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”We are certain that we’ll be able to reduce our beat times significantly and double the

number of police officers we’re putting on the street.”

Keith Meadows, South Fulton Police Chief



This dissertation work is dedicated to my parents, many friends, church family and God.
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SUMMARY

We redesign the police patrol beats in South Fulton, Georgia, in collaboration with

the South Fulton Police Department (SFPD), using a predictive data-driven optimization

approach. Due to rapid urban development and population growth, the original police

beats arrangement designed in the 1970s was far from efficient, which leads to low policing

efficiency and long 911 call response time. We balance the police workload among different

regions in the city, improve operational efficiency, and reduce 911-call response time by

redesigning beat boundaries for the SFPD. We discretize the city into small geographical

atoms, which correspond to our decision variables; the decision is to map the atoms into

“beats”, which are the basic units of the police operation. We analyze workload and trend

in each atom using the rich dataset for police incidents reports and U.S. census data and

predict future police workload for each atom using spatial statistical regression models.

Basing on this, we formulate the optimal beat design as a mixed-integer programming

(MIP) program with contiguity and compactness constraints on the shape of the beats.

The optimization problem is solved using simulated annealing due to its large-scale and

non-convex nature. Our resulted beat design can reduce workload variance by over 90%

according to our simulation. Our new optimal beat design has been approved by the City

Council of South Fulton and implemented in January 2020.

xii



CHAPTER 1

INTRODUCTION

The City of South Fulton, Georgia, was recently established in May 2017 from previously

unincorporated land outside of Atlanta. It is now the third-largest city in Fulton County,

Georgia, and serves a population of over 98,000, among which 91.4% are black or African

American [1]. South Fulton is a historic area renowned for its art and activism. Despite

this, the city has often faced the challenge of climbing crime rates and long police response

times. In a 2019 survey, 46.48% of residents responded that they do not feel safe in South

Fulton. In the same year, the South Fulton City Council made it clear that their number one

priority was to make South Fulton safer [2].

The South Fulton Police Department (SFPD) is the main policing force in the city.

From 2019 to early 2020, our team worked with the SFPD to improve their police oper-

ation efficiency. Our project specifically focused on redesigning beat configurations (by

completely re-draw the boundaries and changing the number of beats), intending to bal-

ance the workload of SFPD officers. The initial analysis identified that workload unbalance

among different areas of the city was caused by an outdated beat design that had not been

changed for over five decades; the inefficient beat design, in turn, lead to long 911 call

response time in some areas.

Previously, the South Fulton police operates according to seven police beats, which

divide the city geographically as shown in Figure 1.1. 117 police personnel were allocated

to the beats for patrolling and responding to the 911 calls [3]. Typically, for each beat,

at each shift, there is one response unit, which is one police car with one to two officers,

who respond to all 911 calls in that beat. If the response unit is handling another incident,

nearby available response units may be dispatched to answer the call by the operator.

The most recent South Fulton police beat redesign occurred in the 1970s – almost five
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Figure 1.1: City-wide police district map of South Fulton, GA. There were 7 beats, which
was initially designed in the 1970s. The city boundary is highly irregular which requires
intricate design of police beats.

decades ago. Since then, the area (which eventually became the City of South Fulton) has

undergone a tremendous urban growth that drastically changes its landscape. The U.S.

Census Bureau estimated that the population of South Fulton has increased by 13.7% from

2010 to 2018 [1]. This has led to a significant increase in police workload, which is exac-

erbated by the difficulty in officer recruitment and retention faced by the SFPD. Moreover,

demographic and traffic pattern changes also create an unbalanced workload among dif-

ferent regions. Figure 1.2 shows the distribution of 911 calls, which we estimated from

911-call data provided by SFPD from 2018 to 2019. It is evident from the figure that cer-

tain beats faced a significantly higher workload than others. For example, police officers in

the southeastern area of the city respond to many more calls than those in the western area.

Since the seminal work by R. Larson and others [4, 5], researchers have recognized

that beat configuration may significantly impact police response time to 911 calls and op-

erational efficiency. In particular, the area and shape of beats determine the workload and
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Figure 1.2: Distribution of 911 calls-for-services requests in South Fulton, GA. Blue
shaded area indicates the city area of South Fulton. Blue dots are locations of requests.
The requests are unevenly distributed among different regions.

travel time in that beat. Hence, it is critical to design the boundaries of beats to balance the

workload.
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Figure 1.3: An illustration for data-driven optimization framework of police beat redesign.

Outline. We redesign the police patrol beats in the City of South Fulton using a data-

driven optimization approach. The outline of our approach is summarized in Figure 1.3.

Our objective is to balance police workload in each beat by redrawing beat boundaries.

First, we divided the geographical areas of the city into a large number of “atoms”. Then,

we estimated the workload in each atom using police reports data as well as census data,

including population and socio-economic factors. These steps are described in Chapter 2
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and 3. Based on the workload estimation, we developed statistical models to predict police

workload in the next few years (Chapter 4). We then formulate the beat redesign problem as

a clustering problem: each beat is formed with a cluster of atoms. This clustering problem

is formulated and solved using mixed-integer programming (MIP), where the objective

function is a metric of workload unbalance (defined as the workload variance across all

beats). We also impose constraints that require beats to be contiguous and compact so

that they are not irregularly shaped. The problem formulation is described in Chapter 5.

To tackle the computational complexity of solving a large-scale optimization problem, we

developed a simulated annealing based approach with efficient solution exploration. We

also study the effect of the different number of beats and find the optimal number of beats

with the highest cost-effectiveness. Numerical results (Chapter 7) show that our proposed

beat design can reduce workload variance among different regions by over 90%. In January

2020, together with the SFPD, we presented our final redesign plan to the South Fulton city

council, which was officially approved for implementation.

Contribution. Our work proposes a new data-driven framework that integrates data, sta-

tistical prediction, and optimization in the context of police beat design. Previous works

in the predictive policing literature tend to focus on only the prediction aspect. The op-

erations research literature often studies police zone design based on analyzing stochastic

models without explicitly considering data sources. We take advantage of the availability

of abundant data and adopt a new data-driven approach - the workload and other important

parameters for optimization are estimated and predicted from data. From a methodological

perspective, we use geo-spatial atoms to define city boundary and police beat boundary.

This approach enables accurate workload prediction by correlating historical police data

with the census data, as well as beat design optimization.

Our project has also had a significant societal impact and directly improved the police

operations of SFPD and the safety of residents in South Fulton. It is worth mentioning that

although we focus on the study of police beat redesign in South Fulton, our method can be

4



applied to other cities facing similar issues.

Literature Review. Police districting (designing beats or zones) is a classical problem

studied in operations research dating back to the 1970s (see the seminal work [4] and the

surveys by [6, 7] for reviews). [8] is one of the earliest works that study optimal beat allo-

cation using integer programming. [9] considers the beat allocation problem to minimize

response time to calls for police service. In particular, the paper considers overlapping

beats, where multiple patrol officers share one patrol area. [10, 11] use queueing models

to estimate travel time. In particular, our proposed data-driven model includes the travel

time in the workload calculation. [12] introduces a heuristic approach to the design of

beats with implementation in Boston. [13] considers fairness issues of police zone design.

We remark that most classical works rely on analyzing stochastic models for police work-

load estimation, which usually requires stringent assumptions, e.g., calls arrive according

to homogeneous Poisson processes (with the notable exception of [11]). Here, rather than

obtained from stochastic models, we take advantage of the availability of abundant data

and adopt a data-driven approach: the workload and other important parameters for opti-

mization are estimated and predicted from data.

There is also a large body of works on other types of geographical districting problems,

such as political districting. This includes the pioneering work [14] that studies politi-

cal districting using integer programming. Their method is extended by [15] for other

geographical districting problems. A few other works [16, 17, 18, 19, 20, 21] apply meta-

heuristics (e.g., genetic algorithms, simulated annealing) to geographical districting, which

usually lack optimality guarantees. Geographic districting often includes criteria such as

contiguity [22, 17, 14, 23, 24, 20] and compactness [14, 25, 26], which are also important

in the police zone design context. However, political districting has different considerations

than police districting.

For police staffing study, [27] proposes a linear programming approach using queueing

models. There is also a number of papers in the queueing literature that has studied server

5



staffing to meet time-varying demand [28, 29, 30]. We did not consider the queueing model

in our paper and only focusing on analyzing staffing levels (the number of required police

officers and how it is related to the number of beats), as this will simplify the problem and

provide a practical guideline.
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CHAPTER 2

DATA SOURCES FOR SOUTH FULTON

We start by describing the various sources of data used for South Fulton police beats re-

configuration, including 911 calls-for-service reports, geographical data of the city, and the

socio-economic data collected by the American Community Survey (ACS) from the U.S.

Census Bureau.

2.1 911 Calls-for-Service Data

The SFPD provides comprehensive 911-call reports between May 2018 to April 2019,

which contains 69,170 calls in total (Figure 1.2). The recorded 911 calls cover more than

600 categories of incidents, including assaults, terrorist threats, domestic violence, robbery,

burglary, larcenies, auto-thefts, etc. These reports are generated by mobile patrol units in

the city, which handle 911 calls 24/7. Teams of response units (police cars and officers) are

assigned to patrol city streets, and answer calls for service. When a 911 call for a traffic

incident comes in at the call time, a new incident record will be created at the dispatch

center, and the call location will be recorded. The operator assigns an officer to handle the

call. The unit arrives at the scene and starts the investigation. Once the police complete the

investigation and clear the incident, the police report will be closed and record the clear

time. The time interval that it takes police to process the call between the call time and the

clear time is called processing time.

The police workload is calculated using both the geolocation data and 911 call process-

ing time data. (The calculation method which will be discussed in more detail in Sec. 3.3.)

The geolocation consists of the longitude and latitude location of reported incidents. From

the geographical data of South Fulton, we are also able to identify which beat each incident

is located.
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2.2 GIS Data & Beat Configuration

In this section, we describe the geographic information system (GIS) data that we used to

reconfigure South Fulton’s beats. To predict demand for 911 calls, we estimated demo-

graphic and socioeconomic features of South Fulton using data from the American Com-

munity Survey (ACS). To get these estimates, we used GIS data to define the area based

on the Fulton County Special Services District digest parcel data [31]. Geographically, the

city boundary of South Fulton is quite irregular with jagged edges, holes, and disconnected

segments (Figure 1.1). This irregularity is due to the formation of the City of South Fulton,

with the city being a new combination of all the unincorporated land in southwest Fulton

County.

The city is bordered by several current municipalities, including Atlanta, College Park,

Union City, Palmetto, Hapeville, East Point, and Fairburn. The City of South Fulton neigh-

bors a relatively new city on its western border, the City of Chattahoochee Hill Country.

The City of South Fulton also shares borders with four counties, Cobb, Coweta, Douglas,

and Fayette. The municipalities in the east, such as Atlanta and College Park, have a much

denser population than those municipalities in the west, like the City of Chattahoochee Hill

Country. This leads to the City of South Fulton having a much denser population in the

east versus the west.

Prior to this project, there are seven beats in the City of South Fulton, and GIS infor-

mation of these beats was provided to us by the SFPD. As shown in figure 1.1, beats 1,

2, 3, and 4 include larger areas that are relatively compact, while remaining beats contain

smaller scattered areas. The irregular shape of the city brings difficulty to police officers

while reaching locations of requests and patrolling. In addition, there are four airports lo-

cated to the east, north, east, and southeast of the city, which may affect the workload of

police officers in such areas. The airport to the east is the Hartsfield-Jackson Atlanta Inter-

national Airport, which is the busiest airport in the world. This only adds to the workload

8



disparity in the city.

2.3 Census Data

Data from the American Community Survey (ACS) provided by the U.S. Census Bureau

provides comprehensive information about the population, demographic, and economic

status of different areas of Georgia. Unlike the census, which takes place every ten years,

the ACS is conducted once per year. The latest year available is 2018. Some census factors

are particularly useful for us in making a prediction of future workload (by correlating city’s

socio-economic profile with the workload), and these factors contain essential information

about the development and economic growth of the city. More specifically, we aggregate

the 911-call data by month to perform a more accurate workload prediction for the future.

(a) Population (b) Median rent (c) Median income

(d) Population (e) Median rent (f) Median income

Figure 2.1: (a-c): Raw data for census factors (population, median rent, median income) of
South Fulton, GA in 2019, from American Community Survey, organized by census blocks
(projected from a sequence of five-year census data). (d-f): Corresponding atomized census
data of South Fulton, GA, in 2019.
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To match this time resolution with the census data, we need to estimate the census data for

each month from May 2018 to June 2019 following the resolution of the 911-call dataset.

In addition, census data is organized by census blocks, as shown in Figure 2.1 (a - c), which

is also different from the geographical atoms we consider for our study.

The census data we retrieved contains more than 75,000 tables. Many of these tables

contain no data, or the data has no correlation with the police workload. Some tables in-

clude as many as 20 different socio-economic factors. Additionally, many of the tables are

highly correlated with other tables, for example, median income and household income.

Because of the inconsistent availability and format of such data, we need to perform vari-

able selection over the data set to select the most important factors. In our discussions with

the SFPD, we learned from their experience regarding which factors may affect the police

workload the most, such as population and median rent, school enrollment, and the average

age structures were built. The full list of census factors we are considering is shown in

Table 4.1.

10



CHAPTER 3

DATA PREPROCESSING

In this section, we describe three key steps in data preprocessing before performing the beat

design. In particular, we need to address the following two challenges in using the data:

how to align (1) time resolution and (2) spatial resolution from the raw data with what we

need in the design.

3.1 Geographical Atoms for the Beat Design

To accurately capture changing demographics and determine the new boundaries for each

police beat, we must define high-resolution geographical atoms describing each area of the

city. However, the size of the census blocks is determined by the population. In South

Fulton, many low population density suburbs may be included in the same large census

block. This results in very low-resolution geographical atoms that are not suitable to use

in the beat design. We address this by creating artificial polygons of identical size as our

geographical atoms to break up the city, where the optimal beat design can be found by

aggregating multiple adjacent polygons.

The size of geographical atoms is essential to the performance of our optimization

algorithm since it determines the number of variables and the precision of the workload

estimation. There is a trade-off between computational efficiency and model accuracy in

determining the size of geographical atoms. If the size of each atom is too large, we are

unable to capture community demographics accurately; if the size of each atom is too small,

the problem will become computationally intractable.

We found that using atoms with a side length of 0.345 miles allows us to estimate the

local workload accurately while maintaining a reasonable number of decision variables in

our optimization problem. We also found empirically that these atoms are roughly the

11



size of a city block. The atomized map of the city was generated by intersecting the city

boundary with a grid of atoms, resulting in a new grid of 1,187 geographical atoms, as

shown in Figure 3.1. The police workload estimation and prediction will be performed

based on these predefined geographical atoms.

Let i ∈ I = {1, . . . , I} denote the i-th atom and k ∈ K = {1, . . . , K} denote the k-th

beat in our design. Let the binary decision variable dik ∈ {0, 1} denote whether or not atom

i is assigned to beat k. A particular beat design is a unique graph partition determined by a

matrixD = {dik} ∈ {0, 1}I×K . For each i, it satisfies
∑K

k=1 dik = 1. Given the beat design

D, the set of atoms assigned to beat k is denoted by Ik(D) = {i : dik = 1} ⊆ I . This

leads to 1,187 ×K decision variables in the optimization model. Figure 3.1 also shows the

discretization of the existing beat configuration, where atoms with the same color represent

a police beat. This configuration will also be used as an initial design in our algorithm,

which will be discussed in Sec. 5.3.

Figure 3.1: South Fulton region is partitioned into 1,187 square geographical atoms.

12



3.2 Census Data Atomization

A major challenge for estimating the socio-economic data for each geographical atom using

census data is the inconsistency between census blocks and geographical atoms, where, as

shown in Figure 2.1 (a-c), census blocks usually have a much larger area than geographical

atoms. Here we need to perform a spatial interpolation to align the census data with our

geographical atoms.

Specifically, we assume the census data, such as population are evenly distributed

within the same census block. The data of each census factor in a geographical atom

can be estimated by proportionally dividing the value in the census block where the atom

falls into. The weight of the portion that an atom takes from a census block can be mea-

sured by the proportion between their areas. As shown in Figure 2.1 (d - f), the census data

collected by census blocks have been discretized into geographical atoms. Given historical

census data in the month ` ∈ [L − L0, L], where L and L0 denote the last month and the

time span of the historical data, respectively. The preprocessed census data is denoted as a

tensor X = {xi`m} ∈ RI×L0×M , as shown in Figure 3.2, where each entry xi`m indicates

the value of the census factor m ∈M = {1, . . . ,M} in atom i and month `.

3.3 911 Calls-for-Service Data Preprocessing

We estimate the police workload for each geographical atom using the 911 calls-for-service

dataset. The workload of each 911 call is evaluated by its processing time, i.e., the total

time that the police spend on traveling and the investigation.

We calculate the workload by two steps: (1) count the number of 911 calls occurred

in the i-th atom in `-th month, denoted as Ni`; (2) estimate the total workload for the i-th

atom in the `-th month by multiplying Ni` by the average processing time, denoted as wi`.

As shown in Figure 3.2, the count of 911 calls will be further used as the predictor in our

spatial regression model, which will be discussed in Chapter 4.
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Figure 3.2: An illustration for the result of data preprocessing.
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CHAPTER 4

POLICE WORKLOAD PREDICTION

We model the 911 calls-to-service incidents using non-homogeneous Poisson processes.

To obtain higher resolution of workload prediction, we chose the month as a unit of time

for the prediction. As a piece-wise approximation, we assume that the intensity λi` for

atom i in a month ` is a constant. Thus, each beat is a homogeneous Poisson process

with intensity of λi`. The arrival rates Λ = {λi`} ∈ RI×L0
+ can be approximated by Ni`,

where L0 = 12. We learned from South Fulton Police that, according to their experience,

the occurrence of 911 calls is highly correlated with population and economic status of

the beat and its neighborhood. We predict the future arrival rate λi` in the future month

` = L+ t, t = 1, 2, . . . by a linear model that regresses the arrival rate to other endogenous

variables (arrival rates in other beats) and exogenous factors (census factors). As shown in

Table 4.1, we consider M = 8 census factors, which are statistically verified to be good

predictors, including population, education level, and household income. Specifically, we

use the spatially lagged endogenous regressors [32] defined as

λi` =
∑

(i,j)∈A

αijλj` + β0λi,`−1 +

p∑
t=1

βᵀ
tXi,`−t + εi, ∀` ∈ [L− L0, L],

where p is the total number of past months of data that we consider for fitting the regressor,

which in our case was 1. The adjacency matrix A = {αij} ∈ RI×I specifies adjacency

relationships between atoms. The temporal coefficient β0 ∈ R specifies the influence of

the last month. The coefficient βt ∈ RM ,∀1 ≤ t ≤ p specifies correlations with census

factors and error term εi are spatially correlated. The set of adjacency pairs is defined by

A = {(i, j) : i, j are adjacent in G; i, j ∈ I }. The graph G is given by associating a

node with every atom and connecting two nodes by an edge whenever the corresponding
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atoms are geographically adjacent. Here, we capture the spatial correlation between data

using the standard spatial statistics approach, by assuming εi to be spatially correlated with

correlation depending distance between two locations [33].

Table 4.1: Variables used for workload prediction

PREDICTOR REGRESSION COEFFICIENT P-VALUE

POPULATION 439.558 0.007
NUMBER OF HOUSING UNITS 158.440 0.019

SCHOOL ENROLLMENT 79.236 0.008
MEDIAN HOUSEHOLD INCOME 59.420 0.000
MEDIAN NUMBER OF ROOMS -10.560 0.006

MEDIAN AGE -7.421 0.001
MEDIAN HOUSE PRICE -16620 0.000
AVERAGE YEAR BUILT 170.140 0.003
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CHAPTER 5

BEAT REDESIGN OPTIMIZATION

In this section, we introduce our objective and solution methods to the beat redesign opti-

mization problem. We develop an optimization framework to shift beat boundaries, where

artificial geographical atoms were assigned to some specific beats while balancing the

workload. We formulate this problem as minimizing the workload variance by reconfigur-

ing the beat plan with constraints, including the continuity and compactness of beats.

5.1 Objective

Based on the current situation of the imbalanced workload among existing police beats, our

goal is to shift beat boundaries and make inter-beat workload distribution even. Hence, we

introduced workload variance for evaluation. The ultimate objective of this problem is to

minimize the inter-beat workload variance Z(D) given a beat design D. The variance is a

quadratic function of the workload in each beat, which implies that the objective function is

convex with respect to the decision variables. A smaller variance indicates a more balanced

inter-beat police workload.

The beat redesign problem can be formulated as:

minimize
D

Z(D) :=
K∑
k=1

(
wk`(D)−

∑K
κ=1wκ`(D)

K

)2

subject to
K∑
k=1

dik = 1, ∀i

contiguity and compactness for each beat.

(5.1)

Recall that the matrix D = {dik} ∈ {0, 1}I×K represents decision variables, where binary

variable dik ∈ {0, 1} indicates whether or not geographical atom i is assigned to beat k;
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and wk`(D) =
∑

i∈Ik(D)wi` represents the total workload in beat k = 1, · · · , K in month

`. The constraints will be explicitly defined in Sec. 5.2.

5.2 Compactness and Contiguity Constraints

To model the beat contiguity and beat compactness as constraints that the optimization

problem subjects to, we introduced additional variables: fijk is the flow from atom i to

atom j in beat k; hik equals to 1 if atom i ∈ I is selected as a sink in beat k ∈ K ,

otherwise 0; q is the maximum beat capacity. We follow [14, 25, 34, 26] to model the

contiguity and compactness as linear constraints. Hence, there are 21,170,145 variables

with 63,421,410 constraints in total.

Contiguity constraints. Contiguity constraints are imposed on each beat using the flow

method [34]. For each beat k, there is a flow fijk on the graph, where fijk denotes flow

from i to j. Each beat has a hub vertex whose net flow is at most the number of vertices

in the beat, less one. Each other vertex in the beat has a net flow of at most −1. This

ensures that there is a path of positive flow from any vertex in the beat to the hub, implying

contiguity.

Specifically, constraints (5.2a) represent the net outflow from each beat. The two terms

on the left indicate, respectively, the total outflow and total inflow of atom i. If atom i is

included in beat k but is not a sink, then we have dik = 1, hik = 0, and thus atom i must

have supply ≥ 1. If atom i is included in beat k and is a sink, then we have dik = 1,

hik = 1, and thus atom i can have demand (negative net outflow) ≤ q − 1. If atom i is

not included in beat k and is not a sink, then we have dik = 0, hik = 0, and thus atom i

must have supply 0. If atom i is not included in beat k but is a sink, then we have dik = 0,

hik = 1, and the rest of d·k are forced to be 0, that is, no atoms are selected. Constraints

(5.2b) specify the number of atoms that can be used as sinks. Constraints (5.2c) ensure that

each beat must have only one sink. Constraints (5.2d) ensure that there is no flow into any

atom i from outside of beat k (where dik = 0), and that the total inflow of any atom in beat
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k (where dik = 1) does not exceed q − 1. Constraints (5.2e) make sure unless a atom i

is included in beat k, the atom i cannot be a sink in beat k. Constraints (5.2f) and (5.2g)

ensure that there are no flows (inflows and outflows) between different beats which forces

eligible contiguity.

∑
(i,j)∈A

fijk −
∑

(i,j)∈A

fjik ≥ dik − qhik, ∀i, k, (5.2a)

K∑
k

N∑
i

hik = K, (5.2b)

N∑
i

hik = 1, ∀k, (5.2c)

∑
(i,j)∈A

fjik ≤ (q − 1)dik, ∀k, (5.2d)

hik − dik ≤ 0, ∀i, k, (5.2e)

fijk + fjik ≤ (q − 1)dik, ∀i, k, (5.2f)

fijk + fjik ≤ (q − 1)djk, ∀j, k, (5.2g)

dik, hik ∈ {0, 1}, ∀i, k, (5.2h)

fijk ≥ 0, ∀i, j, k, (5.2i)

Compactness constraints. Compactness is defined as geographical compactness with dis-

tance compactness and shape compactness [25, 26]. For distance compactness, a district is

feasible only if the distance between population units must be less than a specified upper

bound. For shape compactness, a district is feasible only if the square of the distance’s

maximum diameter divided by the district’s area must be less than another upper bound

[14].

Following the existing literatures, we add two additional linear constraints (5.3a), (5.3b)

to ensure the compactness of beats. For each atom i, let Ai be the area of i, and for each
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pair of atoms i and j, let lij be the square of the distance between the centroids of the beats.

We also have a parameter c1, c2 > 0 controlling the degree of compactness.

lijeijk ≤ c1, ∀i, j, k, (5.3a)

lijeijk ≤ c2

K∑
i=1

dikAi, ∀i, j, k, (5.3b)

5.3 Solution Methods

Three methods were discussed in our experiments to search for optimal police beat de-

sign. The greedy algorithm serves to generate new beats iteratively and confirms the op-

timal number of beats for the future redesign. Following the Greedy redesign, we employ

a heuristic optimization approach to help with optimizing beat design in contrast to the

mixed-integer programming (MIP) approach.

5.3.1 Greedy Exploration

To determine the optimal number of beats in the final design, we perform an iterative greedy

algorithm, which attempts to generate new beat greedily for the design for each iteration

while preserving the original structure of the existing beat as much as possible. Intuitively,

more beats may result in a more balanced workload distribution. However, the manpower

of the SFPD and resources of the South Fulton City Council are limited. It is unrealistic to

deploy such a design with a large number of beats. Hence, we adopt the Greedy algorithm

to explore the optimal number of beats in our design. The procedure for “Greedily” creating

new beat designs is demonstrated as follows.

For the n-th iteration, we define Dn as the beat design, and K is the number of beats

at the last iteration. For the predicted workload in month `, the greedy algorithm can be per-

formed by selecting the beat k inDn with the largest workload, i.e., arg maxk{wk`(Dn)}k∈K .
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Then we split up the beat k evenly into two beats using the K-means algorithm, where each

atom in the beat is considered as a point. This will lead to generating a new beat, i.e.,

K := K + 1 and K =: K ∪K. The above process can be carried out iteratively until we

find the design with the optimal number of beats.

We visualize our greedy design with different number of beats in Figures 7.3. As seen

from the result, the beat with the highest workload, shown in red, is split in each iteration

as a result. We also examine the variance of beat workload versus number of beats, and

find the optimal number of beats, which will be discussed in Sec. 7.2.

5.3.2 Mixed-Integer Programming

Once we determine the optimal number of beats in the design, we can consider this problem

as a mixed-integer programming (MIP), where the global optimal design can be found by

conventional techniques in convex optimization. However, as shown in Sec. 5.2, we have

21,134,535 continuous variables and 35,610 binary variables, as well as a set of additional

linear constraints needed to be satisfied. In practice, the problem itself of searching for the

global optimal design is computationally intractable and hard to be implemented on a large

scale.

5.3.3 Heuristic Search

To tackle the computational issue in MIP, we propose a heuristic method to search for local

optimal design at a reasonable computational cost [35]. In addition, the SFPD expects

a design with a reasonable small adjustment on the existing beat configuration to avoid

unnecessary deployment costs. Therefore, we use the beat design with the optimal number

of beats as the initial design, and explore the “adjacent” design via swapping the beat

assignments on the board of two beats, as shown in Figure 5.1.

Specifically, we adopt the simulated annealing algorithm to implement our heuristic

search method. For n-th iteration of the search, we consider the adjacent designs which
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(a) original (b) adjacent 1 (c) adjacent 2

Figure 5.1: An example of a design and its adjacent designs. (5.1a): original design; (5.1b):
a adjacent design; (5.1c): another adjacent design.

satisfy the contiguity and compactness constraints as “candidate”. Then we choose one

of these candidate designs with higher probability if it returns a lower workload variance

and vice versa. The simulated annealing mechanism tends to less likely to accept a design

with a higher workload variance as time goes on. We accept the candidate design when

P (Dn+1, Dn, T ) ≥ U(0, 1), where U(0, 1) is the uniform distribution between 0 and 1, Dn

is the last candidate design, Dn+1 is the current candidate design, T is a preset temperature

that determines the speed of convergence, and the P is the acceptance probability defined

as

P (Dn+1, Dn, T ) =


1, Z(Dn+1) < Z(Dn)

exp{|Z(Dn+1)− Z(Dn)|/T}, otherwise.

The last accepted candidate design will be considered as the refined beat design based

on the greedy design. Figure 7.4 shows the refined 15-beat design based on 15-beat greedy

design using simulated annealing.
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CHAPTER 6

NUMERICAL EXPERIMENTS

In order to obtain the best result, we performed several numerical experiments with differ-

ent solution methods to explore which method is suitable for our problem and performs the

best.

At the first phase of the experiment, we apply the simulated annealing algorithm as

our heuristic optimization method to the original police beat design (with 7 beats in total),

satisfying the contiguous and compactness constraints. On average, the variance is reduced

by about 6% after 7 iterations; about 15% after 15 iterations; about 60% after 127 iterations.

The SFPD requires to check the redesign effect of plans with different number of beats, so

this experiment has the disadvantage of the fixed beat number. Then, we move to the next

experiment.

At the second phase, with the demand of checking the optimal number of beats, we gen-

erate the new beat greedily. Firstly, we generate the new beat manually by choosing beat

boundaries on natural rivers and roads. Grids within the boundary are selected by breadth-

first-search. This experiment shows a good result that over 90% of the original workload

variance has been reduced after the new beats generation and heuristic optimization. How-

ever, this method is not efficient enough and in practice it is unnecessary to reduce the

workload variance that much. Then, we tried the K-means algorithm as substitution for

generating the new beat iteratively as discussed in Sec. 5.3.1, which is much faster than

the manual work, while shows a relatively ideal result. Then the simulated annealing algo-

rithm is applied to each greedy design for further variance reduction. We will discuss its

performance in Chapter 7.

23



CHAPTER 7

RESULTS

In this chapter, we present our numerical results and final beat redesign for the City of

South Fulton.

7.1 Workload Analysis and Prediction

As mentioned in Chapter 1, under the existing beat design, the disparity of workload over

different beats in the City of South Fulton has deteriorated rapidly in the past decade due

to population growth and increasing traffic congestion. The most important metric for

evaluating imbalance we considered is workload variance over beats. As we defined in

Chapter 5, the variance is the sum of the squared deviation of the beat workload from its

mean. To fully understand the workload imbalance situation, it is necessary to show how

the existing configuration exacerbates the unbalance of workload over beats in the past and

how the existing configuration will impact the future.

(a) 2020 prediction (b) 2021 prediction (c) 2022 prediction

Figure 7.1: Workload prediction where dark lines outline boundaries of beats and the color
shade indicates the level of the atom workload in each year.
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Figures 7.1 summarizes the predicted workload distribution over the entire city for the

next three years from 2020 to 2022. As we can see from the map, there is a clear trend that

the general workload level continues to increase, and the major workload concentrates on

particular areas (such as College Park in the east of the city and I-285 & I-20 in beat 4).

Due to the increasing growth of South Fulton and urban sprawl, this trend is leading to a

police workload imbalance.
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Figure 7.2: Variance (right) and mean (left) of beat workloads versus number of beats.

(a) 8 beat design (b) 9 beat design (c) 10 beat design (d) 11 beat design (e) 12 beat design

(f) 13 beat design (g) 14 beat design (h) 15 beat design (i) 16 beat design (j) 17 beat design

Figure 7.3: Greedy beat designs where dark lines outline boundaries of beats and the color
depth represents the level of the beat workload. The scale is adjusted in each image.
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(a) Origin (b) Refined

Figure 7.4: Beat redesign where dark lines outlines boundaries of beats and the color shade
indicates the predicted level of the beat workload in 2021. (7.4a): Original beat design
before 2020; (7.4b): Refined beat redesign with 15 beats.

7.2 Optimal Number of Beats

As we discussed in Sec. 5.3.1, when creating a beat design, the most important metric for

evaluating imbalance is the workload variance over beats. However, for determining the

optimal number of beats in the design, we also need to consider the cost associated with

adding more beats, which includes the cost of additional training, hiring new officers and

so on. Therefore, there is a trade-off to minimize the workload variance while avoiding

unnecessary costs of adding new beats.

We find that as we first begin to increase the number of beats, the workload variance

decreases sharply before 15 beats. Then as we further increase the number of beats be-

yond our initial increase, the workload variance reduction is much smaller. This is further

demonstrated in Figure 7.2, where we can see that there are diminishing returns as we in-

crease the number of beats. Therefore, we call 15 the optimal number of beats, and the

corresponding 15-beat greedy design will be used as an initial design for further refine-

ment. In addition, Figure 7.3 also shows the comparison between the workload variance

achieved by the greedy exploration and the original design.
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7.3 Beat Design Result

We present the existing beat design and the beat redesign for the year 2021 in Figure 7.4.

We can see that the beat workload distribution with the beat redesign (Figure 7.4b) is more

uniform than the existing beat plan (Figure 7.4a) for the year 2021.

We want to remark that, because of our effective solution exploration scheme, and con-

straints on the shapes of the beats (contiguity and compactness), the shapes of the beats are

quite reasonable. We also confirmed our beat boundaries with the SFPD, and the solution

is deemed feasible.

We also compare our proposed redesign with the existing beat plan analytically. As

Figure 7.2 shows, the workload variance has been drastically reduced by 89% ∼ 92%.

More concrete details are presented in Tables 7.1 and 7.2 where we compare the workload

in the original design to the new refined design and the greedy beat design. Comparing to

the existing configuration, we see the proposed beat reconfiguration achieves a lower level

of workload variance as well as small variance increment in the future year 2021. Last

but not least, there are only 11 beats being created in our proposed redesigned beat plan,

which delivers significant expenses savings in terms of implementation of the redesigned

beat plan.

7.4 Staffing Level Analysis

We quantify our potential police response workload by converting the workload in each

beat into hours per day for each police officer. Table 7.1 shows workload in 2019 with

the original design and Table 7.2 shows workload 2019 with the new design and predicted

workload for 2021 with the new design. These tables tell us how many hours per day,

a police officer expects to be responding to 911 calls. As we can see when comparing

table 7.1 and table 7.2, our beat design drastically reduces the workload per day in each

beat. Most importantly, our new beat design results in a decrease in workload variance of
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Table 7.1: Workload per beat in the original beat design based on 2019 crime statistics

BEAT NUMBER WORKLOAD 2019 (HOURS/DAY)
1 38.59
2 24.84
3 32.84
4 34.44
5 65.94
6 38.44
7 34.96

VARIANCE 142.91

over 85%, making policing more equal in the city.

In the City of South Fulton council meeting, the city council emphasizes the importance

of community engagement from the police force. Thanks to our beat design, the police

workload per day in each beat can be reduced drastically; this will allow police officers

to participate in community events and start pro-active patrols. This is a huge difference

from the past 50 years, where police officers have been going from call to call on their

entire shift. Additionally, the staffing level prediction gives the SFPD how many officers

they need to handle the 911 calls in a beat. They then can recruit more officers for the sole

purpose of community engagement and pro-active patrolling if they desire.
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Table 7.2: Workload per beat in the greedy beat design and refined beat design based on
2019 crime data and 2021 workload prediction

BEAT NUMBER WORKLOAD 2019 WORKLOAD 2021
(HOURS/DAY) (HOURS/DAY)

GREEDY REFINED GREEDY REFINED

1 17.15 17.15 18.05 18.05
2 24.84 23.56 27.09 25.61
3 18.78 20.08 17.91 19.91
4 17.45 17.08 16.83 16.14
5 22.10 20.31 21.40 19.32
6 14.69 18.30 14.54 16.73
7 17.55 19.99 17.67 20.01
8 12.51 12.51 11.66 11.66
9 10.79 10.79 11.10 11.10

10 21.45 21.87 21.45 21.87
11 23.75 19.33 22.2 22.62
12 17.41 17.41 23.40 21.60
13 17.00 16.82 16.70 15.87
14 20.53 18.89 19.99 17.81
15 14.06 15.94 13.18 15.93

VARIANCE 15.12 10.13 18.269 13.15
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CHAPTER 8

IMPLEMENTATION

In January 2020, we submitted the final report to the South Fulton Police Department and

the South Fulton City Council. The report was reviewed by Police Chief Meadows, Deputy

Police Chief Rogers, and Mayor Bill Edwards. Our report analyzed the police workload

and proposed a detailed redistricting plan. Our redistricting plan mainly changed in four

areas (Figure 7.4b): We add three new beats in the southeast of the city near College Park,

the area with the highest workload. The biggest beat in the west of the city is split into two

beats. We add a beat in the north of the city near the airport. The southern beat is also split

into two. In total, the redistricting plan has reduced the response time throughout the city

and rebalanced the police workload between the fifteen beats.

Later that month, the South Fulton City Council approved the new beat design (Fig-

ure 8.1). The South Fulton Police Department plan to implement the new beat design in

early 2020. The new beat design was praised by the city council, as some council mem-

bers said that our beat design and study has been long needed and that it sets an example

for other cities in the southeast. Residents of South Fulton acclaimed about the change

on social media and thanked the City of South Fulton Police Department and our team for

contributing to the communities. The new beat design also received coverage from several

news sources, including Fox 5 Atlanta [36].
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Figure 8.1: The City of South Fulton Council work session on January 14, 2020.
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CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this paper, we presented our work on the City of South Fulton police beat redesign.

We propose an optimization framework with the spatial regression model as well as large-

scale data analytics. We construct an operational model to predict beat workload using

an accurate and tractable linear approximation. The proposed method yields a redesigned

beat plan with lower workload variance by only changing eight beats. Currently, we are

continuing our partnership with the SFPD to observe the police workload in the City of

South Fulton as the city and workload grow. If the workload becomes unbalanced once

more, we can quickly suggest a new beat design using our already existing methods. As

the SFPD continues to grow, they will also hire an information officer that will assist in

workload analytics and carry on our workload prediction.

Our future work is improving our model to reduce cost and the time consuming. Cur-

rently, our MIP solution method is computationally intractable and hard to be implemented.

Although our heuristic search method works efficiently in this problem, we are expecting

to shorten the time for searching the large scale of designs. [37] introduces the Lagrangian-

based variable fixing for Hess model and contiguity models. In H. Validi’s experiment,

the method has been implemented to 43 states and their experiment setting for the Georgia

is similar to ours. With the setting of 1969 tracks (which is similar to our grids) and 14

districts (beats in our setting), the Lagrangian variable fixing method can return the result

in 11.43 seconds, by which we can refer it to our problem and reduce the execution time

for the MIP model.

32



REFERENCES

[1] United States Census Bureau, 2018 population estimates program, https://
factfinder.census.gov, 2018.

[2] O. D. II, City of south fulton strategic plan, https://www.cityofsouthfultonga.
gov/DocumentCenter/View/1608/Draft-City-of-South-Fulton-
Strategic-Plan, 2019.

[3] City of South Fulton, Destination south fulton, https://www.cityofsouthfultonga.
gov/2573/Economic-Development, 2017.

[4] R. C. Larson, Urban police patrol analysis. MIT Press Cambridge, MA, 1972, vol. 28.

[5] R. C. Larson and A. R. Odoni, Urban Operations Research. Prentice Hall, NJ, 1981.

[6] J. M. Chaiken and R. C. Larson, “Methods for allocating urban emergency units: A
survey,” Management Science, vol. 19, no. 4-part-2, P110–P130, 1972.

[7] L. V. Green and P. J. Kolesar, “Anniversary article: Improving emergency respon-
siveness with management science,” Management Science, vol. 50, no. 8, pp. 1001–
1014, 2004.

[8] S. I. Gass, “On the division of police districts into patrol beats,” in Proceedings of
the 1968 23rd ACM National Conference, ACM, 1968, pp. 459–473.

[9] D. Bammi, “Allocation of police beats to patrol units to minimize response time to
calls for service,” Computers & Operations Research, vol. 2, no. 1, pp. 1–12, 1975.

[10] K. Chelst and J. P. Jarvis, “Estimating the probability distribution of travel times for
urban emergency service systems,” Operations Research, vol. 27, no. 1, pp. 199–
204, 1979.

[11] R. C. Larson, “A hypercube queuing model for facility location and redistricting in
urban emergency services,” Computers & Operations Research, vol. 1, no. 1, pp. 67
–95, 1974.

[12] R. C. Larson, “Illustrative police sector redesign in district 4 in boston,” Urban Anal-
ysis, vol. 2, no. 1, pp. 51–91, 1974.

[13] S. E. Bodily, “Police sector design incorporating preferences of interest groups for
equality and efficiency,” Management Science, vol. 24, no. 12, pp. 1301–1313, 1978.

33

https://factfinder.census.gov
https://factfinder.census.gov
https://www.cityofsouthfultonga.gov/DocumentCenter/View/1608/Draft-City-of-South-Fulton-Strategic-Plan
https://www.cityofsouthfultonga.gov/DocumentCenter/View/1608/Draft-City-of-South-Fulton-Strategic-Plan
https://www.cityofsouthfultonga.gov/DocumentCenter/View/1608/Draft-City-of-South-Fulton-Strategic-Plan
https://www.cityofsouthfultonga.gov/2573/Economic-Development
https://www.cityofsouthfultonga.gov/2573/Economic-Development


[14] R. S. Garfinkel and G. L. Nemhauser, “Optimal political districting by implicit enu-
meration techniques.,” Management Science, vol. 16, no. 8, B–495–B–508, 1970.

[15] T. Shirabe, “Districting modeling with exact contiguity constraints.,” Environment
and Planning B: Planning and Design, vol. 36, pp. 1053–1066, Nov. 2009.

[16] J. B. Weaver and S. W. Hess., “Districting modeling with exact contiguity con-
straints.,” The Yale Law Journal, vol. 72, pp. 288–308, 1963.

[17] G. Mills, “The determination of local government electoral boundaries.,” Operations
Research Quarterly, vol. 18, pp. 243–255, 1967.

[18] R. L. Morrill, “Ideal and reality in reapportionment.,” Annals of the Association of
American Geographers, vol. 63, pp. 463–477, 1973.

[19] ——, “Redistricting revisited.,” Annals of the Association of American Geographers,
vol. 66, pp. 548–556, 1976.

[20] W. Vickrey, “On the prevention of gerrymandering.,” Political Science Quarterly,
vol. 76, pp. 105–110, 1961.

[21] S. J. D’Amico, S.-J. Wang, R. Batta, and C. M. Rump, “A simulated annealing ap-
proach to police district design,” Computers & Operations Research, vol. 29, no. 6,
pp. 667 –684, 2002, Location Analysis.

[22] B. Grofman, “Criteria for redistricting: A social science perspective.,” UCLA Law
Review, vol. 33, pp. 77–184, 1985.

[23] S. S Nagel, “Computers and the law and policitics of redistricting.,” Polity, vol. 5,
pp. 77–93, 1972.

[24] A. Mehrotra, E. L. Johnson, and G. L. Nemhauser, “An optimization based heuristic
for political districting,” Management Science, vol. 44, no. 8, pp. 1100–1114, 1998.

[25] e. a. Niemi R. G., “Measuring compactness and the role of a compactness standard
in a test for partisan and racial gerrymandering.,” The Journal of Politics, vol. 52(4),
pp. 1155–1181, 1990.

[26] H. P. Yong, “Measuring the compactness of legislative districts.,” Legislative Studies
Quarterly, vol. 13, pp. 105–115, 1988.

[27] P. J. Kolesar, K. L. Rider, T. B. Crabill, and W. E. Walker, “A queuing-linear pro-
gramming approach to scheduling police patrol cars,” Operations Research, vol. 23,
no. 6, pp. 1045–1062, 1975.

34



[28] O. B. Jennings, A. Mandelbaum, W. A. Massey, and W. Whitt, “Server staffing to
meet time-varying demand,” Management Science, vol. 42, no. 10, pp. 1383–1394,
1996.

[29] L. V. Green, P. J. Kolesar, and W. Whitt, “Coping with time-varying demand when
setting staffing requirements for a service system,” Production and Operations Man-
agement, vol. 16, no. 1, pp. 13–39, 2007.

[30] Z. Feldman, A. Mandelbaum, W. A. Massey, and W. Whitt, “Staffing of time-varying
queues to achieve time-stable performance,” Management Science, vol. 54, no. 2,
pp. 324–338, 2008.

[31] S. F. Government, City of south fulton gis, https://gisdata.fultoncountyga.
gov/datasets/city-limits, 2020.

[32] S. Rosen, “Hedonic prices and implicit markets: Product differentiation in pure com-
petition,” Journal of Political Economy, vol. 82, no. 1, pp. 34–55, 1974.

[33] B. D. Ripley, Spatial statistics. John Wiley & Sons, 2005, vol. 575.

[34] T. Shirabe, “Districting modeling with exact contiguity constraints,” Environment
and Planning B: Planning and Design, vol. 36, no. 6, pp. 1053–1066, 2009. eprint:
https://doi.org/10.1068/b34104.

[35] F.-S. Wang and L.-H. Chen, “Heuristic optimization,” in Encyclopedia of Systems
Biology, W. Dubitzky, O. Wolkenhauer, K.-H. Cho, and H. Yokota, Eds. New York,
NY: Springer New York, 2013, pp. 885–885, ISBN: 978-1-4419-9863-7.

[36] D. Dukes, South fulton making changes to improve office response time, https:
//www.fox5atlanta.com/news/south-fulton-making-changes-
to-improve-office-response-time, 2020.

[37] H. Validi, A. Buchanan, and E. Lykhovyd, “Imposing contiguity constraints in polit-
ical districting models,” 2020.

35

https://gisdata.fultoncountyga.gov/datasets/city-limits
https://gisdata.fultoncountyga.gov/datasets/city-limits
https://doi.org/10.1068/b34104
https://www.fox5atlanta.com/news/south-fulton-making-changes-to-improve-office-response-time
https://www.fox5atlanta.com/news/south-fulton-making-changes-to-improve-office-response-time
https://www.fox5atlanta.com/news/south-fulton-making-changes-to-improve-office-response-time

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Data Sources for South Fulton
	911 Calls-for-Service Data
	GIS Data & Beat Configuration
	Census Data

	Data preprocessing
	Geographical Atoms for the Beat Design
	Census Data Atomization
	911 Calls-for-Service Data Preprocessing

	Police workload Prediction
	Beat Redesign Optimization
	Objective
	Compactness and Contiguity Constraints
	Solution Methods
	Greedy Exploration
	Mixed-Integer Programming
	Heuristic Search


	Numerical Experiments
	Results
	Workload Analysis and Prediction
	Optimal Number of Beats
	Beat Design Result
	Staffing Level Analysis

	Implementation
	Conclusions and Future Work
	References

