO) field, is connected to the left end of
the waveguide. The dominant mode wave produced by the transmitter

travels undistorted through the waveguide region until it encounters
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the discontinuity in the physical structure at z = 0. This discontinu-
ity causes some of the incident energy to be reflected back down the
waveguide and part of the energy to be transmitted into VQ.

The reflected field in the waveguide consists of the dominant
mode plus higher order modes. The higher order modes are needed to make
the tangential component of the electric field zero over the perfect
conductor that covers part of the waveguide. In normal operation the
higher order modes are evanescent; that is, they decay exponentially
with distance away from the discontinuity. Thus, as the reflected wave
moves toward the transmitter, the higher order modes decrease in ampli-
tude until they are negligible and only the dominant mode remains. The
higher order modes affect the value of the reflected dominant mode and
they also affect the field radiated by the antenna. Thus, the ampli-
tude of these modes must be determined in order to evaluate the behavior
of the antenna.

Other variational approaches to this slot antenna problem have
neglected the higher order modes and assumed that only the dominant mode
is present. In contrast, an arbitrary number of modes can be included
in the method described in this dissertation.

Before the variational principle of Chapter II can be applied,

trial fields are needed in regions V. VQ, and V

1’ i

The Waveguide Region

The trial electric field in Vl must have a zero tangential com-
ponent over the perfectly conducting waveguide walls. In addition, this

field should: (i) represent a dominant mode initiated from the left end
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of the waveguide; (ii) represent higher order modes that are evanescent
from z = 0; and (iii) contain a reflected dominant mode. A set of the
trial functions having all of these characteristics is the set of rec-

tangular waveguide modes whose x and y components may be expressed as

ol z
- ; m,n
B, = ) B cos(A x) sin(B y) e (3-1)
1 m,n
E =T e_jgz + R e+sz) sin(A, x) (3-2)
¥y 1
a .z
. 2
+ Z Qm,n 31n(Amx) cos(Bny) e
m,n
where
_ o !
Am = (3-3)
and
_ nm ¥
B. =3 (3-4)

The quantities am,n and B in Equations (3-1) and (3-2) are the
attenuation and phase constants for the various modes. These constants
are complex numbers in general and must be chosen in such a way that El
will satisfy the complex vector wave equation. They will be specified

shortly. The parameters Am and Bn have been chosen to make the tangen-

tial component of the electric field zero on the waveguide walls, in
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accordance with condition six of the variational principle. The usual
TE and TM modes of rectangular waveguide theory have been combined in

Equations (3-1) and (3-2) since they have the same transverse variations.

T

The subscript "1" in Ex and E_ indicates that the fields are in region

1 Y1

Vl.

The mode amplitudes I, R, P , and Q are complex constants

m,n m,Ti

that must be determined. They are the complex amplitudes, that is the
magnitude and phase, of the various mode functions. The analysis that
follows is aimed at evaluating these constants. Once they are known,
a complete picture of the antenna's field, and hence its electrical
characteristics, will have been obtained. The summation indices m and
n take on all positive integer values except m = n = 0, which is the
trivial case, and m = 1, n = 0, which is the dominant mode and is
included separately.

Next, EZ and ﬁl will be obtained from Ex and E . Condition

i 1 Y1

two of the variational principle requires E. to satisfy the vector equa-

1
tion, namely
VxVxE =k>E (3-5)
1 i S
where
k2 = —Jou, (o, +jwe. ) (3-6)
2 e .

Taking the divergence of Equation (3-5) and remembering that the diver-

gence of the curl is always zero yields
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V+«E =0 (8=T7)

Thus, if a field satisfies the vector wave equation, it must have zero
divergence. This fact will be used again in VQ and VB.

In rectangular coordinates, Equation (3-7) is

oE oE oE

aEz'l C"Tﬂ nz
- e = mzn [—Aum’n—Ban,n] sin(A_x) 81n(Bny) o
S
Integrating this last equation yields
Amn ¥ Bnn ;1 *m,n”
E, = ) e —= sin(A x) sin(B y) e (3-8)
1 m,n m,n _J A

All three rectangular components of the trial field El have now been

established. To apply the variational principle, E. must satisfy the

1
vector wave equation.

The conditions, in addition to Equation (3-7), that the vector
wave equation imposes on El will now be determined. By using Equaticn

(3-7), Equation (3-5) may be simplified, in rectangular coordinates, to

-V2E = KB (3-9)
1 1
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where v = x, y, or z. For v = x, Equation (3-9), with the aid of Equa-

tion (3-1), becomes

2 2 2 2 “m,n’”
z (Am + B - o n - kl) Pm COS(AmX) Sln(BHY) i

= 0 (3-10)
L mg Sn
m,n

If Equation (3-10) is to hold for any x, Vv, z in the waveguide and for

any set of Pm n's, then it is necessary that

2

= A2 2 - 2 s
LT JAm + B2 kl £3=11)

In order that El represent higher order medes that decay or propagate
with decay in the -z direction, the square root in Equation (3-11) must

be chosen so that
Re(a ) >0 (3-12)
m,n
Im(am n) 20

where Re and Im mean real part and imaginary part, respectively. Equa-

tions (3-11) and (3-12) specify the constant o -
2

For v = z, Equation (3-9) again requires that Equation (3-11)

hold. For v =y, Equation (3-8), with the aid of Equation (3-2),

becomes

2 - , _
[Eg) v - kij{ge_jgz + Rejs%} sin(A x) (3-13)



35

o z
e

2 2 . m
o kl] Qm,n SLn(Amx) cos(Bny) e = i

& 2
) [Am+Bn-am

m,n 2

The summation in Equation (3-13) is zero because of Equation (3-11).
Hence, if the remaining term in Equation (3-13) is to be zero for arbi-

trary X,z in the waveguide and arbitrary I and R, then

B = vki - (5 (3-14)

In crder that El represent a dominant mode wave propagating in the +z
direction, either with or without attenuation, the square root in Equa-

tion (3-14) must be selected so that

(3-15)

v
=

Re(B)

Pl
{3

Im(B)

The constant B is specified by Equations (3-14) and (3-15). Equations

(3-11) and (3-14) are the conditions that must be imposed for the chosen

E. to satisfy the vector wave equation.

1
The trial magnetic field in region Vl is obtained by using
Hl = VXEI/—jwul. The rectangular components of this equation are
9E_ OF _‘
1 1

1] . i}
Hxl = ij“ﬂ 7 azJ (3-16)
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BEX BEZ
1
Hoo= _,wuhl le y axl (3-17)
Since HZ is not needed in any future calculations, it will not be
1

evaluated. Substituting Equations (3-8) and (3-2) into Equation (3-16)

yields

i AmBan n "’ BiQm n
g = {Eiw- DR - >~ ~ 0o Q _} sin(A x)
X Wy () n m
1/|m,n m,n

m,n m,

o 7 Bz B
cos(Bny)e ? + (jBIe J - jBRe] ) sin(Ale}

Equation (3-11) transforms the last equation to
H = f—i—ﬂ —B(Ieszz - Rejez) sin(A_x) (3-18)
Xl mul 1

ABP n+(ki-A§)Qm . o =
2 2— }sin(A x)cos(B_y)e #

a ™ n

m,n m,n

Next, substituting Equations (3-1) and (3-8) into Equation (3-17) yields

j AiPm n ¥ AmBan n
Hy - [Eﬂ_a z { am,npm,n = 3 } cos(Amx)sln(Bny)e
1 1 m,n m,n

Z
m,n

which in view of Equation (3-11) becomes
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= (ki_Bi)Pm n+AmBan n *m,n”
= (=4 ] { : 2= }Yeos(A x)sin(B_y)e (3-19)
L
y Wi o m n
1 1 m,n m,n
The Constraint at Sl—
Condition seven of Chapter II requires that the trial fields Ex
1
and Ey be exactly equal to the true fields Ex and Ey at each point on
1
Sl. First, however, a surface must be chosen for Sl. i Sl is selected
to be a plane at z = -L where L = «_, then all higher order modes will be
zero over S.. This follows because exp(a_ _z) = exp(-a_ L) will be
1 m,n m,n

negligibly small for each higher order mode. Hence, over this surface
8l only the incident and reflected dominant mode fields will be present
for both the trial and the true fields. Since the form of the electric
field is now known over Sl’ only its amplitude need be set in order to
fix 51 x E over §,- The magnitude and phase of ﬁl x E at z = -L can be
chosen to be any convenient value. This follows from the fact that the
system is linear and scaling the magnitude and phase of ﬁl x E at

z = -L will simply scale the magnitude and phase of all the fields by
the same amount. Another way of saying this is that ﬁl x Eat z = -L
is the magnitude and phase reference for the system, and it may be
selected to be any convenient value. For convenience, this magnitude
and phase reference will be chosen as 1 volt/meter and 0 degrees,

respectively. Thus, the tangential component of the true field at

z = =L is
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1
o

Ex(x,y,—L) (3-20)

F = = 7
;y(x,y, L) 1 Sln{AlX)

Now, 51 % El must be made equal to n

surface Equations (3-1), (3-2), (3-18), and (3-19) reduce to

x E . i
1 E over Sl Over this

E =0 (3-21)

E = (IejBL + Re_jBL) sin(Alx)

5 v}
i

_ B jBL _ -3BL .
L, oy (Te Re ) 51n(Alx)

All higher order modes are negligibly small at z = -L as L + =,
Equations (3-20) and (3-21) show that the tangential components

of the electric fields over Sl are equal provided

1e3fl ¢ Re™IBE = (3-22)
This relation allows the coefficient I to be set equal to
(exp(-jBL) - R exp(-j2RL)) in all future equations.
Several other relationships between I and R that will be useful

later can be obtained from Equation (3-22). They are
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1680 o g I8b o g e 1BL (3-23)

R = w OB g gy - o7 I280y (3-21)
and

1 o= wIBL gy w3200 (3-25)

Evaluation of W
il

The groundwork is now ready for evaluation of the first integral

in Equation (2-2), namely

Equatien (2-2) rather than Equation (2-1) will be used to calculate WC

in this chapter since the former equation is simpler. Since ﬁl = R

over S this last equation becomes

l!

£' é (Ex H, - E H ) dxdy

z=-L

Substituting Equation (3-21) into this last expression gives

[E%—J[IejBL + ReIPL) (1380 - Re‘jBL]sin2(Alx)dxdy (3-26)
1
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Using Equations (3-22) and (3-23) and evaluating the integrals in Equa-

tion (3-26) yields

W= Em]”j E‘};—B - (abse‘jBL)fEl (3-27)
1 1 )

Equation (3-27) represents the desired expression for WC
1

The Aperture Field and the Evaluation of W
T2
Next, the second integral in Equation (2-2) must be evaluated,

namely
W= o[ (2 ExH,) + 5.da
c g 1
2 S
a
Since n. = a_ over S ,
1 Z a
1 1
yo+b X . ta
W =H%[ [ (E. H -E_H )| dxdy (3-28)
€2 . ® ¥y F By -
Yo 0

Now the surface Sg will be defined as the cross section of the waveguide
at z = 0. Before Equation (3-28) can be evaluated, the appropriate
parts of conditions four and six of the variational principle must be
applied to E. over S . In particular, E. and E_ must be made zero

. g %y 1
over the perfect conductor Sg - Sa, while over Sa they must be made equal

to the x and y components, respectively, of the field in the aperture.

It is convenient to introduce a separate representation for the aperture
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field to facilitate the application of the above boundary conditions.

Let the x and y components of the aperture electric field be

Exa = mlgn' P'm,’ . cos(A'm,X') sin(B'n,y') (3-29)
Eya = Qiaosin(Aix') + m'EH'Q%,’n,sin(Aé,x*)cos(Bﬁ,y') (3-30)
where
A, = Ea—',l (3-31)
and
B, = 2T (3-32)

The subscripts m',n' cover the same range of integers that m,n do. The
form of the trial aperture field was selected by analogy with the trial
waveguide field. The aperture was viewed as the limiting case of a
rectangular waveguide with dimensions a' by b' and a length approaching
zero. The x',y' coordinate system is shown in Figure 5. The aperture
3 t 1 1
mode amplitudes Ql,O’ Qm‘,n" and Pm',n‘ are complex constants that must
be determined in the process of finding the waveguide mode amplitudes.
Since E. = E_ and E = E  over S_, Equation (3-29) may be
b b v v a
2. a 1 a
used for Ex and Equation (3-30) may be substituted for Ey in Equation

1 1
(3-28). Making use of Equations (3-18) and (3-19) then yields
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1 1
X *a y0+b
” L i _ 1 i : [ = K
WCQ- {%wu;} B(1 R)Ql,o { [ bln{ﬂlx)51n(ﬂlx dax} - { J dy} (3-33)
%o Yo
x0+a' yb+b'
mm'zr‘B(I—R)Q%,,n, { [ sin(A,x)sin(A' x")dx} - {j cos(B! iy ' )dy}
*0 Yo
k2—A§_ xo+a' y0+b'
+ 9 mzn i Qm nQi 0 { sin(Amx)sin(Aix'}dx} « { cos(BEﬁdy}
¥ m,n £l bl
*0 Yo
_;2_A2 x0+a’
. 1 m , ¥ . ¥
+ ] mzn m'En! o Qm,an',n'{J sin(A x)sin(Al,x )dx}
%0
Yotb'
. {J cos(Bny)cos(Bé,y')dy}
Yo
TE Bﬁ] x0+a' y0+b’
+ 7 mzn i?: 2 Pm,nQi,O{f sin(Amx)sin(Aix')dx}- {J cos(Bny)dy}
] sl X y
0 0
x_+a'
A B
% |_m n 1 « . ' '
+ ) ) P ; ,{J sin(A x)sin(A',x')dx}
sn m'on! %l MeR m',D m m
] 2 ERL %
0
'
y0+b
- {J cos(Bny)cos(BA'y')dy}
Yo
% ta'

0
. 1l n
B 1 ot
+3 ) ) 'm,npm’,n‘{J cos(Amx)cos(Am'x )dx}

)



43

y0+b'
- T 3 ' 1
{ 51n(Bny)s_n(Bn,y Ydy}
Yo

!

A B X ta
. 1 t 1

+3 ) ) ) Qmjan,,n,{J cos(Amx)cos(Am,x )dx}

o
m,n m',n'| m,
— ble
0

y0+b’
. { sin(Bny)sin(Bé,y‘)dy}
Yo

The integrals in Equation (3-33) are evaluated in Appendix A. Using
the notation adopted there and Equation (3-25) transforms Equation (3-33)

to

=
1

.-k

1 _ -3BL ' -
wuiJ{jBe IntB(l’l)Intu(O’O)Ql,O (3-34)

+

'

S ,
Zn‘f»s)e TﬂtS(l,m')Intq(O,n')Qm'

n
m El

-j28L

+ B(1l+e )Ints(l,l)lntq(O,O)RQi,D

-+

1

) B(l+e-]28L)Int3(l,m')Intq(O,n‘)RQ‘,
m'.n' m

k242
“JInt3(m,l)Intu(n,0)Qm nQi 0

5 T1

-+

j
m,n Lfm,n
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kQ-AQ
.| 1 m
+ ) ¥ i3 Int,(m,m')Int, (n,n )Qm Qo !
m,n m',n m,n
AmB
. 1
+ ) Y g Int,(m,m')Int, (n,n')Q P 8 b o
m,n m',n m,n
Fm 11 '
+ {-m _ IntB(m,l)lntq{n,O}Pmanl,o
AmBn
. 1 1 1
+ ) 'z R Int3(m,m )Intq(n,n )Pm,an ‘o'
m,n m'.,n | Mm,n

ki—Bi ‘)

i : ' 1 1
+ Z 'E ' N Intl(m,m )Intz(n,n )P ’an e
m,n m',n m,n _

Equation (3-34) represents the desired expression for WCQ

It should be noted that Equation (3-34) contains both aperture
mode amplitudes (primed Q's and P's) as well as waveguide mode ampli-
tudes (unprimed Q's and P's, and R). However, when the variation is
taken, WCQ must be expressed in terms of waveguide mode amplitudes
alone. Thus, a relationship between the two sets of mode amplitudes
must be obtained so that the aperture mode amplitudes can be eliminated
from wc . This relationship can be derived by matching the tangential

2

components of El and Ea over Sa and making n, % El = 0 over Sg = Sa’

consistent with conditions four and six of the variational principle.

Matching the x and y components of these two fields gives, respectively,
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(3-35)

t 1 1 - 1 '
E Pm‘,n‘COS(A ¥ )51n(Bn,y ) over S

m',n'
Z Pm,nCOS(AmX)Sln(BnY} =
Ml 0 over S - S
g a
and
(I+R}31n(Alx) + ) Qm,nSln(Amx)COS(Bny) (3-36)
m,n
'
| 5 1 1 1 - L 1 1 t
13051n(Alx )+ 12 ,Qm',n'Sln(Am‘x )cos(Bn,y ) over 5S4
m',n
5
0 over S - S
g a

Equations (3-35) and (3-36) are Fourier type series for the
tangential electric fields over Sg. To find relationships between the
individual amplitudes, which do not depend on x and y, Equation (3-35)
must be multiplied by cos(Arx) sin(Bsy), and the resulting equation
must be integrated over Sg' The subscripts r and s are integers desig-
nating a particular waveguide mode. Similarly, Equation (3-36) must be
multiplied by sin(Arx) cos(BSy) and the resulting equation integrated

over Sg. These two operations give, respectively,

ba
y Pm,n [f cos(Amx)cos(Arx)51n(Bny)31n(BSy)dxdy (3-37)
m,T 00
y0+b’ x0+a‘
= mlzn‘P%,,n| I cos(Arx}cos(A%,x')sin(BSy)sin(Bé,y')dxdy

Yo %0
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and

b a
(14R) [ [ sin(AlX)sin(A x)cos(B_y)dxdy (3-38)
b b r s

b a
+ mzn Qm,n g £ 51n(Amx}51n(Apx)cos(Bny}cos(BSy)dxdy

y0+b’ x0+a‘
- t ] 3 t 1
Q [ 51n(APX)51n(ﬁlx )cos(BSy)dxdy
Yo "0
1 1
' y0+b x0+a ,
+ z Qm J 51n(Apx)51n(Am'x')cos(Bsy)cos(Bé,y')dxdy

From Fourier series theory (27) it is known that

a a
[ cos(A x)cos(A x)dx = [ cos(mzfacos[zﬂfadx (3-39)
m r a a
0 0
a é
_ m,r
1+ ]5ign(r)1
3 mm rIX
[ sin(A x)sin(A x)dx = [ sin{—)sin{—)adx (3-40)
m r a a
0 0
= %—6 |sign(r)[
B B MTYY sm
f cos(B ylcos(B yldy = f COSL—TX-COS[H“Xde (3-41)
n 8 b
0 0
b s _

1 + |sign(s)|
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b b
f sin(Bny)sin(ch)dy = | sin{E%XJsin[ngqdy (3-42)
0 < 0

1

b .
5—6n’slslgn(s)]

where

1 ifm =n
0 ifm#n
is the Kronecker delta function and

+1 ifx >0

sign(x) = ¢ 0 ifx=0

If v and s are non-negative integers, as they are in the summations
being used here, then the absolute value signs can be removed from all
of the sign functions in Equations (3-39) through (3-42). Next, using
Equations (3-39) through (3-42) to simplify the summations over m,n and
the integrals of Appendix A to simplify the summations over m',n' allows

Equation (3-37) to be written as

(aby | _sign(s) | _ | , . .
r,s'2 )[;+sign(r) - m'zn' Pm',n‘Intl(r’m )Intz(s,n ) La-ag)
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Likewise, for r = 1 s = 0 Equation (3-38) can be written as

ab

(+R) (5) = Q) Inty(1,1)Int, (0,0) (3-44)

! ' '

* !X ' Qm,sn,Inta(l,m )Intq(O,n )

m'.n
Otherwise, Equation (3-38) gives
o (B (-SiEm) | o gr me (p,1)18E, (5,0) (3-45)
r,s' 2/ |1tsign(s) 1.0 @7 2 TR

L) ' Qm,,n,IntS(r,m‘)Intq(s,n‘)
,T1

Since r and s are durmy subscripts, they may be changed to m and
n, respectively, without affecting the validity of Equations (3-43)
through (3-45). Making this substitution, rearranging, and substituting

Equation (3-24) for (I+R) into Equation (3-44) yields

aby -3BL _ raby ~32BL '
S ¢ G (17 )R = Int4(1,1)Int, (0,000, 4 (3-46)

r
+ mrEnf Ints(l,m')Intq(o,n')Qm,,n,
> |

(5‘1213—] Iﬁi‘%% . Inta(m,l}Intu(n,O)Qi " (3-47)

+ E Ints(m,m')ln‘tq(n,n')QI;l;’

1
n
m'.,n'
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(ab}L£81gn(n) = E Intl(m,m‘)IntQ{n,n‘)P' (3-48)

+sign(m)| m,n m',n'
gnim) e ,

Equations (3-46) through (3-48) relate the waveguide and aperture
mode amplitudes. These equations will later be solved for the aperture
mode amplitudes in terms of the waveguide amplitudes so that the former

amplitudes can be eliminated from all final equations.

The Fields in Regions V2 and V3_

Now that W . and wc2 have been evaluated, only wC3 in Equation
(2-6) remains to be calculated. However, before this can be accom-
plished, trial fields must be established in regions V2 and V3. A
logical choice of trial functions in these two regions is plane waves
since the application of the boundary conditions at the planar inter-
faces 82 and 83 of Figure U4 is facilitated when plane waves are used.

The expansion of a field in terms of plane waves is discussed by

Borgiotti (28) and Clemmow (29).

In region V2 of Figure 4, let the x and y components of the trial

field EQ be
(3-49)
-jzk jzk .
Z, z, w][xkx+yky]
E, (xguz)— fm {m [T, (k, 5k e + R Ok Je Je dk i,
and
(3-50)
ﬁJZkzg jzk22 *jD&k+y%g
(X,¥,2) = [ f [I (k, Ky )e + Ry(kx,ky)e Je dkxdky

2 —0 —co
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The quantities Ix’ Iy’ RX, and Ry in Equations (3-49) and (3-50) are the

amplitudes of the various plane wave functicns. They are unknown at
present and must be evaluated. It will be noticed that plane waves
traveling in both the -z as well as the +z directions are included since
both are present in the physical situation.

To find the z component of EQ, the condition V » E. = 0 expressed

2

by Equation (3-7) may be used. In rectangular coordinates the result is

Using Equations (3-49) and (3-50) in this last equation and integrating

with respect to z gives

—jszQ jszQ
w o Ixe Rxe
LZQ :_i {w {]kx 'jkz ' jkz
B 2 2
~]zk22 jszQ
Ie R e hj[ka+Yk ]
¥ gk (L= e }e Y ak_dx
y| =ik, ik, 'y
2 2 |
or
+jzkz2 jZkZQ
© o —(kxlx+k I e (kXRX+k R e
E =[ [ Yy + S (3-51)
Z, T kZ kz !
2 2 B
—j[xkx+yk ]

‘e Y ax_dx
Xy
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All three rectangular components of E? have now been established.
Next, EQ will be forced to satisfy the vector wave equation, as

required by condition two of the variational principle. Thus,

B (3-52)
where

BB jmu20 (3-53)

By analogy with Equations (3-5), (3-8), (3-7), and (3-9), Equation

(3-52) can be simplified to
—v2Ev = . E (3-54)

where v = x, y, or z. By using Equations (3-u439), (3-50), and (3-51) it

can be seen that for all three components of E., Equation (3-54) reduces

2’

to

[ 22k %x%)Intg ak_ak_ = 0

Y T XY z, 2 v Xy
where Intgv is the integrand in Equations (3-49), (3-50), or (3-51).
The only way this last equation can hold for arbitrary x, y, and z is

if
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From this it follows at once that

= Ml — k2 — }2 L
k , JEQ k2 ky (3-55)

where the square voot is selected so that

W
[e

Re(k, ) 2 (3-56)

2

Im(kZQ)

14
O

This choice of square root ensures that the radiation condition and the

passive properties of medium V2 are satisfied since it causes the

outward-going plane wave to be attenuated as it travels.

The trial magnetic field in region V, is obtained by using

2
H2 = Vxﬁz/~jmu2. The rectangular components of this equation are
3E_ agy”}
e, ~ —'iu 3 o 822[ (8-3%2
2 Tl B

_I OE_ aEzpl
Hoo= £ et (3-58)

Ji
¥y —]wugj 3z 3x_l

Since HZ is not needed in future calculations, it will not be deter-
2
mined. Using Equations (3-50) and (3-51) in Equation (3-57) yields
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o o | |kl T 4K2T | “H2K, k kR +k%R | I%K,

_ 1 . XY X VY 2 R b3 y 2
H, = |=3 f J B) e = 2] e
%2 JWHy | Lo Zo Ky k,

2 2
-Jzkz2 ]zk22 ~j[xkx+yk ]
+ 9k Ie - 3k R e e Y dk ax
z,y Zp ¥ Xy

Inserting the result expressed by Equation (3-55) into this equation

gives
2 2. | -jzk
M ® k kI (kg—kK)I z,
B, = = [ ] o + ” e (3-59)
2 2| - - 2 z,
R
2 .2 jzk .
k k R (kZ-k)R z,| -Jlxk_+yk ]
s = + : 2 e 2 e * Y ax_dk
kz kz Xy
2 2

Next, using Equations (3-49) and (3-51) in Equation (3-58) yields

-jzk jzk

1 > %2 29
H o o= |—= [ [ -3k, Le + jk, Ree
Yo Ty | Lo L 2 2

ki1x+kxk 1 "jzkz2 kin+ka R ]ZkZQ -jlxk +yk, ]

-3 Ile + 3 EE EV ¥ e Y ak_ak
k k Xy
&)

>
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or, in view of Equation (3-55),

- P -jzk
- o e (ks=k )1 k k I*] z
Ho o= |—=—| [ ] AP ¥y B d 2 (3-60)
Yo Wiy |y e kz kz
2 2
"o, jzk .
(k--kIR k_k RF] z -jlxk_+yk 1]
2 yoox Xy y 2 ] % ¥ dk dk
Yy

= kz + kz e e
2 2

The trial electric and magnetic fields have now been established in

region VQ.
In addition to trial fields in Vg’ trial fields for VS are also

needed. Again, plane wave expansions will be used to represent these

fields. Let the x and y components of E3 be

~][xkx+yky+zkz ]

_ 3
EXS(x,y,z) = [m {m Tx(kx’ky)e dkxdky (3-81)
and
. s -1Exkx+yky+zk23]
Eya(x,y,z) = {m {m Ty(kx,ky)e dkxdky (3-62)

Equations (3-61) and (3-62) contain plane waves traveling only in the
+z direction in accordance with the radiation condition.

Now, the requirement V - ES = 0 gives
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which, in view of Equations (3-61) and (3-62), becomes

—][xkx+yky+zkz ]

e oo kXTX k T 3
E = [ |- - LV e dk_dk (3-63)
%3 e e kz kz * ¥
3 3
Next, E, must be forced to satisfy the complex vector wave equa-

3
tion. By analogy with Equations (3-52) through (3-56) it can be seen

that if EB is to satisfy the wave equation, then

= 2= g LB
k, /k3 k2 ky , (3-64)
3
where
k2 = wlp e, - jwu,o (3-65)
3 373 373
and
Re(k ) > 0 (3-66)
Z =
3
Im(kzg) < 0

The trial magnetic field in region V_ is obtained by using

3



VXﬁa/—jwua. The rectangular components of H

. are thus

56

B BEZ BEY
8 —jiu By3 = 373 (3-67)
3 L3l B
B *}'ésx BEZFﬂ
2 [Tl |

Since HZ will not be needed in future calculations, it will not be
&
evaluated. Substituting Equations (3-62) and (3-63) into Equation

(3-67) yields

i o jkxk Tx ijT ﬁj[ka+yky+zk23]
H = |=—| [ /[ e Pl Y+ 3k T |e dk_dk
3 184y ® -0 Z, z G- R y
~r 3
Using Equation (3-64) in this last equation gives
7 & P k kT (k§~kz}Tv ‘j[ka+yky+Zkzsj
H o= |—! [ [ | 2L Z+ — e dk_dk (3-89)
Xq W, k k Xy

Likewise, substituting Equaticns (3-61) and (3-63) into Equation (3-68)
yields

—j[xkx+yky+zkz ]

; /
Yok X X Y 3 4k dk (3-70)
| .
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This completes the specification of the trial electric and magnetic

fields in regions V, and VB.

2

Next, the tangential components of the trial fields on either

side of the z = d plane (surface S, of Chapter II) must be made equal.

3

This is necessary because of conditlons four and eight of the varia-

tional principle. It can be seen from Equaticns (3-439) and (3-61) that

if E =E at z = d for all x and y, then
X X
2 3
-jdk22 jdk22 -jdkz3
Ie + R e =T e (3-71)
X X X
Similarly, if Ey = Ey at z = d for all x and y, then Equations (3-50)
2 3

and (3-62) require that

~jdk jdk ~3dk
Z, Z, Zq
Ie + R e = T & (3-72)
¥ Yy 2%

Next, it must be required that H =H and H =H at z =4d.
Ty  Hy Yo Y3
Using Equations (3-59), (3-60), (3-69), and (3-70), leads to

v k ;1 2
— + ‘Je (3-73)

and
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i (kg-k2)lx k k1 jdkz2
i)  all. 3 Lle (3-74)
”2 kz kz
3 2 2
1 B % %R | 39, (h2kig % b g | —IdE,
3 2 y'x Xy Yy 2 _ 3 'y 'x Xy y 3
= == + e = T+ =]
v, K k_ X K
Z9 2 23 23

Finally, Equations (3-49) and (3-50) may be

to give, respectively,

evaluated at z 0

0 oo —jxkX -jyk
E_ (x,5,0) = [ [ (I_4R )e e Y dk dk
X5 LT Xy
and
© o - xkX —jyky
E (x,vy,0) = (I +R e e dk_dk
Each of the last two equations represents a double Fourier trans-
form. Inverse transforming them gives
oo o0 i k jyk
) 142 L y
Ax(kx,ky) =I +R, (5}3 {m {m Exz(x,y,o)e e dxdy  (3-75)
o oo 1 xk jyk
; I+ IR y
A(k ,k)=I +R = |— E (x,y,0)e e dxd (3-76)
it = Ay By & {m {w y, 7

2
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The newly defined quantities AX and Ay represent the Fourier transform
of the tangential components of the electric field at z = 0.

It should now be noticed that Equations (3-71) through (3-76)
» R» R,

y Xy

TX, and Ty' These equations are solved in Appendix B in terms of the

constitute six equations in terms of the six unknowns Ix’ I

soon-to-be-evaluated gquantities AX and Ay' From Appendix B the solution

of these six equations is

NX
IX = —D— <3"77)
Ny
Iy = ot (3-78)
R = A -1 (3-79)
x = x
R = A -1 (3-80)
y y y
jdkZs jdkz2
T =@ [A e - 231 sin(dk_ )] (3-81)
H b4 b4 Z2
]dkz3 JdeQ
T. = & A e - 231 sin(dk )] (3-82)
y LAy Py Z5

where Nx‘ Ny’ and D are defined as

(3-83)

NX = Ax{cosz(dkz Y —lk . e —
2 ||¥2] %2 Fota 2 %3 )



NS 2
Ak k |—{{|— - 1| + &4 {cos (dk
X X%y u2 k3 v z

)
2

60

(3-84)
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u k|2 u k|2
+ 4 sin(ak Jeostak | [Z{[K2 + 22 Lok x (14 |22 ]
2 o | [Y21] %2 3| %3 > %3 L g
uo k|2
D = 2k 3k2 cosQ(de y - sin’(dk_ ) (3-85)
2 23| [Y2%a 2 Z5
u k. | %
b Bl 122‘ kg + %2 |sdntdle Joosldk )
Y2 3|, 23 B 29 %9

Now that the plane wave amplitude coefficients have been deter-

mined, wc can be evaluated. From Equation (2-6), WC is
3 3

The integration over Sa can be extended to cover the entire surface 82,

that is, the entire x-y plane, because 52 X 52 = 0 over the perfectly

conducting surface S, - S,. Noting that ﬁg = —éz over 8,, the last

expression for WC then becomes
3

or
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W= %-j [ (E_ H -E H )| dxdy (3-86)

Before substituting the trial fields into Equation (3-86), it will be
helpful to keep the integrations on kx and ky which appear in Equations
(3-59) and (3-60) distinct from the kx’ky integrations appearing in
Equations (3-49) and (3-50). This will be done by using primes on kx
and ky in Equations (3-49) and (3-50). Then substituting Equations
(3-49), (3-50), (3-59), and (3-60) into Equation (3-86) gives, after

changing the order of integration,

B }r (=] oo [+4] o0 o [++] . n -_]‘_--
W=z 1] [ i RXJE’“] (3-87)
3 -00 —00 —00 —00 =00 —C0 2
)(1 R )k k (I -R) )
( + 2I T I 1 4R |
k, y vy wu2
[ R 2 ]
Kk (IR 2T k)| =G k')
Xy X X 2 Ty y 4 X X
. + }e
K K
% 22 ]
-jy(k _+k') : '
- e Y Y ax dy dx' dakx' dx_ dk
oy R Y

where the caret (") has the meaning

= - 1 1 =
Ix = Ix(kx,ky} (3-88)
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I =1 (k',k")
v Y( Xy
- ' 1
R Rx(kx,ky)
R = R (k',k')
y y xy

The caretted terms are needed because of the change from kx,ky to
k;,k' in E, and E
y 2 Yo
The integrands over x and y in Equation (3-87) can be evaluated

immediately by noting that (30)

J e ir(athly, - 216(-a-b)

-_—

where 6(x) is the Dirac delta function. Hence,

el ; '
© o -jx(xx+k;) -Jy(k +k_ )
[ ] e e

-—00 =00

dxdy (3-89)
— 2 t '
= (2m) 6(—kxmkx)6(~ky*ky)

Equation (3-89) is the evaluation of the x and y integrations in
Equation (3-87) because x and y only enter Equation (3-87) exponentially
as given in Equation (3-89). After Equation (3-89) is used in Equation
(3-87), the k;,k; integrations can be performed immediately using the

well-known properties of the delta function. Then wc becomes
3



6u4

7 w
_ (2m) ~1 S 5 9
WCB-— Zoi, fm {m k22 {[IX+RX][(k2—ky)(IK-Rx) e

: . A 2 .2
+ k_k (I -R + [I +R Ik _k (I -R_ )} + (k,-k I .-R dk_dk
Jy (T ROT + TER Tk (1R )+ (k) (T R )T dkedk

where tilde (7 ) means

ixz IX(—kX,—ky) (3-91)
iy = I =Kk, )
ﬁx = R, (ke smk)
ﬁy = Ry(kok,)
Rx = A (koK)
Ay = Ay(—kx,—ky)

Using Equations (3-77) through (3-80) in Equation (3-90) yields

2 = e 2N
- (27) -1l 2.2 T x g
W= 2, {w [m k, Ax(kg—ky)[;D - A;] + Ak

3 2
(28 ) N 5 5
. _:ﬁx-— A |4 Ak s A+ B OGK)
(2N
. Ejfi - A | |dk,dk
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Rearranging terms in this last equation gives

Z

- 2“) 1 2 9
% ™ g I f H[{(kg-kx}(QNy—D&y) * KK, P
2

2 . ~_
(QNX-DAXJ} Ay + {(kg—ky)(QNx—DAx) + kxky(zwy—nay}} Afjdkxdky

In order to simplify Equation (3-92), it should be noticed that

1]

2 2| %2 Hy

2
[k ]2 W 1 k
=11 - Eg - sinQ(dk ) n§~k§ + g ) k2 1 - E%
3 Zo [ |M2] 22 Ho| X 3]

Haky 2
+ 3 sin(dkz Jecos{dk )k k |1 + = }
2 25 Bp Ng

-

M U_
2 3.2 i
2Nx = DAX QAX {cos (dkz ) ﬁ—-kz + [}iﬂky (3-93)

—+

]“i_h,J

and that

LY ? 2
2N - DA = 2A k k |[—=|||=] - 1] + 28 {cos“(dk_ ) (3-9Y4)
y y XX Y| Hy 3 y zZ,
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u {i U |
gyt 4 [:é-kg b= 2 - &in%(ak. ) ~%jk2
Z ® 2 1-12

Wal o k|2
+ |—|k {1 - |= + j sin(dk_ Jecos(dk_ )k k
.l y Kq % F AR

2 n Pg %y

By means of Equations (3-93) and (3-94) the first expression in the

numerator of Equation (3-92) can be simplified as follows:

A {Ek k ) (2N DA ) + k k (QN DA )
y v

N W, |
~ 3.2 9 2 . 2
= QAyAX {kxky[;z (kg"kx) k i][cos (dk ) + sin (dkzg)]
=1l R
+ cosQ(dkz )i k —§-k§ N ﬁ§~k2 1 - Eg
g ALl B o [Mel ¥ 8l |
- -4
u u Ko | =
- sing(dk )kxk —E-RQ + —g—ki 1~ Eg
22 XYM %2 Mg 3]
ugk, ?
+ sin(dkz )cos(dkz Kk ke (L# e }
2 2 ¥ 2o 29 Rt
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oA A, 2 2 3 ;3 -1 [cos2(dkz )+ sing(dkz )7

2 2

-+

+
| |
N e
_‘""1
”

- -2
cosg(dk ) {— —-%-k2 1 - o [kQ—k23
z, kS 2 X

. 2
sin (dkZ )

]
™
cl + |
N
~
(]
)
+
| t‘ tl
B ey
=
S}
'_d
|
I?r‘i?\“l
[ vy
M
—
et
m )
XI\.‘.\
| S |

+ 3 sin(dk Jeos(dk_ Dk Kk (k2-k2)|1 +
2 2 Fg A |H2%3

Rearranging terms in this last equation yields

2

2
Q—kx)(2Ny—DAy) ¥ kxky(2NX~DAX)] (3-35)

Ay[(k

1"
[pe]
>
S
a5
[¢]
0
[43]
e
fa
=

]

[ ]
p—
=

%
=

«“

o T'_‘l
[l\) @i
i
SIS

%]

[ = =1

tw i\)}

[p%]

I
w
'_l
o
—~
(09
E
1]
o
=
=
1’.‘.’1'\.’."
sl o
oy
[
el
=
[Nl L]
!_l l
|
| ix’l
N3
™~

+

Hak,|?
j sin(dk_ )ecos(dk )k k k_k 1+ }
= z Xy z z3 u

2 2 2 2°3]
g
u k
+ 28 A ﬂxBQMkZ )-5q 2 (k 5 )+ki 2 li Eg
yy 2 [M2)| %2 %l "3
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b
o]
e

_ sdatear 32 kz (kg—ki) o k; foe |n
Za [¥21] #2 3

«

Mok, |2
+ j sin(dk_ )eos(dk_ )k k (kg—kg) 1+ -2 }
A9 s fp g 2 2°3

Next, Equations (3-93) and (3-94) transform the second term in

the integrand of Equation (3-92) to

¥ . :
AX[(k2~ky)(2Nx-DAx) + kxky(th-DAy)J

N ]| [k, ]2
= oA A {kik2 i/ Eg -1 [oogQ(dk? J 4 sintdk 31
V¥, 3] 5 Z,
f‘ =
2 Mol o ”;- 2 %, 2 g .2
+ cos (dkz ) --kz + | =k (1 - = [kQ—k ]
2 | [M81 =2 2] ¥ |3 y
L |
! ! k
- sin(dk_ ) 32 e |32 o2 [kg—kzj
2 [[H2] %2 Ho 3 ¥
uk, |2
+ 3 sin(dk_ )eos(dk Dk k_ |1+ 3k2 [kg—kzj }
29 2 %y 23 o3 *J y



e
” 3 2 2 2 2
+ ZAyAx {kxky-i;- Eg- -1 [k2~ky][cos (dkZ
u u k. |2
+ cos?(dk Ik k —E-ki + —§-k§ g o Eg
By || Rol Ag (Mol 3
u U k, |2
= itk Y K —E-ki e oWl w §3
29 VL‘“Q 2 ol ¥ 3
”3k;-2
+ 3 sin(dk_ )cos(dk )kxk k k 1+ =
25 2y * ¥ % 24 Ho¥q

Rearranging terms in this last equation yields

> 2 2
Ax[(kz—ky)(zNX—DAx) + kxky(QNy-DAy)]

u
2A A {cosg(dk )[t%ﬁ
X X z.7

2 M2

u
sin®(dk_ ) ,é] K2
s (Mol %

(k

(k<-
%9

2

T+ k
Y

2

k

R M

) + sin2(dkz

2

1 -

)]

2
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(3-96)



70

=
P
]

k)1 o+

—+

g 2
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%5 Zy % %3 y
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28 RX {cosz(dkz Xk k. |—=|k
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u
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|

o)
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=l

Hgk, |2
j sin(dk Jeos(dk_ Dk k k k |1+ |==| | )
2 2y T ¥ By g Yoy

+

If the numerator and denominator of Equation (3-92) are both
divided by ka , then WC —-with the help of Equations (3-95), (3-96),
2 3
and (3-85)--can be rewritten as

. (ZTT) = _
NC ~ 20w, f j [;E:J {;e;]AYAY i
3 —~
|;) —l +AA A ) dk Ak

en| X

where Nl’ NQ, NS’ and Den are defined as
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!

] (3-98)
k 2

2 2 2

_] ) + k2 « 1 - E;i
81n(dk 2
+ cos(dk )k (k2~k2) 1+ E—
2y u k

2]
u k. |2
cosz(dkz ) Fg (3-99)
2 |® 3

31n(dk ) |2 2
3 2 .2 27 2
= k u {kQ—kX) + kay 1 - Eé}

Sin(dkz ) L2k 2
+ 3 ——T?———;z~ cos(dkz Tk (kgﬂkz) 1+ B EZ
2, 2 %3 * AR

=
1

i?ﬁ‘lwl
w (N

u
cosQ(dk ) 2 k2 - k2
1 z2 u2 2 s

sln(dk

N !
(o8]

w

=
]
]
S
=
N RS
1
-
)
[ =1

(3-100)

=
1]

(8]
Ititl
(2 T )
| KW A
) O |

=]

k k {CDSQ(dk )
Xy z,

] 2
Sln(dkzz) , , kQ 2
ol L e
z 2 3

2

=] =1
|m‘m|
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Sln(dkz ) s 2 k2 2
+ il cos(dk_ Dk (1 + |— o }
2 2y Zg Ho 3
and
2 2
u k
Den = k_ 29 Eg' cosz(dkz ) - sin2(dkz ) (3-101)
3| [H2 3 2 2
) sin(dk )
APl 1¥%2]° 2 2 25
3= | ] X, * k| [e——costax,, )
oy 3 3 2 Zs 2

It should be noticed that Equation (3-97) expresses WC in terms
3

N N Den, and in terms of the unevaluated

of the known quantities N 50 Nas

l,
quantities Ax and Ay. Before WC can be used, the Fourier transforms
3

Ax and A must be evaluated. To this end, it will be noticed that con-

dition five of the variational principle requires Ex = Ey = 0 over
2 2
- S_, while condition four requires E. = E
2 a X, X
and E = Ey over Sa' Accordingly, Equations (3-75) and (3-76) become,
2 a
respectively,

the perfect conductor S

1 1
2 y0+b x0+a jxkx jyky
Ax(kx,ky) = E%g f f EX (x,y)e e dxdy (3-102)
Yo X a
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1] '
y.t+b X0+a Faike

1 2 0 £ % jyky
Ay(kx,ky) = [%; i f Ey (x,y)e e dxdy (3-103)
0

XO a

Next, substituting Equations (3-29) and (3-30) into Equations (3-102)

and (3-103) yields

X +a'

1 e ' 0 - ijX
Ax(kx,ky) = {%%} m!XnT Pm',n' {J cos(Am,x e dx}  (3-104)
A b4
0
Y0+b' .
. {[ sin(B;,y')e y dy}
Yo
xy ta’ Yotb' \Bi05,
2 Jxk Jyk
Ay(kx’ky) = E%J Qi 4 {J sin(AiX')e £ dx}{f e 7 dy}
*0 Yo
x0+a‘ jxk
2
+ [%%] ) Q%, o {J sin(A%,x')e * ax}
— m! T 5
*0
1
y0+b Sk
. {J cos(B;,y’)e Y dy}
Yo

The integrals involved in Equations (3-104) and (3-105) are evaluated

in Appendix C. Using the notation adopted there allows Equations (3-104)
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and (3-105) to be written as

o Ixrak, dy.k
A (k_,k_ ) = [%} g XG0y YR, o, (3-106)
X Ry 2m 1 g m',n
- f 1
ch(m ’kx)ISy(n ’ky)
ix .k dy.k
. )2 P MYy po
A (koK) = E;S e e [Q) oTs,(3k,) (3-107)

-

| ' '
Icy(o,ky) + m‘zn‘ Qm,sn,st(m ,kX)Icy(n ,ky)j

Before Equations (3-106) and (3-107) are used in Equation (3-97), A,

and Ay must be evaluated. From Equation (3-91), it is clear that

A= A (%k_,k ) (3-108)
® % mT Y
A = A (~k_,-k ) (3-109)
¥ g X ¥
while from Appendix C
i S - T "
st(m , kx) st(m ’kx) (3-110)
Te Gir% ) B X (' &) (3-111)
b4 L X Mx
%
Is (n',~-k ) = Is (n',k ) (3-112)
¥ y ¥ Yy
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TE R Y = e (% ) (3-113
y '3 ¥ Yy }

Using Equations (3-106), (3-107), and (3-110) through (3-113) in Equa-

tions (3-108) and (3-109) yields

:f-" ¢

jy k .
O X 0y 1 L ' .
IQ“I ] P i ,ch(mm ,kx) (3-114)

m‘
1
mm' ,nn'

. st(nn’,k )
y y

4 =jx.k_ -jy.k
_ 172 70" 0"y [
‘“’y = E—ﬂ] e e Ql OIs (1 k )Ic (0 k ) (3-115)
i £ i 1}': .
+ mrinn Ot ot 185’k )Te (o ,ky)]

It should be noticed that the summations in Equations (3-114) and
(3-115) have been changed from m',n' to mm',nn' in order to keep the
subscripts distinct in later manipulations. The primes on mm' and nn'
indicate that the summations are over the aperture modes.

Equations (3-106), (3-107), (3-114), and (3-115) are now ready
to be substituted into Equation (3-97). It should be noticed that the
exponential terms in Ax and Ay will cancel the corresponding exponential
terms in RX and Ey when these four terms are placed in Equation (3-97).

Thus, Equation (3-97) becomes

H
W= e E};(QH)Q [:l—] f f (3-116)

&) Ewul o R,
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T

P! ' ' ,
m{n‘ mm%nn' m' TﬂPmm L [Be;}lc b sk )IS k! ,k )Ic (mm K )Isy(nn ’ky)

b

£

N
' 1 2 y 4 ; % ;
X1 qﬁgfqmﬁJHf&%%Jst(m,kkﬂcy(n sk )Ts (' ke )Te (nn' k)

m',n' mm',on’

-+

N
* 9 o, 0‘::{}15 (Lak M Te (0K, )Is (1,k )Ic (0, k)

N
+ Z Q1r Q' [: {JIS [ k )Ic {0, k )Is (mm' Lk )Ic (nn k )

m,nn'lOmm ,on'{Den
3

N
' ' 2 \ - % s P
+ !Z .Qm’,n'Ql,O_EEéJISX(m ,kx)Icy(n ,xy)IsX(l,xx)Icy{O,ky)

N
LI D;i}lc ('l )Ts (n' sk YIs (LK, )Ic (0,k,)
m',n'

]

N
i ): Z mi'nl Q ,@eﬂk (m',k JIs Enlt k )Is (mm LK )Icy(nn ,ky)

m'.n' m',m'

N L}
' 1 3 ¥ ; E :
- } Q, P [;eé}st(l,kx)lcy(o,ky)ch(mm ,kx)Isy(nn ,ky)

1 1
T 1,0 mm',nn

N
r 3
+ Z ’ Z Qm, ol mm nn'[;e:]ls (m' k )Tc (n', ky)

m',n' mm',nn’

Ic“(mm‘ Lk )Tsh‘(nn‘ Lk ) |dk dk
X X v y Xy
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To reduce the size of the region over which the integrand in
Equation (3-116) must be integrated, the present integration over all
four quadrants of the k_ - ky plane will be transformed intoc an inte-
gration over the first quadrant alone. To do this, Equation (3-116)

will first be represented as

oo co

W ; = {w {w G(kx,ky)dkxdky (8-317)
where G(kx,ky) represents the entire integrand of Equation (3-116).
Next, the integral in Equation (3-117) is split into four parts as

follows:

(++] @ o O
wc3 = £ g G(kx,ky}dkxdky + g {m G(kx,ky)dkxdky (3-118)

0 0 o
G(k_,k _Jdk_dk_ + G(k_,k_)dk_dk
XUy 2 ¥ {w‘!; ® y) Xy

0
+]

—00 -0

Now, making a change of variables in the last three Integrals on the

right and then collecting terms transforms Equaticn (3-118) to

&

W ; 2 £ é [6Ck, k) + Gk ) + Gk sk ) (3-119)

2 Y

This equation can be considerably simplified by making the following
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observations. From Equations (3-98), (3-55), and (3-64), it can be

seen that

Nl(kx,ky) = Nl(—kx,ky) = Nl(—kx,—ky) = Nl(kx,—ky) (3-120)
while from Equations (3-99), (3-55), and (3-64), it can be seen that

Nz(kxsky) = NQ(_kX’ky) = NQ(_kX’-ky) = Nz(kxs_ky) (3—121)
From Equations (3-101), (3-55), and (3-64) it follows that

Den(kx,ky) = Den(—kx,ky) = Den("kx,-ky) = Den(kx,~ky) (3-122)
while from Equations (3-100), (3-55), and (3-64) it follows that

Ns(kx,ky) = NS(—kX,—ky) = —NS(—kx,ky) = -Ns(kx,—ky) (3-123)

Using Equations (3-119) through (3-123) in Equation (3-116) yields

] (i .
W= —| |= f (3-124)
Ss |2y (M| |?"| © @

N
' Y 2 13 4
Ql,OQl,OE;%J {st(l,kx)lcy(o,ky)st(l,kx)lcy(O,ky)

by &
+ st(l,—kx)Icy(O,—ky)IsX(l,—kx)Icy(O,—ky)
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mm' ,nn’

)

m'n!

% &
+ st(l,—kx)lcy(o,ky)st(l,=kx}Icy(O,ky)

3 w
+ st(l,kX)Icy(D,—ky)st(l,kx)lcy(o,~ky) }

Q l;e:[ {IS (1,k )Ic (0, k )Is *(mm! oK )Ic Comt , k )

1; 0 mm',nn’

+5 %
+ st(l, kX)Icy(O, ky)lsx(mm 5 kx)Icy(nn s ky)
b £
p— = 1
+ st(l, kx)lcy(o’ky)lsx(mm . kx)Icy(nn ,ky)

b W
X 1 "
+ st(l,kx)lcy(o, ky)st(mm ,kX)Icy(nn " ky) }

P
1,0 mm',nn'

N LY
3 % , % .
Q [;S;J (Ts, (1K )Te (0,k ITe, (mm'k )Ts (nn' sk, )
& &
. E ' o
+ st(l, kx)Icy(O, ky)ch(mm g kx)Isy(nn . ky)
Is ( )T % \ % ,
- Is,, l,v-kx cy(O,ky)ch(mm ,—kX)Isy(nn ,ky)

s ~ _':': ; ] B
be(l,kX)Icy(O, ky)ch(mm ,kx)Isy(nn 3 ky) }

t

m',n'

N
5 QIOE‘I{IS (m' k)Ir_ (n' ,k )Is(lk)Ic(Ok)

- i 2 % _ ] _
+ st(m . kx)Icy(n . ky)IsX(l, kx)Icy(O, ky)

79



) )

m',n' mm',nn'

! L

m',n' mm',nn’

B ; % y %
st(m 3 kx)Icy(n ’ky)ISx(l’ kx)Icy(O,ky)

; 3 & : P K
st(m ,kX)Icy(n . ky)ISx(l’Kx)Icy(O’ ky) }

' NQ
! 1 '
Qm',n'Qmm’,nn‘ Den [st(m ’kx)ICy(n ’ky)
*( 'k )I *( 'k )
st mm K cy nn', "
Is (m',-k )Ic (n',-k )Is*(mm‘ -k )Tc*(nn’ -k )
e TRy ¥ Ty g TRy 1 Ty

TN, O (. 4 v * 1

st(m 5 kXJIcy(n ,Ky)st(mm 5 kx)Icy(nn ’ky)
" - y o . % y
Lsx(m ,kX)Icy(n 5 ky)IsX(mm ,kX)Icy(nn g ky) }
Q' p' N—S_I {Is (m',k )Ic (n'.k )
m',n' mm',nn'|Den]| RO g oget” Loy
B " e )
lcx(mm ,kX)Isy(nn ’ky)
% %

[ [ (i v
st(m N kX)IQy(n K ky)ch(mm . kX)Isy(nn 5 ky)
T b, Yo ¥ e STt ol Vi Gmm® k)
s (m'y -k Cy pHek 5 c (mm', -k Sy nn', .

. ) § b ; = §
st(m ,kx)lcy(n , ky)ch(mm ,kx)Isy(nn , ky) }
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N
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m'zn' mm‘znn' Pm',n‘Qmm’,nn‘[;e;} {ch(m ’kx)ISy(n ’ky)

H3 %
* Is (mm',k )Ic (nn',k )

X x A’ y

b3 (3
¥ 1 _ v vt

- ch(m 3 kx)lsy(n ; ky)st(mm 3 kx)Icy(nn s ky)

¥ &
_ v T ' v 1
ch(m 5 kx)_sy(n ,ky)st(mm . kx)Icy(nn ,ky)

HS b3
- ! Yo, ' T
ch(m ,kX)Isy(n ¢ ky)lsx(mm ,kx)lcy(nn . ky) i

N
1 1 1 g y
Enr mm‘znn* Pm',n'Pmm',nn’{;eé} {ch(m ’kx)lsy(n ’ky)
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. 4 1
ch(mm ,kx)Isy(nn ’ky)

81



82

)

o %

P =5 (g T

+ ch(m , kXJIsy(n . Ky)lcx(mm . kx)Isy(nn , ky)
x %

" T 1 : v 5 !

+ ch(m 3 kx)_ay(n ,ky)ch(mm y kX)Iay(nn ,ky)
T6_ (! JE VT8 (80~ VI8 Gty I8 Gt 1 e .4

t Ie (m'k :y(n . y) c, (mm! Xk Sy nn',- v kx ky

The second bracketed term in Equation (3-124) can be simplified

with the aid of Equations (3-110) through (3-113) as follows:
ta (e YTo. U,k Vis (mmk. Jie Gond %) (3-125)
s, 1ok, Cy 0, y} s, (mm',k ;cy nn', 4 3~125
& Ta, (Es-k_ Yo (05K VTs Gili! <K JTo. (o’ 4k )
> SRS s e ] Ty %y

B . & B & ;
st(l, kx)lcy(o,ky)lsx(mm , kX)Icy(nn ’ky)

-+

~ q:‘: i . 3 ! s
+ st(l,kx)lcy(o, ky)qu(mm ,kX)Icy(nr . ky)

ki

y

-t

; % ; ;
2 Re[lsx(l,kx}lcy(o,ky)lsx(mm ,kx)Ic (nn ’ky)

% b3
T 1 ‘ 1
+ st(l,kx)_cy(o,ky)lsx(mm ,kX)Icy(nn ,ky)}

1]

& %
(] f !
2 Re[st(l,kx)st(mm ,kx) 1Icy(0,ky)lcy(nn ,ky)

+

ot
Ic (0,k )Ic (nn',k )}]
i S y
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& ]
= ! '
L Re[st(l,kX)st(mm ’kx)] Re[Icy(O,ky)Icy(nn ,ky)]
In a similar manner the third bracketed term in Equation (3-124) can
be simplified with the aid of Equations (3-110) through (3-113) as

follows:

; & &
L] 1 -
st(l,kx)lcy(O,ky)ch(mm ,kx)lsy(nn ’ky) (3-126)

-+

% &
=, = Forvans Ty
st(l, kx)Icy(O, ky)IcX(mm i kx)Isy(nn ’ ky)

% &%
3 v o ]
st(l, kx}Icy(O’ky)ICx(mm 5 kX)Isy(nn ’ky)

£ ]
e 1 L s
st(l,kX)Icy(O, ky)IcX(mm ,kx)Isy(nn . ky)

n

b kS
' 1
2 Re[IsX(l,kx)Icy(O,ky)IcX(mm ,kx)ISy(nn ’ky)

_ ] - ; ;
st(l,kx)Icy(O,ky)ch(mm ,kX)Isy(nn ,ky)]

n

& %
1 1
9 Re[IsX(l,kx)ch(mm ,kx) {Icy(o,ky)lsy(nn ’ky)

|

Icy(O,ky)Isy(nn ,ky}}]

I

2 Re[st(l,kX)Ic:(mm',kx)(~2j)Im{Ic;(o,ky)zsy(nn',ky)}]

% %
1 ]
b Im[st(l,kx)ch(mm ,kx)]Im[Icy(D,ky)Isy(nn ’ky)]
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The remaining bracketed terms in Equation (3-124) can be simplified by
analogy with Equations (3-125) and (3-126). Using these simplifications

in Equation (3-124) yields

(3-127)

My 1

1 ' 2 ! " R E P
Ql,leBD@Retlsx(;,kx}lsx(l,kx)} RelTe, (0,k )Te, (0,k )}

N I,
T 1 1 2 b ,
+ mmannu Ql,OQmm‘,nn‘{%EéJ Re{st(l,kX)st(mm ’kx)}
2

%
+ Re{Ic (0,k )Ic (nn',k )}
¥y ¥y y y

N
|3 o
l’OPmm,,nn,Lge;]lm{lsxfl,kx)lcxfmm 2 90);

mm' ,nn'

« Im{Ic (0,k )Is (nn',k )}
y Uy Uy y

1

-
N
1 2 b %
'8 e e T= 1 1 = T 3
+ Z ”m’,n‘Ql,O‘DeQJRe{iax(m ,xx)on(l,kx)}Re{kﬁgn ,ky)Icy(O,ky)r

]

¥

-

(mm‘,kx)}

b

N
t 1 2 i
t ] ) Qm',n'Qmm’,nn’{;e;]RE{ISx(m 2k, s

m',n' mm',nn’'

!
« Re{Ic (n',k )Ic‘(nn‘,k )}
v ¥ ¥ y

My
B J ] gy & S In{1s_(m' ,k )Ic. (mn',k )}
, y m',n'" mm',nn' |Den| X T X >x

mm' ,nn
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3
. Im{Icy(n',ky)Isy(nn',ky)}

N T,
! t 8 W
iz T T
! m‘zn. Pm‘,n’Ql,O[;eé} m{Ie (m',k )Is (1,k )}
Im{I *( ',k )Ic (0,k )}
y oy Ty Ty
' i NS - 1 g |
+ m'En' mmugnn.Pm'sn'Qmm'ann' Seg| MiIc, (m',k J)Ts (mm',k )}
3 L]
* Im{Is*(n’ k )Ic (nn',k )}
y oy Ty v
' ' Nl %
— 1 '
) ) P nrFamt ont |Feg] ReLTE, (M sk, ) Te, (mm' k)

m',n' mm',nn’

o,

* Re{Is (n',k )Ts (mn',k )}{dk dk
y /=2y y Xy

Equation (3-127) is the general form of WC for an arbitrary
3

number of modes and an arbitrary set of medium parameters. It should

be noticed that the plane wave amplitude coefficients have been elimi-
nated from WC3 and that the only unknown quantities in Equation (3-127)
are the aperture mode amplitudes. The guantities Nl’ Ng, N3, and Den
are given by Equations (3-98) through (3-101), while st, ch, Isy, and
on are given in Appendix C. It should alsoc be noticed that the original,
doubly infinite, six-fold integral expression for WCS, Equation (3-87),
has been reduced to a singly infinite, double integral expression, Equa-

tion (3-127). This reduction considerably simplifies the evaluation of

WC ;
3
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Although the form of WC has been considerably simplified, the

fa]

3
integrals in Equation (3-127) still cannot be evaluated in closed form;

they have tc be numerically integrated. In contrast, the integrals in

W and W are evaluated in closed form. Equation (3-127) must be
further changed to facilitate the numerical integration. This point is

covered in Chapter V when regions 02 and VS are both lossless or only

slightly lossy.
Before taking up the numerical integration, a matrix solution

will now be obtained for the waveguide and aperture mode amplitudes in

terms of the general exprecssions for we 4 Wc , and W , which have been
1 2 3
derived in this chapter.
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CHAPTER IV
MATRIX SOLUTION FOR THE MODE AMPLITUDES

In Chapter III the energy expressions Wcl, WCQ, and W ; were
evaluated for the slot antenna shown in Figures 4 and 5, assuming that
the waveguide is excited by a dominant mode wave and that all higher
order modes are evanescent. These three energy expressions are needed
to determine the mode amplitudes, using the variational principle of
Chapter II. According te this principle, the set of trial waveguide
mode amplitudes that makes WC stationary is obtained by setting the
partial derivative of WC with respect to one of the waveguide mode
amplitudes equal to zero. Repeating this process for each waveguide
mode amplitude produces a system of equations in terms of these unknown
amplitudes. The sclution of this system of equations determines the
set of trial amplitudes which best approximates the true waveguide mode
amplitudes. In this chapter it will be shown that these equations are
linear and consequently can be solved using matrix techniques. The fact
that the equations resulting from this new approach can be solved by
matrix methods is significant. It implies that more accurate results
can be obtained more easily by using the new variaticnal principle than
by using comparable approaches which produce nonlinear equations.

To calculate the partial derivatives of WC, the partial deriva-
tives of wcl, WCQ, and WCS must first be obtained, since

W =W + Wc + Wé . As a prelude to calculating these derivatives,
1 2 3
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it should be noticed that the trial electric and magnetic fields in

regions Vz and VS and in the aperture can all be expressed as a linear

combination of the waveguide mode amplitudes. This statement follows
from the principle of superposition and the fact that the waveguide
field has been represented--in Equations (3-1) and (3-2)--as a linear
combination of the trial waveguide mode amplitudes. If this set of

amplitudes--that is, R, Qm ” and Pm n—~is designated by the set {Xi},
2

k)
then, by superpositiocn, each trial E. and H. in W , W , and W can
i i e’ e, Cq
be expressed as a linear combination of the xi's. Hence, WC 5 WC , and
1 2
WC are all quadratic functions of the xi's, because each of these
3
energy expressions is formed by the product Ei X ﬁi.

Since each energy expression is a quadratic function of the xi's,

then Wc , for example, can be written as
1

N N
c. X, + Z X { Z m x.} (4-1)
Lok " g5 8 N5y 1pid

N
W= K o+ ]
= 1

R R 5}

where K. and each ¢ and m, are constants independent of each x,. It
1 1p 1£j £
is assumed in Equation (4-1) that N of the xi's are being used to

approximate the true waveguide field. Equation (4-1) is the most
general quadratic form that Wc can have. TFor convenience in manipula-

1
tion Equation (4-1) will be rewritten in matrix form as

— T © T - - -
W= K H Cl] X1 + X]J [Ml] X] (4-2)
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In this chapter the following matrix notation will be used. A
bracket to the right of a quantity--for example, Cl] --represents a

: .th . ) s
column matrix, the i element of which is cl . Brackets on both sides

i
th
of a quantity--for example, [Mjl——represent a square matrix, the ij

element of which is m The transpose of a column matrix or a square

1..
1]
matrix will be denoted by a superscript T. Since N of the xi's are

used in Equation (u4-1), Cll has the dimensions 1 x N, while [Ml] has
the dimensions N x N in Equation (4-2). By analogy with Equation (L4-2),
WC and Wc can be written as

2 3

K+ c2]T e X1+ %317 - [MT - X] (4-3)

c 2

=
1

2

=
1

T T
Ky + €510 = X1+ %1 - M - x] (4-4)

The variational thecrem developed in Chapter II states that the set of

xi‘s that makes wc stationary is the one that is the solution of the

system of equations
Gl = 0] (4-5)

where G] is the gradient of Wc; that is, G] is the column matrix whose

.th .
1 element is

= = = = (4-6)
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Since wcl, WCQ, and Wcs all have the same quadratic form, only the par-
tial derivative of one cof them needs to be examined, as for example

BWC /3%., in order to determine chfaxi in Equation (4-6). From Equa-
tioi (4-1) it can be seen that

Converting this last equation to matrix form and then using it along

with the analogous results for oW /Bxi and 3w /3xi in Equation (4-6)}
2 Sa
yields

6] = (¢, 1+ €0 + e 1) + ([u] + )] (4-7)
T i T
+ [Mg] + [Ml] + M, 10 + [M17) « X]
Defining CO] and [MO] as

CO] g Cl] + C2] + c3] (4-8)



g1

and
M 1 =[M 1+ M3+ [M,]+ [M 17+ o JT + (M ]T (4-9)
0 il 2 3 1 2 3
allows Equation (4-7) to be written as
G] = CO] + [MOJ ¢ X] (4-10)

From Equations (4-5) and (4-10) it can be seen that the set of
waveguide mode amplitudes, X], that causes WC to be stationary, is
given by

X] = —[Moj_l . .1 (4-11)

0
Thus, to find the solution matrix X]J, the matrices Cl], 02], Csj, [Ml],
[ng, and [MBj must first be found and then used in Equations (4-8),
(4-9), and (4-11).

It will be noticed that WC has already been expressed in terms

1
of X] in Equation (3-27). From this equation it can be seen that

W =K. + 0.1 « X] (4-12)

Since [Ml] is zero it can be eliminated from all equations. It should

alsc be noticed from Equation (3-27) that ¢, = 0 for all i except for
i

the 1 corresponding to R.
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From Equation (3-34) it can be seen that WC has been expressed
2

as
7. x'] (4-13)

when X'] stands for the set of aperture mode amplitudes, that is,

Q‘r and P' . The number of aperture modes, xf's, must be the
m',n' m',n' i

s
same as the number of waveguide modes, xi's,in order to perform the
matrix operations in this chapter. Primes on matrices do not represent
differentiation but are used to designate matrices which are different
from the unprimed ones.

From Equations (3-L6) through (3-48) it can be seen that the

relationship between X] and X'] is of the form
al a = . t om
Ccl + M T « X1 = [M - X'] (4-14)
Using Equation (4-14), it can be seen that

- _l. '—l. . a
I R I S I S S (4-15)

Next, substituting Equation (4-15) into Equation (4-13) allows WC to
2

be written as

L e I R 1. ,
W, = { 02] + %] [MQJ} {[Maj 65] + [M6] (M1 « X1}

2

5

or
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—_ B ' T . _l L] ! T - _l - . p—
Wcz = {c,] [y ] ccd} + {c,] R (M1« X1} (4-16)

R I E'S RN S U AR P

Fx1t - ] e T , .

2 6

< [M_] - X7}

Since each term in Equation (4-16) is a scalar, any term in that equa-
tion may be replaced by its transpose without affecting the equation.
Remembering that for any matrices [A] and [RB]

(cal - DT = (81" - [ad?

it can be seen that the third term in Equation (4-16) can be rewritten

as

T =1

g - ' - - T
8] = 4% [M?] [MBJ c5]} (4-17)

=1

i

' . T
()1 - 37 e e - K]

T

=147 t-T
3"+ (1™ - " . x]

5
Using Eguation (4-17) in Equation (4-16) yields

_ vl ],
WC = {CQ] [MSJ

. 05]} (4-18)
2



9l

| - T -1.T tzil
pd " EMEJ ¥ [M5J + C5] . ([M63 ). [M2] } o+ X]

20 S R {0730 N 00 Al 6 T D B S

6

Comparing Equation (4-3) and Equation (4-18), it can be seen that

K. = c;] M1 - c.] (4-19)

and
nT_!T. L T. *-lT- R
¢l =¢,] M1 (M1 + ¢ (CM1 ) [M,]
on
} i ~1.T o o -1, )
c,1 =M1 ([ 1) c, 1+ M1« [M] c.] (4-20)
and
M1 = M1« M 170 . [u] (4-21)
(M1 = IM, 1« Mg -5 -2l
The funectionals WC and Wc have now been expressed in terms of
1 2
X] alone, instead of both X] and X']. Next, WC must be expressed in
3
terms of X] alone. From Equation (3-127) it can be seen that Wc has

3
been expressed as
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« [M,] - X'] (4-22)

Using Equation (4-15) in Equation (4-22) yields

i T -1.T ;o T AT
W, = e, 1"+ (I + x0T - (M IHY
O VA T € s s N VA O VT RO,
3 6 5 6 5
oy
W= 0t e am DT o1 Tt e e 1w xdT e T (w29

=1 4T ! -1 T =0
(M TTHT - DT e T s e D e ] e (DT

e e x3exdt - o1t e am HT

- IMy] - [ ] s

3 6

' -1 .
- D3 - DM I7h - (M) - X3

Taking the transpose of the second term in Equation (4-23)--which is a

scalar--and collecting terms permits WC to be written as
3

L Len (1-24)

- To _lT- ! -
W= 4e 1 - (M IO - fpd - ] :

3 3 6

SR T

T =1F
+ (030 - (u T - [ml] - !



ST LRG0 R RN V00 N £ RO £ RS

5
o
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3 s}

Comparing Equations (4-4) and (4-24), it can be seen that

K, = e 1 - i d™HT 1 e 1 - e,d

and

— T . _l T - ! - .
= 1] (M. 17) [M3] [y 5

c.]T
o]

T

+ caj . ([Mﬁ]-l)T . M)

SO IR £ L

3
3 )

L3S R S

T €/ RN G i R oV L o

) 1 /) R T =
= [Ma] (LMBJ ) 1[M3] . [M3] Foo [M.]

6

96

« %]

(4-25)

. CSJ

; 1a ; _ : :
cr, since [ng 1s symmetric, then the last equation may be written as

¢ d = 2im 1 - (i 3HT - 1 - 1 . eld

In addition,

(4-26)



a7

1] (4-27)

. T L] -l T - ! -
(M3 = T+ (IM 3750 - (M -+ [T :

3 6
From the results of this section it can be seen that the follow-
ing steps must be taken to determine the waveguide mode amplitudes X]:

1) Using Equation (3-27), determine Cl] so that

_ T
Wc = Kl + Cl] X] (L-28)

1
2) Next, using Equation (3-34), determine C;] and [M;]

so that

= pial . w! E L T 5
wCQ = 02] X'1 + ¥] [MQ] b (4-29)

3) Then using Equation (3-127), determine EMé] so that

T L L I -
NC 2R [MSJ X'] (4-30)

4) Next, using Equations (3-46) through (3-48), determine

C5], [MSJ, and [MB] so that
CS] + [M5] = X] = [M6] « X'] (4-31)

5) Then determine CQJ and [MQ], using Equations (4-20)

and (4-21), respectively, as



T R
c,J = M.] (fm, ]

and

6)

7)

(8)
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] T ' ‘ - -l L] —
). 021 + EMQJ [M6] CSJ (4-32)

' -1
(My1 = ()0 M 37« ] (4-33)

Next, determine C8] and [M3], using Equations (4-26) and

(4-27) as

=L

: e T, =IxT o, . _
cgd = 2M3 - (tmgITHT [l - I - e (4-34)
and

N - 1 T - _1 T - ' - _l - -—
[M3] = [MSJ ([M6] ) [Msj [M6] [M5] (4-35)

Then using Equations (4-8) and (4-9) and noting from

Equation (4-28) that [Ml] = 0, form
Cod = CyI +C,0 + ] (4-36)

and

oy

. _ T
[MO] = [M2] + [Maj + [MQ] + [M3] (4-37)

Finally, using Equation (4-11), the waveguide mode ampli-

tudes are obtained from
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X1 = -{Moj‘l - 0] (4-38)

0
It should be noticed that the value of X1 in Equation (4-38)
will depend on the choice of L. Changing L changes the phase and mag-

nitude reference plane S. of Chapter II, which in turn changes the phase

1
and magnitude of each mode. This variation of X] with L can be removed
by normalizing X1 with respect to one of the mode amplitudes. For
example, XJ], as given by Equation (4-38), can be divided by the ampli-
tude of the incident dominant mode. This normalization causes all the
mode amplitudes to be referenced to a unit magnitude, zero phase inci-
dent dominant mode at z = 0, as can be seen from Equation (3-2). Such

a normalized X] is independent of L. This last statement 1s borne out

by numerical results.
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CHAPTER V
NUMERTCAL INTEGRATION OF WC
3

Up to this point all equations are valid for arbitrary medium
parameters in regions Vl, VQ, and V3. Hence, the expressions for Wcl,
NCQ, and WCS, as given by Equations (3-27), (3-34), and (3-127), can
be applied to a wide variety of physical problems. They can be applied,
for example, to plasma, as well as dielectric coverings and to lossy,
as well as lossless coverings. Since the coefficients in Wcl and w02
are expressed in closed fsrm, these two equations can be used directly,
no matter what values the medium parameters have. However, the coeffi-
cients in WC3 are given as lntegrals which must be integrated numeri-
cally. It is difficult, if not impossible, to devise a numerical inte-
gration scheme which wili efficiently handle any combination of medium
parameters, Hence, the range of these parameters must be limited in
any single study. Since the object of this dissertation 1s to analyze
a dielectric coating on a slot antenna, VQ is restricted to be a die-

lectric. Egquation (3-127) will be medified in this chapter so that 1t

can be numerically integrated more easily for this case.

A Change of Variables

The first modification is the reduction in size of the region of
integration. This will be done by making a change of variables from

rectangular coordinates—-kx,ky—hto polar coordinates--p,¢--using
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k p cos U (5-1)

=
1]

k. o sin ¢ (5-2)

=
1

The wave number, or propagation constant of free space, kO, is defined

as
ko = 0, == (5-3)

where Hy and £, are the free space permeability and permittivity,

respectively, and c¢ is the speed of light in vacuum. Letting F(kx,ky}

represent the entire integrand of Equation (3-127) permits Wc to be

3
written as
=] =}
W= [ F(k_ .,k )dk_dk (5-4)
CS 0 0 X Y x V'l
Using Equations (5-1) and (5-2) in the last equation produces
w /2 5
W= [ | F(k.pcosv,k psiny)k-pdydp (5-5)
4 0 0 0 0 0

The change of variables just employed has, in effect, converted one of
the infinite integrals in Equation (5-4) into the finite integral in
Equation (5-5). This finite integral is easier to evaluate numerically

than is the infinite integral.

20 %2, x* , and k¥ that

2 3 % z

2 3

appear in Chapter IIT will be rewritten in a form which is more useful

Before continuing, the quantities k
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in this chapter. From Equations (3-53) and (5-3) it can be seen that

2 —=
2 2 VpPprdWipfa.
k2 = kok 2 4
O
i P, |
¢ r g
2 2 2 2 { 2 3
=k ID £ =JH ( l(""‘"‘_}‘ =k U € il_'J =
0} r2 r2 r2 WE Er_ ‘ 0 r2 r2 meQ
L 2|
or
k2 = k2 (L - 4tans,) (5-6)
2 T Fo Mp Ep N+ 7 ITANO, 3
2P
The loss tangent of medium V2 is defined as
tand, = ig— (5-7)
2 we2

and pu_  and €, are the relative permeability and permittivity, respec-
2 2
tively, of region VQ. From Equations (3-53) and (3-65) it can be seen

that kg and kg have the same form. Thus, by analogy with Equation (5-6).
kil = ku e (1 - jtanéBD (5-8)

The loss tangent of medium VB ig defined as

i B

tan&s = 53

£
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and Mo and e, are the relative permeabllity and permittivity, respec-
3 3

tively, of region V Next, applying Equations (5-1), (5-2), and (5-6)

3

to Equation (3-55) gives

k2 = K? - KQ - k2
b4 2 ® y
2
= k2£u e (1-jtand,) - p2(cos?y+sin2y)]
[ il S Z
2 T2
or
2 2 s 8 i
KZQ = kO[“r2€r2(l ]tanﬁz) p“] (5-9)

From Equations (3-55) and (3-6u4) it can be seen that kz and kz have

2 3
the same form. Hence, by analogy with Equation (5-9),
k2 = k%[u_ e (1-jtans,) - p2] (5-10)
25 0 P, Ty 3

It is important to notice from Equations (5-1) and (5-2) that L
and ky are functions of both p and y. Alsc, it can be seen from Equa-
tions (5-9) and (5-10) that kz? and kZB are functions of p alone. Thus,
the function Den defined by Eqﬁation (3-101) depends on p alone and not
of both p and ¢. In contrast, the numerator terms Nl’ N2, and NB’ given
by Equations (3-98) through (3-100), are all functions of both p and ¥
since all of them contain kx and ky’ as well as kZ and kz . As a

2 3
result, Equation (5-5) may be written as



/2 N0 5)

Den(p) dide

O
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(5-11)

where Num(y,p) represents the total numerator of Equation (3-127) after

using the change of variable given in Equations (5-1) and (5-2).

Surface Wave Poles

An examination of Equation (3-101) reveals that the function Den

can be written as the product of two terms in the following manner:

1 23 2
Den = (‘gﬂ (Egﬂ k? cosz(d k) - kz sin2(d k )
Mg q o 2 '3 %5
sin{d k) — 9
Z U k u
+ {;jzﬁf_“ii.oos(d k, )]j[wg]ﬁgq ki + j[iéakim
Lz, 2 [_ Ho™ N3 %3 2 %
[ﬁ uy  k, B
= .j[T“[E*J k_cos(d k_ ) - k_ sin(d k_ )
L_ "o 3 ZS 22 22 22

sin(d k7 ) i
2 |- i(Deostd x_ )

L]
e

= 2

or

Den = DTMDTE

(5-12)
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where DTM and DTE are defined as

hy, Ko,
Doy = (=5 (5 Kk, cos(@ k) -k sin(dk ) (5-13)
Mo Rg B ) 2 %9
sin(d k T}
2 ] 2 . ri}
DTE = kZ % ~ 385 ) cos(d kz ) (5-14)
3 22 [ 2 )

If either of the two terms in Equation (5-12) is zero in the region of
integration 0 < p < », then the integrand of Equation (5-11) contains a
pole. These poles are called surface wave poles because (31) they repre-
sent waves traveling parallel to the interface between regions V, and V3
and because the energy of these waves 1s confined te a region near the
interface. By analogy with similar equations studied by Collin (32),
the zeros of DTM give rise to what are called TM (transverse magnetic)
surface waves, and zeros of DTE give rise to what are called TE (trans-
verse electric) surface waves. Whether the pole is TM or TE is of no
consequence in evaluating the residue at the pole. Hence, the nature
of the pole will not be pursued further. It is necessary only to
remember that when the function Den is zerc in the interval 0 £ p < ®,

residue contributlons must be included in the evaluation of Equation

(5=11),

Restriction of Problem to

Low-Loss Dielectric Coverings

Since the object of this dissertation is to analyze a dielectric

coating on a slot antenna, region V2 is assumed to be a dielectric.
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Actually, 1t will be assumed, for the remainder of this chapter, that

W€ > U £ and that the loss tangents of regions V., and V_, are both
pg Ly ryry 2 3

much less than onej; region Vl may still have arbitrary medium param-
eters. These restrictiocns, which Include the low-loss dielectric cover-
ing as a speclal case, are needed to simplify the numerical technique

used to evaluate W . The motivation for the low-loss restriction will

3
now be discussed.
In Appendix D it 1s shown that if tan62 = tanﬁs = 0,
Ho € «u_ e _, and the layer thickness d # 0, then surface wave poles

Y. p P
272 3 8
are present and they only occur in the interval

(5-15)

e
g ol
m
A
O
ry

T
) v
m

In addition, the poles are simple, and the number, npoie’ of poles for

this case 1s shown to be

= entier(udfvy e -p e /) +1 (5-186)

o ole
P 2 o Ta Fa

where entler(x) is the greatest integer function. This equation shows
that at least one pcle is always present, even as d —+ 0.

The p integration in Equation (5-11) may be viewed as a contour
integral along the real p axis. Since poles lie on this path, the p
integration contour must be deformed. Deforming the contour is permis-
sible as long as the residue contributions from the semicircular deflec-

tions about the poles are included. Whether the contour should be
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deflected above or below the poles can be determined from convergence

considerations; that is, when V_ i1s lossless, the integrals (along the

3
deflected contour) in Equations (3-61) and (3-62) should converge as
z + =, These integrals will converge when the imaginary part of k23 is
non-positive, as required by Equation (3-66).

If p is temporarily allowed to be complex and Pre and pim are its

real and imaginary parts, respectively, then Equation (5-10), with

tanfS3 = 0, becomes

= Vv = 2 s
kz kO Llr Er DPe+gim jgprepim

According to the definition of sz given in Chapter III, kzg will lie in
the first quadrant whenever the guantity under the radical in the last
equation is in either the first or second quadrant. In addition, kz3
will lie in the fourth quadrant (or on the negative imaginary axis)

when the quantity under the radical lies in either the third or fourth
quadrant (or on negative real axis). Hence, the expression under the
radical in the last equation must have a non-positive imaginary part if
kza is to have a non-positive imaginary part. Since B is positive,
this requirement 1s fulfilled when Psm is non-negative., Thus, the path

of integration, C, must be deflected above the poles, as shown in

Figure 6.
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Figure 6. Contour of Integration in the Complex
o Plane when tan&2 = tané3 = 0
If Den(p) is zero on the positive real p axis at the points P,
for 4 = l’z""’noole’ then according to residue theory the contribu-

tion to Equation (5-11) from the semicircular deflections is

] npole
~ 5 (2n) ) (Residue at pi) (5-17)
- i=1
The minus sign 1s needed because the pole is encircled clockwise rather
than counter-clockwise, and the %—is needed because only half of the

pole is encircled. Integrating half way arcund each pole gives exactly

half of the residue since the poles are simple.

If VQ is lossy, the poles move off the real p axis. The path of
integration then does not have to be deflected near the poles, and
residue theory can no longer be applied to evaluate the contribution to

the integral near the poles. If the poles are close to the real p axis,

the integrand will have a sharp peak near each pole. The numerical
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evaluation of the area under the peaks is difficult and is not attempted
in this dissertation. Instead, it is assumed that V2 and VB are either
lossless or low-loss so that the surface wave poles lie exactly or
essentially on the real p axls., For the remainder of this chapter it
will be assumed that the poles lie exactly on the real p axis for both
the lossless and the low-loss cases.

The evaluation of WC3, when a single pole located at p = pl is
present, will now be considered. By utilizing Equation (5-17), the p

integration in Equation (5-11) may be written in the following manner:

p.=A

o
) /2 1 m/2
L %%)-éwp + [ %‘;%%ldwdp (5-18)
3 0 0 pl—& 0
p.tA
i m/2
_ o . ¢ Num($,p)
13 (Residue at pl) + f “TerlE) dudp

where A 1s a small positive number. If A is small enough, then

1 /2 1 7 ;
p,-A 0O ente Py 0 N
1



since in the immediate vicinity of a pele, Num will be a constant and Den

will be an odd function. Utilizing this last equation in Equation (5-18)

gives
IDl'ﬂ rﬂ/? w w2
W, = J Num(y,p) Num( ,p)
RE 0 Den(p) ey g o g Den(p) ayep (5-20)
1

- mi(Residue at pl)

Thus, WC may be evaluated by integrating to within A of each side of the
3
pole and then adding on (-mj) times the residue at the pole. The elimi-

nation of the left side of Equation (5-19) from WC eliminates the need
3
to evaluate an infinite integrand at p = P -

The residue of the simple pole at p = p, can be obtained as

follows (33):

Num(’»fJ:p) -
Den(p) dy

/2
the residue = lin |(p-p,) [
at p, >, L 0

Application of L'Hospital's rule to the last equation gives

8 (Num)

/2 (D*Ol) 50 + Num
the residue = 1lim f 3(Den) diy
at p, PPy 0 ~dg

ar



111

mn/2 Num(w,pl)
the residue =

at
Py

dy (5-21)

O

Den'(pl)

where Den' is defined as the derivative of Den with respect to p. It

follows from Equation (5-12) that

TE(p) (5-22)

Den' = D%M(o) Drp(p) + Dpy(p) D

1

where the primes on DTM and D%E indicate differentiation with respect to

p. To evaluate D, Equation (5-13) may be used to obtain

™?
’ ru31rk2w2 rdkz31
DTM(Q) = ]LE—_“} \}'Z""; L ap )COS{dkz ) (5"23)
2 3 2
dk ] dk
. ¢ Zoy 24 ..
-k d Sln(dkz )\~HE~3 - { = J51n(dkz )
3 2 A
dk
22‘1
- kz d cos(d kz )[ =R

2 2

The derivatives in the last equation may be evaluated by noting from

Equation (5-9) that

e
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il E;_ (5-24)
2
Since k_ and kz have the same form, as can be seen from Equations
2 3
(5-9) and (5-10), it follows from the last equation that
d k 2
2, . kop
dp k (5-25)
Z
3
Using the last two equations in Equation (5-23) shows that
b3y K02 5 ]rkzs
D! (p) = (== == x%po|{—2d sin(d k_ ) (5-26)
™ u2 k3 0 kz z,
L %
cos(d k) | sin(d k_ )
% 2 | %9
= + kip|ld cos{d x_ ) +
= I 0 | 2.2 kZ
3 L 2
Next, D%F will be calculated. From Equation (5-14) it can be
seen that
ak Fsin(d k_ )] ax
' %3 25 %)
Dpp(p) = —o—= | K + kZS kZQ d cos(d kz2)[ % ]
L 2 |
‘ kz2 | 1_l M3y ’ kzz
- sin(d K, ) ( = ] e ](G—jd sin(d k_ i I )
2 L_Z2 2 2
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Applying Equations (5-24) and (5-25) to the last equation gives

Fin(d k, ) '
D;E(p) = ~k§p ——~§-ﬂ*35— j(;ng + ;5—- (5-27)
L_ z, 2 2y

k sin(d k)
z z

+ k2o () 2 - d cosd k)
zZ z 2

Equations (5-22), (5-26), and (5-27) permit Den' to be evaluated when

it 1is needed.

Combining Equations (5-20) and (5-21) reveals that, when only one

pole is present, wc is given by

3
p.-A
1 /2 o /2
Num(p,p0) Num(¢,p)
W= [ == dyde + [ ——2E2 qydp (5-28)
Cq 0 0 Den(p) pl+a 0 Den(p)

/2 Num(w,ﬂl)

dy
L)
0 Den pl

The evaluation of Wc , when more than one pole is present, can be

3
obtained by analogy with Equation (5-28). If npole surface wave poles
are present and if they are located at p = Py p2, e pn where
pole
Dl < 02 £ ¥ < p ., then WC becomes

1‘lpole 3
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W= [ Ig dp + [ Ig dp + [ Ig dp (5-29)
0

Pis -4
pole o
4} Ig do + | Ig dp
p LD P +4A
npole L npole

+ e 4

Ppole [ w/2 Num(¥ 0 )
- 7] ): J Den' (p.) dy
i=1 |0 Pg

where Ig is defined as

w/2
_ Num(tb,p)
Ig = (j; Den(p) d‘«l{’ (5—30)

/2 2
f F(k_.pcosy, k psind)k_pdy
o 0 0 0

Equation (5-5) was used in obtaining the last expression. From Equa-

tion (5-15) it is noticed that

It is now convenient to split the first and the next to the last

integrals in Equation (5-29) and rewrite that equation as
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ur Er -4
3 '3 P1
W, =] Ig dp + [ Ig dp (5-31)
2 ¢} Vur Er
S O
AT
npole"l 1-{-].")fk Fa, T
+ f Ig do + [ Ig dp
i=1 pi+ﬁ pn +4
pole
1
w pole | m/2 Num(w,pi)
+ f Igdo -3 ) || jmroy
g i=1 0 i
urz 2,

To remove the integrable singularity discussed in Appendix D

(when uy_ e =u_ e or whend = 0), a change of variables will be
Fg ¥y TgTy
applied to the first integral and the next to the last integral in

Equation (5-31). Letting

p = vYu e sing (5-32)
T3 73
in the first integral and
p = Yu € cosha (5-33)
Y5 T3

in the next to the last integral converts the first integral in Equation

(5-31) to
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‘/.
g ry M2 .
! f F(k peosy, kgpsiny)k odydo (5-34)
0 0
/2 m/2 2
=f F(k, sina cosy, k, sing sinw)ko sino cosa dy do
0 0 3 3 3

and the next to the last Integral to

o /2 9
f ] F(kopcosw, kopsinwjkopdwdp (5-35)

© 71/2
f F(k . coshacosy, k coshasinw)k2 sinha cosho dyda
0 %, 02 %y

'
3
0

where k and k are defined as
02 03

k. =k Vu_ ¢ (5-36)
O2 4] r2 r2
kos - ko‘“r3€r3 (5-37)

The remaining integrals on p will now be modified. These inte-
grals will be altered so that a more accurate numerical answer can be
obtained for the contributions to WC from the vicinity of the poles.

<)
Since the integrands become very large near the poles, many sample
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points in the numerical integration scheme must be placed near the

poles. This can be accomplished for the second integral in Equation

(5-31) by letting

p=py - a
in that integral. This gives

Ry R /2 4
f f Fkypcosy, k, psingdkjodidp (5-38)
Mo fn ’

& =8

N urasrs /2 3
- il Ty [P e
= J J F(ko[pl o ]cos¢,k0[pl o 351nw)k0[pl s J2adyda

E 0

A uniform partitioning of the a axls causes the sample points on the p

axis to be bunched near the pole at p = pl. Next, letting
S w2
= o= + 3
8] pl

in the i“h sum in the third integral in Equation (5-31) produces

Py =4
npole L L /2 5
Z [ f F(koocos$, knosin$]kopd¢dp (5-39)
F=1 ’ 0 -
p.+A
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- / Ao
npol_e s _ Ois1 A Ps /2 5
= ] ! J F(ko[a2+pi]cosw,
121 /A 0

2. ; 2r .2
kO[a +pi]51nw)k0[a +pi]2ad¢du

Finally, letting

AT
Cr, Ty, /2 5
J f F(k .pcosy, k. psiny)k_pdidp (5-40)
3 0 0 0
o A 0O
pole
I e o
Py PQ npole rﬂXg
_ f | Flk.fe2+s.  Jcosy,
J 0 n
0 pole

k. [a?+p ]sinw)kz[a2+p J2adyda
0 n 0 sl
pole pole
From Eguations (5-4), (5-34), (5-35), (5-38), (5-39), and (5-40), it

can be seen that



/
0

O

kg[a2+pi]2udwda +

2 : 2r 2
ko[a to ]51nw)k0[a +pn J2adyde + f
6]

5 npole
K coshasinw)ko sinhacosha dyda - m] E [
0

118

o3 o

I Pk, ,k )dk_dk (5-41)
0 Xy Xy

n/2 7/2 5
F(kx_. sinacosy, k. sinasiny)k. sincceosa dyda
0 03 03 03

{ 2
2 S T 2 ;
J J F(ko[pl asJcosy, kO[pl ) ]San)kD[pl a® 12adyda
0

| (/2 , )
Z | J F{ko[a +pi]cosw, ko[a +pi]51nw)

1=1 ‘/E 0

V/ L L /2
J 272 pole J

F(ko[a2+pn Jeosy,

pole
A 0

/2

F(k. coshacosy,
02

O —

pole pole

m/2 Num(WsDi)

el
1
%5 2 i=1 Ry
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Equation (5-41) presents the manner in which the integrals in

Equation (3-127) can be evaluated when VQ and VS are lossless, or low-

loss, and when p_ € > pu_e£_ . An arbitrary number of surface wave
v, T, £, Ty

poles can be included. The changes of variables used in obtaining

Equation (5-41) were selected to speed the numerical integration.
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CHAPTER VI
THE FAR FIELD OF THE ANTENNA

In this chapter the far field of the antenna will be evaluated,
using an asymptotic technique known as the method of stationary phase.
This technique permits the integrals representing field to be explicitly
evaluated at large distances from the aperture.

Each of the rectangular components of the trial electric field

in region V, has been expressed as a double integral of the form

3

® o ~jIxk_+yk +zk_ ]
T=f [ £ kde 50V Fak ax (6-1)
x>y x Uy

-0 0O

where I represents either E , E , or E_ , and the integrand in Equa-
3 Y3 %3

tion (6-1) represents the integrand of either Equation (3-61), (3-62),

or (3-63). To calculate the rectangular components of EB in the far

field of the antenna, Equation (6-1) must be evaluated at large distances

from the aperture. This evaluation will be performed using the method

of stationary phase. To expedite the application of this technique,

the observation point (x,v,z) will be expressed in spherical coordi-

nates (r,0,¢) by means of the familiar transformation

]
1

r sinf cos¢ (6-2)

r sinf sind

Lt
1

r cosB

]
1"
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It is also convenient to let

o
i

ko p cosy (6-3)

=
1

k_ p siny

The polar angle 8 is measured from the z axis in Figure 4, and the
azimuthal angle ¢ is measured from the x axis in Figure 5. The change
of variables in Equation (6-3) is the same one used in Chapter V.

If VS is lossy, then the far field of the antenna is zero
because all of the "radiated" energy is dissipated as heat loss in VS'
To have a non-zero far field, it will be assumed for this chapter that
region VB is lossless. Setting tané8 = 0 in Equation (5-10) and employ-
ing Equation (3-66) shows that

k /U e -p2 if p < i e (6-4)
0 r3 r3 r3 PB
ke =
%3
-3 Yo2- Y
jkO g UPBEPB i 0z DPBErS

By using Equations (6-2) and (6-3), the exponent in Equation

(6-1) can be rewritten as

~jkor[sin8 cosd p cosy + sinb sing p siny + cose(kz /ko)]
3

= _jkor[p sinf cos(y-¢) + cosB(kZS/kO)]
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Applying this last equation, along with Equations (6-3) and (6-4), to

Equation (6-1) gives

T =1 +1 (6-5)

where I. and I_. are defined as

1 2
Ju €
; i 2T
33 5
el f "1 =
Iy J J kop (kopcosw, k0051np} (6-6)
0 0
~jk0r[psinecos(¢—¢)+c088/;; €, -p2]
. 3 3 8
2m
fro 2
IQ = J f kopf(kopcosw, kop51nw) (8-7)
o
473

—jkor[ﬁsinecos($—¢) - jcosefpzaur B 1
e 9 dy dp

Next, letting p = AT sint in Equation (6-6) and letting

3 3
p= VU, e cosht in Equation (6-7) permits I, and I, to be written as
3°3 -
m/2 ~=jk_. rcosécost PE
( O3 2

T, = ) { ( k~ sint cost h(T,¥) (6-8)

L J J Oc

0 0 k
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r sint sin® cos(y-¢)

~:]k
05

e dyl} dr

LS -ko recosfsinhrt 27

I2 = J e 3 {J kg sinht cosht g(t,¥) (6-9)
0 0 S
~jk0 coshtsinécos(¥-4)
- e 3 dyl dr

where h and g are defined as

h(t,y) = £f(k_. sintcosy, k. sintsiny) (6-10)
03 03

i

glt,0) f(ko coshtcosy, kcl coshtsing) (6-11)

3 3

and ko is given by Equation (5-37). Equations (6-8) and (6-9) will now
3

be evaluated in the far field of the antenna by using the principle of

stationary phase (34), (35). According to this principle,

( (i) o(%] if g'(x) # 0 fora<xsb (6-12)

b

(%) 5 vg(x )+ »E—sign(gn(xo))
lim f F(x)el V8 ¥ ax = { (ii) /______ f(XD)e
Yoo . Ulgrt(xo)l

i ! = "
if g (xo) 0 but g (XD) # 0 and a < Xy < b

T Ta—— 5 i
Ulll) §-of (i1) if Xy = @ or X, = b



where O(%% means "is of the order of %u” The sign function was defined
immediately before Equation (3-43). Equation (6-12) applies if

1) a,b,v, and x are all real.

2) f and g are independent of v and are analytic functions

when their arguments are complex.

3) g(x) is real valued for x real and a £ x < b.

The point X0 which causes g‘(xo) to he zero in the interval
[a,b], is called a stationary phase point of g(x). If more than one
stationary point exists in the interval [a,b], then the integral in
Equation (6-12) 1s equal to the sum of all the stationary phase point

contributions.

The Evaluation of Il~

The two integrals in Equation (6-8) will now be evaluated by
making two applications of the method of staticnary phase. Utilizing
the notation of Equation (6-12), the following identifications can be

made for the ¢ integration in Equation (6-8):

W & i B (6-13)
3
g = g(y) = -sint sin® cos(y-¢) (6-14)
Hence,
g' = sint <inf sin(y-¢) (6-15)
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g" = sint sin® cecs(y-¢) (6-16)

The far field of the antenna will be defined to occur when kO r > o,

which i3 in agreement with the requirement on v in Equation (2m12).

To determine the statlonary phase points of g(y), it will be
assumed that 1 # 0 and & # 0. The case of 1 = 0 need not be considered
since sint 1is zero when t = 0. Hence, the integrand of Equation (6-8)
is zero and cannot contribute to Il when v = 0. The case of 6 = 0 will
be treated as a limiting case later. Thus, assuming that 1 # 0 and that
8 # 0, it can be seen from Equation (6-15) that g'(¢0) = (0 when
= ¢ + nn where n = 0, £1, #2, == (6-17)

Yo

The numbers ¢O are the set of possible stationary phase points of Equa-
tion (6-14). Since ¥ and ¢ are restricted to the intervals
0 gy <2rand 0 < ¢ <2m, it follows that the permissible solutions

of Equation (6-17) are

0, m, 2n if ¢ =0

¢, o+T if 0 < ¢ <
wo =¢0, my, 20 1f ¢ =7 (6-18)
¢, ¢-T if wm < ¢ <27

i
o
=

\0, ™y 27 if ¢

Equation (6-8) will now be evaluated for each of the cases given in

Equation (6-18).
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Case 1. For this case it will be assumed that 0 < ¢ < 7, T # 0,

and 6 # 0. From Equation (6-18) it is seen that y, = ¢ and b= b 4w

are the stationary phase points for this case. Because there are two

stationary phase points, the application of Equation (6-12) along with

Equations (6-13) through (6-16) to the ¢ integration in Equation (6-8)

gives
I, = o
1 Ill Il?
where Ill and 112 are defined as
/2
( i k2 sint cost h(t,¢)
11 ; g y
4 kg r|sint sing| 3
¥ @
;
-jko rsintsing E-sign(sinrsine) -Jk, rcosfcost
* e d e e
n/2{
I = & k2 sint cost h(t,0+m)
12 | . : . 0
[_ k. r|sint sin6| 3
0 03

jk. rsintsin® 1—5ign(~sinrsin6} -jk
03 iy 0

. e e &

3

3

rcosfcost

(6-19)

dt

drt
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Both sint and sin@ are positive in the last two equations since 1 and 9

are restricted to the intervals

(6-20)

o
A
@
ia
T E]

It should be remembered that © = 0 and 1 = 0 have been excluded from

consideration. The simplification of 1 and I2 vields

/2 . -k . rcos(t-8)
f 2nsint 2 Iy 03
Ill = J kg rszgg'kogcost h(r,¢)e e dt (6-21)
a 3
/2 4T ~jk0 rcos{T1+6)
. / 2msint .2 LB L st
112 = J ‘V E-";gzgg—ku cost h(r,¢+m)e e dt  (6-22)
0 03 3

Equation (6-19) is valid in the far field of the antenna, that is, as

The stationary phase technique will next be applied to Ill'
Following the notation of Egquation (6-12), it will be observed that for

the T integration in Equation (6-21)

v =k, r (6-23)
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g = glr) = -cos(r-8) (6-24)

Thus, g’(ro) = 0 implies that

Ty = 8 + nr where n = 0, £1, *2, .., (6-25)

The numbers T, represent the possible stationary phase points of Equa-
tion (6-24). Since 1 and 8 are restricted to the intervals given by
Equation (6-20), it follows from Equation (6-25) that 7 = 6 is the only

permissible stationary phase point for Equation (6-24). Thus, as

ko r - «, Equations (6-12), (6-21), (6-23), and (6-24) combine to give
3

s LT
4 s —jko r +] T
. | 2m 2n sinf 2 4 3
Ly "V s { % & Slzf Fp, €088 h(6,9)e be =
0 0 3
g 3
or
-jk. r
e %3
lll = g 2n kog cos8 h{6,9) = (6-26)

when 0 < ¢ < w. Equation (6-26) is the far fleld evaluation of Ill'

I 8 = I~, then the stationary phase point is 1 , which is at one

s B
2 0 2

end of the t integration interval. In this situation Equation (6-12)

says that Ill is one half of the value given in Equation (6-26). How-
ever, Ill =0 at 6 = gu Hence, Equation (6-26) is still valid when

T
6 = Ch



130

Next, I,, will be evaluated, using the principle of stationary

12
phase. Applying the notation of Equation (6-12) to Equation (5-22)

shows that

v =k, r
03
g = g{1) = -cos(1+6) (6-27)
Thus, g‘(tG) = 0 implies that
T. = =8 + nm where n = 0, *1, %2,

0

The numbers T represent the possible stationary phase points of Equa-

tion (6-27). Since 1 and B are restricted to the intervals given in

Equation (6-20), it follows that except when 8 = T the last equation has

2
; Y -3/2 . . .
no solutions. Thus, Il2 = O\[kO bl j, which is negligible compared
3

-1 .T L . :
to Ill_'o([koqr] ] as k03r > . When 8 = 5 , T, = 7 and the integrand

of Equation (6-22) ig zero. Thus 112 does not contribute to El for

o B i
6 = 5 either.

It then follows from Equation (6-19) that Il = Ill' This, com-

bined with Equation (6-26), gives

“Jie. P
Oy

c o . B
Il = 2n Koq cast n(8.,4) = (6-28)

This last equation is the far field svaluation of Il when 0 < ¢ <7
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and 0 < B < The object of the preceding manipulations was to

=

replace the double integral representation of Il’ namely Equation (6-8),
by an explicit function representation, namely Equation (6-28), as

k_ v » =, The method of stationary phase made this replacement possible.
3

The explicit function representation of I. is, of course, easier to

1

interpret and manipulate.
Equation (6-28) has only been shown to be valid when Q < ¢ < 7

and 0 < 6 < It will now be shown that this equation 1s also valid

L
5
for the remaining values of ¢ and 6.

Case 2. FPor this case 1t will be assumed that 7 < ¢ < 2w, T # 0,
and & # 0. Then, from Equation (6-18), the stationary phase points for
the Y integration in Equation (6-8) are wo = ¢ and ¢0 = ¢ - m. By

analogy with Case 1, the far field evaluation of Il for this case is

given by Equation (6-19), where I is given by Equation (6-21) and Il

11
is given by Equation (6-22), with h(t,¢9+7) replaced by h(t,¢-7). The

2

stationary phase point $O = ¢ produces I__, while mo = ¢ - 7 produces

11
112. The fact that g, g', and g", as given by Equations (6-14%), (6-15),

and (6-16), have the same values at ¥ = ¢ + 7 as they doat v = ¢ -

was used in obtaining 112 for this case.

The far field evaluation of Ill and I12 is the same for this case

as 1t is in Case 1, since the stationary phase points are determined by
the exponential term in the integrands--and not by the arguments of the

function h. Thus, is again zero, as compared with I 10 and Equation

) 1

(6-28) is again the far field evaluation of I,.
Case 3., For this case it will be assumed that ¢ = 0, T # 0, and

8 # 0. Equation (6-18) then gives wo =0, ¢O = 7, and wo = 27 as the
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stationary phase points of the ¢ integration in I Applying Equations

1
(6-12) through (6-16) to Equation (6-8) gives, for this case,

I, =1, +1 (6-29)

where I13 and Ilu are defined as

/2

J/ i kg sint cost h(t,0) (6-30)
k. r|sint sin® 3
03

13

-
I
o
(ST

vjko rsintsin® %—sign(sinrsin@) —jko rcosfcost

/2

L / 2m o .
J 2 Yk, r|sint sin8| Ko, SN CAEN h(t,2m)
0 04 3

+

—jko rsintsing E—sign(sinrsine) —jko rcosBcost

s e 4 e e B dr

T, = 21 k2 sint cost hiTt,7)
14 " i 0
k. r|sint 51n6[ 3

%
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jko rgintsing %-sign(~sinrsin6) —jk0 rcosfcost
e 3 e e 3 dt

Since sint and sinf are both positive in the intervals given in Equation

(6-20), the last equation may be simplified to

/2 s T —jko rcos(T+6)

e =]
. _ 27 sint 2 _ : 4 3
Ilu = [ Hko T ko cost h(t,m)e e dt (6-31)

0 3 8

Equation (6-10) shows that h(t,2n) = h(tr,0). Hence, Equation (6-30) can

be rewritten as

w/2 —jko rcos(t-8)

.M
s ; ETY
B 27 sint 2 . Y 3 y
Lyg = j fko T oiog Ko ©osT h(T,0)e e dt (6-32)
0

3 3

It should now be noticed that 113, in Equation (6-32), is identical to

Iqe in (6-21) with ¢ = 0. Similarly, is identical to I, with

Ilu 12
¢ = 0, as can be seen from Equations (6-22) and (6-31). Hence, the far

field evaluation of is given by Equation (6-26) with ¢ = 0, and the

I
13

far field evaluation of I i is zero. Thus, Il for Case 3 is given by

1
Equation (6-28) with ¢ = 0.
Case 4. TFor this case it will be assumed that ¢ = 27, T # 0, and

& # 0. From Equation (6~18) it can be seen that the stationary phase
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points for this case are the same as those when ¢ = 0. Since Equations
(6-14), (6-15), and (6-16) have the same values at ¢ = 0 as they do
when ¢ = 2n, it follows that the far field evaluation of Il for Case U
iz identical to the corresponding evaluation in Case 3, with the excep-
tion that h(6,0) is replaced by h(6,27). Thus, Equation (6-28) with
¢ = 27 is the evaluation of Il for this case as k03r > oo,

Case 5, For this case it will be assumed that ¢ = w, T # 0, and
6 # 0. According to Equation (6-18), the stationary phase points for
the ¢ integration in Equation (6-8) for this case are wo =Q, wo = m,
and y, = 2m. The application of Equations (6-12) through (6-16) to

Equation (6-8) gives, for this case,

where 115 and 116 are defined as

m/2
I = J %—\/ 2n i 2 sint cost h(1,0) (6-33)
k. r|sint sin6| 3
0 0
3
]ko rsintsing E-SLgn(-51nT51n8) "jko rcosfcosTt
S Ja
s e e e dt
/2 ('
f
+ }% / 2n k- sint cost h(t,2m)
]

kO r|sint sind| 3

0 L 3
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k. rsintsind j EAsign(—sinTsine) —jkO rcosfcosTt

0
« e 8 e e 8 dt

/2

I‘ - ——
I = J 21 k2 sint cosT h(Tt,n)
16 5 s i 0
Yk, r|sint sind| 3
0 L 03

~jk0 rsinrtsind E—sign(sinzsin@) —jko rcosficost

v e 3 e e 3 dr

Since sint and sinf are both positive in the intervals given in Equation

(6-20), the last equation can be simplified to

/2 . -jk . rcos{1-96)
S N O i CT I I R e
16 k. v sind 0 £ 2

0 O3 9

Equation (6-10) shows that h(r,27) = h(r,0). Hence, I15 can be re-

written as

m/2 il ~-jk . rcos(1+8)
. | 21 sint 2 Iy Oy
l15 = E”*ETEEEE'RO cost h(t,2m)e e dr (6-35)
0 % 3

From this last equation it is seen that Il is identical to Il?’ as

5

given by Equation (6-22) with ¢ = w. In addition, L is identical to

Ill with ¢ = 7, as can be seen from Equations (6-21) and (6-34). Hence,
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the far field evaluation of Il for this case is ildentical to that of

Case 1 with ¢ = m, Consequently, Equation (6-28), with ¢ = =, applies
to this case.

Cases 1 through 4 have shown that Equation (6-28) is the far field

(SEE]

Since the electric

evaluation of I for 0 < ¢ 2 2n and for 0 < 6 s

1°
field should be a continuous function, Equation (6-28) is defined to
also apply when 6 = 0. Thus, Equation (6~28) applies to all far field
observation points that lie to the right of the ground plane shown in

Figure 4.

It is now necessary to evaluate I, so that I, as given by Equa-

2

tion (6-5), will be known in the far field of the antenna.

The Evaluation of T

Do
From Equation (6-9) it can be seen that 12 approaches zero
exponentially as ko r + « as long as cosf sinht # 0. Hence, only when
3
cos® sinht = 0 can 12 be non-zerc in the far field. The point t = 0

cannot contribute to I, since the integrand of I, is zero at this point.

Hence, only when 8 = %—, that is along the ground plane, will 12 be non-

zero and contribute to I. When V2 is a lossless dielectric, Equatioms
(5-15) and (6-7) show that all of the contributions from the surface

wave poles enter 12, and not I Since IQ = 0, I£f 6 # %3 these pole

1
contributions can only affect the far field pattern at 8 = %u But this
is exactly the region where the theoretical pattern cannot accurately
predict the measured pattern. The disagreement arises because the

physical ground plane and dielectric sheet must be finite rather than

infinite in their transverse (to the z axis) dimensions. Since the
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model cannot accurately predict the physical pattern at 6 = g—, the

on I at 8 = = will be neglected.

effect of 1 5

2
Combining this statement with Equations (6-1), (6-5), (8-10),

and (6-28), shows that when V,_ is lossless,

3

© l‘m =] [ka+yky+Zk23]
J J f(kx,ky}e dk, dky (6-36)

—00 —00

-jk. r
03

Yy 3 3 g 3 E
= 3 2m kos cosd f(k0351n8 cosd, kO;ﬂne sind) 5

in the far field of the antenna, that is as ko r + =, The right side
3

of Equation (6-36) is the dominant term, that is the r_l term, in the
asymptotic expansion of the left side of that same equation. Those
terms containing r'Q, r o, r*u, etc., have not been included on the
right side of Equation (6-36) since they are essentially zero, as com-
pared to the r ! term that was retained. Equation (6-36) has also been
derived by Borgiotti (36) but in a manner different from the one pre-
sented here. 1In addition, his derivation does not consider the effect
of surface wave poles, while the derivation of this chapter does.
Equation (6-36) will now be applied to Exa, EYS, and Eza. By
comparing Equations (3-61), (3-62), and (3-63) with Equation (6-36) it

can be seen that in the far field of the antenna
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~jk,. r
e 03
Ex =g 2n kO cosB Tx(ko sinbBcosd, kO sinfsing) = (6-37)
3 3 3 3
_]k03r
= 3 g " 3 ] = ¥
Ey = J 2n ko cosb Ty(k0 sinfcosd, kO sin@sing) = (6-38)
3 3 3 3
E = -J 2m k. sinBlcos¢T (k _  sinBcosd, k. sinbsind) (6-39)
Z 0 Xx 0 0]
3 8 3 3
-jk_. v
03

e

+ sind Ty(k0 sinbcosd, ko sinfsing)] =

3 3

These rectangular components of E3 will next be converted to
their equivalent spherical components. This will be done since in most
far field measurements it is the spherical components, rather than the

rectangular components, which are measured. The transformation from

rectangular to spherical components (37) is

Er = EX sinf cos¢ + E sind sing + Ez cosh (6-40)
3 3 Ya 3
EB = Ex cosf cos¢ + E cosB sing - E sin® (6-u41)
3 3 Y3 23
E, = -E  sin¢ + E_ cos¢ (6-42)
9 ™ Y3

Applying Equations (3-37), (3-38), and (3-39) to Equation (6-40)
produces
—jko r

3
s &
= [sin® cosB® cosd 'I'X



138

+ sin® cos8 sing¢ Ty - sinb cosf cosé Tx - sinb cosf sing Ty]

or

E. =8 (6-143)

which is the expected result in the far field.

A similar substitution into Equation (6-41) gives

~-jk . r
03

jo2m k = [cos?8cos¢T. + cos?6singT
3 03 T pid v

™
I

+

sinzacos¢Tx + sinzesin¢Ty]

or

5]
1

j 2m k. [cos¢T (k. sinbcos¢, k. sinfsing) (6-44)
0 ®x 0 0
3 3 3 3
-jk. r
03
sin&sin¢)]§

+

81n¢Ty(k0351n8005¢, ko3

Next, using Equations (6-37) and (6-38) in Equation (6-42) yields

E¢ = kO c038£~31n¢Tx(x0 sinfcose, kO sin®sing) (6-45)
3 3 3 3
-jk,. r
e 0’3
+ cos¢T (k. sinfBecosd, k_ sinfsing)]—
y 03 03 r
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The absolute values of E , E, , and E are
vyt 8y b3

lE, | =0 (6-46)
3
|B; | = r2ﬁk03\|cos¢:T + singT_ | (6-47)
8, Ly X y
| 2ﬂk03c05§
[E¢3[ = o) [~sin¢T  + cosoT, | (6-48)

Equations (6-u46), (6-47), and (6-48) represent the desired far field
evaluation of the trial field EB' The last three equations are given
because physical measuring gquipment responds to the absolute value of
the field, rather than to the field itself. These three equations can
be evaluated in terms of the mode amplitudes by using Equations (3-81),
(3-82), (3-77), (3~78), (3-108), and (3-107).

The purpose of this chapter was to explicitly evaluate the double
integral plane wave representation of E3 in the far field of the antenna.
Equations (6-u43) through (6-48) present the results of this evaluation.
It should be remembered that the only restriction made on the medium
parameters in obtaining these equations was that region Va was lossless.

Hence, the far field evaluation presented in this chapter applies to

arbitrary medium parameters in regions V. and V_, and to arbitrary u

1 2 3

and Ey as long as 04 = 0.
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CHAPTER VII

COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

In order to demonstrate the validity of the slot antenna analysis
of the preceding chapters, four antennas were examined using this
analysis, and the corresponding antennas were constructed and tested.
The test data obtained from these antennas was compared with the pre-
dicted behavior, and the results of this comparison are presented in

this chapter.

Selection of Test Antennas

The antennas selected for examination were chosen on the basis
of availability of microwave equipment for making measurements, the
desire to examine a variety of configurations, and the need to avoid
excessive computation time during numerical calculations. Measurements
and calculations were performed at X-band (8 - 12.4 GHz) not only
because the necessary microwave equipment was available for this fre-
quency range but also because this band is often used in practice.

Two different slot sizes were examined both with and without
dielectric coverings. Besides demonstrating the validity of the analy-
sis, this variety of configurations also gives an indication of the
relative importance of higher modes for the different geometries,

To reduce the numerical computation time, the slot was placed
in the center of the waveguide for the examples presented in this chap-

ter. Under these circumstances the geometry, as well as the excitation,
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is symmetrical about the center of the waveguide. Because of this
symmetry, only symmetric higher order modes can be excited. From
Equations (3-1), (3-2), (3-29), and (3-30), it can be seen that to
preserve symmetry the amplitudes of the m,nth mode must be zero except
when m is odd and n is even simultaneously. This fact allows a large
number of higher order modes to be removed from consideration and pro-

duces a correspondingly simpler numerical problem.

Numerical Calculations

The equations from the preceding chapters for the low loss
covering were programmed in GTL for the Burroughs B5500 computer and
in Algol for the Univac Ul1108 computer. The programming was initially
done for the U1108, but it was necessary to change to the B5500 when it
was discovered that round-off error on the U1108 during matrix inversion
was excessive as the numbers of modes was increased to ten. The eleven
significant figures carried by the B5500 continued to yield accurate
matrix inverses as the number of modes was increased to ten, while the
eight significant figures of the U1108 Algol did not.

When a dielectric covering is present, the location of the sur-
face wave poles, that is the real zeros of Den, must be determined.
The zeros were found using Muller's method, as modified by Frank (38).

To obtain an indication of the speed of "convergence,' calcula-
tions were performed using one, three, and ten modes. The mode numbers

used in each case are given in Table 1.
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Table 1. The m,n Values of the Modes Used
in Numerical Calculations

1 Mode Case 3 Mode Case 10 Mode Case

1,0 T
3,
1

¥

N O O

H WO ~3 30U Wwuwum= W
i ] L Y ]
FomoOoOmRmMNDOoONOO

[T ) w

-

The modes used in the calculations were selected on the basis of lowest

cutoff frequency, which is a standard practice. Because of symmetry,

only symmetric modes were included. Each mode number includes both TE

and TM modes simultaneously.

Numerical calculations were performed for the following configu-

rations:

1)

2)

3)

)

An open ended (a' = a, b' = b) X-band waveguide radiating
into free space (d = 0 and VB = free space).

An open ended X-band waveguide covered by the polyethylene
slab arg = 2.25, tan62 = 0, d = 0.3201 cm. Region VS was
free space.

An X-band slot antenna with dimensions a' = 0.7a, b' = 0.8b
centered in the guide (xo = (a-a')/2, Vo = (b-b')/2) and
radiating into free space.

The slot antenna of 3) covered by the polyethylene slab

=0, d = 0.3201 em. Region V_ was free

Er = 2.25, tané 3

2
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The calculated input admittance for each of these configurations
referred to the plane z = 0 and normalized with respect to the waveguide

admittance, Y B/wul, is presented in Figures 7 through 10, along with

5 =
the measured values. The calculated admittance, Y/YO, is equal to

[1 - (R/I)J/[1 + (R/I)] where R is obtained from the matrix sclution for
the mode amplitudes and I is given in terms of R by Equation (3-24).
Figures 11 through 18 present some typical calculated radiation patterns
along with the corresponding measured patterns. Patterns were only

measured between 8 and 10 GHz since this was the range of the antenna

testing equipment.

Experimental Antennas

The purpose of the experimental portion of this thesis was to
demonstrate the validity of the analytical work, and not to construct
precision antennas. Consequently, the construction and measuring tech-
niques employed were less than ideal, but the results indicate that they
were sufficient to accomplish the purpose.

The ground plane of the open ended X-band wavegulde antenna was
a 1/32-inch thick, brass sheet 30.1 cm. square. The waveguide was
placed in the center of the ground plane. The polyethylene slab which
covered this antenna was approximately 1/8-inch thick (measured to be
0.3201 cm.) and was 30.5 cm. square. It was taped to the ground plane.
The ground plane for the X-band slot antenna was a 1/4-inch thick copper
plate 30.5 cm. square. The waveguide was placed in the center of the
ground plane. The iris portion of the ground plane that covered this

waveguide was 0.01 inches -thick. The same polyethylene slab was used
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for this antenna as was employed for the open-ended waveguide.
The input admittance of these antennas was measured using con-
ventional slotted waveguide techniques (39). Only the E and H plane

patterns of the antennas were measured, as is common practice.

Discussion of Data

The admittance of the X-band waveguide radiating into free space
is shown in Figure 7. In this figure it is seen that the three-mode
and ten-mode curves are essentially the same and that the one-mode
curve differs only slightly from the three-mode. The predicted admit-
tance agrees well with the measured values. The admittance of this
same antenna with a polyethylene coating is shown in Figure 8. Again,
there is little difference between the three-mode and ten-mode curves.
The measured values of conductance and susceptance fall below the pre-
dicted values for this antenna.

The input admittance of the slot antenna both with and without a
polyethylene covering is presented in Figures 9 and 10. For both anten-
nas the predicted conductance agrees very well with the measured values.
The predicted susceptance, however, of both of these antennas shows a
systematic divergence from the measured values as the frequency is
decreased. The differences in the admittance curves are due to several
causes and will be treated following the discussion of the patterns.

All of the predicted patterns are smooth curves, which decrease
monotonically from the maximum value, which i1s in a direction normal to
the aperture. For comparison purposes, all calculated radiation pat-

terns have been normalized to have a value of one in the direction 6 = 0,
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that is, in the direction normal to the aperture. The measured patterns
contain ripples which fluctuate above and below the predicted curves.
Since these ripples can all be attributed to the same cause, the dif-
ferences between the predicted and the measured patterns will be dis-

cussed first.

Effect of Finite Size of Ground Plane on Radiation Pattern

The radiation patterns of the experimental antenna and the
theoretical model will not be identical because the ground plane of the
physical antenna 1s finite in size, while the ground plane of the theo-
retical model is infinitely large. However, it should be expected that
the patterns of the two antennas should become more and more alike as
the finite ground plane is made larger and larger. The effect of ground
plane size on the radiation pattern has been investigated by Wait (u40)
using a thin elliptic ecylinder and by Frood and Wait (4l1) for an
infinitely long strip. Their work shows that ripples are created in the
pattern because of the edges and that the amplitude of these ripples is
smaller for larger ground planes.

Using the method of Dorme and Lazarus (42), the effect of the
edges on the radiation pattern can be approximated by means of elementary
peoint sources at the edges of the finite ground plane. First, the aper-
ture with the infinite ground plane is approximated as an isotropic

radiator of strength E Next, the aperture with the finite ground

0

plane is approximated by a point source E_ at the aperture and by two

0
point sources, each of strength FEO, as shown in Figure 19. The width
of the ground plane is W. The constant I' determines the strength of

the edge sources. By symmetry, the sources at the edges are equal in
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magnitude and are in phase. From Figure 19, the far field from the
three point sources is seen to be

e-jko(r+D) e—]kor e~3k0(r-D)
B = IBy = * By = # Ty =
e'jkor kgD =k
:EOI_‘- [1 + T(e + e )3
e—jkor
= EO - [1 + 2T cos(kOD)]
where k, is the phase constant of free space. But, D = (W/2) sin8.
Hence,
k D = [EEJ[E;sine = n[jiasine
0 A 2 A
0 0
Thus,
e'jkof W
E=E = [1 + 2T cos(w(-~)sing)] (7-1)
0r AO

The locations of the minimum and maximum values of this electric
field will now be determined. From Equation (7-1) it can be seen that

E is directly proportional to v where v is defined as

v =142l cos(n[{iisine) (7-2)
0

Thus |E| and |v| have their minimum and maximum values at the same
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values of 6, In the complex plane, v can be represented as shown in

Figure 20. From Equation (7-2) and Figure 20 it can be seen that |v|,

and hence |E}, has its longest and shortest lengths when

or when

= 3 O
5lnem = n(w )

pastal L aband = =

Ao

A

for n

0, *1, *2, ... (7-3)

The angles Bm locate the directions of the local minimum and

maximum of the pattern.

The ground planes of the experimental antennas

were approximately 30.5 cm. wide; the locations of the minima and

maxima of the patterns for this ground plane size are given in Table 2.

Table 2. Predicted Location of the Minima and Maxima
of the Pattern in Degrees when W = 30,5 cm.

n 6 for 8 GHz 6 for 8 GHz 8 for 10 GHz
m m m

0 0 0 0
i 7 6 B
2 14 13 11
3 22 19 1.7
i) 29 26 23
5 38 33 29
6 L7 41 36
7 59 50 43
8 79 61 52
9 - 79 62

10 - - 79
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Since the patterns are symmetric about 6 = 0, only the minima and

maxima on one side of 8 = 0 need to be examined. The angles given in
Table 2 are in excellent agreement with the measured E plane values
given in Figures 11 through 15. This agreement confirms that the
ripples in the measured pattern are the result of scattering of energy
by the edges of the ground plane. Theze figures alsg show that the
calculated pattern, which is based on an infinite ground plane, approxi-
mately predicts the average value of the ripples. The predicted pat-
terns should represent large ground planes better than small ones since
the field scattered by the edges should be smaller the farther the edges
are from the aperture.

The predicted H plane patterns show very little energy near 0 =
90°, Hence, there should be only a small amount of energy (compared to
the E plane scattered energy) scattered by the edges which are parallel
to the narrow dimension of the slot. This scattered field must be added
to the predicted H plane pattern to obtain (approximately) the measured
H plane pattern. Since the scattered field is small, it will be influ-
ential only when the predicted field is also small. Thus, the scattered
field should be most influential near the ground plane. This is the
effect that 1s observed.

Placing the dielectric on the ground plane tends to cause more
energy to be stored near the ground plane. Hence, more energy is avail-
able at the edge to be scattered, and so a larger ripple in the pattern
is expected with the dielectric than without. An examination of Figures

13 and 14 bears out this point.
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1t should also be observed from Figures 11 through 18 that the
predicted patterns for the one mode case differ only slightly from
those for the ten mode case. Hence, as far as pattern predictions
go, a one mode analysis appears quite adequate for the configurations

considered.

Mechanical Tolerances and Input Admittance

Figures 7 through 10 show a good agreement between calculated
and measured admittances Indicating that the equations and computer
program are correct. These figures also show that a substantial improve-
ment in predicted admittance, especially susceptances, can be obtained
by using more than one mode,

The agreement between measured and calculated admittance is
worse in Figure 8 tha: it is in Figure 7. This is due to the fact that
the thin ground plane tor the open ended waveguide was warped near the
aperture, and consequently the dielectric slab was not in good contact
with it. In addition, the measurement of the admittance could be in
error by 10 to 20 per cent because the shift in the null of the standing
wave pattern going from short circuit to load was small (about 0.10 to
0.20 cm.). Since the errvor in measuring this null shift was about 0.02
cm., a 10 to 20 per cent maximum error in measured admittance could be
expected. For the other antennas the shift in null was much larger,
and so the maximum percentage error was smaller.

The measured conductance of the slot and covered slot antennas
agrees quite well with the predicted values as can be seen in Figures
9 and 10. However, these figures also show a systematic divergence of

the measured and calculated susceptances as the frequency is decreased.
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This deviation can be attributed to the sensitivity of the susceptance
to the dimensions of the antenna. As shown in Tables 3 and 4 (which
were obtained by using the new variational approach), small changes in
the width of the slot produce large changes in (B/YO) at 8 GHz, but
only small change 1n ([ 'f} at i12.5 GHz. At the same time, (G/YO)
remains relatively constant as width of the slot is changed.

This is the type of effect that occurs in Figures 9 and 10. The
censitivity in (B/YO) to £.ot width can be attributed to the fact that
the iris is behaving approximately like an inducteor (43), whose induc-
tance increases rapidly as the freguency is decreased. Hence, small
changes in the iris size produce large changes in its inductance and
hence large changes in the susceptance of the antenna.

Comparing Tabies 3 and 4 with Figures 9 and 10 reveals that
calculations based on an a' of 0.60 inches would have produced the
measured values of admitrance Since the measured wi.dth of the slot
was within a few thousandths of an inch of 0.63 inches instead of 0.60
inches, the deviations in susceptance cannot entirely be attributed to
an incorrectly machined slot width. Tables 3 and 4, however, do indi-
cate that small errors in mechanical dimensions such as in the inside
width of the waveguide, the finite thickness of the iris, and the width

of the slot could produce the deviation in susceptance that was observed.
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Table 3. Calculated Variations of Admittance with Slot Width for
the X-band Slot Antenna with the Polyethylene Covering®

f in GHz a' in Inches (Y/YO)
8.0 0.63 1.20 + § 0.887
8.0 0.62 1.20 + § 0.827
8.0 0.60 1.18 + § 0.697
12.5 0.63 2.06 + 1 1.23
12.5 0.62 2.06 + j 1.22
125 Q.60 2.06 + 7 1.19

1,

“Using 10 modes and b' = 0.7b = 0.32 inches.

Table 4. Calculat=1 "iriations of Admittance with Slot Width Ffor
the X-band ot Antenna Radiating into free Space®
f in GHz a' in Inches (Y/YO)

8.0 0.63 0.679 - 7 0.396

8.0 0.62 0.675 - 7 0.460

8.0 0.60 0.667 - § 0.598

125 0.63 0.878 + ] 0.253

12.5 0.62 0.876 + j 0.233

12.5 0.60 0.871 + 3 0.186

"Using 10 modes and b' = 0.7b = 0.32 inches.
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Discussion of Results

The purpose of this chapter was to demonstrate that the slot
antenna analysis of the preceding chapters is correct. This verifica-
tion was accomplished by showing the agreement of predicted and measured
results for four slot antenna configurations. The results of this
chapter indicate that the infinite ground plane analysis can be suc-
cessfully applied to determine the admittance of a slot antenna with a
finite size ground plane. The pattern predictions are not as accurate
as the admittance predictions because of the diffraction by the edges,
especially when a dielectric covering is present., Better agreement
should be obtained as the ground plane is made wider and as the die-
lectric i1s made more lossy. If the dielectric is lossy, the energy at
the edge of the dielectiric slab tends to be smaller, and so the scat-

tered fileld is smaller.
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CHAPTER VIII

CONCLUSIONS

The new variaticnal principle presented in this thesis produces
a system of linear equations rather than nonlinear equations, as com-
parable variational approaches do. The simplification produced by
these linear equations makes feasible a multimode analysis of a large
class of electromagnetic problems, while only a one or two mode analysis
is usuvally practical using nonlinear equations. The new variational
principle thus permits more accurate studies to be made more quickly
rnan is possible using comparable variational approaches. A considerable
amount of mathematical manipulation was used in applying the variational
principle to the coated waveguide slot antenna. This amount of manipu-
lation is typical of all similar variational approaches.

Even though the numerical examples presented in Chapter VII
involved only lossless dielectric coverings, the general expressions
given for the energy functions apply to much broader situations. They
are applicable, for example, to lossy as well as lossless coatings, to
plasma as well as dielectric coatings, and to lcaded as well as unloaded
waveguide configurations. Hence, by simply modifying the integration
scheme used by the author, a large variety of important antenna problems
can be studied with potentially greater accuracy than was previously

possgible.
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The success of the experimental verification of the new proce-
dure indicates that it is practical and has wide applicability. The
test cases considered show that admittance predictions based on an
infinite ground plane model can predict within experimental error the
admittance of a slot antenna having a ground plane that is only eight
or ten wavelengths wide. Usually a minimum of three modes 1s necessary
for accurate admittance predictions.,

The presence of an iris over the mouth of the waveguide can sub-
stantially increase the number of modes required for precise admittance
predictions, A general rule concerning the number of modes required in
this case is difficult because of the variety of shapes that the iris
can assume,

Pattern predictions based on the iInfinitely wide ground plane
model are less accurate than are the admittance predictions. The pat-
tern appears to be much more sensitive to the edge diffraction than is
the admittance. Since the theoretical calculations do not take into
account diffraction from the edges of the finite ground plane, the
measured pattern will not be the predicted pattern but will be the pre-
dicted pattern with ripples superimposed upon it. These ripples are
closer together and smaller in amplitude the larger the ground plane.
When a dielectric is placed on the ground plane, the ripples in the
pattern remain in essentially the same place, but their amplitude
increases. However, the larger the loss tangent of the dielectric, the
smaller is the amplitude of the ripples. The numerical examples show
that the calculated pattern based on a one mode analysis differs negli-

gibly from that of a ten mode analysis. Hence, a one mode analysis
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seems adequate for pattern predicticns.

The new variational principle was shown to produce a stationary
formula for a particular complex energy function; no analysis was per-
formed concerning the statiocnarity of the input admittance of the
antenna. However, calculations on slot antennas that were not presented
in the thesis produced the same values of admittance that Croswell's
(44) stationary admittance formula did. This result indicates that the
method used in this dissertation might also be stationary or nearly sta-
tionary for the input admittance. Future work should be done along this
line. In addition, the new technique could be used to advantage in

studying mutual coupling between two or more slots.
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APPENDIX A
EVALUATION OF THE INTEGRALS IN WQ
2
The following integrals are needed in the evaluation of WC :
2
x0+a'
1 - ! 1 -
Intl(m,m ) = J cos(Amx) cos(Am,x )dx (A-1)
%0
y0+b’ ‘
Intz(n,n') = [ sin(B_y) sin(B_,y")dy (A-2)
J ot Tl
Yo
[x0+a' ,
s T . » 1 _
IntB(m,m ) ! 51n(Amx} Sln(Am,x Ydx (A-3)
*0
1
_y0+b '
Int, (n,n') = f cos(Bny) cos(Bn;y')dy (A-4)
Yo
where
mm 1 m'm
Am - a ? Am‘ a' (4-5)

and
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_ nmn roo_n'n
LERy By @ WA-B)
and
o — By - o
pre ® x0 s ¥ v yO (A-7)

These integrals will be evaluated in this appendix.
Using the trigonometric identity cosA cosB = %{CDS(H+B) +

cos(A-B)] along with Equations (A-5) and (A-7) transforms Equation

(A-1) to
T
1 [X0+a mT % m'w[x—x0]1 mmx
T o | it i3
-ntl(m,m ) 2] {cos[ & = . % cos[ = (A-8)
*0
m'n[x-x_]
- —) dx
t
If T # ET-, then
a’ a
' ——
. (mTX m'alx x031
1 Sln( + m— )
Ty - 4+ =
Intl(m,m ) = > { (mﬂ TS
— % =5
a a

(m X 0 0
sin =3 )
+ {

SO

a at RIX

or
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{;in(g-ﬁ[xo+a'] +m'n) - sin[g-ﬁxoj

Intl(m,m’) = [-—]L_ - (A-9)

2

sinfg-w[xo+a']—m'ﬁ} - sin[g-ﬂxoj

+ e ——

& -3

L

while from Equation (A-9), the integral of the first term in Equation
(A-8) for this case is

LA ' e
tormal tm m) 51n(a ﬂxo}]

1 a . M
[ﬁﬁg[ﬁﬁi[Sln(E‘“Xo

I O L ' i . 1 . 13 X
[me][Sln(a ﬂxo)cos(m 2m) + cos(a ﬁxo)sln(m 27) sun(a TTXO)] 0

1
since m' is an integer. Thus, if g-c gT £ 0,
a' m
! = o -—
Im:l(m.,m ) = 5 cos(a ﬁxo) (A-10)

r
Using Equations (A-1) and (A-5) it can be seen that if g-: ET‘: 0, then
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Intl(m,m') = a' (A-11)

Equations (A-9), (A-10), and (A-11) are the evaluation of Equation
(A-1).
To evaluate Equation (A-2), the trigonometric identity

sinA sinB = %—[cos(AuB) - cos(A+B)] may be used along with Equations

(A-6) and (A-7) to obtain

+ T
Yotb

; n'nly-y.]
- i.( nny 07y _
Int,(n,n') = > | [cos | S 57 ;) (A-12)
Yo
n'nly-y.]
- cos(n;y + =) g ]]dy

Comparing the terms in Equation (A-12) with those in Equation (A-8)

shows that the integrals in Equation (A-12) can be evaluated by analogy

n!

with the integrals in Equation (A-8). Hence, if D¢ e

b

sin(%-ﬂ[y0+b‘] - n'ﬁ} - sin{%—nyo)

IntQ(n,n') = [4LJ (A-13)

2m (1’1 A“l

sin(g-ﬁ[y0+b'] +n'w) - sin[%—nyoji

&+ |

1
while, if 1’3—1 = .g-,— 40,
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b' n
Intz(n,n’) s cos[g-ﬂyo] (A-1y)

From Equations (A-2) and (A-6) it can be seen that if %~= %¢-= 0, then
Intg(n,n') =0 (A-15)

The evaluation of Int, can be performed by analogy with Intz.

m'l

a' ?

From Equation (A-13) it follows that, if 2~#

[ ¥ m
i wvﬂ[x +a'] - m!' } - SLn(g-ﬂxoj

l
' __ Ty PR e e S o
Intg(m,m') = [& @ m‘] (A-16)
=
. (m . (T
i Sln[g-ﬁ[xo+a’] min) - 51n[5—ﬂx0)
m_ m' '
[;;*gn
. ..m _m'
but if == = # 0, then Equation (A-14) gives
a' T
4 1y = 2 111 =
Int,(m,m') 5 Cos{a nxo) (A-17)
1
From Equations (A-3) and (A-5) it can be seen that if §-= 27-: 0, then
Inta(m,m‘) =0 (A-18)

The evaluation of Int4 can be performed by analogy with Intl.
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From Equation (A-9) it follows that if

o)
H.
g

sin(%—n[y0+b'] +n'n) - sin[g-wyoj

'y = Lo 1
Intu(n,n ) = [2v] (n B (A-19)
i 5t 57
._(n . [
. SJ.B(E- ﬂ[y0+b'] - n'n} - S:Ln[—b— Tryoj—l
moE
b b
§ ce . n! : i
while if T T # 0, then Equation (A-10) gives
b! n
' xS LS i
Intu(n,n ) = 5 cos[b wyo) (A-20)
From Equations (A-4) and (A-6) it can be seen that if % = %T_: 0, then
Intu(n,n’) = it (A-21)
This completes the evaluation of the four integrals Intl, IntQ,

Int3, and Intq.
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APPENDIX B

DETERMINATION OF THE PLANE
WAVE AMPLITUDE COEFT'ICIENTS

3 R E R -}
y x y

Tx’ and Ty that appear in Chapter III will be solved. For convenience,

In this appendix the simultaneous equations for Ix’ I

this system of equations, that is, Equations (3-71) through (3-76), will

be reproduced here. They are

~jdk Jdk ~3dk
ZQ 22 23
Ie + R e =T e (B-1)
= X b4
-jdk Jdk ~jdk
; "2 2y “3
Ie + R e B Pa (B-2)
y y v
2 2. ] =3dk
Mg kxkylx (k2~kx)1y Z,
__a + e (B~3)
UQ kz kZ
2 2
i bk r  EAadin | 99k, [; kT (k2-k2)T | MK,
B [_QJ XYy R 2 xn'y o 2 _ | xyx i 3 X s
uy’ |k k, l k) k
2 2 L %3 23
) jdk
My (kz—k_)IX kxkyfy z,
— + e (B-4)
u k k
2 2 Z
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we |G2aARr. kxr | I ladadT. kkr | TI,
3 2 X 2 . 3 "y R Xy ¥y 3
- (=5 + e = - - e
NQ K Kz kz
| “p 2 | %3 3
L+ By =& (B-5)
I +R_ = A (B-6)
Y ¥ y
Substituting Equation (B-5) into Equation (B-1) yields
—]dk22 jdkz2 —jdeB
I e + (A =TI )e =T
P X % x
or
-]dkzg jdkz2
T e Y ==291 sin(dk ) + A e (B-7)
x X z, b

Next, substituting Equation (B-6) into Equation (B-2) yields

~jk, jdkzg *jdkz?
Ie + (A -1 e =T e :
y vy y

or
-jdk 3dk

T e = -23I sin(dk_ ) + A e

A
2 (B-8)

Then, substituting Equations (B-5) through (B-8) into Equation (B-3)

gives
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” ~jdkz
(Dx kk I + K2kH1le 2
My Zy X yX 2wy

jdkz

H
3 2 .92 2
[ugjk23[kxky(Ax L)+ (gmkc (A =T )e

jdk
%5
k.k kx [-231 sin(dk_ ) + A e ]
Xy 22 X z2 X

H

-+

2 .2 . . 2
(kB—kX)kzzf—QJIysln(dkzz) + Aye ]

ar

Ha
3 ’ .
Ix[kxkykZB[E;JQCos(dkzz) + zjkxkykzzsln(dkzz)] (B-9)

2

X2k (Eﬁ)z (dk_ ) + 25(2-k%)k_ sin(ak_ )]
2 % " " cos i 3 (3 5 i sS1in o

3 72 o5 2 2
jdkz

+ I [(k
y[

1]

ALk kk (= +kkk Je
OR8Ny 2
jdk
2.9 g 2 .2 )
Ay[(kz-kx)kza(ﬂzﬂ + (k ~kx)k22]e

4
(%]

A similar substitution of Equations (B-5) through (B-8) into Equation

(B-4) yields

U
3 gige B S 3
)k, (E—)Qcos(dkz ) + 230Kk sin(dk, )] (B-10)

IX[(kg—kQ
Y Bz Mg 2 2 2
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u
I [k k k. (—)2cos(dk_ ) + 23k k k_ sin(dk_ )]
YRy 2,0, z, X'y z, z,

+

jdk
25

H

H
ALGCxDK (D) + 2Pk e
x 2 e 3 ¥ Iz
3 "2 2
jdk

U z
3 ) 2
[L'J Rk k, Je

+
T
vt |
e
=~
=

Equations (B-9) and (B-10) form a pair of equations in the two
unknowns Ix and Iy' In solving these equations for Ix and Iy it will

be convenient to use matrix notation and write them in the form

allIx + alZIy = e, (B-11)

QlIx 117y 2
where

H
B 3 . . )
a;y = Qkay[k23[a;Jcos(dkzz) + ]kZESln(dkzz)] (B-12)

juh}
I

H
= 2L (K2 )k, (Eﬁqcos(dkz ) + 30Kk sin(dk, )] (B-13)

12 3 "2 2 2 2
- oDk (Foostak, ) + §x2kDk sin(dk. )] (B-14)
%01 T - M T W z INKGTRg 7%y z
3 "2 2 2 2
Fa
e = Axkxky[kZBf;;J + kzz][cos(dkzzl + 331n(dk22)] (B-15)
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+ Ay[(a<2

e QR
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_kiyk? [E") + (kg—ki)kz lcos(dk, ) + jsin(dk )]

2 2 2

:!Dd
) Hia 2.2
e, = A [(ko-kDk (=) + (ki-k )k Icos(dk_ ) + jsin(dk_ )1  (B-16)
2 b A R 3y oz % z
3 "2 2 2 2
M3
+ Ak k [k (=) + k_ Jlecos(dk_ ) + jsin(dk_ )]
YRy 25, z, Z, Z,
I'vom matrix theory the solutions of Equation (B-11) are
“1  ®1
Sy By n,
IX = = *—-ii— (R-17)
31 %19
\
%e1. Pag)
41 4
31 3 n
I, = =L (B-18)
811 Pap
Boy Py

where
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D, = eqd,, - Cha, (B-19)
ny = Cha1y T Cy3ny (B-20)
and
A a2 = (B-21)
11 12721 N
The denominator A will be explicitly determined next. Using
Equations (B-12), (B-13), and (B-14) in Equation (B-21) gives
222 Ma° o M
b= wkilk, (=) cos®(ak )+ 23k k(] (B-22)
Y By ¥y 23 g By by
. 2 a2
. Sln(dkz )cos(dkz ) - kZ sin“(dk )]
2 2 2 2y
2 2.2 202 M o 2
. 3 5 ) 2,2 2
_ u(k2—kx)(k2—xy)kz [U ) cos (dk )+ u(ig-k;) (kg ky)
5 2 &
L R TI R [us)[(kQ T L
. = o, VT & 3
22 52 Zo Zo My 2K v
# ey TR, JESsTER. )
3 % 2y z z
2 2
But, by Equation (3-55),
2 D XD, LD DD B DD
(k2~kx)(k2"ky) = kg(kz—kxmky) + kay (B-23)



Similarly,
(k2= ) (5 -k
3 %
while

(k )(k )

1]

§ Bz B 5
(ksﬁkx)(kz—ky}

Using Equations (B-23) through (B-26) in Equation (B-22) yields

=
Ii

2

I

2 2

or

=
1
i
i
=

il k

. jukzk X [*aJ —=] ki ' kz sin(dk,

L
2 7 3 2, 2
4{-cos (dkz )[kzs(ﬁza kQKZ

jSln(dkz )cos(dkz )kz kz

2

T
[E 2 2) COSQ(dk
g| M k 7

2

}

ki, (k-

1\)?\.)
OJI\J

OJM

kg (ks-

1\31\)

[U

2

3

k

NI\.)

+ k

A o]

w 2]
El ]

2 2
Kg) = kegK X

“C:t\)

:)
p.d

) - k

‘4!‘\)

1+ Sinz(dkz

) - Sinz(dk
z

2

2

2

+ k'k

2

=

2

+ k'k
R

k

)
A,

)cos(dkz

2

2 9 2
)[kz k3kz

2

3

)
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(B-24)

(B-25)

(B-26)

(B-27)
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Next, n, will be determined. Substituting Equations (B-12),

(B-13), (B-15), and (B-16) into Equation (B-19) yields

K U
n. = 28 %220k, () + k. Ik, (Decos?(dk. ) - k_ sin®(dk_ )
RHY 25y 29 A3'Hyg %5 2o %5

M
+ k (i)]sin(dkz )COS(dkz )3

+ 3 (k
2 Zq ¥y 2 2

2

K u
¥k kA kD () + PkPk Ik (eos?(ak )
Xyy 2 % ZgyHy 3 x Z, 241, Z,

u
-k, sin®(@k, )+ i(k, + % (D)sin(dk_ cos(dk_ )]
2 'y 2 g My 2 2

b u
3 3 B 2,2 3y 2
[”2] + (kg Ky)kz,]E(RQ L1 [u ) cos“(dk_ )

- 2AX[(k§—k2)kZ
y 9 5 Mo 2o

3

U
2 g2 o D s o2 3 2.2
_ (ks—kx)kzzuln (dng) + ]L(kg—kx)kz3(u2) + (kg—kx)

. kz]sin(dk Jeos(dk _ )1
2 %2 %2

3 3.3 Fay 2
- 2A k& [k (5 + %k IOk, (—)eos™(ak, )
YRI Byl ) '3 Mo 2

2

- (kg

- i
)k sin®(ak )+ 3(00 K (=
ZQ 22 ¢ 23 NQ

¥ (5-k2)k_ Jsin(dk deos(dk_ )]
bl 22 22 ZQ

or



28 |cos?(ax_ ) {2 (
%L z, Z,

2
u
B pe B B 0
[“2) (kGoki ) (ep=ko) =k,

k?
7

3 2

u
8.2.0 .9
e+ x]

Mk k ; -

2o %3

sinQ(dkz
2

2 .8 B
(ks—kx)(kS

9 .2 .0 3 2
(k3—kx)(k2vky) - kz2

ssintar  eostak § 1k
Z Z Z

kikz ¥
2 2 J

2

5 M ?
(9
3 "

2

9 (k

D 2 2
_kx)(kz"ky) = kz2

)

2

K
25

k
&

3 Do 1 2
, (kQ—kX)(k3—ky) + (k

- e
2k k A ‘cosz(dk ) {ki [_EJ (k
¥ ¥ 2 3 Y2

2
¥ Y
i (;99 (k2K2) = %k [;éﬂ(k
3 g 9 Fg o

Mo
3 2 .2 2 2 2
Tk, k, (=5 0k + k7 (kg-k

2 "3 72 2

Ha
kzg(aza(k
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B2

xYy

T
(= (B-28)

B

k
2, 24

2
y

2

. )}

2 2
-k ) (kg-k

2
—ky)}

2k k
z

o %3

2y

2 B P
3—kX)(k3~ky

2 R D . B
S—kx)(kQ—ky)}g}

H
% 2 . 3 R 2
“k2) + ko k. (5K
2 ZQ 33 HQ 3 x

25250 o uln®tdle Y
2 TR Z
2
u
) -k k [EQJ(kg-ki)
2 Z3 ¥



186

u
2 . 5 9 3
(2= 3
2(k3 k2)} + ]Sln(dkzz)eos(dkzg) [(kQ kx)kZS [“2}
b 020k, Y, kD) - (02, (-)
L R - i )

u
+ (- i)x Yo, +x (i))ﬂ
&) 2 23 Pa

Using Equations (B-23) through (B-26) in Equation (B-28) gives

1’1 oy
_zaxﬁosz(dk ) 02 2 (0w k k(S OGDe-K] - koko))
L 2 %y T My By, g Mg 4

=
H
o

2 g 2
sin“(dk, ) {k_k_ (= ][k [k ~k ] - X7k
2 2 %3 Yo %y %3

-+

2
.. ¢
jSln(dkz }cos(dkz ) Lkgk

+
=
=
—
=
fw
LSS
P
~

5 kg } + sin (dk )]
Y B Y By Halls %5 Z9

+
o]
=
=
=
=
=
—
w
B
—
=
=
e
R—
| |
0
’)
'J
,—.\
:

or
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u wok, 2
n, = —ngk kA {COSQ(de )[E;éJki 4 (_skg] (B-29)
29 %3 2 2 ‘3 Py
u k. 5
By 2
sk, + 90 - (3]
2 %3 2 3
1h? (dk )[Eiqu Fxoko+ (”3)k2[1 - (EEJ )
o 2 2 % Kzz %3 Hy' % 3

-+

—Hu k, o
jsin(dk, Jeostdk () (k2 + DK ) +k_k
. g LHy" T 29 3 % ?

Lk

2 o k. 2
(1+ DV - 2k kA kk [—i}[iggi - :}
Ha%y 29 B3 ¥ 2 VM, 3

Now ny will be determined. Using Equations (B-12), (B-1ui),

(B-15), and (B-16) in Equation (B-20) gives

u u
& 2 3 i 2 3 2
2kxkyAX[(k2—ky)k23[ﬁzﬂ + (ks—xy)kZQJEkZB[UQJCOS (dkzg)

2
1]

|

u,y
k_ sin’(dk_ )+ j{k, (D) + k_ Jsin(dk Jeos(dk, )]
2 2 3 Ho 2 2 2

H3 H3 2 2
, (5 x, Ik, fg~]cos (dk, ) -k, sin“(dk )
g Wy 2 Z3 2 2 2

-

28 k2K2[k
v Ry
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1
i (x Gﬂi) +k, }sin(dkz )cos(dkz )]
3 2 2 2 2

-+

I

u
(—chosz(dk )
u z

u
(=) + k_ ILGK )k
" : ¥ 23 Yy 2

28 k k [k
X XY 2.3 2 2

u
3
(Irﬁ

2 .2 .2 i o2
- (cgmk Dk, sin(dk, ) + 3[(k2—ky)kz3 X

2 2

+ (k

LES B

2 s 5
k)k_ Jsin(dk_ )cos(dk_ )7
¥ & 2 %

o

u
2 2 3 2 2 s
?Ayf(k2—kx)k23(igﬂ + (kgak )k22]£(k2~xy)kz3

H
[—gﬁcosz(dk ) - (kg—kz)k sin2(dk )

]

"3 2 .
Yk (—) + (k;-k )k ]51n(dk_ Jeos(dk )]
u 3 i Z %

. 2 2
+ 3 ((kk
Y z23 My y 2 2 2

B

Uy 2
2 2 %
= g o B
ny QAXkay {cos (dkz )[kz (u ) (k,-k ) + k.. k‘ (B-30)

u
a2y -k ko (FY 02k
. 2 %3 H2 ¥
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Hy
sin’(dk_ [k k G =) (k2 x
By~ By RgHy

)+k (k k)

o P
g~ y 2

k. [——J(k ) - k (K —k )]
2 By Mo

Y H

o 3 3
os(dk ==+ k -k .
jSln(deQ)C s(d ZQ)[(kz3[u2] i 2)[(k2 y)kzg[ug)

2 H3 -
X, ) - (x, () + Xk, )[(kg-kijz [ETJ

(kg—k
¥ s 3 Yo 2 3 Mo

ko)k, 11}

{.OI\D
L-ﬁl\}
I\J

Wy o2 u
2 2 (7322 2
2n, feos®™(di, Ik, {aﬂg ko + ko k, (Fk

2
2 3 Wt XY g Zg bgl ¥

b2 H
2 B, 22 Z 9 2o 5 2 2 .2
kZS[GEJ(kQ—KX)(kgmky) - kZQkZS(E;J(kS—kX)(kQ—ky)}

H u
sin®(ak Ik, k(K52 + k2 10k -k k()
5 Fp Aty *U Bt Y By agtly

2 ;2 2 2
K2 (5K )—kg(k KD (k3K
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My 2 H 3.9 )
+ Jsin(dk Jeos(ak k- (=) %22 +2k k(S + 1
) 9 %3 ¥ y o By g &Y 2
U, 2 H
ciA -k (DT aEa 03D - k(D)
Xy 23 u? 2 R 2y 22 23 uQ

P d 8 B D B
(Ogk) (kgk) + (g ) (g ky)]

By 5 D2
ﬁkx)(k3aky)]}

L]

K2 (k
b

5 3

Using Equations (B-23) through (B-26) transforms Equation (B-30) to

u
n = 2A k kk k (=02k2)cos®(dk_ ) + sin®(dk )]
Ry Z, 24 My 3 72 Z, Zg

2 BB G M2 M3y o0 B B
28 Leos (dk, Ilkgky Kk =) +x x [iﬂ}[ks(kz-ky)—kzkx]]

2 g 23 Yy g By Py

8]
a2 3 2.2 2 22 5
sin (dkzg)[kZQkZB[G;J[kz{kS—ky) - kgki) +k

—+

jsin{dky )cos(dkz )k
"9 2 273
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5 Hq k2 2
g, -QkSkZékZBAxkxky(E;J E;J -1 (B-31)
1 Bt 2
- ok, kA feos?ak (6 ¢ (597%, x,
2 %5 3 2 2 22 28 > #3
. Bp 2
+ —)kx(l = (}‘(_-‘) ]
3
e u k
- sin®(dk_ ) (]J—B)k2 tkok oo+ (I 55 ]
Rg | Wy By HgEg W' T 3
u : k, 2
+ sin(dk Jeos(dk ) =] [ki B (1?2) kz ) + %k
2 2 | ¥ 2 3 %3 2y 23
HuKey o
-1+ (“3](2) )1}
2°3
Now define D, N , and N_ as
X v
D Qa (B-32)
-2k k  k
‘3 Py
n}{
Nx 5 (B-33)
2kk k
3z




=
n
l~ﬁ

Y okk k

Lo M2
[

Z

192

(B-34)

Using these last three equations, Equations (B-29) and (B-31) become,

respectively,

NX
=T
NY
L=

(B-35)

(B-35)

The amplitude coefficients of the remaining plane wave terms can

be obtained from IX and Iy by using Equations (B-5) through (B-8).

These equations give, respectively,

pre X X
R =A -1
y y y
jdsz jdk22
Tx = e [Axe - 231X31n(ak22)3
jdsz 3dk22
T = e A e - 231 sin(dk
L [ i1 sin(ak, )]

2

(B-37)

(B-38)

(B-39)

(B-40)

The explicit form of D can be obtained by substituting Equation

(B-27) into Equation (B-32). This operation yields



D=2k k. | () cos?(dk_ ) - sin’(dk_ )
2 23] ¥2"3 %9 %2

H k, 2
T j?(ﬁﬁJ[}EEJ K2+ k2 |sin(dk, )eos(dk_ )
2 | "3 %3 5 2 2
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(B-41)

The numerator term NX will now be evaluated by substituting Equation

(B-29) into Equation (B-33). This operation yields

H Uk, 2 U,
N, = A, feos?@x, O 2+ (A x + ()
X ® 22 U2 22 UQkS Z? 23 ug
K. p i
: kz[l - (“2) ] = Sil‘}g(dk ) [__?L]RQ + k k
y k3 Z? U2 22 22 Z3
u k ’
¢ (D21 - (D) + dsin(ak, eos(ax )| (D)
U2 3 _ 2 2 Uz
fe 2 uok, 2
'(k2+(%)k2]+xk(1+(3k2)]J}
29 3 3 2y B3 o3
we [ X, 2
+ A%k (| -1
y Ry, | Ky

Finally, substituting Equation (B-31) into Equation (B-34) yields

(B-42)
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u, |k, 2
. (3 (2° -
N, = A xky‘uz} t‘(k?)j 1 (B-43)
[ Mok, 2 Ky 2
# 8 feos®(ak D[k + (5% x, + (Dl - (D)
B | Hg" g g% Fp %3 2 3
[ u k, 2
- sin’(dk_ )’[—i}kz vl ko + (K20 - D)
p | Mo By Fgty W Y 3
o k, 2
+ Jsin(dk )cos(dk )(LEQ(k? + (Egﬂ kg ] t+k Kk
@) Pe | M T 3“3 2y 73
u.k, »
- {1+ (uskz) ]
93

Equations (B-35) through (B-43) constitute the solution of the
plane wave amplitude coefficients in terms of AX and Ay. The quantities
AX and Ay are the Fourier transforms of the x and y components of the
aperture electric-field distribution. These transforms will be deter-

mined elsewhere.
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The following integrals are

APPENDIX C

EVALUATION OF THE INTEGRALS IN AX AND Ay

in terms of the aperture field:

I

1

= '
ch(m ,kx)e

= Is (n',k Je
¥ v

x +a'

Hi

+ 1
JXO a
)

It

. jxkX
sin(Am,X')e dx

[n'w(x—x ii Jxk
. 0 ®
sin = e dx

jxkX

cos(A%,x')e dx

i o .
[n m(x xoi’ jxkx |
cos |——y——|& dx

yk
Sin(Bg,y')e Y dy

; B :
e m(y-¥,) ]ka
Bl | =] & dy
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needed in the evaluation of AX and

(c-1)

(C-2)

(€c-3)
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|
yo+b Syk

_ t Yo L Yy <
Iy = Icy(n ,ky)e = [ cos(Bn,y Je dy (c-u4)

+b' ’
Yotb n'n(y-y,J| dvk
= { cos |— (e y dy

These integrals will be evaluated in this appendix.
Let k be a purely real number and let n be a positive integer.

Then, according to Churchill (45)

(. o FaynE Jmk
nil é L) = w5 u
[n” - k7]
™
J g I%K sin(nx)dx = j[ggsign(k) ifn = || (C-5)
0 and n # 0
(0 ifn=0
and
' n jmk
-jk[1 -2(—1)2 e ] i gl |kI
j [n™ - k"]
m |
J erkcos(nx)dx = ﬁ g— i azE % (C-6)
0 { and n # 0
L T itn=k=0

Integral Il can be converted into the form of Equation (C-5) by using
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the following change of variables:

m({x-x_)
0 a'
¥ g e or x = [7;Jr t X4 (c-7)
Then Equation (C-1) yields
m aTkX
ijkx a' P
Ly = [??J J e sin(m'r)dr (c-8)

Using Equation (C-5) and the definition of st in Equation (C-1) trans-

forms Equation (C-8) to

o @ if m' = 0
; ' a'kx a'k
Is,(m',k ) = \ j(?Fjsign[ ] if m' = = 2 and m'# 0 (C-9)
|
|
| m’ ia?kx a'k
| @'m'[1 - (—l;ik e ] PE mt 4 - X
Lm)? - (—2%]

t should be noticed that I3 can be evaluated by direct analogy

with I. Using this analogy, along with Equations (C-3) and (C-9),

easily gives



198

I/O if n' = 0
| bk Bk
Isyfn‘,ky) = <j(~§ﬂsign(‘;fi§ if ! = “;—X‘ and n' # 0 (C-10)
ib'%
| n' g b'k
R e el
I.b n'l1 (-1) . e ] if n' # o i
b'k_ » m

L nfan? - (=87

To evaluate the integral 12 in Equation (C-2), the change of variables

given in Equation (C-7) is again used to arrive at the result

a'k
T pe

%k n jr[
I = e 0" [EFJ J e ¥ cos(m'r)dr (C-11)

0

Next, Equation (C-6) is used to evaluate Equation (C-11). Then, in view

of the definition of Ic, as given in Equation (C-2), it is clear that

y a'kx
| ar if mt = =
a if m ( 7 ] 0
a'k
1 5 B . O . ' 0=
ch(m ’kx) - 5 i mt = = and m' # 0 C-12)
i 1a'k
i v J
(=3@D ML = GO e M a'k
% e 1if m' #£

12[(m")? - (=]

It should be noticed that I,, can be evaluated by direct analogy
with I,. Using this analogy, along with Equations (C-4) and (C-12),

easlily gives
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( b'ky
! Vo= i
b if n (=4 =0
b! Bk
Icy{n',ky) & IE gt = —;—X- and n' # 0 (C-13)
. 1b'k
—j(b‘)gk [1- (1" e Y b'k
J 5k 5 if n' # —;_X
"2l(")? ~ (5
This completes the evaluation of Il, IQ, Iq’ and Iu. In closing,

it should be noticed that since a', b', n', m', kx, and ky are all

purely real, Equations (C-9), (C-10), (C-12), and (C-13) imply that

Is, (m',k ) = Is:(m',kx) (C-14)
ch(m',—kx] = Ic:(m',kx) (C-15)
s, (n',-kc,) = Is;(n',ky) (C-16)
lcy(n',—ky) = Ici(n',ky) (c-17)

where the asterisk represents complex conjugation.



200

APPENDIX D

SURFACE WAVE POLES

WHEN REGIONS VQ AND VS ARE LOSSLESS

The purpose of this appendix is to determine when and how many

surface wave poles are present if regions V2 and VS in Figure 4 of

Chapter III are both lossless. This information is needed during the

numerical integration of Wc . More specifically, the following three
3
statements will be proved in this appendix provided ‘cané2 = tanBS = Q.
1) If w e <y € and d # 0, then no surface wave poles or
. r., r
2 2 3 3
other singularities exist for any real o.

2) Ifu e =y e ord= 0, then no surface wave poles
r.r r. P
2 72 3 ~3
exist for any real p; but there is an integrable singularity at
g 3
3) If M, €, > 1, € and d # 0, then surface wave poles are

E 2 r
2 =g 3543
present, and they occur only in the interval YU, € S$p sV b, gL

q g Py

In addition, it will be proved that 1f statement three is true, then

the total number of surface wave poles present is given by

npole 5 entler(udf/;rgsrg—urserg Je) + 1 (D-1)
where entier(x) is the greatest integer function, f = w/2w, and c is
the speed of light in vacuum. The quantity p, which is used above, is

one of the integration variables in Equation (5-11).
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As pointed out in Chapter V, the surface wave poles occur when
Den(p) = 0 in the interval 0 < p < «, Before examining Den in this

interval, the quantities k., k,, kX, and k_, which appear in Den,
2 3 zQ Zq

must be evaluated for the case when regions V2 and VS are lossless.

Setting tand, = tan63 = 0 in Equations (5-6) and (5-8) gives

2 o

k. = kU & (D-2)
2 0 FQ Pg
2, 2

kI = kiu ¢ (D-3)
3 0 r3 r3

Next, letting tanég = 0 in Equations (5-9) and using Equation (3-56)

yields

4] r2 Pz PQ r2
kzz =% (D-4)
|3k VpZ-u_ e if p?2 > p_ e
i 0 rQ TQ r2 r2

It can be seen from Equations (5-9) and (5-10) that kz and kz have

2 3
the same form. Thus, by analogy with Equation (D-4),

kOVur €, “pZ If 02 < U €

: 9 3 Ea Ty

R _
kz = {D-5)
3 2

-3k vp2-u e if p” > u_ e

e U3 T3 B T
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Equation (5-12) is

Den = DTMDTE (D-6)

while the substitution of Equations (D-2) and (D-3) into Equations

(5-13) and (5-14) yields

£

r
_ 2y g .

Doy = I{=—Jk, cos(dx ) - k_sin(dk_) (D-7)

Ta 3 2 2 2
31n(dk22;] HP3

Dep = %, = - j(zr—acos(dkz ) (D-8)

3 z, r, 2

The zeros of Den can be found by examining the zeros of DTM and DTE’
since the zeros of these two terms are also the zeros of Den. This
will be done shortly. From Equations (D-4) through (D-8) it can also
be seen that Den is an even function of p. Thus, if o is a zero of
Den, then so 1is I Only the zeros on the positive p axis are of
interest, however, since only they contribute residue terms to Equation
(5-11).

The following lemma will now be proved as a first step in veri-
fying Statements 1, 2, and 3.

Lemma:

When regions V, and V_, are lossless, the real zeros of Equations

2 3

(D-7) and (D-8) always occur in the intervals
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» U e} 5 pc g max {Ur € , u €} (D-9)

where min{ } and max{ } are the minimum and maximum values, respec-
tively, of the list of quantities inside the brackets. This lemma will
be proved by eliminating all other possibilities.

Proof:

Case i. For this case it will be assumed that

2 -
pc < minfp e , p e } (D-10)
B Sy Faly

Then Equations (D-#) and (D-5) become

Kk =kVu e -p2 (D-11)
72 0 rg r,

k = k. Vi e -p2 (D-12)
24 0] Ty PS

It should be noticed from Equation (D-11) that kz is purely real,

2
implying that cos(dkz ) and sin(dkz ) are also purely real. In addi-
2 2
tion, kz is purely real. Hence, the first term in Equation (D-7) is

3
purely imaginary and the second term in that equation purely real. For

DTM to be zero, both its real and imaginary parts must be zero simul-

taneously for the same value of p. But k and k_ are both non-zero

Z Z

2 3
in the region given by Equation (D-10), while cos(dkz ) and sin(dkz )
2 2
are not zero simultaneously. Hence D_ . cannot be zero in the region

™

under consideration.
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Similar arguments apply to Equation (D-8) except that there the
first term is purely real and the second term is purely imaginary.

Thus, it has been shown that neither D nor has any zeros whatso-

™ Dre

5 : ; 2 . . =
ever in the interval p<© < mln{urQaPQ, uraar3} when V2 and VS are loss

less.

Case ii. For this case it will be assumed that

2 >
pc > max{u e, u e_ } (D-13)
o Ty T3 T3

Then Equaticns (D-4) and (D-5) become

k= ~jk.vp2-u_ € = ~jK (D-1u)
z2 0 rQ PQ 22

k = —jk . Vp2-p_ € = -jK (D-15)
23 0 rs PS 33

where the guantities KZ and KZ are defined as the following purely
2 3
real, strictly positive quantities:

K = k. Vp2-u ¢ (D-16)
z2 0 r2 r2
K = k. Vp2-u_ € (D-17)
z3 0] r3 PS

From Equations (D-14) and (D-16) along with the identities

sin(x+jy) = sin(x) cosh(y) + j cos{x) sinh(y)
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cos{x+tjy) = cos(x) cosh(y) - j sin(x) sinh(y)

it can be seen that

1k
t

sin(dk ) = sin(-jdK_ ) = -j sinh(dK ) (D-18)
g &) He

1
1)

cos(dk_ ) = sin(-jdK_ ) = cosh(dk ) (D-19)
& %y )

Next, substituting Equations (D-18), (D-19), (D-14), and (D-15) into

Equation (D-7) gives

rEPQ
Doy = 3T (-3K, Jeosh(dk ) - (-jK_ )[-jsinh(dK_ )]
r 3 2 2 2
3
or
e
T
Dy = &T~JKZ cosh(dk_ ) + K_ sinh(dK ) (D=20)

Yy 3 2 2 2

A similar substitution inte Equation (D-8) yields

KZB brg
Dpp = -3 RT*—Slnh(dKZQ) + [;;hicosh(dxzz) (D-21)

Since KZ is purely real and strictly positive, sinh(dKZ ) and cosh(dKz)
2 2 2
are also real, positive numbers. Thus, both terms in Equation (D-20)

are purely real and strictly positive, implying that DT705 is never =zero

in the region defined by Equation (D-13). Similar remarks apply to the
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bracketed terms in Equation (D-21). Thus, neither DTM nor DTT has any
: : 2 -
zeros at all in the regilon p“< > max{ur €, > ur er } when V2 and VS are
2 72 3 3
lossless.

Combining the results of Cases i and ii shows that the zeros of

D..., and DT must occur in the region given by Equation (D-9).

™ E

i o}

Q.E.D.

It has not yet been proved that either D or

M DTE has any zeros.

It has simply been shown that if they do, then these zeros can only
occur in the region given by Equation (D-9).

Now DTM and DTE will be examined more closely in the region of

Equation (D-9). It will be shown that no surface wave poles exist in

this region when u_ e < u_e_ , but that they do exist when
s T s, )
2 3 3
o€ > U € The following situation will be considered first,
g ¥y Ty Ty

Case 1. For this case it will be assumed that

o & R (D-22)
Ty Ta Ty By
2 ~
MoE. < pf Sy €
Py Ty = = r3rg,
and d # 0

Under these conditions Equations (D-4) and (D-5) become
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k= =ik vp2-u_ € = -jK (D-23)
z2 0 r2 r2 z2
k =k Vu_ e -p2 (D-24)
23 0 FS rs

where Kz is defined by Equation (D-16). Substituting Equations (D-23),
2
(D-24), (D-18), and (D-19) into Equation (D-7) gives

€
r
= r,_..._g R e s
DTM iz }kz cosh(dKz ) L ]Kz 1 jSlnh(th )]
T 3 2 2 2
3
or
3
T
Doy = j[E“—JkZScosh(dKZ?) + K2231ah(dKZ?) (D-25)

3

A similar substitution into Equation (D-8) yields

k u

zZ
By 2 (Efégsinh(dKz ) - j(u 3]cosh{dKz ) (D-26)

TE
Zs 2 I2 =

r

Since K, is purely real, both cosh(dKz ) and sinh(dKz ) are purely
2 2 Z
real. This information and the fact that k7 is also purely real
2

indicate that the first term in Equation (D-25) is purely imaginary,
while the second is purely real. By equating real and imaginary parts
to zero, it can be seen that the right side of Equation (D-25) is zero
only if kZSCDSh(dKZQ) and Kzgsinh(dKzz) are zerc simultaneously. Since

cosh(dKz ) is never zero in the interval under consideration and since
2
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d # 0, k and K must be zero simultaneously if D is to be zero.
23 22 TM

But these two terms cannot be zero for the same p because

T = #u € by assumption. Thus D is never zero if the conditions
T, Py ry Ty ™

given in Equation (D-22) hold.
Next, it should be noticed that the right side of Equation (D-26)
is not zero since cosh(dK ) is not zero. Thus, neither D.. nor D.. is
2, ™ TE
zero when Equation (D-22) holds. Combining this result with the Lemma

proves Statement 1.

Case 2. For this case it will be assumed that

o€ >y g (D-27)

—
M
A
e
1A
=
)

and d # 0

Under these conditions Equations (D-4) and (D-5) become

k=R 5T (D-28)
22 0 r2 rg
k = -k /EE?E“}T_': —jK, (D-29)
Zy 0 r3 Ty Zq

where KZ is defined by Equation (D-17). Substituting the last two
3
equations into Equation (D-7) gives
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E
fiid

Doy = {“ﬂg}K cos(dk_ ) - k_ sin(dk_ ) (D-30)
z z z z

I Srs 3 2 2 2

A similar substitution into Equation (D-8) yields

yéin(dk
Z

Dop = <] % i k

)W p
2 '3
; | ¥ [u )cos(dkz ) (D-31)

22 | r2 )

Thus DTM is zero when

€

it
{E—EJK cos(dk_ ) = k_ sin(dk_ )
ry 73 % . %

or since d # 0, when

2 e -—
( » ]dKza % deQtan(dkz2) (D-32)

Similarly, Do ig zero when

u
)
(-Bax, = -dk_ cot(dk_) (D-33)
ur3 3 2 2

It is important to notice that all terms appearing in Equations (D-32)

and (D-33) are purely real.
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To aid in the examination of Equation (D-32), a real variable x

will be defined, for this appendix alone, as

P

x =dk = dk Vp e -p2 (D-34)
) 078 Ty

This x should not be confused with the x of rectangular coordinates.

Next, y, will be defined as

y.(x) = x tan(x) = dk_ tan(dk_ ) (D-35)
1 Z Z
2 2
It should be noticed that vy is simply the right side of Equation
(D-32). Now the left side of Equation (D-32) will be expressed in
terms of x.

It should be observed from Equation (D-34) that

2
.3

02 = e - (=) (D-36)
PQ dko

Defining the left side of Equation (D-32) as Yo and making use of Equa-

tion (D-17) shows that

E
£

2 : 2
o L) Vo2-
y2(x) (—)ak [E }dko pe-p 3€

PB 3 3

Substituting Equation (D-36) into this last equation yields
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€
r 2

2 } p4
yo(x) = EE_—JdkO VH Ep My fr TlaK ) (D87
r 2 2 d 3 0

3
As a function of x, Yo is an ellipse.
Since vy and y, are the right and left sides, respectively, of

Equation (D-32), the solutions of Equation (D-32), and hence the zeros
of DTM’ correspond to the intersections of the curves yl(x) and yz(x).

A typical plot of Yy and ¥, versus X is shown in Figure 21. For the

situation shown in that figure, D has two real zeros since Yy and Yy

™
intersect twice. There is always at least one solution, that is, inter-
section of vy and Yoo and it occurs somewhere in the interval
0¢x < g—. This proves Statement 3.

It will now be convenient to let the 'radius" of Yo increase.
From Figure 21 it can then be seen that new intersections of Yy and
Y, occur whenever x = nm, where n = 1,2,3,..., and ¥5 = 0 simultane-

ously. The total number of intersections is n + 1. This information,

combined with Equation (D-37), indicates that new solutions occur when

o | nr )2

2
yQ(nw) =0 = [—*—Jdkoﬂ M, €, “H, € - EE—J
PS & 2 338 0

or when
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o

3m

A

i Relil
2 2 2

PFigure 21. Craphical Location of the Real Zeros of DTM

y3{x)

Figure 22. Graphical Location of the Real Zeros of D”E
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Substituting Equation (5-3) into this last equation and noting that

d # 0 gives

Foy  ° LS for n = 1,2,3,... (D-38)
Tntl Qd/pr e, b, e

where fTM is defined as the frequency at which the n + 1l'st TM
n+l

surface wave begins to propagate. It should be noticed from this last

s S
n+l TMn+2

where n = 1,2,3,..., then n + 1 of the TM surface poles exist. If

equation that if £ is the operating frequency and if fT

A

M

£ = fTN , then only one TM surface wave pole exists. Equation (D-38)
1
1

and the last comment imply that n + 1 of the TM poles are present if

ne < f < (n+l)e
2avu_ e -u_ € - 2dvu_ e -y €
o Py T3 Ty To ¥y P31y

or if

From this last equation it can be seen that the number, Dy of TM
surface wave poles that are present is given by
np, = entier (deVur €, W, €, /e) + 1 (D-39)

22 3 3
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Although Equation (D-39) does not locate the TM poles, it does show how
many exist. This information is very important since in most numerical
schemes for finding the zeros of a function the number of zeros to be

found must be specified before the zero-finding is initiated. Equation
(D-39) provides this information for Doy
Now the number of zeros in DTE will be determined. Using the

definition of % given in Equation (D-3u), Y, and Yy will be defined as

ys(x) = -x cot(x) = -dk_  cot(dk ) (D-10)
z z
2 2
and
UPQ ”rQ
= Foults s fede Vp2-
y, (0 = (Hag, = (kg hZu e
r, 3 s 373

Substituting Equation (D-36) into the last equation gives

S gt
v, (x) = (—dk Yu_e_-u_e -7 (D-41)
L gp 0 r2 r2 PS re dko

3

From this last equation it can be seen that y, as a function of x is an
ellipse. Since Vg and y, are the right and left sides, respectively, of

Equation (D-33), the zeros of D,

rp correspond to the intersections of Vg

and Yy - A typical plot of Y3 and y, versus x is shown in Figure 22.
For the situation shown, DTE has two zeros since there are two inter-

sections of V3 and ¥y, However, if Vi intersects the x axis at an
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X < %3 then Yq and Yy will not intersect, and there will be no TE
surface wave poles.

It will now be convenient to let the "radius" of Yy increase.
It can then be seen from Figure 22 that new intersections of ¥y and y,
occur when x = %—(QH—l), forn=1,2,3,..-, and ¥y = 0 simultaneously.
The total number of intersections is n. This information, combined with

Equation (D-41), implies that new solutions occur when

[ 2
(W ] {Urg) J %{QH—l]_
vy, (= [2n-1]] = 0 = dic. Y. B =l g @ eemm——
ni2 urs 0 r2 PQ PS PB L dﬁo
or when
Tron-1]
2
dko =
/i v THp Fp
92 378

Substituting Equation (5-3) into this last equation and remembering

that d # 0 gives

f_o= a(2n-1) for n = 1,2,3,... (D-42)

TEn ud/hr €, “H, €,
272 3 73

where f is defined as the frequency at which the th TE surface

TE
n

wave begins to propagate. It should be observed from the last equation

s where n = 1,2,3,..., then n of the TE surface
1

that if fTE < £ <1

TE
T n+
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wave poles are present. However, if f < fTE , then no TE poles are
J:
present. These comments and Equation (D-42) indicate that n of the TE

poles are present if

&g g c(2n+l)

o ud/ﬁr “r, M
22 "33 272 373

or if

=1 g ~— ¥ = < +
2n 1 = pr £ Loe 2n 1

or if

From this last equation it can be seen that the number, g > of TE

surface wave poles present is given by

Qdfﬁh € -U €
Pp. By P ¥y 3
Dpg = entier (- = + 5} (D-43)

is

The total number of surface wave poles, n 4
pole

= +n (D-44)

npole oy TE



To proceed further, the following identity is needed:
i P 1 i
entier(x) + entier(x + EJ = entier(2x) (D-45)

This identity can be easily proved graphically. Applying Equations
(D-39), (D-43), and (D-45) to Equation (D-u44) shows that Equation (D-1)
is indeed valid. Thus far, Statements 1 and 3, as well as Equation
(D-1), have been verified. Only Statement 2 remains to be proved.

Case 3. If d = 0, no surface wave poles should exist since then
there is no interface between regions V2 and VS to support such waves.

This statement can be shown mathematically, as follows. Setting d = 0

in Equations (D-6), (D-7), and (D-8) gives

ey
Den =D D = |j(——k -3 [—=
d=0 TM]d=o T8l 4=0 . %3 Hy J

3 7 2
or

€1" UP
Dt = |2 120k (D-46)
d=0 €r3 “rz o

Equation (D-46) represents an integrable singularity at kz = 0, that
3
is at p = YR, EL instead of a pole. This can be shown by analogy
3 ~3

with the next case. Since this is the only singularity in Den, no sur-
face wave poles are present when d = 0. It should be noted that if

d = 0, then the value of W, €, has no significance at all.
272
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Case 4. It will next be assumed that

U E S T - (D-u7)

Tor this case it will be shown that Den has an integrable singularity

atp = 4p. 1 = Yi u and that no poles are present. To do this, it
Ty Ty Ty Ty
should first be observed from Equations (D-4) and (D-5) that

E k vy e -p2 ifp?2 <yp €
| 07Ty, = Ty Ty
k = k = & (D-48)
5 23 j
H . 2
~jk. Vp2-u_ e if p% > ¢
L 0 PB ra PS rq

k, =k, = kU e (D-49)

Substituting Equations (D-48) and (D-49) into Equations (D-7) and (D-8)

gives, respectively.

o

T
D, = §{(—Dk_cos(dk ) - k_ sin(dk_) (D-50)
™ U z Z bt %
™ 2 2 2 2
2
UP3
DTE = 51n(dk22) - ](E;TJcos(deQ) (D-51)

2



The last two equations permit Equation (D-6) to be written as

My

= e [‘-—-—-E = i L
Den k, |35 Jcos(dkz ) - sin(dk, ) (D-52)

2 r, 2 2

The bracketed term in Equation (D-52) can be shown to be non-zeroc

itn the fellowing manner. If p < Vur € , then kz is purely real, as

3 -3 2
can be seen from Equatien (D-48); and, consequently, both cos{dkz } and
2
sln(dkz ) are alsc purely real. Then, since the sine and cosine func-
2

tions are never zero simultaneously, it follows that the bracketed term

in Equation (D-52) is never zero when p < Yh e
- 3 "8
Next consider the interval p > vViu_ € , in which k is a
T, T z
3 "3 2
strictly negative, purely lmaginary number, as indicated in Equation

(D-48). Equations (D-18) and (D-19) then show that the bracketed term
in Equation (D-52) is a strictly positive, purely imaginary number.
Thus, the bracketed term under consideration is never zeroc for

p > /up S This paragraph and the preceding one prove that the
3 3
bracketed term in Equation (D-52) is non-zerc for all real p. Therefore,

the only singularity Den can have is when kz2 = 0.

It will now be shown that k, in Equation (D-52) introduces into
WC_ an integrable singularity instezd of a pocle. From Equation (5-11)
itdcan be seen that

_ Num(y,p)
W - [ ms)
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By using Equation (D-52) and splitting the p integration, the last equa-

tion becomes

) uracrg /2
W - l J N\lm(ﬂ)sp) dy dp (D-53)
Cq b My 2
Q 0 .r 3 .
-k, jlw——gcos(dkz ) - 54n(dkz )
2| M ) 2
2
o0 m/2
) [ J Num(y,0) dy dp
J A l— UI.B —12
Yu, € “k_ |3(—)ecos(dx_ ) - sin(ax_ )|
r_ v z u Z Z
373 2 B, 2 zj

Now let
p = fur €n sina

33

in the first integral in Egquation (D-53) and, in the second, let

Applying these last two equations to Equation (D-48) reveals that

k = kOVu coso

z r. fr
2 3 3

in the first integral of Equation (D-53), while in the second integral
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= -jk VU ¢ sinha
0 r3 PS

X =
P
Substituting these last four equations into Equation (D-53) yields

Num (¢, vu SLnu)V cosa dy do

m/2 m/2
!
v =] = E
C‘3 J J r_' UI“ 2
4] 0 -
-k vV cosa j cos(dk } - sin(dk_ )
3 )
Num(¢,vu_ e cosha)/y e sinho dy do
w /2 r, . r, r
® 3 3
. '
/ M f
0 0 Vo ——— r 3 X r_
ik Jur €, sinha j(———Jcos(dkz ) - Sln(dkz )|
373 Hr 2 2 |
2 —_—
or
n/2 w/2 Num(¢,VUr €, sina) dy da
W =J [ = i —— (D-5u)
C3 J U s
0 X ][wﬁﬁacas(dk ) - sin(dk, )
T 2 2
L 2
© /2 Num(w,fur €, coshg) dy do
| ] -
+
0 0 ry .
ik, 5% Jcos(dk ) - sin(dk_ )
u z
r2 Z9 2

It will now be observed that the denominators in Equation (D-54) have
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no singularities since the bracketed term in the denominators has

already been shown to be non-zero. Thus, the singularity at p = Vur €,
3 3

has been removed. It has also been shown that WCS has no other singu-
larities for Case 4. This last comment, combined with Case 3, proves
Statement 2.

Thus, Statements 1, 2, and 3, as well as Equation (D-1), have
all been verified, which was the intent of this appendix. It should
also be noticed that the real zeros of Den are simple. This can be
seen by observing that the curves vy and Yo in Figure 21 are not tangent

when they intersect. Hence, (yl-yz) can have only simple poles.

Similar remarks apply to Figure 22.
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