Georgia Tech General Catalog 1984.45

Georgia Institute of Technology General Catalog 1984-85

Contents

GENERAL INFORMATION 5

Academic Offerings 8
Accreditation 8
Special Support Facilities 9
Student Life 18
Affiliated Organizations 27
Academic Calendar 30
Campus Location 31

INFORMATION FOR
 UNDERGRADUATE

STUDENTS 33
Degrees 33
Special Programs 33
Admissions 36
Academic Regulations
Financial Information 42
Definition of Legal Residence 43
Undergraduate Financial Aid 45
INFORMATION FOR GRADUATE
STUDENTS 46
General Information 46
Degrees and Programs 46
Special Programs 47
Policies and Regulations 48
Admissions Information 49
The Master's Degree 5
The Doctoral Degree 53
Financial Information 56
CURRICULA AND COURSES
OF INSTRUCTION 60
College of Architecture 61
Architecture 62
Building Construction 63
Industrial Design 65
City Planning 67

College of Engineering 77
Aerospace Engineering 79
Ceramic Engineering 87
Chemical Engineering 92 Metallurgy 94
Civil Engineering 105
Electrical Engineering 117
Engineering Science and Mechanics
Industrial and Systems Engineering
Health Systems 141
Statistics 142
Mechanical Engineering 153
Health Physics 156
Nuclear Engineering 156
Textile Engineering 175
College of Management 186
Management 186
Economics 188
Management Science 190
College of Sciences and Liberal Studies 204
Air Force Aerospace Studies 205
Applied Biology 206
Chemistry 213
English 220
Geophysical Sciences 224
Information and Computer Science
Mathematics 240
Military Science 250
Modern Languages 254
Music 263
Naval Science 264
Physical Education and Recreation
Physics 269
Psychology 279
Social Sciences 286

ULES AND REGULATIONS
 295

DMINISTRATION, FACULTY,

ND STAFF 308

ministration 308

stitutional Administration 311
culty 314
IDEX 327

About this Catalog

The statements set forth in this catalog are for informational purposes only and should not be construed as the basis of a contract between a student and this institution.
While the provisions of this catalog will ordinarily be applied as stated, Georgia Tech reserves the right to change any provision listed in this catalog, including but not limited to academic requirements for graduation, without actual notice to individual students. Every effort will be made to keep students advised of any such changes. Information on changes will be available in the offices of the registrar, the dean of students, and the major schools and colleges. It is especially important that each student note that it is his or her responsibility to be aware of current graduation requirements for a particular degree program
This institution is in compliance with Title VI of the Civil Rights Act of 1964 and does not
discriminate on the basis of race, creed, color, or national origin, and is also in compliance with the provisions of Title IX of the Educational Amendments of 1972 which prohibit discrimination on the basis of sex.
It is the policy of the Institute that sexual harassment as defined in the EEOC Guidelines will not be tolerated among members of the Tech community. Any complaint of sexual harassment should be reported immediately to the appropriate person or persons designated by the vicepresident, dean, or director.

The cost of the 1984-85 General Catalog is $\$ 38,675$ for a total press run of 33,000 copies

This catalog becomes effective with summer quarter 1984.

There's always one moment hen the door opens and its the future in."

aham Greene

Then the Georgia Institute of Technology ened its classroom doors in 1888, the ncept of a technological education was Il new to the South's largely agricultural ciety. Undaunted by philosophical opposion, the innovative forefathers of Georgia ach boldly affirmed their belief in the cessity of a quality, technical education Id thus opened the door to the future generations of Tech graduates. For nearly a century, the Institute has ursued the goals of quality education, gorous service, and progressive research, ereby achieving a position of national ominence. Enrollment has grown from te first class in 1888-129 mechanical ngineering students, all but one from eorgia-to almost eleven thousand stuents from every state and eighty countries. loday, the members of this growing stulent community work toward undergraduite and graduate degrees in Tech's twentywo schools and colleges. Men and women who graduate from Tech influence the vorlds of architecture, engineering, manzgement, and science; their alumni support, consistently among the most substantial in the nation, ensures that Tech students will continue to receive the high level of technical skill that will prepare them to enter the future confidently and competently.
The Institute's primary goal traditionally has been to provide superlative instruction for capable and intelligent students. The average Scholastic Aptitude Test score for Georgia Tech students is more than 300 points higher than the national average, and the Institute attracts the largest number of National Achievement Scholars and the third largest number of National Merit Schol-

ars of any publicly supported institution in the United States. To meet the needs of these talented individuals, Tech provides a distinguished faculty, approximately 90 percent of whom hold doctoral degrees. Further, the Institute has pioneered and continues to develop such innovative educational programs as the Cooperative Plan, which offers students the opportunity to work in industry and attend school in alternate quarters.

In addition to cultivating responsibility and skill in tomorrow's leaders, Georgia Tech serves the community not only through individual volunteer efforts, but also through extensive research and service projects centered on the campus. The Department
of Continuing Education sponsors frequent seminars for professionals and concerned citizens who seek to expand their knowledge of current issues. All instructional and research units, including the new Advanced Technology Development Center, provide advisory services in engineering, architecture, science, and management as well as onsite development programs for industry and government.

As the South's largest industrial and engineering research agency, with an annual research budget of $\$ 90$ million, Georgia Tech has contributed extensively to such diverse fields as energy conservation, artificia intelligence, submillimeter waves, and composite fiber structures. Projects conducted at Tech range from solar energy development to complex defense systems research. While scientists in Georgia Tech's sixteen interdisciplinary research centers explore problems such as the effects of radio frequencies on heart pacemakers and the levels of radiation in drinking water, researchers affiliated with the academic schools, laboratories, and departments continue to open new areas of knowledge to investigation. In addition to a fine library, a well-equipped computing center, and the on-campus research centers, the Institute offers its students access to a marine facility at Skidaway Island and the Oak Ridge Nuclear Laboratories in Tennessee.

Standing on the threshold of its second century, the Georgia Institute of Technology eagerly greets the future. Through its dedication to intellectual excellence, the Institute will continue to provide quality education service, and research for the benefit of its students and the larger community.

ACADEMIC OFFERINGS

Through the Colleges of Engineering, Sciences and Liberal Studies, Management, and Architecture, Georgia Tech offers programs of study leading to twenty-six undergraduate and thirty graduate degrees. The "Information for Undergraduate Students" and the "Information for Graduate Students" sections of this book contain general information about these degree programs. For more specific information, see the "Curricula and Courses of Instruction" section in this catalog.

ACCREDITATION

The Georgia Institute of Technology is an accredited member of the Southern Asso ciation of Colleges and Schools, and many programs within the Institute are specifically accredited by appropriate national certifying agencies. The Accreditation Board for Engineering and Technology (formerly the Engineers' Council for Professional Development) has awarded accreditation to the four-year engineering curricula leading to bachelor's degrees in the following fields aerospace engineering, ceramic engineering, chemical engineering, civil engineering, electrical engineering, engineering science and mechanics, industrial engineering, mechanical engineering, nuclear engineering, and textile engineering and to the graduate programs leading to master's degrees in the following fields: aerospace engineering, ceramic engineering, civil engineering, electrical engineering, industrial engineering, mechanical

SPECIAL SUPPORT FACILITIES
 Library

The Price Gilbert Memorial Library's scientific, engineering, architectural, and management collection includes $1,661,559$ volumes and $2,100,000$ microtexts, as well as the largest collection of patents in the Southeast. The library acquires research reports east. The Narary al Technical Information
Service, the U.S. Department of Energy, and the National Aeronautics and Space Administration. It is a depository for publications issued by the U.S. Government Printing Office and for maps issued by the U.S. Defense Mapping Agency, Topographic and Aerospace Centers, U.S. Geological Survey, and the U.S. National Ocean Survey. The government documents collection contains 444,159 publications and 127,000 maps.
engineering, metallurgy, nuclear engine ing, environmental engineering, and textil

Tech currently receives over 14,000 seengineering. The American Chemical Socie ty has certified the curriculum leading to the bachelor's degree in chemistry; the N tional Architecture Accrediting Board has certified the curriculum leading to the Mas er of Architecture; and the American As sembly of Collegiate Schools of Business has accredited the College of Managemen
The School of Chemical Engineering has an active and widely recognized pr gram that leads to M.S. and Ph.D. degrees. This program is not included in t above list because AIChE does not accredit graduate programs at any universit which offers an accredited B.S.Ch.E. degre

Computing Facilities

The Office of Computing Services provides a wide range of computing services for education, research, and administration. Since 1955 this centralized service facility has operated a variety of systems. In 1983 a Control Data Corporation CYBER 170/855 and a CYBER 170/835 were installed These two systems share disk storage and use the NOS operating system. Early in 1982, an IBM 4341 system was installed running MVS under VM. The hardware configuration, a broad variety of programming languages, applications programs, and library subroutines all combine to provide an impressive amount of computer powe to both time-sharing, remote batch, and on-site batch users. Time-sharing terminals, CALCOMP and Versatec plotters, and an optical scanner offer additional versatility. Many schools, departments, and administrative offices have their own minicomputers in addition to interactive and remote batch terminals providing access to the central facility.

Engineering Experiment Station The Engineering Experiment Station (EES) of the Georgia Institute of Technology, as chartered by the Georgia Legislature, is a non-profit research and development organization serving community, state, and nation. It conducts engineering and scientific research for a diverse group of sponsors, including federal, state, and local governmental agencies, industrial firms, and foreign countries. Through its research activities, EES encourages the development of natu ral resources in Georgia, aids industrial and economic development, and participates in national programs of science, technology, and preparedness.
The EES staff represents most of the recognized fields of science and technology, with more than 600 professionals in the full-time staff of over 900 persons. An additional 475 faculty, students, and consultants participate on a part-time basis in the research programs.
EES headquarters on the Georgia Tech campus provides a central location for most of its staff. In addition, EES operates programs in several off-campus facilities as well as eight field offices located throughout the state in Albany, Augusta, Carrollton, Douglas, Gainesville, Macon, Rome, and Savannah.
The Engineering Experiment Station's activities are coordinated with research conducted by the academic colleges through the vice-president for research. For additional information, contact the Office of the Director, Engineering Experiment Station Main Lobby, Hinman Research Building, 404) 894-3411

Advanced Technology Development Center

The Advanced Technology Developme Center (ATDC), founded in July of 198 serves as a catalyst for high-technolo growth in Georgia by recruiting new fir to the state, aiding existing Georgia companies, assisting technology-base small businesses, and conducting edu tional programs in business developme
The ATDC offers a number of servic to high-technology industries considerin expansion or relocation in Georgia. It municates information about state resources and the existing technology b facilitates access to Georgia Tech facilit engineers, and scientists; provides ass tance with new product development, m agement, and marketing; and assists the formation of venture capital.
To provide convenient access to the library, computer center, machine shop and other specialized services on cam the ATDC offers low-cost "incubator" sp in its building. The space is available to ontinuing Education developing companies and existing firms interested in opening research and develo ute's primary educational outreach to both ment operations or start-up facilities.
in early 1984, the Center moved its headquarters to a new 43,000-square-fo facility housing space for offices, labora. tories, and small-scale production.

ntinuing Education te's primary educational outreach to both he public and private sectors. This depar nent is the Institute's designated unit for on-credit instruction, provided through Norkshops, conferences, seminars, and ideo courses.
The Department uses the Institute's resources in the areas of teaching and esearch to furnish local, state, regional
national and international communities with updated information on new ideas, issues, technologies, and developments The Department of Continuing Education cooperates closely with business, industry, trade associations, and professional organizations in planning and presenting these special educational programs. Programs are conducted on the Georgia Tech campus at public meeting facilities, hotels, or at company sites. Length of the programs varies from one to ten days.

The Department also delivers graduate level courses and degree programs offcampus through the videobased instructional system.

Industrial Education

The Industrial Education department provides in-plant or on-site training activities to business and industry; develops specialized programs in any technology or field; offers seminars, conferences, workshops, and other activities to satisfy client needs; and conducts programs in safety, productiviy improvement, instructing techniques, supervision, statistical control, and a multiude of additional subject areas, in cooperain with the Georgia Department of Education, it develops and conducts specialized training activities for Georgia's textile industry. The department, a unit of the Engineering Experiment Station, can address most of the training and educational needs of clients through the skilled and talented people working in the Station Services to industries and businesses in Georgia are provided at a reduced fee.

Oak Ridge Associated Universities
Georgia Tech is one of the sponsors of Oak Ridge Associated Universities (ORAU) a non-profit education and research management corporation of fifty-one colleges and universities. Concentrating on energy, health, and the environment, ORAU conducts programs of research, education, information, and human resource development for a variety of government and private organizations.

ORAU's competitive research programs enable undergraduates, graduate students and faculty members to work on problems at the research facilities of the United States Department of Energy. Participants, who are selected by ORAU in cooperation with the staff of each facility, may qualify for fixed stipends.

Undergraduate Program

The ORAU Undergraduate Research Training Program offers juniors majoring in the sciences, engineering, and mathematics an opportunity to spend ten weeks during the summer working in directed research programs.

Graduate Program

The ORAU Laboratory Graduate Participation Program enables a candidate for an advanced degree who has completed all requirements for work-in-residence except research to work toward completion of the research problem and preparation of the thesis at one of the participating sites.

For more information, contact Dr. Walter . Carison, associate vice president for Graduate Study and Research and Georgia Tech ORAU representative.

Skidaway Institute of Oceanography

Located on Skidaway Island near Sava the Skidaway Institute provides a com of coastal- and marine-related educatio and research opportunities. Members of the Tech faculty and their students can either participate in established researd activities or initiate research compatible with the facility's purpose
The Institute maintains small boats, foot research vessel for near-shore w and the R/V Blue Fin, a 72 -foot vesse research at distances up to 100 miles offshore. Areas of research expertise a the Institute include chemical oceanogra phy, physical oceanography, biological oceanography, engineering oceanograp and marine geology.

Interdisciplinary Programs

The Office of Interdisciplinary Programs

 tablished in October of 1973, coordin, interdisciplinary research centers at Ge gia Tech. The office currently provides a ministration to a number of units-the Bioen neering Center, the Biotechnology Cente the Computational Mechanics Center Environmental Resources Center, the Fra Environmental Resources Center, the Frature and Fatigue Research Lab, the Geo ture and Fatigue Research Lab, the
gia Mining and Minerals Resources gia Mining and Minerals Resources
Institute, the Georgia Productivity Centel the Georgia Tech Microelectronics Research Center, the Health Systems Research Center, the Material Handling

Research Center, the Nuclear Research Center, the Center for Radiological Protec ion, the Center for Rehabilitation Technology, the Center for Research in Writing, he Center of Excellence in Rotary Wing craft Technology, and the Technology olicy and Assessment Center. While the centers offer no designated degrees, cener staff members teach courses in other departments and schools of the Institute, ary curricula, conduct various research orojects, engage in public service programs, and coordinate appropriate interdisciplinary activities.
he Bioengineering Center emphasizes he application of the knowledge, techniques, and approaches of the physical sciences, engineering, social sciences, and management to the problems of the biological sciences. In addition to developing interdisciplinary study and research oppor unities for qualified students at Georgia Tech, the center conducts cooperative pro grams in bioengineering education and rearch with other universities and foundations. Curriculum planning and arrangements are coordinated by the Office of the Dean of Engineering.

The Biotechnology Center coordinates the institute's educational and research programs hat deal with biotechnology, including microbiology, genetic engineering, biochemstry, biophysics, chemical and biochemical engineering, and biomass utilization. This multidisciplinary approach provides students and faculty with extended opportunities for developing the complex procedures required for the biological production of valuable products.
The Computational Mechanics Center is dedicated to the advancement of the science of computational analyses. Major research thrusts include non-linear and dynamic fracture mechanics, failure analysis, advanced stress and durability studies, hot section jet engine technology, fatigue analysis, and advanced computational techniques for manufacturing processes.

The Environmental Resources Center

 coordinates applications of Tech's expertise in science and technology to address problems of managing environmental resources. It organizes and administers water resources research projects throughout Georgia and disseminates their results.The Fracture and Fatigue Research Lab encourages interdisciplinary research and educational opportunities at Georgia Tech in the field of fracture and fatigue of materials. The research programs encompass the behavior of a wide range of materials, including metals, ceramics, polymers, and composites.

The Georgia Mining and Mineral Resources Institute was organized for the purpose of providing research and education for the mineral industries of the state and the Southeast. The major research emphasis is in non-metallics and to a lesser degree coal.

The Georgia Productivity Center assists Georgia companies in improving productivity through the application of technology. Direct short-term help is provided statewide through Tech's eight extension offices. Longer term research needs are approached through special projects for special industrial groups. Emphasis is placed on production technology, industrial economics, business, and human resource management.
The Georgia Tech Microelectronics Research Center provides a mechanism for the formal coordination of campus programs of a microelectronics nature conducted within existing campus organizational units. The center also provides a focus for the development of specialized facilities used in support of interdisciplinary research activities. Typical research programs encompass thin film deposition and characterization, anisotropic etching, high fieldhot electron effects on device modeling, laser annealing, and very large scale integration chip design.

The Health Systems Research Center provides an interdisciplinary and interinstitutional program of health systems research, community outreach, and continuing education. The center develops, applies, and disseminates new knowledge and techniques
in all aspects of improved operational managerial systems for the delivery of health care to the public. The center emphasizes systematic planning, engine design, and scientific management of he care facilities, work methods, and hum resources.

The Material Handling Research Cen is an industry/university cooperative rese center sponsored by U.S. corporations the National Science Foundation. In re sponse to the research needs of its mem companies, the Center performs interd plinary research in such areas as facto automation, robotics, advanced sensors warehouse automation, and logistics. 1 member companies participate in esta lishing the research agenda for the C ter; they also receive the benefits of the research in advance of any general dissemination.

The Nuclear Research Center provide facilities for physical, chemical, and mec research involving neutrons and ionizing diations. In particular, it provides access multiple-discipline users to a five-megan research reactor and extensive radioche cal, radioanalytical, and radiobiological facilities. Ongoing work includes trace ment analysis, production of radioisotop for medical and industrial use, medical applications research, neutron radiograp industrial radiation exposure tests, and personnel training programs for industn An additional program supports reactor use by colleges and universities throug out the southeastern United States.

The Center for Radiological Protection coordinates research and training in health physics. The associated Environmental Radiation Laboratory provides analytical support for faculty research programs complementary to and supportive of the Nuclear Engineering and Health Physics undergraduate and graduate degree programs in health physics.

The Center for Rehabilitation Technology facilitates research on devices and systems which help handicapped or disabled persons by removing functional barriers in the workplace, home, and community environments. Collaborative research relationships have been established with the Atlanta Veterans Administration Medical Center, the Division of Vocational Rehabilitation (Georgia Department of Human Resources), the Roosevelt Warm Springs Institute, and Emory University.
The Center for Research in Writing collaborates with specialists in academic fields and with corporate managers in developing their capacities to formulate information in both speech and writing. The Center's basic research in writing behavior and discourse processing enables solutions to practical problems of communication in both business and academic settings-problems in document design, information management, software documentation, and training procedures.
The Technology Policy and Assessment Center brings together faculty and student research teams to conduct research on major technology policy issues which face our society. Typical areas of investigation involve analyses of social impact, organizational behavior, institutional responsiveness, and cost-risk-benefit features as sociated with alternative policies and strategies for the management of scientific and technological developments.

STUDENT LIFE

The dean of students and his staff coordinate and administer extracurricular student services and activities. For complete information concerning these organizations, see the Guide to Student Life, available to all students from the Office of the Dean.

Community Services

Georgia Tech applies its resources through community services to the needs of the community and provides an outlet for creative individual response to social problems.

Counseling and Career
 Planning Center

Students encountering almost any difficulty may find help at the Counseling Center. Professional counselors assist in a completely confidential manner with academic, career, and personal difficulties whenever students request their services. The center also provides information on careers, other colleges, admission to law, business, and graduate schools, and a number of tests for determining interests, abilities, and personality traits.

Fraternities and Sororities

The Fraternity Affairs and Women's Program offices coordinate and administer the many activities and programs of the thirtyeight social fraternities and sororities on the Tech campus.

Student Publications and Radio

The student publications and radio communications boards oversee the budgeting and operation of the Technique, the officia student newspaper, the Blueprint, the student yearbook, and other publications, in addition to the operation of the student FM radio station, WREK

Women's Programs

Students' services and programs aim to. ward involving female students in all phas of campus life and providing resources to fulfill the Institute's intention of accepting as many qualified female students as app

Housing Office

The Housing Office supervises the assio ment of rooms for 4,199 single students and for 298 married students. A residen hall program provides counseling servic and organized activities for residence ha and family housing residents. For furthe information, refer to the residence hall and/or family housing brochures availa at the Housing Office.

Student Health Center

The Student Health Center is a modern ambulatory care center with facilities for out-patient treatment, x-ray examinations out-patient treatment, x-ray examinations,
physical therapy, a medical laboratory, pharphysical therapy, a medical laborato
The staff consists of six full-time physicians, visiting consultants in psychiatry and radiology, a pharmacist, registered nurses, physician assistants, and laborato$\mathrm{r} y$ and x -ray technologists. The full-time physicians have training in family practice, internal medicine, surgery, gynecology, sports medicine, pulmonary medicine, and emergency medicine. Physicians and dentists on the consulting staff represent all medi cal and dental specialties; their services are available on a fee for service basis. Funds for operating the Health Center are derived solely from the student health fee. Since the facilities of the Student Health Center are limited, supplemental insurance to cover major illnesses, major surgery, specialist consultations, and sophisticated diagnostic procedures should be purchased by all students who are not includd in their parents' or spouse's medical insurance plans.

International Students

Over nine hundred international students from eighty foreign countries choose Georgia Tech for their educational advancement. The Office of the International Student Advisor sponsors programs and services to assist these students in adjusting to Georgia Tech and to life in America. In return, many of the students work with the advisor to develop programs promoting intracultural understanding.

New Student/Parent Programs (FASET)

The student/parent orientation program informs new students and their parents of academic programs and requirements, as well as familiarizing them with Tech traditions and the activities and services available on campus.

Minority Educational Development

 The Office of Minority Educational Development sponsors a variety of programs to assist minority students in adjusting quick ly to Georgia Tech. A rigorous pre-college academic program, Challenge, seeks to ac climate students to the pace of scholastic life, while supplemental orientation programs and tutorial and peer counseling services are available to students once they have enrolled.
Placement

Georgia Tech provides a centralized placement service assisting all students interested in career employment, part-time, temporary, and summer employment.
The Placement Center maintains a library of career and occupational information for general business, industry, and government positions. In addition, the Placement Center keeps local and national salary data, employment patterns of Georgia Tech graduates-what companies hire them for what kinds of positions and where-and graduate and professional school information.
The center provides other varied resources including an open resume file for employers, campus contacts with representatives of top graduate schools, a library of job market information, and resume preparation assistance. A student can explore career interests, usually by on-campus interviews, with more than 700 employers who deal directly with the Placement Center. Additionally, students may find shortterm or part-time employment from the 1,500 positions posted annually by the center.

Student Center

 The staff of the Fred B. Wenn Student notify the director of Health Services and Center plans and coordinates programs the Physical Education Department of any and activities for students, faculty, alumdisability or handicap that would make and their guests. As the vigorous heart participation in swimming, competitive sports, the campus, the center has post office, and aerobic training hazardous to their well the campus, the center has post office recreational, exhibit, and hobby facilitie available to serve the diverse interests
Student Government

 The Georgia Tech student council and tphysical activity. This letter must accompagraduate senate enable students to mainy the health information record. If stutain responsible and respected self-gov-dents want to continue allergy shots or ernment in academic and non-academictreatments that have been started by their affairs.
HEALTH INFORMATION

Students will receive a Health Informatio and Physical Examination Form with the n tice of their acceptance for enrollment. T prospective student should complete the tes form and mail it to the director of Health Services well before the date of initial re: stration. All sections of the Health ant tie Physical Examination Form must be com by pleted; otherwise, registration will be delayed. Students should follow the instruc tions on the health form explicitly and as fill out the summary sheet on the last page Tuberculosis screening and immunization Tuberculosis screening and immunization
as listed on the health form are required as listed on the health form are required
of all students. The Physical Examination Section should be completed by the student's family physician.

All international students from areas and countries not mentioned above must have a skin test and/or chest x-ray prior to clearance for registration. This skin test and/or chest x-ray must be taken at the Georgia Tech Health Center prior to the date of registration. The cost of these procedures will be borne by the student. These tests will be performed at the Health Center the week prior to registration for the spring, summer, and fall quarters. For the winter quarter, they will be done during registration. Since these tests may take five to six days, students should report to the Health Center as early as possible so that registration will not be delayed.

If the x-ray is abnormal and suspicious of tuberculosis, the student will be referred for diagnosis and treatment. The student may return to classes when the possibility of disseminating tuberculosis is no longer present.
If the student does not comply with the above, he or she will not be permitted to register for classes.

Completed heath forms and inquiries should be mailed to:
Director of Health Services
Georgia Tech Student Health Service
275 Fifth Street, NW
Atlanta, GA 30318

ASSISTANCE FOR THE HANDICAPPED

Georgia Tech's committee for handicapped assistance and planning insures compliance with federal law and works to provide a serviceable environment.
Handicapped persons with access problems to buildings and parking should contact the director of campus safety at 894-4588. If you know of any handicapped persons in need of assistance, please notify the equal opportunity/affirmative action officer, the dean of students, or the director of campus safety.

Georgia Tech currently provides the following services for handicapped students: special orientation; wheelchairs for use on campus; reserved parking spaces; reader services for the visually impaired; assistance in securing the services of interpreters for individuals with hearing impairments; aid in registering for classes; assistance from Safety and Security personnel; special assistance from the Student Health Center; and help in securing housing. Tech also allows some students to waive certain course requirements, such as field trips. Students should discuss this option with their academic advisor.
For more information concerning the handicapped, contact the equal opportunity/ affirmative action officer in the Carnegie Building at 894-5054.

ANNUAL NOTICE OF PRIVACY RIGHTS

This institution observes the Family Educational Rights and Privacy Act of 1974 (FERPA), designed to protect student rights
with regard to educational records mai AFFILIATED tained by the institution. Under this Ad ARGANIZATIONS right to inspect and review educationa records maintained by the institution the Georgia Tech Athletic records maintained by the institution tI Association
pertain to them; (2) the right to challen
pertain to them; (2) the right to challen Association
the content of records on the ground tithis not-or-profit corporation administers inthey are inaccurate, misleading, or a vitercollegiate sports at Georgia Tech through tion of their privacy or other rights; and board of trustees consisting of seven the right to control disclosures from thetaculty members, three alumni, and three educational records with certain excepplistudents, with the president of Tech serv-
A written policy detailing how Georeding as president of the board. The associTech will comply with the provisions oi ation aims to secure cooperation of the Act is printed in the Guide to Student llaculty and students in athletic affairs, to available in the Office of the Dean of maintain a high standard of sportsmanStudents. The registrar has the institutusstip, and to provide faciilities which allow responsibility for interpreting (a) the Fas students to participate in athletic activities. Educational Rights and Privacy Act of Through the support of the Athletic Asso1974, as amended, (b) rules and regul ciation, Tech promotes intercollegiate playing tions issued by the Department of Heaschecules in football, basketball, cross counEducation, and Welfare to enforce this, thy, swimming, track, golf, tennis, baseball and (c) the written policy of the institutugymnastics, wresting, volleyball, and softball.
Students who believe the institution
violated the written policy and/or the pr The Georgia Tech sions of the Family Educational Rights Alumni Association Privacy Act should send a written com. plaint to the registrar, specifying the na of the possible violation. The registrar ard rective the complaint and initiate a Teche of tis objectives are to raise tunds for recive action if it appears the institutio lech through the annual alumni roil call in violation. The registrar shall notify tre maintain an up-to-date record of each complainant of the results of the revien alumnus, publish Tech Topics and the Georwithin a reasonable period of time, noi gia Tech Alumni Magazine, organize and exceed thirty calendar days. Students a assist local alumni clubs, operate a placehave the right to file complaints with ttm ment service for alumni, organize special FERPA Office of the Department of Hea lumni events, furnish a medium through Education, and Welfare, Washington, o which alumni may aid the president and 20201 regarding alleged violations of Act.
raculty, aid visiting alumni, and help publicize the achievements of Georgia Tech. The executive director is the central contact for all alumni.

The Georgia Tech

Foundation, Inc.

The Georgia Tech Foundation, Inc., is a not-for-profit, tax-exempt corporation which receives, administers, and invests virtually all contributions made in support of the academic programs of the Georgia Institute of Technology. The Board of Trustees of the Georgia Tech Foundation, Inc., maintains its support of the Institute through its thirty members, distinguished by their expertise in financial management and investments and by their devotion to the school.
The assets of the Foundation exceed $\$ 32$ million with an annual undesignated income of over $\$ 3$ million. Allocation of these funds is made to meet the most pressing needs of the Institute, particularly for faculty salary supplementation and other funding needed to maintain a strong instructional staff and curriculum; undergraduate and graduate student support, both for needy and exceptionally well-qualified students such as National Merit Scholars; and research support, including equipment.

The Georgia Tech Research Institute

The Georgia Tech Research Institute is a not-for-profit corporation which seeks and administers funds for research activity in all administrative divisions of Georgia Tech. It is the coordinating agency for patent applications and other matters related to the protection and use of technological discoveries made at Georgia Tech.

ATLANTA

Georgia Tech is located in Atlanta, recently characterized in the Places Rated Almanac as the most livable city in the nation. As the capital city of Georgia, Atlanta is home to over two million residents and many of the nation's most prominent business, financial, and industrial firms. Its geographic location has made it the trans portation center of the Southeast, as demon strated by the success of the new Hartsfield International Airport, generally considered the nation's largest and second busiest air terminal. At 1,050 feet above sea level, the city, famous for treelined streets and beautiful gardens, enjoys a pleasant climate permitting year-round outdoor activi ties. A moderate cost of living-10 percent below the national average-and one of the best public transportation systems in North America contribute to Atlanta's appeal.

Atlanta is also a vigorous city offering an impressive variety of entertainment ranging from sporting events to symphony and theatrical performances. In response to the city's increasing artistic sophistication, Atlanta provides experimental theatre, diverse mu sical events, a thriving film industry, and a respected art museum. Each spring, the city sponsors a week-long arts festival in Piedmont Park, two miles from the Geor-
gia Tech campus. The historic Fox Thea hosts varied cultural and popular perfor mances, including ballet, jazz, opera, country, Broadway musicals, and rock o certs from the Rolling Stones to the Polid The Braves, Hawks, and Falcons offer quar professional baseball, basketball, and to ball action for Atlanta spectators. Neart lakes and mountains offer water sports. camping, and snow skiing for those who prefer more energetic activities. Also pof lar are such attractions as Six Flags of Georgia, the Atlanta Zoo, and Stone Moi tain Park.

AEORGIA TECH EAMPUS LOCATION

ACADEMIC CALENDAR 1984-85

Georgia Tech operates on the quarter plan with the fall, winter, and spring quarters normally constituting the academic year A full summer quarter schedule offers stu A full summer quarter schedule offers stu-
dents the opportunity to accelerate their dents the opportunity to accelerate their
program by attending four quarters per year. Students may enter a course of study or complete their degree requirements and attend a commencement ceremony in any one of the four quarters
The Office of the Registrar prepares and distributes an official Institute calendar for each quarter. Dates, filing times, deadlines, and other information contained in the official calendar supersede previously published information, including notices in this catalog. Adherence to the requirements set by the official calendar is the responsibility of the student.

Summer Quarter 1984

June 18	Registration
June 19	Classes begin
August 27	Final exams begin
September 1	End of term

September 1 Final exams
End of term

Fall Quarter 1984
September 17 September 19 November 22

November 25
Registration
Classes begin Begin Thanksgiving recess
Last day of Last day of
Thanksgiving Thanksgiv
recess
December 3 Final exams begin December 8 December 9

$$
\begin{aligned}
& \text { End of term } \\
& \text { Begin Christm }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Begin Chri } \\
& \text { recess }
\end{aligned}
$$

Winter Quarter 1985

January 3	Registration
January 4	Classes begin
March 18	Final exams begin
March 23	End of term
March 24	Begin spring recess
Spring Quarter 1985	
April 1	Registration
April 2	Classes begin
June 10	Final exams begin
June 15	End of term
Summer Quarter	1985
June 24	Registration
June 25	Classes begin
September 2	Final exams begin
September 7	End of term

(Not to scale)

Information for Undergraduate Students

DEGREES

The Georgia Institute of Technology at resent offers curricula leading to the folowing undergraduate degrees:

3achelor of Aerospace Engineering Bachelor of Ceramic Engineering Bachelor of Chemical Engineering Bachelor of Civil Engineering Bachelor of Electrical Engineering Bachelor of Engineering Science and Mechanics
Bachelor of Industrial Engineering Bachelor of Mechanical Engineering Bachelor of Nuclear Engineering Bachelor of Textile Engineering Bachelor of Science
Bachelor of Science in Applied Biology Bachelor of Science in Applied Mathematics
Bachelor of Science in Applied Physics Bachelor of Science in Applied Psychology
Bachelor of Science in Building Construction
Bachelor of Science in Chemistry Bachelor of Science in Economics Bachelor of Science in Health Physics Bachelor of Science in Information and Computer Science
Bachelor of Science in Industrial Design Bachelor of Science in Management Bachelor of Science in Management Science
Bachelor of Science in Physics Bachelor of Science in Textile Chemistry Bachelor of Science in Textiles

Graduates who have completed their courses through the cooperative division receive the degree with the designation "Cooperative Plan."
Requirements for each degree are listed in "Curricula and Courses of Instruction" under the school responsible for the program. Students should select a degree program as early as possible, preferably with their request for admission, but may postpone the decision until a time as late as the end of the freshman year. Students who have selected a degree program receive academic advice from the appropriate school, undecided students through the offices of the deans of the four colleges.

SPECIAL PROGRAMS

The Cooperative Plan

Since 1912, Tech has offered two plans of study-the standard four-year plan and a five-year cooperative plan for students who wish to combine practical experience with technical theory.
Approximately 2,200 cooperative students, selected from applicants on the basis of high scholarship, work in over 400 industries throughout the country while they complete academic degree programs.
The cooperative division offers programs for majors in aerospace, ceramic, chemical, civil, electrical, industrial and systems, mechanical, nuclear, and textile engineering, including textiles and textile chemistry, and in chemistry, engineering science and mechanics, information and computer science, mathematics, physics, and management. The academic curricula are identical to those offered regular four-year students.

The plan's alternating college and indus trial quarters divide students into two sections, the first registering in June and the second in September. The co-ops of section one and those of section two alternate between industry and college, exchanging places with each other every three months for four years. At the beginning of the fifth year the two sections merge and remain a college together until graduation in June, when each cooperative student receives a bachelor's degree, cooperative plan, in the student's particular field.

The cooperative program offers the student practical experience and insight into human relations, as well as financial assis tance. The work experience co-op students receive is a valuable asset to young graduates starting out in their chosen professions. Neither college laboratory experience nor employment during vacations can take the place of organized co-op training in industry. The plan provides, to a substantial degree, the experience most companies require of their employees before promoting them to positions of responsibility. Work experience may also assist students undecided about their future plans in determining early in their college careers whether they wish to continue the study of engineering, science, or management as a life profession

Moreover, daily contact with diverse groups among their fellow employees offers students practical insight into sociology, psychology, economics, and ethics that no textbook can supply. Finally, students receive compensation for their services from firms that employ them. Although students are not able to earn all of their college expenses, as a rule they can earn more than half.

Students interested in applying for admission to the cooperative plan should write to Director, Cooperative Division, Georgia Tech, Atlanta, Georgia 30332, for the division's bulletin, which gives such information as fees, living expenses, and wages paid students while at work.

Multidisciplinary and Certifical Programs of study at Tech may concenPrograms Programs of study at Tech may concen-
rate in any of the various specialty areas Multidisciplinary Programs in the Collegfi engineering, science, mathematics, or of Engineering and Certificate Programnanagement. The list of colleges particithe College of Sciences and Liberal Stupating in the Dual Degree Program incoroffer students in good standing an oppoorates several units of the University Systunity to broaden their areas of expertisem of Georgia, the Atlanta University Cenor acquire skills or information beyond er Colleges, and sixty-five other colleges their major degree requirements. Studeand universities throughout the nation, interested in pursuing these programs shoncluding ten traditionally black colleges consult with their major school advisor and twenty predominantly women's colleges.
For a description of Multidisciplinary b Because of their classification as transfer Certificate Programs offered in the Collsstudents, Dual Degree Program applicants of Engineering, see pages 78-79. For amust meet all requirements for transfer. scription of similar programs in the Colle of Sciences and Liberal Studies, see 204-205.

ROTC

Georgia Tech offers three entirely volunt ROTC programs which accept both me and women: Army, Navy, and Air Force Students may apply six hours of basi ROTC and nine hours of advanced RO as elective credit toward a degree. Afte earning a baccalaureate or graduate de gree and completing the advanced ROT courses for any of the three services, a student may receive a commission in ther the reserve or regular forces.
Each ROTC unit offers scholarship pi grams of two, three, and four years. All juniors and seniors selected for the advanced courses receive a substantial mo tary allowance each month while enrolle in ROTC.

Dual Degree Program

To assist the many high school students seeking an educational experience comb ing a typical liberal arts program with a technological curriculum, Georgia Tech fers the Dual Degree Program. Under plan, the student attends a liberal arts college for approximately three years, th comes to Tech for two years. Upon com. pletion of the program, the student receiv a bachelor's degree from the liberal arts college and a bachelor's degree from Geor Tech.

Preprofessional Programs

Georgia Tech's philosophy with respect to reparation for medical, dental, and law school involves preparing students for enance into the chosen professional school hile simultaneously building the educaonal background for an alternate career. This approach provides each student with a more individualized program and a broader nge of options than traditional programs. In keeping with this philosophy, there are 10 majors at Georgia Tech designated as premedicine, predentistry, or prelaw. Students pursuing these programs use the lective hours within any major of their choice to take the additional courses reuired for entrance to medical, dental, or wh schools.
This approach to preprofessional educaion has two major advantages. First, students who do not enter professional school upon graduation, as expected, are prepared to undertake a rewarding alternate career immediately. Secondly, students who continue into professional school can graduate with backgrounds which uniquely qualify them for desirable careers with special emphases, for example, medical research related to artificial organs or the legal spects of design and construction. Most successful applicants to medical and dental schools have a broad educaon in the humanities and social sciences, tion in the humanities and social sciences,
with particular competence in the natural sciences. Within those guidelines, there are no specific undergraduate majors which have a clear competitive advantage in assuring admission. Therefore, since stu-
dents whose academic records demonstrate a high level of ability are most likely to gain admission, the best choice of undergraduate major for an individual student is usually the field in which he or she has the greatest inherent interest.
Bachelor's degree programs frequently chosen by premedical and predental students are applied biology, chemistry, health systems, psychology, and the undesignated Bachelor of Science. Programs chosen Bachelor of
frequently by prelaw students are engineering, management, and psychology.
Most major schools have preprofessional advisors to assist students in choosing electives to build the appropriate background for their professional interests. Also, the Institute has a chief premedical advisor in the Office of the Vice-President for Academic Affairs. Every premedical, pre dental, and prelaw student should consult early with the preprofessional advisor in his or her major area to plan an appropriate program of elective courses.

Preparation for Careers in High School Teaching

Georgia Institute of Technology and Georgia State University participate in a cooperative program designed to produce high school science and mathematics teachers with Georgia Tech's expertise in technical subjects and Georgia State's expertise in professional education. In this program, Georgia Tech students use elective hours to take the required professional education courses at Georgia State. Thus, they simultaneously satisfy the requirements for a Tech degree and teaching certification at the high school level.

This option is available in applied biology, chemistry, mathematics, physics, and psychology. Students desiring to pursue it should consult the appropriate advisor in their major school for help in structuring a program of electives which includes the required professional education courses. This structuring must be done early in the student's academic program to accommo date all requirements.

Joint Enrollment Program for High School Students
Georgia Tech admits a limited number of gifted students who have completed the eleventh grade with academic credentials comparable to those of scholastically superior freshmen at Tech.
Students admitted in this category may take part or all their course work at Tech including the subject areas needed to fulfill high school graduation requirements. The student receives high school credit for the Tech courses and actually graduates with his or her high school class. Additionally, all work taken at Georgia Tech counts toward an Institute degree if it is part of a particular curriculum taken by the student at a later date.
To be eligible to participate in this program, the local school system must sign the appropriate agreement with the Georgia Institute of Technology. Students should check with local school officials to determine if their particular system is a participating member. If so, the student should discuss with the high school counselor specific course, test, and recommendation requirements for JEPHS. For further information or assistance, contact the Admissions Office at Georgia Tech.

Special Academic Services

In an effort to assist its students in realizing their full intellectual potential, Georgia Tech sponsors a variety of voluntary programs designed to help the student overcome academic problems.

The mathematics department laboratory, open Monday through Friday afternoons while classes are in session, offers a tutoring service for any Tech student in a freshman level mathematics course. The English department operates a reading laboratory for students who wish to increase their reading speed and improve their comprehension. Students who fail the Regents' Examination in composition, required for graduation, may take a special course preparing them for further efforts. International students may take courses in language and literature designed to introduce non-native speakers to written and
spoken English as well as to Americar Transfer students should plan their transcustoms, ideas, and literature.
or so as to allow ample time for their
The School of Engineering Science arevious school to send transcripts to GeorMechanics provides assistance via vidqia Tech. If Tech does not receive official tapes to students seeking help in ESMinal transcripts prior to the last day of 2201. egistration, the Office of Admissions will
The STEP program, coordinated throiot allow the student seeking transfer to the Office of the Dean of Engineering, xomplete registration.
provides help with freshman mathemat The Guide to Undergraduate Admissions, and science courses. Students may rectesigned to assist applicants until their enquick answers to telephoned questions ollment at Tech, details policies and procecurrent assignments, attend short perscures concerning areas such as admistutoring sessions, and participate in ocksions requirements, acceptance notification, sional group coaching in particularly trounousing application, financial aid, cooperasome areas.

ADMISSIONS

may obtain this publication from the Office
of Admissions.
Both freshman and transfer students me For any information regarding admission enter Tech in any of the four academic quarters which begin in September, Jan ary, March, and June.
Freshman student deadlines for subr sion of the Application for Admission, th fifteen-dollar application fee, and all requi credentials are as follows:

Admission of International Students

Quarter	Deadline	G
Summer	February 1	ph
Fall	February 1	ot
Winter	October 1	10
Spring	January 1	sta

International students who wish to enroll at Georgia Tech should write to the Office of Admissions for a special information pamohlet describing application procedures and ther basic information for applicants from loreign countries. Under most circumstances, international students may enter Transfer student deadlines for submis only in fall quarter. sion of the Application for Admission, a plication fee, and all required credentia are as follows:

Advanced Placement and

 Honors ProgramSuperior students entering Georgia Tech may receive college credit for courses completed in high school if their scores on the college board advanced placement examinations indicate a satisfactory knowledge of college course work. The Department of English and the Schools of Applied Biology, Chemistry, Mathematics, Physics, and Social Sciences participate in this voluntary program by offering both advanced placement and course credit. Minimum AP scores of three in English, mathematics, or history, four in chemistry or physics, and five in biology are necessary for consideration in the advanced placement program.

Advanced placement in chemistry is also possible on the basis of high scores on the college board achievement tests. With sufficiently high scores on the SAT verbal and the English Achievement Test, students may take an essay test administered by the English Department. Students who pass the test receive appropriate English credit after they complete ate English credit after 1003.
Under certain conditions, the Department Under certain conditions, the Department
of Modern Languages grants up to twelve hours of credit for high school language study. For more information, see page 255 in this catalog.

Veterans Program

Because the Veterans Administration must receive certification of enrollment before issuing benefit payments, any student planning to enroll under any of the VA programs should initiate the certification programs should initiate the certification
procedure through the Georgia Tech finanprocedure through the Georgia Tech finan-
cial aid office as early as possible, preferably at least one month before entering the Institute. Veterans should bring with them to the office such documents as proof of discharge (DD-214) or, if previously certified, their VA claim number. Failure to request certification before the day of registration will result in a four- to six-week delay in the receipt of the first benefit check. For further information about the certification procedure, contact the Office of Financial Aid located on the ground floor of the Administration Building on the Georgia Tech campus.
Veterans must apply to Georgia Tech through the usual admissions procedure. Eligibility for VA benefits does not guarantee acceptance to the institution, nor does acceptance to Tech signify eligibility. The institution serves only as a source of certification and information to the Veterans Administration; the student must carry out all financial transactions with the Veterans Administration directly.
In general, most veterans who served on active duty for more than 180 days, any part of which occurred after January 31, 1955, and before January 1, 1977, are eligible for support to attend college.

Also eligible are sons and daughters between eighteen and twenty-six years old of deceased veterans, of living veterans who have disabilities considered total and permanent, and of veterans whose death or disability was a result of service in the armed forces. Applicants in these catagories should ask their local Veterans Administration office for complete details
The local Atlanta Veterans Administration address is 730 Peachtree Street, Atlanta, Georgia 30308

Readmissions

Georgia Tech students who find it necessary to discontinue enrollment for one or more quarters, with the exception of summer quarter, must apply for readmission when planning to return to the Institute. The student may obtain an application for readmission from the registrar and should return the completed form no later than the date indicated on the following schedule:

Quarter	Date
Fall	August 1
Winter	December 1
Spring	March 1
Summer	June 1

Former students on "drop" or "review" status should apply at least two months prior to these deadlines in order to ensure sufficient time for the review process. The section "Rules and Regulations" in this catalog contains additional information on readmissions.

Academic Advising

The faculty of each school must provide each student enrolled in that school with the opportunity to consult with an informed advisor on the academic program and the selection of courses. Students should seek assistance from their designated faculty advisors regularly during their program of study, particularly when problems occur. Students who do not know the identity of their advisor should consult with the school director. Students undecided about their majors should seek advice from staff members in the office of the appropriate college dean.

ACADEMIC REGULATIONS

The "Rules and Regulations" section of catalog contains detailed information regi ing the academic regulations of the Instit Students who have questions concerni these regulations should consult either general office of their major school or registrar, room 104, Administration Builo

Grading System

For detailed information about the Georin Tech grading system, see "Rules and Re lations," section IV, in this catalog.

Graduate Course Option

Students who complete both the bache lor's and master's in the same discipline Georgia Tech may with the approval of their major school use up to nine credi hours of graduate level course work (a approved by the major school) in the m discipline for both degrees. In order to qualify for this option the student must complete the undergraduate degree wi cumulative grade point average of 3.30 higher and complete the master's degre within a two-year period from the award date of the bachelor's degree. Aerospa Engineering, Civil Engineering, Electrica Engineering, Engineering Science and I chanics, Industrial Engineering, Mathem tics, and Mechanical Engineering are th only schools currently participating in th program.

Institute Rules for the Pass/Fa System

At the option of the major school, a stude may receive up to a maximum of twelve hours credit toward a bachelor's degree six hours credit toward a graduate degr for courses taken under the pass/fail syste with a grade of "pass." Such courses ap toward the degree requirements only if tt major school has approved the course, either for all majors or for the individual student. The department or school offer a course determines the criteria for a passing grade and may restrict the pass fail enrollment in any course it offers. Th

Ules for withdrawal from graded courses pply to pass/fail courses as well.
Professors will record only a grade of pass" or "fail" for any student so desigated on the official class roll; students nay not change their designation from may not change their designation from credit after the last day to make schedule changes. Neither the professor nor the egistrar may change a pass/fail grade to letter grade, nor may the registrar inlude courses taken pass/fail in the calculation of grade-point averages.
Under certain circumstances, a change Under certain circumstances, a change
degree requirements may affect a department's position on a course previously approved for degree credit under the pass fail system. In such cases, the student's major school will decide if a course com leted with a grade of "pass" before the change will fulfill the amended requirements. Only students who complete 180 or more hours toward a degree at Georgia Tech may use the entire maximum of welve hours credit taken on pass/fail loward a bachelor's degree. For transfer students, second undergraduate degree students, and dual degree students, the number of hours completed at Georgia Tech determines the maximum number of pass/fail hours allowed, according to the following schedule:

Hours included
Hours allowed In program of study on pass/fail basis 50 to 89 credit hours 3 credit hours 90 to 134 credit hours . .6 credit hours 135 to 179 credit hours 9 credit hours 180 or more credit hours 12 credit hours

Examination and Grade Reports
The Institute schedules final examinations during the last week of each quarter and issues grade reports of the student's academic progress after the quarter's close.

Scholastic Average

A student who passes a course receives both the designated number of credit hours and a number of quality points, calculated by multiplying the course credit hours and the numerical equivalent of the letter grade received $(A=$ four, $B=$ three, $C=$
two $\mathrm{D}=$ one). Thus, a student taking a three-hour credit course and earning a grade of C receives six quality points. To determine the undergraduate scholastic average, the total number of quality points earned by the student for all courses scheduled as an undergraduate is divided by the total number of credit hours scheduled; for the graduate scholastic average, only those courses scheduled by the student while enrolled in the graduate division are considered. If a student takes the same course more than once, the later grade does not replace the earlier one; rather the scholastic average includes both grades. Courses taken pass/fail are not included in the calculation of grade-point averages.

Second Undergraduate Degrees

To be a candidate for a second undergraduate degree, a student must obtain the recommendation of the faculty through the director of the school concerned and the approval of the Undergraduate Curriculum Committee. This is accomplished by submitting the proposed program of study prior to beginning course work. Should course work be taken prior to receiving the schoo recommendation and committee approval, the course work completed may have to be used, as applicable, towards the first degree only. See Student Rules and Regula tions, Section XIII D for additional information.

Transfer Credit

The basic policy regarding the acceptance of courses by transfer is to allow credit for courses completed with satisfactory grades (C or better) in other accredited colleges provided the courses correspond in time and content to courses offered at the Georgia Institute of Technology. Tech wil not accept credit (except by examination) for courses successfully completed at another institution, but previously failed at Tech. The student must request and file an official transcript of transfer courses before the Institute can award credit.

Enrolled students at Georgia Tech must receive prior approval from the student's
major school and the registrar before scheduling courses at other institutions Students are not to be enrolled at Georgia Tech and another college without specific approval of the registrar and the appropriate faculty committee.

Auditors

Officially enrolled students who have obtained approval of their advisors and the department of instruction concerned may audit courses at Tech; however, the student will not receive credit for courses scheduled on an auditing basis. If the student wishes to change to or from auditing status, he or she must follow the procedure for schedule changes during the time allotted for schedule modification in the official calendar. All students registered as auditors must pay tuition at the regular rate. Members of the faculty or staff of the Georgia Institute of Technology may sit in on a course with the permission of the department concerned and the registrar.

Constitution and History
 Examinations

The Georgia law as amended March 4, 1953, requires that before receiving an undergraduate degree all students pass examinations or comparable courses in United States and Georgia history as well as United States and Georgia Constitution Courses which fulfill the United States and Georgia Constitution requirement are POL 1251 or POL 3200. Courses which fulfill the United States and Georgia history examination requirement are HIST 1001 HIST 1002, HIST 3010, or HIST 3011.

Regents' Testing Program

To establish eligibility for an undergraduate degree, every student in the University System of Georgia must pass the Regents' Test, an examination designed to measure proficiency in reading and English composition. Students are invited to take this examination when they have earned ten hours of course credit. Any student accumulating thirty hours course credit toward a degree without passing the Regents' Test must schedule remedial English along with other credit course work. If a student fails in
the first attempt, he or she must repeat test.

ROTC Credit

Students may apply a maximum of six quarter hours in basic ROTC courses a nine quarter hours in advanced ROTC courses toward meeting the requiremen for any degree. For further information, see individual curricula for the Schools.

Physical Education

All students attending Georgia Tech mu satisfactorily complete physical educatio equirements during their freshman yeat Individual schools must allow a minimur of four hours of physical education and may allow as many as six hours to be counted toward degree requirements. S dents should check with their individual schools in order to determine the numbe of hours that they may apply toward the degree.
The health information record will determine any medical exemptions from phy: ical education courses. The Physical Ed cation department will accept certificates disability from personal physicians only after the Student Health Service has endorsed the documents.

For a complete description of the phys cal education requirements at Georgia Ter refer to the Department of Physical Educ: tion and Recreation listed under the Col. lege of Sciences and Liberal Studies in tit Curricula and Courses of Instruction sec. tion of this catalog.

Humanities and Social Science: Requirements

This catalog lists in the section "Curricul and Courses of Instruction" a tabulation the courses required for degrees in the curricula offered by Georgia Tech.
All curricula leading to an undergradua degree must include at least thirty-six hours of humanities and social sciences accordir to the following distribution:

At least eighteen hours of humanities (i) cluding at least three hours of literature) selected from the following subjects:
English: 1001, 1002, 1003, 1033, 2001, 2002

2033, 2037, 2038, 2039, 2041, 2042 2043, 2101, 2201, 3006, 3008, 3037 $3038,3039,3041,3042,3043,3044$, $3051,3052,3056,3058,3059,3061$, $3062,3072,3075,3076,3081,3082$, $3083,3084,3085,3086,3101,3131$, $3141,3151,3152,3161,3181,3201$, $3203,3205,3221,3225,3261,3361$, $3501,3502,3760,3761,3786,4041$, 4042, 4043, 4044, 4051, 4081, 4082, 4083, 4755, 4801, 4803, 4811, 4813, 4821, 4823, 4881, 4885.

odern Languages:

French, Spanish, Russian, German
1001, 1002, 1003.
Foreign Languages: 1001, 1002, 1003, $1011,1012,1013,1021,1022,1023$, 1032, 1033.
German: 3001, 3002, 3003, 3004, 3031 , 3032, 3033, 3041, 3042, 3043, 3051, 3760, 4001, 4002, 4003, 4021, 4022, 4023, 4051, 4052, 4053.
Russian: 3001, 3002, 3003, 3761, 4901 Spanish: 3001, 3002, 3003, 3006, 3011 4021, 4022, 4023, 4024, 4025, 4026, 4031, 4032
French: 2021, 2022, 2023, 3001, 3002, 3003, 3004-5-6, 3007-8-9, 4001, 4002, 4003.
${ }^{2}$ Linguistics: 1001,1002,1003,2001, 2002, 2003, 3001, 3002, 3003, 3004, 3005, 4002, 4003, 4901.

Studies Abroad: 4091.

Music: 2201, 2202, 2203, 3201, 3202, $3203,3400$.
Architecture: 1201, 1202, 1203, 3201, 3202, 3203, 3204, 3205, 4204, 4205, 4206, 4207, 4208, 4209, 4241, 4242, 4243, 4247, 4248, 4249.
Industrial Design: 1261, 1262, 1263.
${ }^{1}$ Students in the Engineering College may include up to nine hours of 1000 level foreign language courses (twelve hours in Russian) for humanities credit, provided that they complete nine additional hours in the same language on the 2000 or higher lever, otherwise the this level courses will count as free electives. This
regulation does not apply to linquistics courses.
${ }^{2}$ Students in the College of Engineering may not use Linguistics 3001, 3002, 3003 as humanities credits.
${ }^{3}$ To be used by students in the Engineering College only.

At least eighteen hours of social sciences (including at least three hours of American history and three hours of American government) selected from the following subjects:
History: 1001, 1002, 1028, 3001, 3003, 3004, 3010, 3011, 3012, 3013, 3015 , 3016, 3017, 3018, 3020, 3022, 3024, $3025,3026,3028,3030,3040,3047$, 3048, 3049, 3786, 4008, 4016, 4025, 4050, 4075, 4875, 4876, 4877, 4925, 4926, 4927, 4928, 4929.
Philosophy of Science and
Technology: 1126, 1127, 3100, 3102, $3103,3104,3105,3107,3113,3120$, $3121,3122,4106,4107,4110,4115$, 4757, 4875, 4876, 4877, 4944, 4945, 4946, 4947, 4948, 4949.
Political Science: 1251, 1253, 2270, 2271 3200, 3203, 3204, 3205, 3210, 3211, 3215, 3216, 3217, 3220, 3221, 3222, $3250,3265,3266,3270,3275,3276$, 3280, 3281, 4200, 4201, 4202, 4205, 4210, 4211, 4250, 4755, 4875, 4876, 4877, 4950, 4952, 4953, 4954, 4955, 4956.

Sociology: 1376, 1377, 1378, 3306, 3310, $3330,3334,3335,3338,3339,3340$ $3501,3875,3876,3877,4306,4308$, 4311, 4312, 4750, 4756, 4875, 4876, 4877, 4999.
Modern Languages:
Foreign Languages: 2011, 2012, 2013 , 2021, 2022, 2023.
German: 2001, 2002, 2003, 2051, 2052, 2053, 3011, 3012, 3013.
French: 2001, 2002, 2003, 3011, 3012, 3013, 3021, 3022, 3023.
Russian: 2001, 2002, 2003, 4902.
Spanish: 2011, 2012, 2013, 3004, 3005, 3007, 3008, 3009, 3012, 4007, 4008, 4009, 4010.
Linguistics: 4001, 4902
Studies Abroad: 4092, 4093.
Psychology: 3300, 3303, 3304, 4400,
4402, 4410, 4423, 4424, 4750, 4755.
Economics: 2000, 2001, 3000, 3001, 3002, 3400, 3500, 3501, 3502, 4300, 4332, 4340, 4341, 4400, 4420, 4500.
${ }^{3}$ Sociotechnology:
Civil Engineering: 4143.
Nuclear Engineering: 4620.
Industrial and Systems Engineering: 4756, 4757.

FINANCIAL
INFORMATION

Costs	Resident of Georgia	Nonresident of Georgia
Quarterly Fees		
\quad Matriculation Fee	$\$ 377$	$\$ 377$
Nonresident Fee Transportation Fee	$\$ 0$	$\$ 920$
Student Activity Fee Health Sevice Fee Athletic Fee	$\$ 30$	6
Total	$\$ 34$	$\$ 30$
Books and Supplies Room Rent	$\$ 20$	$\$ 34$
Board Personal Expenses (clothing, laundry, recreation, etc.)	$\$ 467$	$\$ 20$
Total Per Quarter	$\$ 380-415$	$\$ 1,387$
Total Per Year (3 quarters)	$\$ 345-520$	$\$ 380-415$
Total Per Year (2 quarters) for co-op students in school 2 quarters instead of 3	$\$ 1,472-1,682$	$\$ 2,392-2,602$
Additional Freshman Expenses (pocket calculator, drawing sup- plies-in addition to quarterly costs)	$\$ 4,416-5,046$	$\$ 7,176-7,806$
Total Per Year (freshmen only)	$\$ 2,944-3,364$	$\$ 4,784-5,204$

A non-refundable fee of $\$ 15$ must accompany all applications for admission to the Georgia Institute of Technology. Upon reg istration, part-time students (those carrying less than twelve credit hours per quarter) who are legal residents of Georgia pay $\$ 32$ per credit hour and a transportation fee of $\$ 6$. Non-resident part-time students pay $\$ 110$ per credit hour ($\$ 32$ matriculation and $\$ 78$ tuition) and a transportation fee of $\$ 6$.
All students scheduling six hours or more must pay the student activity fee of $\$ 30$, the athletic fee of $\$ 20$, and the health service fee of $\$ 34$.

Since changes in fees may occur without notice, the student must refer to infor-
mation provided on registration day by Office of the Vice-president for Business and Finance for official amounts on fees and other institutional charges for each individual quarter.

Obligations of Students

An individual is officially enrolled at Geo gia Tech upon payment of all applicable matriculation, tuition, transportation, studer activity, athletic, and student health fees to the current quarter. Once enrolled, every student is obligated to remit, return, or submit all other financial obligations that may become due, as well as property o records of the Institute, within the time prescribed by the Institute. Failure to fuli
any such obligation will result in denial of registration privileges for subsequent quarter(s). Such denial of registration privileges is in addition to and apart from any disciplinary measures which may be taken pursuant to the Student Conduct Code pursuant to the Student Cond Regulations."
"Rules and Regulations.
Late registration will incur a penalty fee of not more than $\$ 100$, at the rate of $\$ 50$ for the first day after regular registration and an additional $\$ 25$ for each of the next two days. If a student does not pay all required lees by the end of the first week of the quarter, his or her registration will be cancelled.

Other Fees

The fees listed here do not include fraternity, club membership, or personal transportation expenses.
Each student petitioning for graduation must pay a graduation fee upon submitting the petition. The charge is currently $\$ 25$. Students must pay this fee each time they submit a petition for graduation.
Each accepted applicant for admission to the fall quarter must submit a deposit (in addition to the dormitory room deposit) as stated in the letter of admission. Approximately two weeks following registration, the student will receive a refund of this deposit by check mailed to his or her campus post office box.
In exceptional cases and by faculty action only, students may receive permission to take examinations at other than the regularly scheduled time. Normally the student must pay a fee in such cases.

Refund of Fees

If a student must withdraw from the Institute, the administration will consider requests for fee refunds only through written application. The student should obtain a refund request from the registrar or the cashier's office and submit the form, dated and signed, with a copy of the withdrawal application, to the Office of the Vice-president for Business and Finance within one month of the registration date.

Withdrawal Effected	Percent Refunded
One week following registration	80%
Two weeks following registration	60%
Three weeks following registration Four weeks following registration	40%

Students who withdraw after a period of four weeks has elapsed from the scheduled registration date, or who submit a refund request later than one month from that date, will not receive a refund of any part of the fees paid for that quarter. Students should submit requests for dormitory rent refunds to the Housing Office.

Definition of Legal Residence Because the overwhelming proportion of financial support for the operation of the public institutions of higher education in Georgia comes from the citizens through the payment of taxes, the determination of whether a student is classified as a resident or a nonresident of the state is a significant matter. The fees paid by resident students cover only about one-fourth of the total cost of their education in the university system. Thus, Georgia taxpayers contribute three-fourths of the necessary funds to provide quality education for the citizens of the state.

The practice followed by state colleges and universities of assessing nonresident students a higher tuition rate is a rational attempt by states to achieve a partial cost equalization between those who have and those who have not recently contributed to the state's economy, even though no way exists to determine the degree to which higher tuition equalizes the cost of educating residents and nonresidents. The feder al courts have determined that the durationa residency requirement (usually twelve months) which most states impose is a reasonable period during which the new resident can make tangible or intangible contributions to the state before receiving resident benefits.

With these considerations in mind, the Board of Regents has adopted the belowlisted policies governing the classification of students as residents and nonresidents in keeping with its responsibility to the citizens of Georgia for an appropriate assessment of nonresident fees to ensure that out-of-state students pay a fair and reasonable share of the cost of their education.

1. (a) If a person is eighteen years of age or older, he or she may register as a resident student only upon a showing that he or she has been a legal resident of Georgia for a period of at least twelve months immediately preceding the date of registration. (b) No emancipated minor or person eighteen years of age or older shal be deemed to have gained or acquired in-state residence status for fee purposes while attending any educational institution in this state, in the absence of a clear demonstration that he or she has in fact established legal residence in this state. (It is the responsibility of the individual to present clear and convincing evidence to illustrate that the primary purpose for entering and/or remaining in the state is some purpose other than attending school.) 2. If a person is under eighteen years of age, he or she may register as a resident student only upon showing that his or her supporting parent or guardian has been a legal resident of Georgia for a period of at least twelve months immediately preceding the date of registration.
2. A full-time employee of the University System and his or her spouse and dependent children may register on the payment of resident fees.
3. Nonresident graduate students who hold 4. Nonresident graduate students who hold
teaching or research assistantships requiring at least one-third time service may register as students in the institution in which they are employed on payment of resident fees.
4. Full-time teachers in the public schools of Georgia and their dependent children may enroll as students in the university system institutions on the payment of resident fees.
5. All aliens shall be classified as nonresident students provided, however, that an
alien who is living in this country under fication. To obtain a waiver, the individua visa permitting permanent residence sh:should present a copy of military assignhave the same privilege of qualifying fo ment orders and the fee card to the resident status for fee purposes as a Residency Office, Room 101, Administracitizen of the United States.

Residency Office, Room 101, Administra-
tion Building. Personnel on temporary as7. Foreign students who attend institutio signment are not eligible for this waiver. of the university system under financial For further information concerning resisponsorship of civic or religious groups dency, students should contact the Resilocated in this state may be enrolled undency Office, Room 101, Administration the payment of resident fees, provided Building in writing or by telephone (404) number of such foreign students in any 894-4612). The Residency Office must one institution does not exceed the quo receive an application for classification as a approved by the Board of Regents for til legal resident for fee payment purposes no institution. institution. 8. If the parents or legal guardian of a registration date for the quarter in which minor changes his or her legal resideno the student seeks admission as a resident to another state following a period of leg of Georgia.
residence in Georgia, the minor may co tinue to take courses for a period of twel consecutive months on the payment of resident fees. After the expiration of the twelve-month period the student may contin his or her registration only upon the payme of fees at the nonresident rate.
9. In the event that a legal resident of Georgia is appointed as guardian of a nonresident minor, such minor will not be permitted to register as a resident studer until the expiration of one year from the date of court appointment, and then onl upon proper showing that such appointment was not made to avoid payment o the nonresident fees
10. Career consular officers and their d pendents who are citizens of the foreign nation which their consular office represents, and who are stationed and living Georgia under orders of their respective governments, shall be entitled to enroll in university system institutions on payment of resident fees. This arrangement shall apply to those consular officers whose nations operate on the principle of educational reciprocity with the United State 11. Military personnel and their dependen stationed in Georgia and on active duty, except military personnel assigned to sy: tem institutions for educational purposes, shall pay the same fees assessed residents of Georgia.

The Institute will handle the classificatio of military personnel on a quarter-to-quarte basis through waiver rather than reclass

Undergraduate Financial Aid

The primary purpose of financial aid at Georgia Tech is to provide assistance to students who, without such aid, would be unable to attend college. The Financial Aid office receives and administers all funds provided to Tech for undergraduate student assistance including awards forwarded to the Institute from outside agencies for the use of designated students. Because Georgia Tech will assist students either by awarding funds or by directing the student to other sources of aid, no student should fail to consider attending Tech because of financial problems. However, the financial aid applicant should realize that the amount of aid granted seldom meets all educational expenses, and financial assistance from the Institute will require supplements from the student, family members, and outside sources.
The primary responsibility for financing an education rests with the student and his or her family. Tech, therefore, awards financial aid according to individual need and college costs. Students may receive assistance through scholarships, grants, loans, employment, or a combination of these programs. Of course, the student should help to defray expenses through summer or part-time jobs at Tech or in the Atlanta area. Georgia Tech's Placement Center area. Georgia Tech's Placement Center
attempts to keep an up-to-date listing of employment opportunities and can provide
more information for interested students. In addition, the Cooperative Program, which is not formally a financial aid program, allows approximately one-fifth of the undergraduate enrollment in the fields of engineering, science, and management to pay part ing, science, and managem college expenses by earning $\$ 5,000$ of their college expenses by earning $\$ 5,000$
to $\$ 7,000$ per year. Financial need is not a prerequisite for consideration in the co-op plan. Co-op participants are considered for financial aid based upon the same analysis used for other students. Students desiring more information on the Cooperative Program should contact the director of the Crogram ive Division, Georgia Institute of Cooperative Division, Georgia Institu
echnology, Atlanta, Georgia 30332 .
Students applying for financial aid should file their applications for admission to Georgia Tech by January 1 preceding the fall or summer they expect to enroll. The applicant must receive notice of acceptance no ater than February 1 to be eligible for full financial aid consideration.
All entering students, including transfer students, who are interested in scholarships, grants, loans, or work opportunities for any quarter of the academic year beginning in September should submit a Georgia Tech financial aid application before February 15 and a Financial Aid Form to the College Scholarship Service no later than February 1. Entering students usually than February 1 . Entering students may 1.
For additional information and the Guide to Financial Aid, please contact the director of Financial Aid, Georgia Institute of Technology, Atlanta, Georgia 30332.

Medals and Prizes

Fraternities, academic schools and departments, professional groups, and community organizations award medals and prizes, such as the Phi Kappa Phi award, and present them at the annual Honors Day exercises or at the term's end.

Information for Graduate Students

GENERAL INFORMATION

The faculty of the Georgia Institute of Technology grants advanced degrees in engineering, science, management, architecture, and city planning. The goals of the Office of Graduate Studies and Research are to establish an educational environment that will encourage and assist students to develop their capability both as professionals and as human beings, to encourage students and faculty to press research vigorously for the discovery and generation of new knowledge, to investigate ways of applying such knowledge innovatively for the benefit of society and mankind, and to foster the development of new tools, objects, and ideas.
Students whose interests and aptitudes ead them beyond the limits of the traditional undergraduate curriculum may broaden their knowledge of a given field or pursue independent inquiry through graduate study. A graduate education is of particular benefit to students interested in careers in research, development, design, or consulting; to those who aspire to formulate and administer policy; and to those who desire to enter the profession of education in the fields of engineering, science, or management.

DEGREES AND PROGRAMS OF STUDY

Master's Programs

Programs of study and research leadin the Master of Science are offered in the following disciplines:

> Aerospace Engineering
> Applied Biology
> Applied Physics
> Architecture
> Atmospheric Sciences
> Ceramic Engineering
> Chemical Engineering
> Chemistry
> City Planning
> Civil Engineering
> Electrical Engineering
> Engineering Science and Mechanics Environmental Engineering
> Geophysical Sciences
> Health Physics
> Health Systems
> Industrial and Systems Engineering Information and Computer Science Management
> Mathematics
> Mechanical Engineering
> Metallurgy
> Nuclear Engineering
> Operations Research
> Physics
> Psychology
> Statistics
> Technology and Science Policy
> Textile Chemistry
> Textile Engineering
> Textiles

Doctoral Programs

Programs of study and research leading to the Doctor of Philosophy are offered in the following disciplines and areas:

Aerospace Engineering

Applied Biology
Architecture
Atmospheric Science
Ceramic Engineering
Chemical Engineering
Chemistry
Civil Engineering and Environmental Engineering
Economics
Electrical Engineering
Engineering Science and Mechanics Geophysical Sciences Industrial and Systems Engineering Information and Computer Science Management
Mathematics
Mechanical Engineering
Metallurgy
Nuclear Engineering
Operations Research
Physics
Psychology
Textile Engineering and Science

See detailed description of programs and courses under appropriate school designations.
The Institute may award degrees with or without designation of the field, based upon the recommendation of the school concerned.
The Department of City Planning also offers joint programs with the School of Civil Engineering, the College of Architec ture, and the University of Georgia Schoo of Environmental Design. Each of these joint programs leads to the simultaneous awarding of two master's degrees.
The School of Industrial and Systems Engineering offers options in health systems analysis and health systems planning, both of which lead to the degree Master or Science in Health Systems. Also available are various interdisciplinary and interinstitu tional programs through the Health Systems Research Center and the Medical College of Georgia.

SPECIAL PROGRAMS

Interdisciplinary Programs
The schools of the Institute authorized to offer graduate degrees both develop and administer their own individual program and work closely with one another to provide special study and research opportunities for students who wish to pursue a degree with a wider perspective than that presented by a single discipline.

Through the cooperation of the bioengineering, environmental resources, and health systems research centers and informal programs based on areas of faculty interest, Tech has developed interdisciplin ary programs in areas such as atomic collisions, complex systems design, radiological health, solid waste technology transportation, and surface science technology The College of Engineering lists additional multidisciplinary programs on page 79 of this catalog.

Graduate Cooperative Program

Selected students planning to enroll for graduate study at Georgia Tech have the opportunity to participate in a unique cooperative program leading to advanced degrees in participating schools. Two plans are available. One is designed only for Georgia Tech undergraduates and includes work-study periods that span both undergraduate and graduate levels. Eligibility is based on academic achievement at Georgia Tech. The second plan is for graduate students only. Normally, all accepted applicants for graduate degrees are eligible for the program; however, international students will be considered only under exceptional circumstances.
Degree requirements under this plan are identical to those for all students enrolled at Georgia Tech. The Graduate Cooperative Plan is designed as an enhancement to the educational programs of students working for advanced degrees, including added facilities and opportunities for external stimulation. In addition, students receive compensation for their services from companies that employ them.

Preliminary screening of students will occur at the School or College level. Students are selected by the participating companies on the basis of academic credentials and interest areas correlated to company activities. For students planning to participate both at the undergraduate and graduate levels, the program requires at least two work quarters at the undergraduate level and at least two work quarters at the graduate level. For students planning to participate only at the graduate level, the program requires at least two quarters at work.
Students interested in applying for admission to the graduate cooperative plan should write to the Director, Graduate Cooperative Program, Office of Graduate Studies and Research, Georgia Institute of Technology, Atlanta, Georgia 30332 for additional information.

The Academic Common Market

The Institute participates in the Academic Common Market Program managed by the Southern Regional Education Board. By interstate agreement, the market enables southern states to share academic programs. Residents of the participating states who qualify for admission and gain the approval of their state coordinators may enroll on an in-state tuition basis. Georgia Tech programs include ceramic engineering, city planning, geophysical sciences, health systems, nuclear engineering, and textile engineering.

Courses for Secondary School Teachers

Recognizing that the systems of secondary and higher education in the state of Georgia are mutually supportive, Georgia Tech offers a limited number of courses at the graduate level designed to prepare high school teachers to provide instruction in selected areas of architecture, science, engineering, and technology. Tech restricts such courses offered to areas uniquely available or available in unusual strength at the Institute.

The Office of the Registrar records for satisfactory performance in these courses, but does not apply this credit toward any degree currently offered at Georgia Tech.
Interested persons should consult of cials of the appropriate colleges and departments for details.

POLICIES AND REGULATIONS

Though final authority rests with the A demic Senate, the graduate committee with the approval of the Senate is resp sible for establishing academic policy to the graduate program. This committee serves the right to change requirement for degrees as may be appropriate. St dents enrolled at the time such chang appear in the catalog have the privilege following either the regulations stated in the catalog effective the quarter in whic they enrolled, or the regulations in the catalog which records the change.

This catalog records the Institute-wid policies and regulations that govern the graduate program. Schools may make ditional rules concerning programs and pursuit of their degrees, but these rules may not contradict Institute policies and regulations.

Graduate Student Work Loads

A student in the graduate program mus enroll for a minimum of three hours per quarter; full-time students must schedule at least twelve hours. For students who hold assistantships or fellowships or wh work full- or part-time, the graduate office and individual schools keep special enroliment regulations on file. In general, a graduate student should expect to spend our hours a week studying outside of class for each credit hour scheduled.

taff Members

No staff member beyond the rank of intructor may work for a master's degree in he school in which he or she serves.
No new staff member with the rank of assistant professor may work for a doctoral degree in the school in which he or she serves.

ADMISSIONS INFORMATION

interested students may obtain information and the necessary forms for admission from either the appropriate school or the Office of Graduate Studies and Research. The student must submit the application, etters of recommendation, and official transcripts of previous academic work to the offices specified on the form by August 1 for fall quarter, December 1 for winter quarter, March 1 for spring quarter, and June 1 for summer quarter. At present, a filteen-dollar application fee is required. To receive a graduate studies brochure and financial aid booklet, write to the Office of Graduate Studies and Research, Georgia Insitute of Technology, Atlanta, GA 30332.

Graduate Record Examinations

The directors of certain schools may require applicants to submit results of the Aptitude and Advanced tests of the Graduate Record Examinations (GRE).
Students applying to the Schools of Applied Biology, Geophysical Sciences, Psychology, Textiles, Management (Economics only), Industrial and Systems Engineering, and Information and Comput or Science must file GRE scores (Aptitude only). Applicants to the Schools of Applied Biology, Chemistry, Information and Computer Science (Ph.D. applicants only), and Mathematics must take both the Aptitude and Advanced tests of the GRE. Students applying to the College of Management must have General Management Aptitude Test (GMAT) scores sent directly to the Dean, College of Management.

For information concerning time and -cation for these tests, write to Graduate Record Examinations, Educational Testing Service, Box 955, Princeton, NJ 08540. Students in western states should write 1947 Center Street, Berkeley, CA 94704.
To obtain general information on the GMAT, write the Educational Testing Service, Box 966, Princeton, NJ 08540.
On-campus applicants may pick up GRE information from the Graduate Office and GMAT information from the College of Management.

Types of Standing

Applicants holding a bachelor's degree from an approved institution will be accorded full graduate standing provided their previous work is of sufficient quality to indicate immediate success in advanced study.
If the work of an applicant holding an approved bachelor's degree is deficient in content or quality so that supplemental study or demonstrated ability is necessary the applicant will be accorded conditional graduate standing.
Students who do not wish to qualify for an advanced degree at Tech, but demonstrate the benefits of their participation in advanced study may gain admission as special graduate students. Students who are designated special standing for failure to submit official transcripts or for other administrative reasons may credit not more than twenty-four quarter hours taken on special standing toward a degree.

The undergraduate school, not the graduate school, will register students working toward a second bachelor's degree
Graduate students in good standing at other universities may enroll at Tech as transient graduate students by filing an application for admission and verification of good standing status from their own graduate dean. However, work undertaken in this program will not apply toward a Georgia Tech degree.

In addition to full, conditional, and special graduate standing, graduate students will be classified by academic standing according to their grade point averagesgood standing, warning, probation, or drop. For specific information, see "Rules and Regulations," page 297.

Readmission

Students who interrupt the continuity of their graduate programs by not registering for one quarter (summer quarter excepted) must seek readmission by filing with the registrar a completed request for readmission form by August 1 for fall quarter, December 1 for winter quarter, March 1 for spring quarter, and June 1 for summer quarter. Request forms are available from the registrar's office.

Reactivation of Application

Students admitted to the Tech graduate program who do not enter in the quarter for which they applied and subsequently wish to be considered for a later quarter must reactivate their application for the new quarter. Since the graduate office and the registrar's office keep files on "never entered" students for one year only, these students will have to supply a whole new set of application materials if they delay more than one year in the reactivation request. To reactivate an application, the student must request reactivation in writing to the registrar by August 1, December 1, March 1, or June 1 for the fall, winter, spring, or summer quarters, respectively.

Undergraduate Students

Well-qualified undergraduate students with at least a 2.7 cumulative GPA may schedule graduate courses in their senior year. interested students must obtain permission both from their advisors and from the director of the school offering the course
Undergraduates may receive credit toward the master's degree only under the following conditions:

1. The student must have been in residence at the Georgia Institute of Technology for at least two quarters before registering for the course for which he or she desires graduate credit.
2. The student normally must not have applied credit for the course toward an undergraduate degree. Students in schools approved to offer the "Graduate Course Option" (see page 38), may duplicate up to nine hours credit for both graduate and undergraduate degrees.
3. The student may request appro use up to twelve hours credit taken while enrolled as an undergraduate an used for the undergraduate degree in or her graduate program of study.
4. The student must petition the G ate Committee of the Academic Sena request such credit.

Registration

During the week preceding first registro tion, each new student should consult the director of his or her school of spe ty to prepare a proposed program. At a.m. on the appropriate registration da listed on page 30 of this catalog, new graduate students should report to the school to receive instructions regarding registration procedures.

Tech also conducts orientation for graduate students in the fall quarter ju before registration.

TOEFL for International Stude

 All international students from countries which English is not the native languag must take the Test of English as a Fore Language (TOEFL). Since the results o this test constitute part of the material reviewed for admission to graduate stur at Tech, students should arrange to half the Educational Testing Service send the scores to the registrar's office as early 2 possible. At present, the minimum score required for graduate admission is 550 .Students who wish to take TOEFL in any country except Hong Kong, India, Nepal, or Taiwan should obtain the TOE Bulletin of Information for Candidates, In ternational Edition. Applicants can acquii copies of the Bulletin and the registration form through the offices of the United States Information Service (USIS), Amen can embassies and consulates, and Unita States educational commissions and fo dations in a number of cities outside of the United States. In addition, several private organizations distribute the TOEFL Bullett These groups include: 1. the Institute of International Education (IIE) in Nairobi, Kenya; Paris, France; and Lima, Peru; 2 the African-American Institute (AAI) in Da es Salaam, Tanzania and Lagos, Nigeria;
the American Mideast Educational and raining Services (AMIDEAST) in Amman, ordan; Beirut, Lebanon; Tangier, Morocco; nd Cairo, Egypt; and 4. the AmericanMorean Foundation in Seoul, Korea. Students who cannot obtain a TOEFL Bulletin and registration form locally should write well in advance of application to: Test of English as a Foreign Language, Box 899, Princeton, NJ, U.S.A. 08540.

THE MASTER'S DEGREE Prerequisites
Apolicants for the master's program should have received a bachelor's degree from a recognized institution and graduated in the upper half of their class. Students must show evidence of preparation in their chosen field sufficient to ensure profitable graduate study.

Matriculation Requirements

While students may enroll in the master's degree program upon admission with either full or conditional standing, they must attain full graduate status to graduate with the M.S. degree.
Students enrolled for the master's degree must pursue continuous matriculation if the original requirements for their degree remain unchanged. Unless the student maintains matriculation, the school may re-evaluate the student's credentials and impose additional degree requirements.
To sustain continuous matriculation, the student must officially register for at least one quarter per calendar year during the six years following original admission.
Students who have completed all course work and are planning to submit a thesis in partial fulfillment of the requirements for master's degree should register for research hours consistent with a realistic appraisal of the amount of remaining thesis work and required faculty involvement. Students will not receive thesis guidance during any quarter for which they are not registered.
The Institute has no residency requirements for master's level degrees.

Academic Requirements

The master's degree requires a minimum of fifty approved credit hours distributed as follows:

With thesis
Minimum course credit hours in major field*
Minimum course credit hours at 6000 to 9000 level . 18
Total course credit hours
for degree .33
Research hours .17
Total credit hours .

Without thesis:**
Minimum course credit hours
in major field*
Minimum course credit hours
at 6000 to 9000 level .35
Total credit hours
*The term "major field" as used in these regulations indicates a basic field of knowledge rather than a department of specialization. **Must have approval of school director.

The student must earn a graduate grade average of at least 2.7 and satisfy other requirements of his or her school to be certified for a master's degree. To compute the grade point average, the registrar asthe grade point average, the registrar as
signs grade points for all course work signs grade points for all course work
receiving grades, according to the followreceiving grades, according to the following scale: 4 points for an A, 3 for a B,
a C, 1 for a D, and 0 for an F. The graduate average includes the grades on all courses scheduled by the student after admission to graduate study. Other than thesis hours, the student may take only six hours under "pass/fail" designation (see p. 38).

Students may not apply toward the master's degree credit earned in their discipline (designated degree) or discipline of origin (undesignated degree). The school, graduate committee, and Academic Senate must approve all courses before graduate credit is allowed.

Students, in conference with their faculty advisors, should prepare a program of study for the master's degree as a guide for planning their academic schedules. In some cases, the student's school may require that he or she submit the proposed program to the director of that school for approval. All students must submit to the registrar an approved program of study form attached to the petition to graduate.

Admission to Candidacy for the Master's Degree

Admission to graduate standing does not constitute acceptance as a candidate for an advanced degree. To obtain consideration for this privilege, the student must have shown evidence of ability to pursue a program of graduate study and research. A mere accumulation of credits is not sufficient. To apply for candidacy, the student should submit to the registrar, during the quarter preceding the anticipated final quarter of work, the petition for a degree (available from the registrar) with the approved program of study attached. To receive favorable action on this petition, the applicant must ordinarily have met the following requirements:

1. The student must show that he or she will have satisfactorily completed course requirements for the master's degree (see Academic Requirements.)
2. The student must have completed, or have scheduled to complete during the quarter, any required noncredit prerequisite work outlined at the time of his or her matriculation.
3. The student must have an overall grade point average of at least 2.7 and satisfy the requirements of his or her school.
4. The student must have completed satisfactorily any language requirement imposed.
5. The student must have passed any qualifying or comprehensive examinations required by the major department in which he or she registers.
6. The student must have filed with the Office of Graduate Studies and Research an approved thesis topic and have made satisfactory progress on his or her thesis if it is a part of his or her program.

Requirements for Award of the Degristudents can obtain credit for courses The graduate committee normally recorpreviously taken but not applied toward mends to the Academic Senate the awarr another degree by filling out an "Examinaof the master's degree to any candidattion for Advanced Standing Authorization who: Request Form," paying the appropriate fee

1. has an overall grade point averageat the cashier's office, and passing the at least 2.7 and has satisfied the requirexamination for advanced standing. The ments of his or her school;
2. receives final acceptance of his 0 her thesis from the graduate office and submits three unbound copies;
3. supplies the 4. To obtain transfer of credit, the stu3. supplies the graduate office with a dent should complete the following procepublishable thesis abstract of up to 300 dure: (a) The student must confer with his words, certified for accuracy by the thes or her graduate advisor to ascertain whethadvisor; er the courses to be transferred are a
4. presents an approved program of stullogical part of the student's graduate pro(complete within a period of not more the gram. The courses would typically be those six consecutive calendar years) to the appearing on the approved program of registrar in accordance with the deadint study form for the master's program set forth in the Institute calendar;
5. passes any general examinations, 0 or written, required by his or her schoo and;
6. is, at the time, a registered studen

Language Requirement

The student's school may require a rea ing knowledge of one appropriate langua

Transfer of Credit

The rules relative to and the process fo obtaining transfer of credit for graduate level courses are as follows:

1. Students may receive transfer cre (up to nine hours) for graduate level courses taken elsewhere in the United States and not used for credit toward another degree. The student must supply current transcript for this evaluation.
2. Joint enrollment students may recei graduate credit for up to one-third of the hours required for the degree for gradua courses taken at Emory University or Ge gia State University provided that: (a) Te does not offer such courses, (b) the adv ors and school directors approve the courses in writing in advance, and (c) students pass the courses with a grade
"C" or better. To satisfy the advance approval criteria, the courses must app on the student's proposed program of study.
3. Students may not receive transfer credit from universities outside the United States and Canada; however, internation
register for a minimum of seventeen hours of credit in thesis. (See section on matriculation requirements.)
a candidate whose program includes a A candidate whose program includes a
thesis must present a treatise in which the results of an investigation directed by a member of the faculty of the Institute are set forth in clear, articulate form. The purpose of the thesis is to further the educational development of the student by requiring him or her to plan, conduct, and report an organized and systematic study of importance

The Manual for Graduate Theses, available from the graduate office, specifies the requirements for the thesis.

THE DOCTORAL DEGREE

The degree of Doctor of Philosophy recognizes demonstrated proficiency and high achievement in research. After adequate preparation, the candidate must complete a searching and authoritative investigation of a special area in the field of his or her choice, culminating in a written dissertation covering that investigation. The dissertation must be either an addition to the fundamental knowledge of the field or a fundamental knowledge of the field or a new and better interpretation of facts al-
ready known. It must demonstrate that the candidate possesses powers of original thought, talent for research, and ability to organize and present findings.

Matriculation Requirements

Ordinarily the graduate school admits to the doctoral program only those students who have graduated in the upper quarter of their class. The dean may modify this requirement for exceptional students who have shown unusual promise in their work toward a master's degree.

Except for this restriction, the matriculation requirements are identical to those outlined for the master's degree.
Doctoral students must spend at least three full-time quarters in residence at the Georgia Institute of Technology and ordinarily must complete research for the dissertation while in residence. Under special
circumstances, however, candidates who have met the residence requirements may receive permission to pursue their research in absentia, provided the director of the appropriate school approves and a faculty member directs the project.

Admission to Candidacy

Doctoral students customarily apply for degree candidacy before beginning dissertation research and after completing at least five quarters of course work beyond the B.S. degree. Admission to candidacy depends primarily on the successful completion of comprehensive examinations which assess both general knowledge of the degree area and specialized knowledge of the student's chosen research field.

Each school is responsible for scheduling comprehensive examinations at least once a year, in the fall or spring, and for informing students of their scope. A guidance committee appointed by the director of the school will advise each student in planning a program of study and preparing for the examination, partly through an initial evaluation of the student's background and interests, partly through periodic consultation to evaluate and aid the student's progress.

To qualify for candidacy, students must complete all course requirements including any final examinations, achieve a distinguished scholastic record, and pass the comprehensive examination. In addition, the student must file with the school director and the Office of Graduate Studies a formal statement naming the thesis advisor and delineating the research topic, the purpose of the investigation, and a proposed methodology for its completion.
Upon satisfactory completion of these requirements, with approval of the thesis topic, the graduate school formally admits the applicant to candidacy for the degree.
Students must complete all degree requirements within five years from the end of the quarter in which they pass the comprehensive examination. During the quarter preceding the anticipated final quarter of work, the candidate must submit a petition for the degree to the registrar. petition for the degree to the registrar.
Petition forms are available in the registrar's office.

Major and Minor Fields of St While no fixed course requirements a for the doctoral degree, the student include in two or more years of gradual course work both a major and a minor tic of study.
In addition to an adequate knowledge the major field of intended research, the student must demonstrate mastery of soo other, smaller body of knowledge-the minor field-preferably outside the stude particular school. The purpose of the m is to encourage a wider interest on thep of the student and to provide a broade basis for the evaluation of his or her capabilities.

The minor will normally consist of at least fifteen quarter hours of work in rela courses, chosen by the student in cons tation with his or her guidance committ and approved by the Office of Graduate Studies. Once the student has satisfa ly completed the minor, the school direc sends a confirmation, accompanied by course grades, to the graduate office to final approval and recording.
Although the student need not comp the minor as a prerequisite for admissi to candidacy, he or she must submit th chosen field for approval and complete program of study before clearance for degree.

Language Requirements

Every doctoral candidate must have exp sure to the cultural and functional aspec of foreign languages before being grante the degree. The student may satisfy this requirement by any one of the following options

1. The student may pass two years course work in foreign language at the college level with an average grade of or better. This may include one year ead in two different languages or two years one language. Every two years of fore language course work in a particular lan guage in secondary school will be cons ered equivalent to one year of college course work.
2. The student may enroll in one of th following sequences of courses and earm an average grade of C or better.

French
4075-6-7
Intensive Readings in French German 4075-6-7

Intensive Readings in German

Russian 4075-6-7
Intensive Readings in Russian Spanish 4075-6-7 Intensive Readings in Spanish Linguistics 4075-6-7 Technology
3. The student may petition for and pass a written equivalency test in one foreign language administered by the Department of Modern Languages in lieu of ormal course work. The proficiency level xpected is comparable to that of a student just completing the present secondyear language course in the Department of Modern Languages with a grade of C or better.
4. The student may present evidence or ther experiences that clearly demonstrate an exposure to cultural and functional aspects of foreign language equivalent to the above, such as having been reared and educated in a mother tongue other han English.
The Department of Modern Languages evaluates and certifies to the graduate office each candidate's satisfactory completion of the requirements. Students wishing to satisfy the language requirement using alternative one or four must supply complete official records and English transations of such records when appropriate. Individual schools may impose additiona equirements of proficiency in reading or ranslating scientific literature in one or more foreign languages at their discretion.

The Dissertation

Prior to the student's admission to candidacy, the candidate will present for the approval of the director of his or her school and the Office of Graduate Studies a formal statement naming the student's dissertation advisor and setting forth the topic selected for investigation, the objectives the student hopes to gain, and the steps by which the student proposes to
gain them. The dissertation topic must give promise of being either a genuine addition to the fundamental knowledge of the field or a new and better interpretation of facts already known.

Prior to the final submission of the completed dissertation to the graduate office, the student must pay the Institute a fee of thirty-five dollars for microfilming the dissertation through University Microfilms, Inc. Students may obtain instructions and appropriate forms concerning the dissertation from the Office of Graduate Studies.

The Doctoral Examination

If the Dissertation Advisory Committee finds the dissertation satisfactory, it schedules the candidate for an oral examination on the subject matter of the thesis and the field in which it lies. An examining committee approved by the Office of Graduate Studies will conduct the examination. The student must register for the quarter in which the final examination occurs and for the quarter in which he or she graduates.

If both the dissertation and the examination are satisfactory and the candidate has completed the requirements of residence, languages, and minor field, the Office of Graduate Studies will certify the candidate as qualified to receive the degree of Doctor of Philosophy.

If a candidate should fail to pass the final oral examination, the examining committee may recommend permission for one additional examination. In the case of failure, the registrar does not receive a report of the examination results, but the Office of Graduate Studies keeps a record on file.

Schools may add requirements for the doctorate at their discretion.

FINANCIAL INFORMATION

Costs

The following schedule of matriculation, tuition, student activity, and other fees is effective for the 1984-85 academic session.

	Matricu- lation	Tuition	Trans- portation	Student Activity	Medical		Total Athletic	Fees Per Quarter
Residents Academic of Georgia	$\$ 377$		$\$ 6$	$\$ 30$	$\$ 34$	$\$ 20$	$\$ 467$	$\$ 1,401$
Nonresidents of Georgia	$\$ 377$	$\$ 920$	$\$ 6$	$\$ 30$	$\$ 34$	$\$ 20$	$\$ 1,387$	$\$ 4,161$

Special courses may require an extra fee. Graduate students carrying a full academic load (twelve credit hours or more per quarter) must pay the full amount of all fees as shown above
Part-time students (those carrying less than twelve credit hours per quarter) who are legal residents of Georgia must pay $\$ 32$ per credit hour in satisfaction of the matriculation fee and \$84 for the athletic, student activity, and medical fees unless they carry less than six credit hours. These students pay only the matriculation fee. All other graduate students will have an additional tuition fee of $\$ 78$ per credit hour. A student must enroll for a minimum of three hours. All students must pay the $\$ 6$ transportation fee. Hours for which the student is registered shall be consistent with a realistic appraisal of the amount of work yet o be done on the thesis or dissertation and the amount of faculty involvement required Note: Conditions may arise beyond the control of the Georgia Institute of Technology which will cause the rate for tuition fees, board and room to be changed during the next year without notice.

Other Fees

Each student petitioning for graduation must pay a $\$ 25$ graduation fee upon submitting the petition. Students must pay this fee each time they submit a petition
degree must pay a charge of $\$ 35$ for of these awards. The award consists of a microfilming his or her dissertation and $\$ 10,000$ stipend and the waiver of all depositing it with the University Microfituition and fees for four quarters. These Service. ing the three library cop the cost of bi copies of a studen ter after the scheduled date must pay late registration fee. If a student has no paid all fees by the end of the first week the quarter, the Institute will cancel the registration.

Refund of Fees

The Institute has an established set of rules governing the refund of fees to dents who must drop out of school (se page 43).
Obligations to Students
An individual is not officially enrolled a Georgia Tech until all transportation, tuition, matriculation, student activity, and medical fees for the current quarter ar paid. Once enrolled, every student is obligated to remit, return, or submit all other financial obligations that may become due, as well as property or reco of the Institute, within the time prescrib by the Institute. Failure to fulfill any suc obligation will result in denial of registra tion privileges for subsequent quarter(s Such denial of registration privileges is addition to and apart from any disciplin
ecords and high research potential. Appli-
leasures which may be taken pursuant to he Student Conduct Code, pg. 303 ("Student Rules and Regulations").

inancial Assistance

The Institute offers financial aid from a pariety of sources to assist students with otal the pursuit and completion of their degree Fees Peas rapidly as circumstances permit mic Students should address inquiries for inancial aid to the director of the school in which they plan to study.
resident's Fellowships
Each year the Institute awards fellowships o matriculants with outstanding academic ants for the doctoral degre receive most Fellowships are renewable for two additional years, based on the major school's evalua on and recommendation
raduate Research Fellowships These fellowships are designed specifically or the prospective student with outstanding academic records and high research potential who wishes to combine research on a significant up-to-date project (in a oarticular school, research center, or at the Engineering Experiment Station) with normal academic progress. Students may en or the program at any level-beginning, intermediate, or final.

Graduate Research Assistantships Students ordinarily receive these awards on a one-third or half-time basis; however school departments and centers or divisions of the Engineering Experiment Staion may offer awards of a greater or esser amount according to their specific

Graduate Teaching Assistantships Schools and departments ordinarily offe ese awards on a one-third or half-time asis, but may choose to give awards of a greater or lesser amount according to their needs

Federal Fellowships and Traineeships The Institute awards a number of fellowships and traineeships through participation in programs sponsored by agencies of the federal government

In addition, the following traineeships associated with specific training programs are available: water resources planning and management through the Environmental Resources Center, solid waste training program through the School of Civil Engineering, radiation health specialist training program through the School of Nuclear Engineering, environmental health through the School of Civil Engineering, air quality control through the School of Chemical Engineering, and mineral and mining through the School of Ceramic Engineering.

Tuition Waivers

Nonresident graduate students who hold assistantships or work for the Institute in a professional capacity on at least a one-third-time basis may register on payment of resident fees. In addition, school directors may recommend a limited number of tuition waivers for award to qualified out-of-state students. When awarding these waivers, the graduate office will give preference to those students taking twelve hours or more of credit courses and having an outstanding academic record. Full-time students sponsored by WSF, AFGRAD, LASPAU, and certain IIE students may carry op priority if Georgia Tech has given an institutional commitment to the group or agency.

Local Industry Work-Study Programs Many industries located in and around Atlanta offer opportunities to pursue graduate degrees as an integral part of their employee training programs. In such a plan, the student may work and study on a reduced work week schedule that is compatible with school, student, and company requirements. Additionally, the company may choose to pay academic fees, costs of texts, and a supply allowance.

Graduate Employment

Upon the recommendations of the director of the student's school, the director of the

Experiment Station, and the graduate office, students may receive appointments as graduate research assistants in the Engineering Experiment Station. The student may participate in investigations conducted in the Experiment Station on the subject of a thesis, provided that the school director approves the subject and considers the student's contribution to the research effort sufficient.

Veterans Program

Veterans may be eligible to receive educational assistance through the Veterans Administration while enrolled and pursuing an approved program of education or train ing if they were discharged after January 31, 1955, under conditions other than dishonorable from a continuous period of active duty of 181 days or more. If the period was less than 181 days, a veteran may be eligible if the discharge was for service connected disability.

The VA provides educational assistance to children of veterans who died or are permanently and totally disabled as the result of service connected disability incurred or aggravated during active service in the Armed Forces, or children of individuals on active duty who are listed for more than ninety days as missing in action captured by a hostile force, or forcibly
interned by a foreign government or power
The Financial Aid Office at Georgia Tech serves as the veterans affairs center on campus and provides enrollment certification to the Veterans Administration for eligible students. New students and enrolled students wishing to be recertified should make application to the Financial Aid Office at least six weeks prior to the planned quarter of enrollment if they wish to receive the first benefit check for use in registration. For more information, contact the Financial Aid Office at Georgia Tech.

Sponsored Fellowships

The Institute awards a number of fellowships sponsored by various industrial organizations, foundations, and trust funds for the support of outstanding graduate students. These fellowships assist students in pursuing their studies and research full time. The name given each fellowship
listed below indicates the donor or per son(s) memorialized by the fellowship.
Allied Chemical Foundation Fellowship A \$4,500 fellowship to a candidate for Ph.D. in textile science and engineering
Domenica Rea D'Onofrio Fellowship A fellowship in all schools of instructio recipient must be from Italy. Stipend of \$5,000.
Edward Orton, Jr. Foundation Fellowsh A fellowship in ceramic engineering car ing a stipend of $\$ 1,800$ for twelve mon study, plus $\$ 200$ for equipment and suppli
E. I. du Pont de Nemours \& Company, A grant of $\$ 10,000$ to be allocated to of four schools-chemical engineering, chemistry, electrical engineering, and m chanical engineering. It is to be used to enhance or maintain the strength of th instruction in science and engineering.
Eno Foundation of Transportation Fellowship
A $\$ 7,000$ fellowship to the School of C Engineering to cover tuition, living expenses, and other necessary costs for academic year.
Ford Foundation Fellowship
Fellowship and loan for doctoral studies engineering. These awards are a combin tion of fellowship and teaching research assistantships valued at up to $\$ 3,000 \mathrm{p}$ uition and fees and may be awarded to calendar year including the usual vacati periods. Also, loans based on need up $\$ 3,000$ annually will be available to well qualified graduate students motivated to. ward academic careers. The loans will be cancelled at a minimum rate of $\$ 1,000$ p year for each full-time year of service in an academic career in the United States and Canada.
Foundation in Refractories EducationF.I.R.E.

A $\$ 5,000$ fellowship in ceramic engineer ing. This is for students whose interests are in the refractory materials area.

Gulf Oil Foundation Graduate Fellowshi A \$6,000 fellowship to the School of Ch
ral Engineering. Stipend not less than 3,000 plus tuition and fees. Balance to be sed as an unrestricted grant to the school oot to exceed $\$ 1,000$.
Howard Pyle Safety Research Fellowship A fellowship for advanced study leading to a doctorate in a safety-related discipline with an emphasis on research. It has a stipend of $\$ 2,500$ with a total allowance of $\$ 450$ for dependent children plus tuition and fees (up to $\$ 4,000$).
BM Fellowship
wo fellowships of $\$ 10,000$ for twelve months. Awarded to doctoral students only ICS and EE. Selection is based on ocioeconomic criteria and promise of proessional accomplishment.
Mary White Staton
fellowship in all schools of instructionrecipient must be from Colombia, South America. Stipend of $\$ 2,000$.
National Consortium for Graduate Degrees for Minorities in Engineering Fellowship Candidates for participation in this program are selected from minorities (black Americans, Puerto Ricans, American Indians, and Chicanos). At the time of application he student should be enrolled in the junior ear of undergraduate study in one of the engineering disciplines. In addition to the raduate stipend, this program provides an opportunity for summer work experience in one of several off-campus research laboratories. An applicant's record must indicate the ability to pursue graduate studies in engineering. Some students who are presently in their senior year of undergraduate study will be accepted into the pogram. For further information write to the Office of Graduate Studies, Georgia Institute of Technology, Atlanta, Georgia 30332.

Paul R. Yopp Fellowship
A fellowship in mechanical engineering to an outstanding graduate student covering a stipend, tuition, and fees.
Robert \& Company Associates Fellowship A fellowship in architecture. $\$ 1,200$ stipend. Recipient must be a native of Georgia.

Robert \& Company Fellowship A fellowship to be used in civil, electrical, or mechanical engineering. $\$ 1,200$ stipend. Recipient must be a native of Georgia.

Sandoz Foundation Fellowship
A $\$ 5,000$ fellowship in textile chemistry. These funds are for stipend, tuition and fees, equipment, and faculty supervision.

Schlumberger

Two fellowships in electrical engineering. Tuition and fees, plus $\$ 3,000$ stipend. Total grant $\$ 5,500$.
Tennessee Eastman Fellowship
A $\$ 4,000$ fellowship to the School of Chemical Engineering. Stipend not less than $\$ 2,500$ per calendar year or $\$ 3,000$ if there are dependents, plus tuition and fees. Balance to be used as an unrestricted grant in the school.

Texaco Fellowship in Metallurgical
Engineering
A fellowship to encourage graduate studies in metallurgical engineering. Awarded at the discretion of the Department of Metallurgy in the School of Chemical Engineering. Stipend is $\$ 3,000$ plus tuition and fees for a twelve-month period.
Union Camp Fellowship
A $\$ 5,000$ fellowship in chemistry and chemical engineering. Tuition and fees, plus a minimum of $\$ 250$ per month to the student for a period of at least nine months, the remaining money to be used for department needs.

United States Steel Foundation Loan Fund A short term loan fund designated to assist graduate students in engineering, physics, chemistry, and mathematics. Administered by the Financial Aid Office.
Whirlpool Corporation
Three graduate fellowships in engineering (electrical, mechanical, and textile). Stipend, plus tuition and fees.

Curricula and Courses of Instruction

This catalog lists alphabetically by colleges the specific degree requirements and course descriptions for each curriculum and course at both the undergraduate and graduate levels.
Course numbers below 3000 indicate lower division (freshman and sophomore) courses. Those numbered 3000-4999 denote upper division (junior and senior) courses, open to students of the lower and upper divisions with the proper prerequisites and to graduate students on approval of the individual student's major school. Courses designed for graduate students are numbered 6000 and above; the methods of presentation and quality of work expected make them generally unsuited to undergraduate participation. An upperdivision undergraduate student who has an overall grade point average or 2.7 or higher may therefore enroll in a graduate level course only after consultation with and approval of his or her major school and the dean of the graduate division.
Figures entered beside the course number and title of each course signify the number of class hours per week, the number of laboratory hours per week, and the quarter hour credit earned for the
completed course, in that order. Thus, Established in 1975, entry 4-3-5 in CHEM 1101 means that school in 1948, department in 1908 course meets for four lecture hours pel week and three hours of laboratory pe week, and that the student earns five quarter hours credit upon satisfactorily completing the course.

Handicapped Accommodation

 In order to provide reasonable accom dation to physically handicapped studer who are otherwise qualified, considerait P by individual colleges, schools, and departments of instruction may be givent the substitution or modification of certai the substitution or modification of certaicourse requirements-within the limitato course requirements-within the limitatto
imposed by the accreditation criteria too the degree program in which the studen enrolled-and to the extent that such substitutions or modifications of the cour or curriculum do not have a net effect detracting from the quality of the educatio experience implied by the course or cu riculum designation.

Such substitutions or modifications be approved by the school director, department head, or college dean, and the Undergraduate Curriculum Committeean

College of Architecture

Doan A Kelly: Assistant Dean-Arthur Beckum, Jr. Regents' Professors-Geoftrey G. Eichholz, John A. Templer; Profes-sors-Alan H. Balfour, Arthur F. Beckum, Jr., Clifford R. Bragdon, Arnall T. Connell, Jr., Clifford R. Bragdon, Arnall T. Connell,
ale A. Durfee, William L. Fash, John C. ale A. Durfee, William L. Fash, John C.
ould, Rufus R. Hughes II, John A. Kelly, alcolm G. Little, Jr., Richard J. L. Martin, bert J. Nichols, Elliott A. Pavlos, Roger Rupnow, David S. Sawicki, Carl J. chappat; Associate Professors-James Akridge, Douglas C. Allen, John C. rchea, Stanley C. Bailey, Neill W. Connah, Robert M. Craig, Richard Dagenhart, Thomas N. Debo, Garvin T. Dreger, M. David Egan, Rufus R. Greene, Edward L. Keating, Lewis F. Lanter, Terrence L. Love, James W. Mount, Pascal Malassigne, C. Lee Payne, H. Randall Roark, Robert T. Segrest, C. Virgil Smith, Jay M. Stein, Joan Templer, Rod W. Whatley, Jean D. Wineman Templer, Rod W. Whatley, Jean D. Wineman,
Assistant Professors-Craig M. Bennett, Assistant Professors-Craig M. Bennett,
C. Cris Benton, W. J. Blane, Mitchell A. C. Cris Benton, W. J. Blane, Mitchell A.
Bring, Elizabeth M. Dowling, Lionel D. Gillespie, Frank B. Golley, David A. Jones, Thomas E. Papageorge, Clyde D. Robbins, Catherine B. Ross, William H. Russell, Albert H. Smith, Craig M. Zimring; Instructor/ Lecturers - Jennifer Bloomer, Lane Duncan, Ken Gwinner, Franklin K. Mooney, Joseph de Casseres Reshower; Visiting Professors -Don Abrams, Merrill Elam, Leon Eplan, Ronald Lewcock, Joseph N. Smith; Research Scientists-David Arbeit, James A. Bostrom, Tony Bradshaw, John Myers, Jon A. Sanford.

General Information

The College of Architecture, established in 1908 as the Department of Architecture, became a school in April 1948 when the Georgia School of Technology became the Georgia Institute of Technology. The School achieved the status of a college on July 1 , 1975.

The original four-year curriculum led to the degree Bachelor of Science in Architecture. In 1934, this curriculum expanded to a five-year program awarding the degree Bachelor of Architecture, which was offered as a first professional degree until 1972 The four-year degrees, Bachelor of Science in Building Construction and Bachelor of Science in Industrial Design, were established in 1958 following a period during which the curricula in these disciplines functioned as options under architecture.

In 1952, the College initiated the Master of Architecture and Master of City Planning degrees; a joint degree program with the simultaneous award of both degrees has been in operation since 1969. Two-year joint degree programs between city planning and civil engineering (transportation), city planning and urban design, and city planning and environmental design (landscape architecture) at the University of Georgia are currently available.
The original aim and prime objective of the college is to prepare students for the profession of architecture. The scope of man's concern with the environment is of such breadth in current practice, however, that architects and planners not only must demonstrate strength in the traditional role of building and space design, but also must re-emphasize related interests in the social
sciences and psychology, structural and mechanical systems, management of construction and field processes, and economic and feasibility programming. Graduates with such grounding contribute effectively to teams that create and control the man-made environment at every scale, from the production of the smallest utilitarian object to community, city, and regional planning. It is to this end that, over the years, the College of Architecture has embraced as many disciplines in design and planning as possible, not only to educate its students in specialized environmental fields, but also to liberalize and expand the education through their interaction.
Recent changes in the content of all curricula take precedence over the listings in earlier catalogs.

Undergraduate
 Programs

Architecture

The undergraduate curriculum in architecture prepares the student through basic professional studies and general education to receive the degree Bachelor of Science (undesignated) at the end of four years. This is not a professional degree in architec ture and will not be recognized as such by the National Architectural Accrediting Board and the National Council of Architectural Registration Boards; professional degree accreditation applies only to the degree Master of Architecture, awarded after two years of graduate study.

For architecture majors, averages in architectural design will be checked at the end of each year-group of three courses (ARCH 1001-2-3, etc.). The College will not permit a student to enter a more advanced group until his or her record in the previous group equals 2.0 or better. Also, a grade of "C" or better must be achieved in both ARCH 4002 and 4003 to qualify a student for a B.S. degree. All work executed in the College becomes the property of the College and will be retained or returned at the discretion of the faculty. The faculty also reserves the right to refuse for credit any project executed outside the precincts of
the College or otherwise executed with enior Yea out proper coordination with the instruo Course 1st Q. 2nd Q. 3rd Q. Twelve hours of only free electives taIRCH 4001-2-3 on pass/fail basis may be applied towatrchitectural Design $\quad 1-12-5 \quad 1-12-5 \quad 1-12-5$ fulfilling requirements for the B.S. degriflectives ${ }^{1} \quad \frac{12-0-12}{12-0-12} \quad \frac{12-0-12}{13-12-17}$ Math 1710 does not count toward fulfil lotals $\quad \frac{12-12}{13-12-17} \frac{12-12-17}{13-12-12-17}$ any of the degree requirements

Senior Year Study Abroad

Freshman Year Course	1st Q. 2nd Q.	
ARCH 1001-2-3 Design		
Fundamentals ARCH 1201-2-3	$1-12-5$	$1-12-5$
Architectural History MATH 1307-8-9 Mathematics	$3-0-3$	$3-0-3$
Electives		
Physical Education Electives		
Totals	$\frac{\mathrm{X}-\mathrm{X}-2}{}$	$\frac{3-0-3}{\mathrm{X}-\mathrm{X}-\mathrm{X}-1}$

Sophomore Year
Course 1st Q. 2nd Q. 3rd

ARCH 2001-2-3 Architectural Design	1-12-5	1-12-5
ARCH 2301-2-3 Building Anatomy	3-0	3-0-3
PHYS 2111-2-3 Elementary Physics	4-0-4	4-0-4
ESM 3701-2 Statistics, Mechanics of Materials		3-0-3
Electives ${ }^{1}$	6-0-6	3-0-3
Totals	2-18 14-12-18	

Junior Year
Course $1 s t$
ARCH 3001-2-3
Architectual Design 1-12-5 1-12-5
ARCH 3321-2-3
Structures and
Materials
ARCH 3401-21-41
Urban Planning, acilities Planning, Building Economics

lectives

Total 3-0-3 $\quad 3-0-3 \quad 3$

Course 1st Q. 2nd Q. 3rd Q.

ARCH 4001-2-3
Architectural Design $\quad 1-12-5 \quad 1-12-5 \quad 1-12-5$ Electives $^{1} \quad 12-0-12 \quad 12-0-12 \quad 12-0-12$
Totals $\quad 13-12-17 \quad 13-12-17$ 13-12-17
${ }^{1}$ Electives: Same as those listed under Architecture, Senior Year

Building Construction

In tandem with the roles of the architect and engineer, the constructor assumes responsibility for bringing a building or group of buildings into physical reality. The Building Construction program emphasizes habitable construction rather than bridges, dams, or other civil work. Basic degree requirements encompass the areas of techniques, operations, and management from niques, operations, and management in which the student may then expand in
directions of individual interest through a directions of individual interest thres

Primary objectives of the Building Construction program are: a) to provide a set of experiences through which technical and management skills can be obtained, along with a broad educational base in order to equip the student for movement toward leadership roles in the construction industry; b) to develop an educational mix that includes both practical applications and management areas such as scheduling, cost control, construction management, value engineering, and estimating; c) to provide a curriculum specifically tailored to
sional goals, but must include at least six credit hours of advanced architectural history and six credit hours in visual communication studio courses. Military training is an optional program of the Institute, but in case basic ROTC and advanced military are elected, no more than fifteen credit hours of general electives may be used for this purpose or will be credited toward the requirements for a degree.
${ }^{2}$ See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshman physical education requirements for both men and women. (The College of Architecture will accept only the four required hours of P.E. toward meeting the requirements for a degree).
those entering the construction industry, which retains positive linkages with architecture and engineering in areas of overlap; and d) to look to the future, as well as the current "state-of-the-art," challenging current methods where appropriate and seeking superior solutions through innovation.
Twelve hours of only free electives taken on pass/fail basis may be applied toward fulfilling requirements for the B.S.B.C. degree. Math 1710 does not count toward fulfilling any of the degree requirements.

Freshman year
Course \qquad

Architectural History	3-0-3	3-0-3	3-0-3
BC 1851			
Building Construction			
Seminar			0-3-1
CHEM 1101-2			
General Chemistry	4-3-5	4-3-5	
GEOS 2100-2			
Physical Geology		3-3-4
MATH 1307-8-9			
Calculus I, II, III	5-0-5	5-0-5	5-0-5
Electives ${ }^{2}$			
Physical Education	X-X-2	X-X-1	X-X-1
Electives ${ }^{1}$	3-0-3	3-0-3	3-0-3
Totals	X-X-18	X-X-17	X-X-17

Sophomore Year

Course	1st Q. 2nd Q.	3rd Q.	
ARCH 2301-2-3 Building Anatomy	$3-0-3$	$3-0-3$	$3-0-3$
BC 2001-2-3			
Design of Building Systems	$1-12-5$	$1-12-5$	$1-12-5$
ECON 2000 Microeconomics	$3-0-3$	$\ldots \ldots$	$\ldots \ldots .$.
ESM 3701-2			
Statics, Strength of Materials	$\ldots . .$.	$3-0-3$	$3-0-3$
PHYS 211-2-3 Elementary Physics Electives	$4-0-4$	$4-0-4$	$4-0-4$
Totals	$\frac{3-0-3}{14-12-18}$	$\frac{3-0-3}{14-12-18}$	$3-0-3$

Junior Year Course	1st Q. 2nd Q.		\qquad $3 \pi \text { Course }$	1st Q.	2nd Q.	3rd Q.
ARCH 3321-2-3 Structures and Materials	4-3-5	4-3-5	ARCH 3421-41 Facilities Planning, Building Economics	3-0-3	3-0-3
BC 3301-2-3 Construction Practice	3-0-3	3-0-3	BC 3441 Building Production	3-0-3		
MGT 3260			Electives ${ }^{1}$	13-0-13	13-0-13	13-0-13
Law I	3-0-3		Totals	16-0-16	16-0-16	16-0-16

MGT 3700
Analysis of Financial
Data
Electives ${ }^{1}$ Totals

Industrial Design
Industrial design is the professional service of creating and developing concepts and specifications that optimize the function,
value, and appearance of products and systems for the mutual benefit of both user and manufacturer. Industrial designers, with heir wide range of interests and general ist outlook in an age of specialization,
${ }^{1}$ A total of seventy-seven hours of electives must be part artist, part businessman, and included in the curriculum in building construci part engineer.
and, with the advice of faculty counselors, the industrial designer's work touches should be selected to include the following categories. These categories will satisfy the curriculum requirements of the College of Architecture in the humanities and social sciences, additional professional requirem of the building construction program and wis allow a degree of latitude for the student to pursue individual interests.
Humanities: nine credit hours are to be voted to English literature courses to voted to English literature courses or to propriate modern language courses at the 3
level or above. Note that the architectural his level or above. Note that the architectural hiss sequence will
Social Sciences: eighteen credit hours, in ing at least one course in each of sociology political science, history and psychology. 2000 will apply 2000 will apply.
General Electives: of the remaining fifty-three hours, twenty-four hours must be selected the list of approved professional electives int option chosen by the student. Military training ROTC and advanced military are case bas more than fifteen credit hours of elected, no tives may be used for this purpose or will be credited toward the requirements for a will be ${ }^{2}$ See the section, "Curricura and Coursesd Instruction," Department of Physical Educatro Instruction," Department of Physical Educatu
and Recreation, for freshman physical educail requirements for both men and women. (The College of Architecture will accept only the lof equired hours of P.E. toward meeting the re quirements for a degree).
of our lives in the form of home furnishings, transportation, appliances, recreational equipment, and a myriad of other consumer and industrial products and services. While giving form to the efforts of industry, the designer is at the same ime a consumer advocate, providing the umanizing link between technology and umer. rounded course of study with early emphais on basic design. Projects stress realisic design situations; the program encourages students to develop a diverse ackground in order to expand individual alents and respond to changing opportuniies in the field. Most faculty members are practicing designers with extensive experience in the field.
Grade averages in design courses are checked at the end of each year-group of three courses (ID 2001-2-3, etc.). A student may not enter a more advanced group until his or her record in the previous group equals 2.0 or better. All work executed in the College becomes the property of the College and will be retained or returned at the discretion of the faculty. The faculty also reserves the right to refuse credit for
any project executed outside the precincts for a degree).
of the College or otherwise executed without proper coordination with the instructor.
Twelve hours of only free electives taken on pass/fail basis may be applied toward fulfilling requirements for the B.S.I.D. degree. Math 1710 does not count toward fulfilling any of the degree requirements.

Freshman Year
Course 1st Q. 2nd Q. 3rd Q. ARCH 1001-2-3
Design
Fundamentals $\quad 1-12-5 \quad 1-12-5 \quad 1-12-5$
$\begin{array}{llrr}\text { Math 1307-8-9 } \\ \text { Calculus I, II, III } & 5-0-5 & 5-0-5 & 5-0-5\end{array}$
Eng 1001-2-3
English
Electives ${ }^{1}$
History of Art
or Arch.
Electives ${ }^{2}$
Physical Education $\quad \frac{2-2-2}{0} \quad \frac{0-4-1}{0-4-1}$

Sophomore Year
Course 1st Q. 2nd Q. 3rd Q.
Course
ID 2001-2-3
$\begin{array}{llll}\text { Industrial Design } & 1-12-5 \quad 1-12-5 \quad 1-12-5\end{array}$
ID 2301-2
Materials and
Processes $\quad 1-3-2 \quad 1-3-2$
ID 1263
History of
Industrial Design 3-0-3
Elective
Visual
Communications
(Drawing)
...... 0-6-2
PHYS 2111-2-3
Elementary
Physics
ESM 3701-2
Statics, Strength
of Materials

ECON 2000

Microeconomics

ctives ${ }^{3}$			
History or			
Philosophy of			
Science and			
Technology	3-0-3		
Electives			
Sociology	3-0-3		
Totals	12-15-17	12-15-17	11-18-17
Junior Year			
Course	1st Q.	2nd Q.	$3 \mathrm{rd} Q$.
ID 3001-2-3			
Industrial Design	1-12-5	1-12-5	1-12-5
ID 3301-2-3			
Materials \&			
Processes	1-3-2	1-3-2	1-3-2
PSY 3303			
General			
Psychology A	3-0-3		
Electives			
Visual			
Communications			
(Photography)	0-6-2		
Electives ${ }^{4}$			
Human Factors		3-0-3	3-0-3
Electives ${ }^{5}$			
Social Sciences		3-0-3	3-0-3
Electives ${ }^{6}$			
English or Modern			
Language	3-0-3	3-0-3	3-0-3
Electives ${ }^{7}$			
Visual			
Communications	……		2-0-2
Electives ${ }^{\text {8 }}$	2-0-2		
Totals	8-21-17	11-15-16	13-15-18
Senior Year			
Course	1st Q.	2nd Q.	3 rd Q
ID 4101			
Industrial Design	1-12-5		
ID 4002-3			
Industrial Design	1-18-8	1-18-8
ID 4451			
Professional			
Practice of			
Industrial Design	3-0-3		
MGT 3300			
Marketing	3-0-3	
Elective			
Management	3-0-3	

Electives ${ }^{8}$ Totals

Graduate Programs Architecture

The graduate architecture program lea to the professional Master of Architec degree, accredited by the National Archit tural Accrediting Board. The program ain to be responsive to significant shifts tak ing place both in the discipline and in th profession Its major objectives are: to pr thorough knowledge of the signific skills, theories, and methods related to skills, theories, and methods related to design and production of architecture a to insure that there is a direct relations gage the leading questions of the time whatever aspect of architecture is chose and to allow an individual to construct program of study unique to his or her abi y and desire for understanding.
The program has four areas of study
${ }^{1}$ Nine hours from ARCH 4247-8-9 History of Ar II, III or ARCH 1201-2-3 History of Architectu , II, III, including one course each from Art or ARCH I, Art or ARCH II, and Art or ARCH ${ }^{2}$ Physical education electives: See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshm physical education requirements for both men and women. (The College of Architecture wil accept only the four required hours of P.E. Howard meeting the requirements for a degree HIST $028,3015,3016,3030,3037-8-9,40$ 4016 , or PST 1127 or consent of program. ARCH 4751, ISYE 3010, ISYE 3113, ISYE 3115, PSY 4409, PSY 4751, PSY 4756, or consent of program
See information for undergraduate students or Georgia law regarding Constitution and H ory Examinations.
${ }^{6}$ Courses must be taken at the 2000 level or above.
Any visual communications courses listed unc College of Architecture.
General and technical electives-eleven free electives hours may include six hours credit to bours are courses, twelve technical elective hours are to be chosen from the departmenta list and may include nine hours of advanced ROTC. Those enrolling in ROTC must sched appropriate ROTC courses in the freshman a sophomore years.
theories and methods in architecture) urban design, c) architecture and be avior, and d) energy issues in architecure technology. The College offers a joint degree program in urban design and city lanning. Students completing this proram receive both the Master of Architeclure and the Master of City Planning
legrees. Programs of study between archicture and other related fields, e.g manement, can be written. These programs, ter approval by the faculty, can lead to ther joint degrees. A summer school is reld annually in London at the Architecre Association School.
The College has established an active rchitectural research program. Work perormed in this program has earned internaional reputation in several areas: accessi bility for the pedestrian and the handicapped, post-occupancy evaluation, and studies of energy related to buildings. To limited degree, special projects can be arranged within the research program fo redit, and a limited number of research issistantships are available each year. The a center for the National College is also the center for the Nationa Park Service Management Inventory Pro-
ram in which all buildings administered the Park Service are being documented There are three different curricula arngements:
The Two-Year Program for those holding a four year bachelor's degree with a major in architecture
The extended degree for those holding degrees in fields other than architecture The One-Year Program for those hold ing either a bachelor's degree in archi tecture from a five-year accredited pro gram or for those holding a master's degree in architecture who wish to do specialized post-graduate study.

The Two-Year Program

The program is structured for persons hold ing a four-year degree with a major in architecture from a school offering an accredited professional degree in architecture. Students having appropriate concentration in architecture in their undergraduate studies can expect to complete this program in two years. A minimum concentration study program has the following requirements:

Concentration course credits 12 Concentration studio credits 12 n studio credits .12
.18 Thesis credits . .18
Additional required courses 12 Electives Total . .90

Extended Degree Program

Students admitted to the extended degree program in architecture follow a special basic program for approximately two years The program is composed of course work in architectural design, architectural history, planning, mechanics, structures, and building components. In the last two years, these students join graduate students who hold an undergraduate degree in architecture.

The previous course of study is taken into account in developing an individual's program. The program assumes that a student's undergraduate work has included a year of calculus for engineers and a year of physics.

The One-Year Program Persons holding a first professional degree in architecture (Bachelor of Architecture, Master of Architecture, or equivalent) from an accredited school of architecture usually finish the program during one aca demic year (fifty credit hours). As with the two-year program, the course work is developed within the major study areas outlined above.

City Planning

The graduate City Planning program educates those students whose ultimate goal is the creation of more livable urban environments. Founded in 1951, it is one of the oldest professional planning programs in the United States, with nearly five hundred alumni. Graduates are employed in both the public and private sectors, at all levels of government, by banks, real estate and development companies, utilities, and private corporations. The program is fully recognized by the American Institute of Certified Planners.
Approximately half of the program consists of required courses, called the core.

The core is composed of three substantive streams: urban, regional, locational, and development economics and policy; planning theory and process including decision analysis, forecasting, planning and policymaking processes, risk analysis, implementation, and history and theory of the profession itself; and planning methods, including data analysis, mainframe and micro-computing, descriptive and inferential statistics, micro-economic analytic techniques, modeling, and planning intelligence and information systems.
The core is largely contained within the student's first year; in the second year he or she chooses among several areas of specialization. Examples of these special ties include transportation planning, urban design and physical planning, development planning and real estate, environmental and energy planning, and neighborhood and community development planning
Two types of degree programs are available for students interested in the fields of urban and regional planning: the two-year professional Master of City Planning degree (recognized by the American Institute of Certified Planners for membership purposes) and the joint programs described below.

The two-year curriculum requires, for most students, five quarters of course work and a seventeen-credit (one quarter) thesis. Students are allowed to substitute four courses in their concentration for the thesis and write a six-credit thesis option paper. An approved internship is required of those students with no previous planning work experience.
The City Planning program maintains joint degree programs with three other academic units: urban design in architecture at Georgia Tech, transportation in civil engineering at Georgia Tech, and environmental design in landscape architecture at the University of Georgia. A description which illustrates the urban design joint degree program follows. A student can structure his or her program so that required courses taken in one program can serve as elective credit in the other, thus allowing the student to receive two master's degrees in less time than the two would take to complete if enrolled separately. In addition
to these three joint degree programs, p ning maintains communications with it programs in real estate at Georgia S University, where a certificate in real tate can be obtained, and with public ministration at the University of Georgi Programs of study can coordinate offe: ings in these two areas.
The College offers a joint degree prog in urban design as a cooperative effion between the Architecture and City Plan ning programs. Students completing program receive both the Master of Ari tecture and the Master of City Planning degrees. The program requires a minimum of 100 hours (two years) for those who hold the Bachelor of Architecture gree and 134 hours (two and two-third years) for those who hold the Bachelor Science degree in Architecture. Studens must be admitted simultaneously to bot graduate programs.

Doctoral Program

The Doctor of Philosophy is an advanow degree directed towards proficiency in in pendent scholarly work in Architecture a City Planning. The program includes course work in the nature of philosophy inquiry, additional specialized work in the area of a doctoral dissertation and in on or more other areas, competence in ato eign language, the satisfactory completio of a comprehensive examination, and ar independent research dissertation. Fort ther details of the program, contact the Director of the Doctoral Program, Colles: of Architecture, Georgia Institute of Tech nology, Atlanta, Georgia 30332.

Courses of Instruction ARCHITECTURE

ARCH 1001-2-3. Design Fundamentals I, $l l$ 1-12-5 each.
Introductory studies in visual and structura expression emphasizing the processes of pro lem identification, design method, and communication.
ARCH 1201-2-3. History of Architecture I, 3-0-3 each.
A study of man's architectural heritage from the beginning of recorded history to the prest day. Open to all freshmen

CH 2001-2-3. Architectural Design I, II, III 12-5 each. Prerequisite: ARCH 1003. Coquisite: ARCH 2301-2-3 respectively. Design of simple buildings emphasizing chnical subjects in corequisite courses.
RCH 2301-2-3. Building Anatomy I, II, III -0.3 each
introduction to building frames, components nd construction techniques, requirements and ign of climate control systems, sound and hting control.

ARCH 2361-2

-2 each.

Lecture and laboratory experiments on the roperties of color and its use in design.
RRCH 3001-2-3. Architectural Design I, II, III -12-5 each. Prerequisite: ARCH 2003, 2303. Corequisite: ARCH 3401-21-41, respectively. Site planning, community and urban design. esign of complex facilities, in association with requisite courses.

ARCH 3201. History of Ancient Architecture 3-0.3. Prerequisite: ARCH 1201-2-3 or consent of the college.
Historical survey of the architecture of antiquity om prehistoric times through the second cenury A.D. Emphasizes the architectural traditions classical antiquity.
ARCH 3202. History of Medieval Architecture 0-3. Prerequisite: ARCH 1201-2-3 or consent the college.
Historical survey of architecture in Medieval Europe including the Early Christian, Byzantine, Dark Ages, Romanesque, and Gothic eras.
ARCH 3203. History of Renaissance and Mannerist Architecture 1 1-0-3. Prerequisite: ARCH 1201-2-3 or consent of the college.
Historical survey of European architecture in the Renaissance and Mannerist periods.
ARCH 3204. History of Baroque and Rococo Architecture
${ }_{3-0-3}$. Prerequisite: ARCH 1201-2-3 or consent of the college.
Historical survey of European architecture during the seventeenth and eighteenth centuries.

ARCH 3205. The Architect and Society

3-0.3. Prerequisite: ARCH 1201-2-3 or consent of the college.
The role of the architect in society from the Classical Greek period to the twentieth century.

ARCH 3321-2-3. Structures and Material

 I, II, III4.3-5 each. Prerequisite for ARCH 3321: ARCH 2301, ESM 3702; prerequisite for ARCH 3322 and 3323: ARCH 3321.

Wood, masonry, light-steel frames, steel einforced-concrete, integration of steel and concrete, indeterminant structures. Design, application, specification, and testing of components.

ARCH 3401-21-41. Urban Planning, Facilities Planning, Building Economics
3-0-3 each.
Survey and historic background of urban planning in the United States; criteria for design and evaluation of buildings; economics of building development, construction and operation.

ARCH 3811-2. Special Topics-Visual

 Communications0-3-1 each.
Introductory studio work in drawing and painting, sculpture, and three-dimensional concepts.

ARCH 3815-6. Special Topics-Visua

Communications
0-6-2 each.
introductory studio work in drawing and painting, sculpture, and three-dimensional concepts.

ARCH 3911-2-3-4. Special Problems-Visual

 Communications0-3-1 to 0-15-5.
Introductory studio work in: (1) drawing and painting, (2) sculpture and three-dimensional concepts, (3) photography, (4) graphic design and rendering.
ARCH 4001. Architectural Design I
1-12-5. Prerequisite: ARCH 3003.
1-12-5. Prerequisite: ARCH 3003 . Architectural design synthe
ARCH 4002-3. Architectural Design II, III
1-12-5 each. Prerequisite: ARCH 4001.
Terminal project. Selection of a facility for design by the individual student, with approval by the faculty. Research and programming for terminal project. Schematic and final design and preparation of design documents.
ARCH 4204. History of Architecture in England I
3-0-3. Prerequisite: ARCH 1201-2-3 or consent of the college.

Historical survey of architecture in England from Roman times to 1715 . Focus is on cathedrals and on domestic architecture from castles and fortified manor houses to Tudor, Elizabethan, Jacobean, and Baroque country houses.

ARCH 4205. History of Architecture in

England II
3-0-3. Prerequisite: ARCH 1201-2-3 or consent of the college.
Historical survey of architecture in England from Wren to the present, concentrating on the eighteenth and nineteenth centuries.

ARCH 4206. History of Architecture

in the U.S.

3-0-3. Prerequisite: ARCH 1201-2-3 or consent of the college.
Historical survey of architecture in America from colonial times to the present

ARCH 4207. History of Modern Architecture I: Nineteenth Century
3-0-3. Prerequisite: ARCH 1201-2-3 or consen the college.
Historical survey of architecture in the nineteenth century focusing upon currents of romantiism, classicism, eclecticism, vernacular styles, and the advances in engineering and building technology.
ARCH 4208. History of Modern Architecture II: 1890-1950
3-0-3. Prerequisite: ARCH 1201-2-3 or consent college.
Historical survey of architecture during the early modern movement. Focuses upon the old masters (Gropius, Wright, Le Corbusier and Mies van der Rohe) and introduces such modern movements as Art Nouveau, DiStijl, Interna
tional Style, and Art Deco.

ARCH 4209. History of Modern Architecture ili: 1945-present
3-0-3. Prerequisite: ARCH 1201-2-3 or consent of college
Historical survey of architecture since World War II, focusing upon the influence of the old masters of modern architecture upon architects active after 1945. Introduces such trends as the Miesian Aesthetic, New Formalism and New Brutalism, and Post-Modernism.

ARCH 4247-8-9. History of Art I, II, III

3-0-3 each
A survey in the history of artistic manifestations from primitive times to our own day. First quarter of sequence: prehistoric through Roman second quarter: Early Christian through Baroque third quarter: nineteenth and twentieth centuries
ARCH 4304. Energy Flow in a Systems Context 3-0-3. Prerequisite: senior standing or consent of the college.

The study of energy and energy flow in a systems context.

ARCH 4751-2. Psychology of Environmental Design I, II
3-3-4 each. Prerequisite: consent of college. Course listing and description found under PSY 4751-2.
ARCH 4811-2. Special Topics-Visual Communications
0-3-1 each.
Intermediate studio work in drawing and painting, sculpture, and three-dimensional concepts.

ARCH 4815-6. Special Topics-Visual Communications
0-6-2 each
Intermediate studio work in drawing an ing, sculpture, and three-dimensional conce

Theor
Theory
3-0-3 each. Prerequisite: consent of coll Topics in advanced areas of history and theory of architecture.
ARCH 4851-2-3. Special Topics 3-0-3 each.
ARCH 4911-2-3-4. Special Problems-Via Communications
$0-3-1$ to 0-15-5. Prerequisite: ARCH 3911-2-3. Intern (2) sculpture wand (1) drawing concepts, (3) photography (4) graphic dena concepts, (3) photography, (4) graphic desig and rendering
ARCH 4915-6-7-8. Special Problems-Visu Communications
Credit to be arranged. Prerequisite: consent follege.
Self-directed studies in visual communica. tions arts.
ARCH 4941-2-3-4-5. Special Problems Credit to be arranged.

ARCH 4951-2-3-4. Special Problems Credit to be arranged.
ARCH 6012-3. Architectural Design Studi -15-6.
Advanced problems in architectural design Studio exercises focus on the applications, ries of typology, symbolic ordering, and urba tructure using advanced methods of visua epresentation.
ARCH 6022-3. Urban Design Studio I, II 1-15-6.
Applications of urban design and planning heory and methods to design issues in the contemporary city. Emphasis on the integrati of knowledge from related course work.

ARCH 6042-3. Architectural Technology Studio I, II
1-15-6.
Investigating the influence on building de of selected subjects in architectural technol Subjects include building physics, material formance, design process, and construction methods.
ARCH 6062-3. Behavior in Architecture Studio I, II
1-15-6.
Advanced problems in behavior focusing application of behavioral knowledge to arch
ural design, moving from general principles to specific applications.
ARCH 6201. Contemporary Theory in Architecture
Review and critical evaluation of current archiectural design theories.
ARCH 6211. Architectural Design Methods 3-0.3.
Examination of processes and methods of architectural design within the framework of science and the arts including a variety of historial and contemporary positions.
ARCH 6213. Case Studies in Commercial Architecture I
-0.3.
Case studies of the history, development, and ign of selected types of commercial architec-

ARCH 6214. Case Studies in Commercial Architecture II
3-0.3.
Case studies of the history, development, and design of mixed-use developments in commercial architecture.
ARCH 6221. Urban Design Theory 3.0-3.

Evolution of urban design theory from the
Renaissance city to the present, particularly the dialectic of utopian thought and actual historical evidence of city form

ARCH 6222. Readings in Urban Theory

 3-0-3.Investigations of urban design theory and pracice during the 19th and 20th century. Emphasis on formal, scientific, social and economic interpretations of the city.
ARCH 6223. Studies in Landscape Architecture
3.0-3.

History of the design of the landscape and the garden from Ancient Egypt, Persia, and the Orient to the present
ARCH 6262. Readings in Architectural History 3-0-3.
Presentation and discussion of topics of current interest and specialized scope, utilizing the special resources of the architecture library and current architectural history publications.

ARCH 6263. Housing and Culture

 3-0-3.Anthropological, psychological and architectur al theories of house form and culture.

ARCH 6264. Intentions in Architectural History 3-0-3.
Readings on the meaning of architecture, the nature of architectural history, and the varied interpretations of architecture evidenced in architectural historiography.

ARCH 6341. Energy in Architectur

 3-3-4.An investigation of energy requirements in buildings and the use of interactive computer programs to analyze and minimize energy usage.

ARCH 6342. Building Energy Analysis

 3-3-4.Appropriate techniques, strategies, and methods for predicting and evaluating building energy performance. Lab exercises emphasize the relationship between architectural design de sions and predicted building performance.

A-0-3.
Design requirements for noise control and acceptable room acoustics. Practical design prob lems, materials selection, and calculation of sound propagation parameters.
ARCH 6401. Landscape Resource Analysis 3-0-3. Prerequisite: graduate standing
Analysis and design methods for solving large scale or complex site development problems in both the public and private sectors.
ARCH 6402. Introduction to the Preservation and Conservation of Cultural Resource and Conservation of Cultural Resou
Review of preservation and conservation as social attitudes, as public policy concerns, and as discrete areas of knowledge Emphasis will be given to historic preservation as a specialty within the general context of the built environwithin the general context of the buit environment.

ARCH 6403. Preservation/Conservation Methods
3-0-3.
Contemporary methods and processes of historic preservation considering technical, eco nomic, marketing, and aesthetic problems of assessing, restoring, and adapting historical buildings for alternative occupancies.
ARCH 6406. Urban Topography 3-0-3.

Description and interpretation of the contemporary city as a complex phenomena of transformaions in physical form, architectural and social history, economic, and social values.
ARCH 6422. Transportation Architecture 3-0-3.
The transportation terminal as a building type and urban institution, including historical devel-
opment, technological change, economic change, and architectural expression in the city.
ARCH 6441. Housing Economics
3-0-3. Prerequisite: graduate standing
Economics of the housing delivery process in the private sector. Planning, developmental marketing, and management of housing.
ARCH 6442. Construction Cost and Valuation 3-0-3. Prerequisite: graduate standing

Cost and valuation approaches to building construction, project development, and design from an economic valuation viewpoint. Incomeproducing properties are studied in depth.

ARCH 6444. Building Life Cycle Costing 3-0-3.
The concepts, techniques, and applications of life cycle costing as a basis for evaluating architectural performance and design decisions.
ARCH 6445. Economics of Bullding Development
3-3-4.
An investigation of the architectural implica tions of the construction industries financial pro cedures, practices, and requirements.
ARCH 6446. Urban Development Methods 3-0-3.
Investigations of urban development process and roles of the architect and planner in shaping the contemporary city. Methods of financial analysis, programming, and project packaging

ARCH 6451. Professional Practice of
 \section*{Architecture}

3-0-3. Prerequisite: graduate standing
Principles of architectural office organization and project management, the legal framework of architectural practice and contracts, and the techniques of contract administration.
ARCH 6461. Studies in Environment and Behavio
An examination of interactions between people and the designed environment, focusing on how various settings affect human safety, satisfaction, productivity, and performance.

ARCH 6462. Interdisciplinary Concepts and

 Values in Architecture3-0-3.
Rationalism, empiricism, structuralism, instrumentalism, and other frameworks prevailing in the behavioral and social sciences are assessed with regard to their implications for architectural design.

ARCH 6463. Subcultural Issues in Architect ARCH 7223. Language of the City
-0-3.
Consideration of ways cultural experience ${ }^{3.0-3}$ hysical ability, social class, and other iss influence the users reactions to and use of igned environments.
ARCH 6464. Post Occupancy Evaluatio 3-0-3.
Evaluations of users response to and saits tion with designed environments are develop A topical study of the man-made American using design-oriented research methods and ar landscape with emphasis on the theme of pastoytic techniques.

ARCH 7000. Thesis

ARCH

Advanced problems in architectural Studio exercises emphasize the experimentid development and application of theories and methods to complex problems.

ARCH 7021. Urban Design Studio

1-15-6.

Advanced design prob
rary city formulated on theoretical positions cluding considerations of utopian positions and typology, historical precedent, civic desi and contexturalism.
ARCH 7041. Architectural Technology S 1-15-6.

Experimental application in architectural nology in the area of building physics, mat methods.
ARCH 7061. Behavior in Architecture Studi 1-15-6.

Exploring new boundaries in the application of behavioral information to architectural desig
ARCH 7201. Readings in Architectural Theo 3-0-3.
Detailed critical analysis of selected works architectural theory.
ARCH 7202. Architectural Criticism 3-0-3.
An examination of theories of criticism in architecture, historiography film, and literatur and their application to subjects in architectur and urban design.
ARCH 7221. Origin and Evolution of Citie 3-0-3.
Morphological analysis of urban physical se tlement patterns. Ecological, social, economic and cultural characteristics as determinants urban form and structure from prehistory to present.

$3-0-3$.

Critical analysis of contemporary theories in representation of architecture and the city iterature, graphic arts, and film.

ARCH 7224. Studies of the American

 andscape alism in American culture.ARCH 7441. Urban Design Workshop I
0.18-6.

Advanced problems in urban design and deelopment in the city of Atlanta. Integration of ban design theory and methods, economic velopment, political negotiation, and comunication.
ARCH 7442. Urban Design Workshop II 0-9-3.
A continuation of projects begun in ARCH
7441.

ARCH 7461. Behavioral Systems in Architecture
3-0.3.
An examination of models that present direct relationships between the physical organization of spaces and patterns of individual or collective behavior.
ARCH 8143-53-63-73-83-93. Special Topics 3.0.3 each.

ARCH 8151-2-4-5-6. Special Topics
$1 \cdot 0-1$ through $6-0-6$, respectively.
ARCH 8213. Special Topics - Urban Design 3-0-3.
ARCH 8223. Special Topics - History \& Theory 3-0.3.
ARCH 8233. Special Topics - Architectural Technology
3.0-3.

ARCH 8243. Special Topics - Architecture \& Behavior
3-0-3.
ARCH 8253. Special Topics - Architectural Research
3-0-3.
ARCH 8550-1-2-3-4-5-6. Special Problems Credit to be arranged

BUILDING CONSTRUCTION

BC 1851. Building Construction Seminar 0-3-1.

Introduction to the construction industry. Sources, properties and uses of construction materials.

BC 2001. Design of Building Systems I 1-12-5. Prerequisites: MATH 1309, BC 1851 Corequisites: ARCH 2301, PHYS 2111.
Study and analysis of job planning required, work methods, materials, systems, and equipment employed on light construction projects which include residential and small commercial buildings.
BC 2002. Design of Building Systems II 1-12-5. Prerequisite: BC 2001. Corequisite: ARCH 2303.
Continuation of BC 2001 with emphasis on medium-sized commercial and industrial projects.
BC 2003. Design of Building Systems III 1-12-5. Prerequisite: BC 2002. Corequisite: ARCH 2303.
Classification of work and quantity survey techniques. Analysis and determination of costs of construction operations including preparation of bid proposals.
BC 3301. Construction Practice I
3-0-3. Prerequisite: BC 2003
Principles, methods, organizations, and problems related to construction management.
BC 3302. Construction Practice II
3-0-3. Prerequisites: BC 3301, MGT 3260.
Management contracts, bonds, insurance, bid documents, and legal aspects of construction management.
BC 3303. Construction Practice III
3-0-3. Prerequisites: BC 3302, MGT 3700.
Financial consideration and cash flow requirements for construction projects and organizations.
BC 3441. Building Production
3-0-3. Prerequisite: BC 2003
Methods analysis and human factors in construction project management. Processes by which building facilities are produced and delivered.

BC 4301. Construction Systems 3-0-3.

Review and examination of major componen building systems in use today. Discussion of anticipated future requirements for systems and potential impacts on the construction process.

3-0-3
Fundamentals underlying the economics and political determinants of land use, ecological considerations, and the techniques for implementing the development of land.
BC 4442. Value Engineering in Construction 3-0-3.
Analysis of material, equipment, facilities, procedures, and supplies to achieve lowest possible cost consistent with performance requirements to attain optimum quality in building
BC 4443. Industrial and Construction Safety 3-0-3.

The 1970 Occupational Safety and Health Act as it applies to the building contractor to provide safe working conditions and to the designer to provide safety in buildings.

BC 4444. Real Estate Investment

3-0-3.
Fundamentals underlying the economic structure of physical development. A study of the matrix of development processes and investment decisions.
BC 4446. Construction Management 3-0-3.
Management of construction processes including the pre-design, design, and construction phases. Services and methods used by archiperforming construction managent consultants performing construction management
BC 4951-2-3. Special Problems in
Construction
Credit to be arranged. Prerequisite: senior standing and special permission.
Special problems in construction methods, schedules, or management for students in advanced architectural design or construction projects. Research in innovative methods, processes, systems of construction.

CITY PLANNING

CP 1100. Introduction to City Planning

3-0-3. Fall quarter

An orientation to urban and regional planning including organization, functions, techniques, and methods of implementation
CP 4801-02-03-04-05-06-07-08-09-10
Special Topics
3-0-3 each.
CP 6010. Land Use Planning
3-0-3.
Factors determining land use, location, and interrelationships of various land uses, land use
tudies and plan preparation, implementa land use policies and plans.
CP 6020, Planning Legislation and Reguld 3-0-3.
Theory and use of eminent domain, tax and police powers, enabling acts, charters, official maps, codes, restrictive covenants, trolled highway access legislation.
CP 6030. Planning Legislation and Regula 3-0-3
An intensive study of zoning-its history, p ciples, uses, and limitations through review
significant court cases and significant court cases and subdivision regula $3 \cdot 0 \cdot 3$ tions.

CP 60
0-3. Housing and Urban Renewal
Urb
rban renewal problems, programs and newal areas, planning adm, identification of 1 financing, and real estate problems.
CP 6070. Public Works Planning 3-0-3.
Planned change in context of public works planning and development, plan implementa population analysis, public participation, con value assessment and information transfer.
CP 6150. Environmental Aspects of City Regional Planning II
3-0-3.
Field analysis of noise, air, water, and spaf pollution. Students identify, evaluate, and ap city planning solutions to environmental problen
CP 6160. Environmental Noise Managemen 3-0-3.
Management and administration of environ. mental or community-generated noise, analy of noise impact, noise management instrum tation, rating methods. Evaluation of laws and management programs.
CP 6180. Urban Spatial Management 3-0-3. Prerequisites: graduate standing or co Examinesuctor.
Examines city as three-dimensional resour aerial, ground, subterranean land uses. City pla ning methods of multiple use, joint use, and daptive use are discussed.
CP 6220. Design of Sites and Cities 1-6-3. Prerequisites: graduate standing or co sent of instructor.
Explores methods of analyzing large-scale lan scapes for complex development programs in public and private sectors. Case studies are used to illustrate application of such methods
CP 6230. Problems in Community Plannin 1-12-5. Prerequisites: graduate standing or con sent of instructor.

Preparation of a series of sectoral plans for existing urban area. Site visits and discus with planners, citizens, and politicians of sues and plans.
6240. Problems in Community Planning

$2-5$. Prerequisites: CP 6230 or consent of

 epartment.An in-depth study of a specific urban or regionplanning problem prepared for a client agenor citizens organization.
6270. Economic Analysis of Urban Areas 3.0.3.

An examination of methods and techniques for analyzing the economic base of urban communities, special emphasis on problems of handling population, employment, and income data.
CP 6280. State and Local Finance 3-0-3.
Program design, analysis, operation, evaluation, expenditure and revenue estimates, capital, and operating budgets.
CP 6300. Theory and History of Urban Planning
3-0.3. Prerequisite: graduate standing or conent of instructor
Introduction to history of planning profession; examination of theories of planning, comprehensiveness, citizen participation, professionalism, public interest, and planning roles and practices CP 6320. Urban Fiscal and Budget Systems 3.0-3. Prerequisites: graduate standing or consent of instructor
Survey of public sector fiscal planning issuesmphasis on current and capital budgeting, debt nancing, public expenditures and revenues, and nalysis techniques
CP 6330. Planning in the Intergovernmental System
$3-0-3$. Prerequisites: graduate standing or consent of instructor.
The nature of the American intergovernmental system, describes how it is managed today and conveys techniques for implementing plans within that system.

CP 63

3-0-3.
Problems of planning with selected subgroups in urban societies; minorities, the aged, residents of the inner city, suburbanites. Impact of anvironment on individuals and families.

CP 6400. Principles of Environmental an

 Energy Planning$3 \cdot 0-3$. Prerequisites: graduate standing or consent of instructor.

Identification and analysis of air, water, noise and spatial pollution; energy management and its influence on urban development. Environmen tal controls and management programs evaluated

CP 6410. Principles of Real Estate, Land

 Development, and Private Sector Planning $3-0-3$. Prerequisites: graduate standing or consent of instructorLocation of cities and land uses within cities; and development; market analysis and economic feasibility studies; impact of changing tax laws on private sector developers.

CP 6420. Principles of Housing,
Neighborhoods, and Community Development 3-0-3. Prerequisites: senior standing
Principles of planning for mature cities. Analyses of underlying causes of urban growth and maturity. Evaluation of national, regional, and ocal policies to effect change.
CP 6430. Principles of Social Policy Planning 3-0-3. Prerequisites: graduate standing or consent of instructor.
Introduction to principles of social policy planning. Includes an examination of the interaction among economic, political, and social change and social policy planning.
CP 6440. Principles of Transportation Planning 3-0-3. Prerequisites: graduate standing or permission of instructor.
Introduction to theory, techniques and contemporary issues in urban transportation planning Analysis of a practical transportation problem.
CP 6450. Introductory Quantitative Methods in Urban and Regional Planning
$3-0-3$. Prerequisites: graduate standing or consent of instructor.
An introduction to various information collection, organization, analysis, and communication techniques which are essential in professional planning practice.
CP 6460. Intermediate Quantitative Methods in Urban and Regional Planning
2-6-4. Prerequisites: CP 6450 or consent of the department.

Second of a three (3) course sequence with an emphasis on data analysis techniques relevant to planning theory and practice.
CP 6470. Advanced Quantitative Methods in Urban and Regional Planning
2-6-4. Prerequisites: CP 6460 or consent of department.

A continuation of CP 6460, with emphasis on computer applications.
CP 6500. History of Modern Cities $3-0-3$. Prerequisites: graduate standing or consent of the instructor.

Traces development of American city from colonial times to late 20th century. Documents changes in social, economic, and physical struc tures and institutions of urban America.
CP 6510. Growth Management 3-0-3. Prerequisites: CP 6030 or consent of the instructor.
Exposes and analyzes goals and objectives of selected local and state growth managemen techniques and multitude of federal land use policies.

CP 6520. Housing Economics and Policy $3-0-3$. Prerequisites: graduate standing or consent of instructor.

Detailed examination of operation of local housing markets and national, state, regional, and local policies intended to influence those markets.

CP 6530. The Practice of Urban Planning

3-0-3. Prerequisites: graduate standing.
Study of history of planning profession, ethical standards for practice, public/private sector office procedures, professional societies, and future directions for practice

Regins. Economic Aspects of Urban and

 Regional Planning IIntroduction to senior or graduate standing introduction to cash-flow and discounting tech niques. Micro-economics in project formulation and evaluation. Applications from welfare eco nomics, project analysis, cost allocation

CP 6754. Economic Aspects of Urban and Regional Planning II
3-0-3. Prerequisite: CP 6753.
Principles of resource allocation, benefit-cost analysis, urban and regional project formulation, justification, and application of computer simulation techniques to economic and resource allocation.

CP 7000. Master's Thesis

Credit to be arranged
A research problem in city planning, selected by the student in consultation with the graduate staff. Requires one full quarter of work as a minimum with technical direction available from
the graduate staff.
CP 8103-04-05-07-08. Special Topics 3-0-3 each.
CP 8106. Special Topics
2-0-2.
CP 8500-01-02-03-04. Special Problems Credit to be arranged.

INDUSTRIAL DESIGN
ID 1263. History of Design 3-0-3.
A history of design, technology, and innova-
ion, with emphasis on their influence in cultures. Open to all students
ID 2001-2-3. Industrial Design I, II, III
1-12-5 each. Corequisites: ID 2301-2-3.
Elements of industrial design, stress on o sign procedures and problem solving.
ID 2301-2-3. Materials and Process Design I, II, III
1-3-2 each.
Use of materials and processes designers use to communicate their ideas. Graphic tech niques. Use of hand and power tools with woo metals, and plastics. Modelmaking techniqu Use of working drawings.

ID 3001-2-3. Industrial Design I, II, III 1-12-5 each. Prerequisite: ID 2003. Corequis ID 3301-2-3.
Lettering, typography, and package desig well as industrial design problems.
ID 3301-2-3. Materials and Process Design I, II, III
Production methods and their relation to d sign. Includes the study of major mass production techniques involved in manufacturing products and packaging through use of lectures research, and field trips to production facilities
ID 3911. Special Problems-Visual Communications-Industrial Design Variable.

ID 4002-3. Industrial Design II, III
1-18-8 each. Prerequisite: ID 3003
Advanced industrial design problems, accer tuating individual work in special areas of concentration
ID 4101. Industrial Design I
1-12-5. Prerequisite: ID 3003.
Product development-Advanced industrial de sign problems, emphasizing individual work in special areas of concentration.

ID 4451. Professional Practice of Industrial

 Design3-0-3. Prerequisite: None.
Principles of consulting and corporate design office organization and project management re lating to the practice of industrial design.
ID 4853. Special Topics-Industrial Design 3-0-3.

ID 4911. Special Problems-Visual Commun cations-Industrial Design
Credit to be arranged.
ID 4951-52-53. Special Problems-Industria Design
Credit to be arranged

College of
 Engineering

Dean-William M. Sangster; Associate Dean-W. Denney Freeston; Assistants to the Dean-Carolyn C. Chesnutt, Madelyne Watson; Director of Special Programs Carolyn C. Cannon.

General Information
The College of Engineering comprises ine degree-granting schools of instruction and research. The schools offer programs study and research leading to bachelor's, aster's, and doctoral degrees. Certain of e schools also offer programs in one or more subdisciplines or subspecialties. These degree offerings are summarized in an accompanying table.
The programs in engineering are designed to provide a fundamental understanding of the engineering sciences, which are based on mathematics and the natural sciences, of the basic concepts of the humanities and social sciences, and an understanding of the manner in which these elements are interwoven in engineering practice. Each curriculum provides onough flexibility through elective course opportunities to permit a certain amount of program individualism while meeting basic requirements.
Students who wish to study engineering but are undecided as to a specific engineering degree program may, for their treshman year, be classified as Undecided Engineering College (UEC) students and re ceive advisement from the Office of the Dean of Engineering. Course work for Undecided Engineering students will focus in the areas of mathematics, chemistry, physics, humanities, and social science, as does the first year course work for all engineering degree programs.

College of Engineering Degree Programs			
Aerospace Engineering	X	M	PhD
Ceramic Engineering	X	X	X
Chemical Engineering	X	X	X
Metallurgy		X	X
Civil Engineering	X	X	X
Environmental Engineering		X	X
Electrical Engineering	X	X	X
Engineering Science and Mechanics	X	X	X
Health Systems		X	
Industrial and Systems Engineering	X	X	X
Operations Research		X	X
Mechanical Engineering	X	X	X
Nuclear Engineering	X	X	X
Health Physics	X	X	X
Textile Engineering	X	X	X
Textile Chemistry	X	X	
Textiles	X	X	

Freshman Engineering Electives

Any of the following courses are acceptable for credit as freshman engineering electives in all curricula in engineering. EGR 1170, AE 1351, CERE 1010, CHE 1110, 1750, CE 1503, EE 1010, 1011, 1750, ESM 1101, 1750, HS 2011, ISYE 1010, ME 1110, 1750, NE 1100, TEX 1100.

Multidisciplinary Programs in Engineering

In addition to its degree programs, the College of Engineering provides opportuni ties for specialized study in engineering through its multidisciplinary certificate program offerings. Any student in good academic standing who is pursuing a degree in one of the participating schools of the Engineering College or a participating school from any of the other colleges may select elective courses and the subjects of specia problems to satisfy simultaneously both the requirements of his or her major degree program and those of a specialized multidisciplinary program. Upon graduation, the student receives both the degree in the major field of study and a certificate attesting to successful completion of the particular related multidisciplinary program.
The table on page 79 shows both currently available multidisciplinary program offerings and those that are in the planning stage (identified by asterisks), as well as the degree levels of the programs.

General Requirements of

Undergraduate

Multidisciplinary Programs
The specific design of the multidisciplinary program of any participating undergraduate student, while individualized, must meet certain general requirements as well as requirements that are specific to that multidisciplinary area. The general (minimum) undergraduate multidisciplinary requirements are: (1) the program must relate the student's major area to the given multidisciplinary area; (2) courses must be taken under more than one academic unit; (3) at least four courses and twelve credit hours (not required by name and number in the student's major) must be taken in a coherent program; (4) at least three of those courses and nine credit hours must be at the 3000 level or higher; (5) at least two of those courses and six credit hours must be outside the major field (crosslisted courses may be counted outside the student's major); (6) a grade of C or better must be earned in each course counting toward a multidisciplinary certificate.

General Requirements of Graduate Multidisciplinary Programs
The specific design of the multidiscipli program of any participating graduate s: dent, while individualized, must meet of tain general requirements as well as re quirements that are specific to that mutb disciplinary area. The general (minimum graduate multidisciplinary requirements the same as those listed above for the dergraduate programs, with the followin exceptions: (1) at least three of the coherent multidisciplinary program courses well as nine credit hours must be at the 6000 level or higher; (2) a grade of B better must be earned in each course col ing toward a multidisciplinary certificate students at the doctoral level must, on individual basis, meet additional requirements specified by the student's docto committee, consistent with a program yond the master's level whose objective to develop a doctoral level multidisciplina program.
Interested students may obtain detail information on the various undergraduat level and graduate-level multidisciplinan programs from the main office of the sch in which they are enrolled and through the Office of the Dean, College of Engineering.

Computer Integrated Manufacturing

 Systems ProgramA Computer Integrated Manufacturing Sy tems (CIMS) multidisciplinary program we developed during the past year. It award a certificate for study at the graduate lel of the integration of design, information and material processing, and managemen in manufacturing systems. Seven Schoods participate in the program: Aerospace Engineering, Chemical Engineering, Civil Engineering, Electrical Engineering, Indus trial and Systems Engineering, Informatio and Computer Science, and Mechanical Engineering. Two core courses, twentyfour hours of electives (eighteen under th thesis option), a seminar series, and pro. ect make up the certificate requirements. Financial support is available to highly qual. fied students in the form of Assistantships in CIMS. Industry interaction and unique laboratory opportunities are available in the program.

Multidisciplinary Programs

Multidisciplinary Program Area	Related Degree Levels		
Acoustical Engineering Bioengineering Computer Engineering	B	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \\ & \mathrm{M} \end{aligned}$	PhD PhD PhD
Computer Integrated Manufacturing Systems		M	PhD
Energy Engineering Engineering Design	B	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M}^{*} \end{aligned}$	$\begin{aligned} & \mathrm{PhD} \\ & \mathrm{PhD}^{*} \end{aligned}$
Environmental Studies Materials Engineering	B	$\begin{aligned} & \mathrm{M}^{*} \\ & \mathrm{M} \end{aligned}$	$\begin{aligned} & \hline \mathrm{PhD}^{\star} \\ & \mathrm{PhD} \end{aligned}$
Mineral Engineering Plastics Engineering	B	M M	$\begin{aligned} & \text { PhD } \\ & \text { PhD } \end{aligned}$

| Pulp and Paper Engineering | B | | |
| :--- | :--- | :--- | :--- | :--- |
| Structures Engineering | | M | PhD |

tructur Eng Eneering
$\mathrm{M}^{*} \mathrm{PhD}{ }^{*}$
ystems Engineering
$\mathrm{M}^{*} \mathrm{PhD}{ }^{*}$
Urban Engineering
B
$=$ Programs in Planning Stage

School of Aerospace Engineering

Daniel Guggenheim School of Aeronautics, Established in 1930
Director-Arnold L. Ducoffe; Associate Director and Regents' Professor-Robin B. Gray; Regents' Professors-Don P. Giddens, Warren C. Strahle, Ben T. Zinn; ProfessorsRobert L. Carlson, James I. Craig, Howard D. Edwards, Sathyanarayana V. Hanagud, John J. Harper, Wilfred H. Horton, James E. Hubbartt, Howard M. McMahon, G. Alvin Pierce, Edward W. Price, Lawrence W. Rehfield, James C. Wu; Associate Pro-fessors-Stanley C. Bailey, Spyridon G. Lekoudis, C. Virgil Smith, Jr; Assistant Professor-Jechiel I. Jagoda; Senior Research Engineers-Brady R. Daniel, Steve Kleinhaus, Eugene A. Powell, Ambur D. Reddy, Robert L. Roach, N. L. Sankar, Robert K. Sigman; Research Engineers II -N.M. Komerath, Ralph Latham, Wm. L. Meyer, N. Talukder, R. Walterick; Research Associates-Robert S. Albright, John Caudell, Harald Meyer.

General Information

The School of Aerospace Engineering prepares students at the bachelor's, master's, and doctoral levels for a career in vehicle engineering with primary emphasis on flight vehicles. The school is housed in three buildings having a floor space of 85,000 square feet, the majority of which is devoted to instructional and research laboratories.

Undergraduate Programs

The first two years focus on course work in the areas of chemistry, mathematics, physics, humanities, and social sciences. The third and fourth years emphasize aerospace disciplines and related engineering sciences. The undergraduate curriculum is designed to provide each student with a general background for either industry or graduate school at the end of industry or graduate school at the end of
four years. The program stresses both the four years. The program stresses both th
theoretical and experimental aspects of aerospace engineering.

A certain degree of specialization is available to undergraduate students through the proper choice of electives, certain substitutions for required courses, or a combination of both options, depending on the student's abilities and career objectives. These specialized disciplines are acoustics, aeroelasticity, aerospace vehicle design, bioengineering, experimentation and instrumentation, fluid dynamics of pollution, helicopters and V/STOL aircraft, propulsion, structural dynamics, structures, and supersonic and hypersonic vehicles.

A pre-med track is also available to undergraduate students. This program requires an additional academic year of chemistry and one academic year of biology. Students may substitute these courses for the electives and for certain required courses in the present curriculum.

Graduate Programs

The graduate programs at both the maser's and doctoral levels are flexible so that students may tailor their course and research work to individual career objectives. The following areas of specialty are available.

Aeroelasticity

Dynamic response and loads, flutter, servoaeroelastic instabilities and control, static aeroelastic instabilities and loading, unsteady aerodynamics-V/STOL and conventional aircraft, and vibrational characteristics of vehicles.

Fluid Mechanics

Atmospheric boundary layer flows, computational fluid dynamics, helicopter aerodynamics, laminar and turbulent flows, plasma and reacting gas dynamics, rarefied gas flows, statistical theory of turbulence, and V/STOL aircraft.

Propulsion

Combustion instability, external burning, propulsion system noise, solid rocket propellent research, and supersonic combustion

Structures

Buckling and postbuckling of structures, composites, elastic and inelastic stress analysis, fracture mechanics, fatigue behavior, structural reliability and statistical methods of structural analysis, vibration and dynamic stability of structural elements, wave propagation, and use of acoustic emission methods.

Urban and Societal Engineering

 Air pollution, biomechanics, fire research, and noise pollution.Facilities for each of the above academic areas are housed in the aerospace laboratories and include low speed, high speed, MHD, and low density wind tunnels; anechoic chamber; combustion chamber; combustion bomb; helicopter test stand; high and low temperature test machines; fatigue and creep machines; humidity chamber; environmental test chamber; analog and digital computers; data acquisition systems; fourier analyzers; scanning electron microscope and associated instrumentation, such as transducers, lasers, and tape recorders. These facilities are supported by extremely competent personnel and a wellequipped instrument lab and machine shop.

Multidisciplinary Programs

See table on page 79.

AE 4102
Selected Topics in the Analysis of Air craft Structures
AE 4110
Structures Lab 1-3-2
AE 4200

Vibration and Flutter	\ldots.	\ldots.	$3-0-3$
AE 4251			
Jet Propulsion	\ldots.	$4-0-4$	\ldots.

Jet Propulsio
AE 4350-1
Aerospace Engi-
neering Design
Project I, II
AE 4410
Vehicle Performance
AE 4500
Stability and Control 5-0-5
Electives ${ }^{3}$
Humanities/Social
Science/
Modern Language 3-0-3
Electives ${ }^{7}$
Free
3-0-3 $\quad 3-0-3 \quad 3-0-3$
Totals $\quad \frac{3-6-16}{14-6-16} \quad 14-6-16$
${ }^{1}$ See College of Engineering section in "Curricula and Courses of Instruction" for engineering electives. EE 1010 cannot be used.
${ }^{2} A$ " C " grade or better is required in each Math and Physics course.
${ }^{3}$ Eighteen credit hours in humanities and eighteen credit hours in social science are required for graduation. To satisfy these requirements, humanities and social science courses must be selected from the College of Engineering listings in "Information for Undergraduate Students." Courses taken in humanities and social sciences must be scheduled as letter grade courses ENGL 1001, 1002 plus three credit hours of English literature are required.
${ }^{4}$ These free elective courses may be taken at any time during a student's course of study. However, if six credit hours of basic ROTC are elected, ROTC should be scheduled the first quarter the student is enrolled.
${ }^{5}$ See "Curricula and Courses of Instruction." Department of Physical Education and Recreation, for freshman physical education requirements for both men and women.
${ }^{6}$ EE 1010 or ICS 1700 cannot be substituted. ${ }^{7}$ Free electives. Not more than nine credit hours of advanced ROTC may be applied toward the requirements for a degree.

Courses of Instruction

AE 1351. Introduction to Engineering 3-0-3.
Emphasizes creative imagination in engineering, rather than mathematics. The growth and behavior of biological systems are related to engineering problems

AE 1750. Introduction to Bioengineering 3-0-3.
Introduction to aspects of science and technology pertinent to bioengineering. Also taugh as EE 1750, ESM 1750 and ME 1750
AE 2101. Introduction to Aircraft Structures 4-0-4. Prerequisite: ESM 2201, 2.0 overall Iverage. Prerequisite or corequisite. MATH 2308. mhtroduction to elements of structural mechanics which and
Text: An Introduction to the Mechanics of Solids, Crandall, et al

AE 2603. Computer Applications in Aerospace Engineering
1-6-3. Prerequisite: MATH 1309
Description of the components of a modern digital computing system. Elementary FORTRAN programming. Introduction to aerospace engi-
neering applications.
Text: at the level of Murrill and Smith
AE 3000. Fluid Mechanics
4-3-5. Prerequisite: ME 3322, 2.0 overall average and a 2.0 average in math and in physics.
The
The atmosphere, fluid properties, classificaion of flows and one-dimensional flows including isentropic flows, normal shocks, and duct
ows with friction and heating
Text: Shapiro, Compressible Fluid Flow, volume one.

AE 3001. Fluid Mechanics I

4-3-5. Prerequisite: ME 3322, 2.0 overall average and a 2.0 average in math and in physics
Prerequisite or corequisite: MATH 2309.
The physical equations for continuum flows and applications to laminar and turbulent boundary layers for incompressible and compressible flow
Text: at the level of Kuethe and Chow
Foundations of Aerodynamics

AE 3002. Fluid Mechanics II

4-3-5. Prerequisite: 2.0 overall average and a 2.0 average in math and in physics. Prerequisite or corequisite: MATH 2309.

Two-dimensional incompressible flow theo AE 4102. Selected Topics in the Analysis of superpositioning and conformal transformair Alrcraft Structures
with application to flow airfoil theory.
Text: at the level of Kuethe and Chow Foundations of Aerodynamics.
3.0-3. Prerequisites: AE 3103 and AE

AE 3103. Fundamentals of Stress Analy 3-0-3. Prerequisite: AE 2101. Prerequisite corequisite: MATH 2309.
Stresses in unsymmetrical bending. Deflea in elasticity.

Text: An Introduction to the Mechanics o Solids, Crandall, et al.

Structures

3-0-3. Prerequisite: AE 2101. Prerequisite of corequisite: MATH 2309.
introduction to stability analysis with appi tions to columns and plates. Principle of vi work and energy principles.
Text: at the level of Rivello, Theory and Analysis of Flight Structures.

AE 3110. Structures Lab

1-3-2. Prerequisite or corequisite: AE 2101 Introduction to theory of measurements and to methods for determining mechanical prope ties.

Texts: An Introduction to Mechanics of Solic Crandall, et al. Experimental Methods for Eng neers, Holman.

AE 3750. Introduction to Biofluid Dynamics 3-0-3. Prerequisites: MATH 2309, PHYS 2123 Study of blood flow in the cardiovascular system, with emphasis on the modeling of sum lows and the potential of flow studies for clinice esearch application. Also taught as ESM 375 and CHE 3750.
AE 4000. Fluid Mechanics IV
4-3-5. Prerequisites: AE 3000, AE 3001, AE 3002.

Finite wing theory, two-dimensional subsonic and supersonic compressible flows, supersonic ow around bodies of revolution and in introdi
Toxt: thansonics and hypersonics.
Texndations of Aerodynethe and Chow,
oundations of Aerodynamics.
AE 4101. Analysis of Thin-Walled Structural Elements
3-0-3. Prerequisite: AE 3103.
Torsion of non-circular solid cross sections. Bending of thin-walled open and closed section beams.
Text: at the level of Rivello, Theory and Analysis of Flight Structures.

Selected topics from among the following: shear webs, shear fracture and fatigue, applicaposte of virtual work principle, connections.

tions of virtual work princip

1-3-2. Prerequisite: AE 3110. Prerequisites or corequisites: AE 3103, AE 3104
Introduction to methods of experimental stress analysis on a variety of structural elements. Text: Experimental Methods for Engineers, Holman.
AE 4200. Vibration and Flutter 3.0-3. Prerequisites: AE 3002, ESM 4210 Prerequisite or corequisite: MATH 4582 Structural dynamics of one-dimensional syslems. Analyses of static aerocion for complete and flutter. Equations of motion for comples.
aeroelastic system and
4-0.4 Prerequisite: AE 4000
The theory and principles of jet propulsion. The mechanics and thermodynamics of combustion. Component and cycle analysis. Engine performance characteristics.
Text: At the level of Hill and Peterson, Mechanics and Thermodynamics of Propulsion.

AE 4350-1. Aerospace Engineering Design

 Project I, II2.6-4 each. Prerequisite: AE 4000. Prerequisite or corequisite: AE 4410, AE 4500
Preliminary design or case study of an aerospace system such as a complete flight vehicle a propulsion system, a structural system, or a control system.
AE 4400. Introduction to Propeller and Rotor Theory
3-0-3. Prerequisite or corequisite: AE 4000 or consent of school.
A study of the theory and equations used in the design of propellers and helicopter rotors.

Text: at the level of Gessow and Myers,
Aerodynamics of the Helicopter
AE 4410. Vehicle Performance
3-0-3. Prerequisites: AE 3001, AE 3002 Prerequisite or corequisite: AE 4000.
A study of basic aerodynamic-vehicle perfor mance including drag estimation, horsepower thrust required and available, basic point and path performance, special performance items maneuvers and resultant air loads.

AE 4500. Stability and Control

5-0.5. Prerequisites: AE 4000, ESM 4210. Principles of static lateral and longitudinal stability and studies of the equations and meth-
ods used in analysis. Applications to airplane and missile systems
 Terformance, Stability and Control.

AE 4550. Ins

 Research I-3-3. Prerequisite: consent of schoo
Laboratory treatment of major and ancillary strumentation used in solid and fluid mechan s research, voltage, current, resistance measurement, transducers, amplifiers, oscilloscopes, recording equipment.

AE 4551. Instrumentation for Experimental

 Research II2-3-3. Prerequisite: AE 4550 or consent of school.
Advanced treatment of laboratory instrumentation for research, analysis, and application of operational amplifiers, filters and signal conditioners, elementary digital circuits, computer systems for data acquisition.

AE 4760. Engineering Acoustics and Noise

Control
3-0-3 Prerequisite: senior standing.
Study of acoustics related to noise and its control, acoustic terminology, wave propagation solutions to the wave equation, instrumentation sound field in large and small rooms, noise sourdation Also taught as ESM 4760, ME 4760.

AE 4761. Engineering Acoustics and Noise Control II
3-0-3. Prerequisite: AE 4760 or equivalent Continuation of AE 4760 emphasizing techiques for the solution of noise problems. Vibration isolation, energy absorption, dissipative and reactive mufflers, enclosures, barriers properties of materials, panel damping. Also taught as ESM 4761, ME 4761.
AE 4770. Structural Integrity and Durability
-0-3. Prerequisites. ESM 3301 or AE 2101
Simple stress-concentration problems involv-
simple stress-concentration problemses, hysing plastic deformation, residual stroduction to eresis, creep and relaxaion. atigue and fracture mas calculations and wearout models

AE 4803-13-23-33-43-53. Special Topics
3-0-3 each. Prerequisite: consent of school
Course material devoted to special topics of current interest, treatment of new developments in various areas of aerospace engineering.
AE 4804-14-24-34-44-54. Special Topics
4-0-4 each. Prerequisite: consent of school.
Course material devoted to special topics of current interest, treatment of new developments in various areas of aerospace engineering.

AE 4805-15-25-35-45-55. Special Topics
5-0-5 each. Prerequisite: consent of schoo Current interest, treal devoted to special topics of current interest, treatment of new developments in various areas of aerospace engineering.
AE 4900-1-2. Special Problems in Aerospace Engineering
Credit to be arranged. Prerequisite: third quarter junior or senior standing and approval of director.
Research on a problem selected in consulta ion with a faculty member. A brief description, endorsed by the advisor, must be approved by the school director.
AE 6001. Foundations of Fluid Mechanics 4-0-4. Prerequisite: consent of school.
Development of the conservation equations of a multicomponent, reacting fluid from both the continuum and molecular viewpoints. Stress tensor, heat transfer vector, and diffusion velocity. Text: Physical Gas Dynamics, Vincenti and Kruger.
AE 6010. Viscous Flow I
3-0-3. Prerequisite: AE 6001 or consent of school.
Exact solutions of Navier-Stokes equations, Stokes flow, boundary layer equations, similarity solutions and integral methods for incompressible flow, compressible laminar boundary layer,
viscous hypersonic flow.

AE 6011. Viscous Flow II

3-0-3. Prerequisite: AE 6010 or consent of school.
Transition from laminar to turbulent flow, equations of motion for turbulent flows, incompressible boundary layers, compressibility and heat transfer, semi-empirical methods, wakes and jets.
AE 6020. Elements of Compressible Flow
3-0-3. Prerequisite: consent of school
flows, method equations for inviscid compressible flows, method of characteristics for unsteady one-dinensional and steady two-dimensional and axially symmetric flows, nozzle design,

AE 6021. Advanced Compressible Flow Theory I
$3-0-3$. Prerequisite: AE 6020 or consent of school.

The linearized potential equation, thin airfoil theory, similarity rules, linear theory for axially symmetric and three-dimensional flows.

AE 6022. Advanced Compressible Flow

Theory I

3-0-3. Prerequisite: AE 6021
Mixed subsonic-supersonic flows, transonic similarity rule, two-dimensional and axially
symmetric bodies in transonic flow, selected topics
AE 6023. Hypersonic Flow Theory
3-0-3. Prerequisite: AE 6021 or consent of school.
Hypersonic similarity rule, hypersonic sm disturbance theory, Newtonian flow theory a other approximate methods, boundary layer teraction, the blunt body problem.
AE 6030. Advanced Potential Flow
3-0-3. Prerequisite: AE 3002.
Development of the nonlinear and lineariz unsteady potential flow equations, Solutions incompressible flow problems of airfoils and wings undergoing steady, oscillatory and arb trary motions.
AE 6031. Advanced Potential Flow II 3-0-3. Prerequisite: AE 6030
Formulation of aerodynamic influence coe cients, solutions to subsonic, supersonic and hypersonic flow problems of wings and bodies experiencing oscillatory and arbitrary motions.
AE 6050. High-Temperature Gas Dynamic 3-0-3. Prerequisite: AE 6260 or consent of shool.
Real gas effects. Equilibrium properties an rate processes of high temperature gases. E hocks, nozzle flow, Prandt Meyer flows hocks, nozzle flows, Prandt1-Meyer flows.
AE 6051. High-Temperature Gas Dynamics -
-0-3. Prerequisite: AE 6050.
Acoustic equations and rate equations. Virational and chemical nonequilibrium flows, normal and oblique shock structures, theory nonequilibrium characteristics, nonequilibrium acoustic waves, flow over corners.
AE 6100. Advanced Structural Analysis I 3-0-3. Prerequisite: AE 3104 or consent of school.
Stability of mechanical models, elastic bars and frames by kinetic and energy approache approximate methods for critical loads, dynan stability, and inelastic effects.

AE 6101. Advanced Structural Analysis II 3-0-3. Prerequisite: AE 6100 or consent of school.

Buckling of plates, torsional instability of thin open section columns, lateral buckling of beam beams on elastic foundations, further discussior of dynamic stability.
AE 6102. Advanced Structural Analysis III 3-0-3. Prerequisites: AE 6100, ESM 6372 or consent of school.
Stability of plates, cylindrical shells, edge

Hifects, complete spheres and shallow spherical ops, recent developments.

AE 6103. Advanced Structural Analysis IV 3-0.3. Prerequisite: AE 3104 or consent of school.
Principle of virtual work. Concepts of potentia energy and complementary energy, weighted esiduals, applications in approximate solutions. Discussion of Hookean material, including thermal strains.
AE 6104. Advanced Structural Analysis V 3-0-3. Prerequisite: AE 6103 or consent of school.
Introduction to finite element analysis, with mphasis on the displacement analysis of struc res. Applications to static equilibrium, vibration and stability. Nonlinear formulation, solution lechniques.
AE 6105. Aerospace Structures Laboratory 1.6-3. Prerequisite: AE 6104 or consent of 1.6-3. P
school.

Development of practical methods for experimental mechanics, design and execution of experiments, measurement of displacement, strain, force, acceleration, temperature, design of transducers, and instrument systems.
AE 6120. Thermal Effects in Structures I -0-3. Prerequisite: MATH 4582.
Analysis of heat transfer in structural elements, development, and use of approximate numerical and analytical solution procedures
AE 6121. Thermal Effects in Structures II 3.0-3. Prerequisite: ESM 6321 or consent of 3-0.3. P
school.
Analysis of thermally induced stresses in beams, plates, and shells, thermally induced instability in columns and plates, reduction in torsional rigidity.
AE 6122. Thermal Effects in Structures I 3-0-3. Prerequisite: ESM 6321 or consent o 3-0-3.
school.
Phen
Phenomenological and mechanistic interprelations of mechanical behavior of solids. Formulation and solution of problems involving elastic, plastic, linear and nonlinear viscoelas tic and visoplastic behavior.
AE 6130. Structural Dynamics I
3-0-3. Prerequisites: AE 3103, ESM 4210. Single and multiple degree-of-freedom systems, damping effects, Duhamel superposition integral. Normal modes and equations of molion, Lagrange's equations, methods of obtaining normal modes.

AE 6131. Structural Dynamics
3-0-3. Prerequisite: AE 6130.
Vibrations of continuous elastic systems. Sto-
dola and Rayleigh-Ritz methods. Timoshenko beam, longitudinal vibrations. Elastic and plastic waves, analysis of complex structures by modal coupling.
AE 6200. Advanced Aeroelasticity I
3-0-3 Prerequisite: AE 6130
Static aeroelastic analyses of flight vehicles, lifting surface and panel flutter analyses with applications. Dynamic response and load studies of flight vehicles using modal techniques.

AE 6201. Advanced Aeroelasticity II

3-0-3. Prerequisite: AE 6200.
Formulation of aeroelastic analyses associated with discrete and random dynamic loads, aerodynamic and structural instabilities of fixed- and rotating-wing flight vehicles.
AE 6202. Experimental Aeroelasticlty 3-0-3. Prerequisite: AE 6200.
Analog computing techniques with applications, flexibility influence coefficient measurements Vibration testing for modal identification, wind tunnel and inflight flutter tests including model scaling and construction.
AE 6203. Special Topics in Aeroelasticity I 3-0-3. Prerequisite: AE 6200.
Current topics in aeroelasticity, unsteady aerodynamics and structural dynamics are studied. The student presents both an oral and written report on two specialized current problems.
AE 6204. Special Topics in Aeroelasticity I 3-0-3. Prerequisite: AE 6200
Continuation of AE 6203. Advanced problems in aeroelasticity, unsteady aerodynamics or structural dynamics.
AE 6250. Rocket Propulsion
AE 6250. Rocket Propulsion
$3-0-3$. Prerequisite: AE 4251.
3-0-3. Prerequisite: AE 4251 . Flight mechanics, performance of the ideal rocket engine. Properile parts, acteristics of chemical propellants, nozzle designs, and losses.

AE 6260. Thermodynamics of Gases 4-0-4. Prerequisite: consent of school
Thermodynamics of reacting gases. Introductory quantum theory, statistical thermodynamics and chemical kinetics.

AE 6261. Combustion I

3-0-3. Prerequisite: AE 6260 or consent of school.

Introductory chemical kinetics, explosions, Schvab-Zeldovich formulation. Rankine-Hugoniot relations, detonations and deflagrations.

AE 6262. Combustion II

3-0-3. Prerequisite: AE 6261

Laminar diffusion flames and droplet burning Laminar flame propagation in premixed gases,
turbulent flames, ignition quenching, and flammability limits. Chemical reactions in boundary layers.

AE 6400. Aerodynamics of the Helicopter I 3-0-3. Prerequisite: AE 4400.

Forward flight performance, derivation and study of the induced velocity relations and the flow field associated with helicopter rotors.
AE 6401. Aerodynamics of the Helicopter II 3-0-3. Prerequisite: AE 6400.

Vortex-wake theories for rotors with a finite number of blades, introduction to helicopter stability and control.

AE 6460. Aerodynamic Noise

$$
\text { 3-0-3. Prerequisite: AE } 6761 .
$$

Jet, boundary layer, combustion, propeller and fan noise. Sonic boom, noise propagation from engines and attenuation techniques.

AE 6500. Advanced Stability and Contro

 3-0-3. Prerequisite: AE 4500.A study of feedback controls as applied to aircraft, root locus techniques and use of airframe transfer functions are emphasized. Survey of the load alleviation problem.
AE 6760. EngIneering Acoustics I
3-0-3. Prerequisite: consent of school.
Introductory analytical methods, stochastic processes, the wave equation in a compressible Also taught as ESM 6760 and ME 6760 .

AE 6761. Engineering Acoustics II

3-0-3. Prerequisite: AE 6760
Sound reflection and refraction, scattering and diffraction, sound radiation, and duct acoustics. Also taught as ESM 6761 and ME 6761.
AE 6762. Engineering Acoustics III
3-0-3. Prerequisite: AE 6761
Advanced duct acoustics, wave dispersion and attenuation, acoustics in moving media, geometrical acoustics, nonlinear acoustics. Also
taught as ESM 6762 and ME 6762 taught as ESM 6762 and ME 6762.

AE 6763. Noise Reduction and Control

 (Industrial Applications)$3-0-3$. Prerequisites: AE 4760 or equivalent and 6760 .
Methods of noise reduction and control applied to systems in industry. Measurement of sound power, material acoustic properties, barriers, enclosures, mufflers, vibration reduction and damping methods. Also taught as ESM 6763 and ME 6763.
AE 6800. Numerical Fluid Dynamics I 3-0-3. Prerequisite: AE 6010 or consent of school.

Finite-difference and finite-element methods.
for the numerical solution of fluid dynamic ea $A E 8503$-4-5. Special Problems in Aerospace tions. Current methods for the numerical sol Engineering tion of potential flow and boundary layer probler Credit to be arranged
AE 6801. Numerical Fluid Dynamics II 3-0-3. Prerequisite: AE 6800.
Numerical methods of solution of boundary
layer equation and Naiver-Stokes equations
time-dependent and steady flows. Accuracy time-dependent and steady flows. Accuracy, tability, and computational efficiency

AE 7000. Master's Thesis

AE 7600. Perturbation Methods in

Engineering Analysis

3-0-3. Prerequisite: consent of school.
Regular and singular perturbation theory, method, and the method of weighted residu Problems drawn from fluid mechanics and
structures. structures.

AE 7750. Bio-Fluid Mechanics

3-0-3. Prerequisite: AE 6001 or ESM 6501-2 or consent of school.
A unified treatment on hemorheology, hemo dynamics, pulsatile flows, microcirculation, jo lubrication, pulmonary physiology, etc., with phasis on a quantitive approach. Also taught phasis on a
ESM 7750.
AE 7999. Preparation for Doctoral Qualify Exams
Noncredit. Prerequisite: consent of director.
AE 8000. Seminar
1-0-1.
AE 8103-13-23-33-43-53. Special Topics
3-0-3 each. Prerequisite: consent of schoo
Special topics of current interest, treatment new developments in various areas of aerospace engineering.
AE 8104-14-24-34-44-54. Special Topics
4-0-4 each. Prerequisite: consent of school
Special topics of current interest, treatment new developments in various areas of aerospace engineering.
AE 8105-15-25-35-45-55. Special Topics 5-0-5 each. Prerequisite: consent of school. Special topics of current interest, treatment new developments in various areas of aerospace engineering.
AE 8106-16-26-36-46-56. Special Topics 6-0-6 each. Prerequisite: consent of schoo Special topics of current interest, treatment o new developments in various areas of aerospace engineering.
AE 8500-1-2. Special Problems in Aerospace Engineering
Credit to be arranged. Prerequisite: consent of school.

E 8999. Preparation for Doctoral Dissertation Noncredit. Prerequisite: consent of director.

E 9000. Doctoral Thesis

School of Ceramic Engineering

Established in 1924

Director_Joseph L. Pentecost; ProfessorsJames F. Benzel, A. T. Chapman, Willis E. Moody; Associate Professor-Joe K. Cochran, Jr.; Research Engineer-David N. Hill; Lecturer-R. A. Young.

General Information

In the United States, the ceramic industry annually produces over $\$ 40$ billion worth of products ranging from brick, tile, glass, portland cement, and dinnerware to hightemperature refractories for furnace linings, abrasives, and many sophisticated electronic components. While traditional products cre ate a continuing demand for trained personnel, the development of new products constantly opens fresh career opportunities constantly opens fresh career opportunits
Some examples of these new products Some examples of these new products from the recent past include rocket nozzl
jet engine parts, electronic circuitry for jet engine parts, electronic circuitry for computers, and fiberglass products for nose cones and missiles. Current catalyst supinclude autornor pollution control devices, ports and other lighting techniques, and electro-optical new lightin
materials.

materials.

Ceramic engineering applies sound, scientific engineering principles to solve manufacturing problems in the industry. Because both chemical and physical reactions occur at the high temperatures used in ceramics manufacturing, the problems frequently become more complex and challenging. Measurements are difficult, and economical production imposes cost constraints.

The School of Ceramic Engineering offers a four-year curriculum leading to the bachelor's degree and graduate work leading to the Master of Science and Doctor of Philosophy degrees in ceramic engineering. The undergraduate curriculum prepares the degree candidate for a position in the degree candidate for a position in the ceramic industry or for graduate work.
Additional courses introduce non-majors to Additional courses introduce non-majors to tions.
Multidisciplinary Programs
See table on page 79 .

Freshman Year

Course	1st Q. 2	d Q.	3 rd Q.
CHEM 1111-2 General Chemistry	4-3-5	4-3-5	\ldots
CHEM 2113 Chemical Principles	3-3-4
Elective EGR1170, Introduction to Visual Communication and Engineering Design I (2-3-3) and one of theengineeringelectives ${ }^{1}$	X-X-3	X-X-3
MATH 1307-8-9 Calculus I, II, III	5-0-5	5-0-5	5-0-5
Electives ${ }^{3}$ Physical Education	0-4-1	0-4-1	2-2-2
Electives Humanities/Social Science/Modern Language	3-0-3	3-0-3	3-0-3
Electives ${ }^{2}$ Free		-	3-0-3
Totals	14-10-17	14-10-17	16-5-17

Sophomore Year Course	1st Q.	2nd Q.	3rd Q.
CERE 3101 Ceramic Data Handling			3-3-
CERE 3002 Properties of Engineering Materials			2-3-3
ESM 2201 Statics		3-0-3	
ESM 3301 Mechanics of Deformable Bodies			5-0-5
GEOS 2100 General Geology	3-0-3		
GEOS 2102 General Geology Laboratory	0-3-1		
MATH 2307 Calculus IV	5-0-5	\ldots
MATH 2308 Calculus and Linear Algebra		5-0-5	
PHYS 2121-2-3 Physics	4-3-5	4-3-5	4-3-5
Electives Humanities/Social Science/Modern Language	3-0-3	3-0-3	
$\text { Electives }^{2}$ Free	3-0-3	
Totals	15-6-17	8-3-19	4-9-17

Junior Year
Course
CERE 3003
Ceramic Processing I 3-3-4
CERE 3004
Ceramic
Processing II
CERE 3105
Phase Equilibria for
Ceramists
CERE 3006
Physical Ceramics 1 3-0-3
CERE 3007
High Temperature
Analysis

CERE 3008
Glass Technology 1
CERE 4018
Drying and
Psychrometry
CERE 4042
Seminar
CERE 4052
Inorganic Phas
Analysis and
Analysis and
Identification
CHEM 3412-3
Physical Chemist
CHEM 3481
Laboratory
ME 3720
Thermodynamic
ME 3342
Transport Phe-
ME 4714
ME 4714
ESM 3201
Dynamics I or
ESM 3302
Mechanics of
Materials

Humanities/Social
 Science/Modern
 Language

Totals

Senior Year

Course

CERE 4102

Refractories
CERE 4003
Physical Ceramics II 2-3-3
${ }^{1}$ See College of Engineering section "Curricula and Degrees" for engineering electives. These free elective courses may be taken at ${ }^{3}$ See "Curricula and student's course of study. Physical Education Degrees," Department of Physical Education and Recreation, for freshman physical education requirements for both
men and women.

Text: at the level Van Vlack, Elements of Materials Science; Kingery, Introduction to Ce ramics.

CERE 3003. Ceramic Processing I
3-3-4. Prerequisite: CHEM 1102 or equivalent. The processing of ceramic raw materials for use in plastic forming processes is studied. The principle plastic forming processes are cov-
ered in detail.
Text: at the level of Jones, Ceramics, industrial Processing, and Testing; Norton, Elements of Ceramics.
CERE 3004. Ceramic Processing II
2-3-3. Prerequisite: CERE 3003 or consent of school.
The production, processing, and analysis of small-particle-size, high-surface-area ceramic powders are reviewed Use of such powders
in non-plastic forming processes is studied.
Text: at the level of Wang, Ceramic Fabrication Processes.

CERE 3006. Physical Ceramics

3-0-3. Prerequisite: CERE 3002
Crystal chemistry concepts are developed and used to characterize silicate, oxide, and nonoxide ceramic materials.
Text: at the level of Kingery, Introduction to Ceramics.
CERE 3007. Pyrometry and Thermal Analysis 2-3-3. Prerequisite: PHYS 2122.
Temperature measurement using thermocouples, optical pyrometers, and radiation pyrometers is emphasized. Differential thermal analysis and thermogravimetric analysis in characterizing ceramic materials is presented.
Text: at the level of Precision Measurement and Calibration, volume two; Temperature, NBS Special Publication 300.
CERE 3008. Glass Technology I
2-3-3. Prerequisite: CERE 3105 or consent of school.
The fundamentals of glass structure, composition, manufacturing, properties, and applications are described. In the laboratory many glass batches are melted and analyzed.
Text: at the level of Hutchins and Harrington, Glass, (reprint from volume 10, Encyclopedia of Chemical Technology second edition, pp. 533604, J. Wiley, 1966)

CERE 3080. Survey of Ceramics

2-0-2.
General elective for nonmajors. A survey of the classifications and physical properties of ceramic products, the materials, and manufacturing processes.
Text: at the level of Mitchell, Ceramics-Stone Age to Space Age.

CERE 3090. Ceramic Survey Laboratory 0-3-1. Prerequisite or corequisite: CERE 3080 General elective. Plant trips to local ceramic plants, flowsheets of processes, production of simple pottery and ceramic pieces.
CERE 3101. Ceramic Data Handling 3-3-4.

Study of testing, rational economic value of test results, basis of test selection, interpretation of results, data analysis, statistical methods, computer methods, reporting.
CERE 3105. Ceramic Phase Equilibria 2-3-3. Prerequisite: CHEM 1102 or 1112. Interpretation of phase equilibria in nonmetallic one, two, and three component systems. Use of phase diagrams in the processing of ceramic materials are discussed.
CERE 4003. Physical Ceramics II
2-3-3. Prerequisites: CERE 3006, PHYS 2123,
CHEM 3413.
Densification sintering and reaction kinetics active in ceramic materials are considered. The resultant physical, mechanical, electric, and magnetic properties are related to the atomic and macroscopic structure representative of ceramic
products.
Text: at the level of Kingery, Introduction to Ceramics.
CERE 4004. High Temperature Thermodynamics
2-0-2. Prerequisite: CHEM 3412.
Chemical thermodynamics data is used to predict reaction directions and study vaporiza tion processes. The use of various gas mixtures to control oxygen pressures is also described.

CERE 4005. Glass Technology

2-3-3. Prerequisite: CERE 3008
Compositions of low, moderate, and high temperature coatings are studied to learn basis of glass properties, adherence, color, opacification, and texture.
Text: at the level of C. W. Parmelee, Ceramic Glazes.
CERE 4018. Drying and Psychrometry 2-0-2. Prerequisite: PHYS 2122.
Fundamental consideration of water remova from unfired ceramic products by heat and air Text: at the level of Moody, Drying.

CERE 4042-3. Semina

1-0-1. Prerequisite: junior standing.
Discussion of current ceramic and scientific literature and reports of investigations.

CERE 4051. Cements

2-3-3. Prerequisite: CERE 3105
Includes the required properties of raw materials, processing, and the hydraulic properties of
cements. Portland, magnesia, high alumin
tal, and gypsiferous cements are included. evel of Bogue, The Chemi Portland Cement or Lea, The Chemistry d Cement and Concrete.

CERE 4052. Inorganic Phase Analysis an Identification
3-3-4. Prerequisite: PHYS 2122
Provides the student with the tools to iden a ceramic material using both atomic structur related techniques and elemental identificatio Use of optical crystallograph, X-ray diffraction ransmitted and reflected light microscopy an electron microscopy are emphasized as tools dentify ceramic material phases and element composition
Text: at the level of Bloss, An Introduction he Methods of Optical Crystallography and Cullety, Elements of X-ray Diffraction.
CERE 4053. Technical Ceramics
2-3-3. Prerequisites: CERE 3105, PHYS 212
Fabrication requirements, property control a structure-property-processing relationships ceramic dielectrics, ferrites, ferroelectrics, pie
ectrics emphasized.
Text: at the level of F. H. Norton, Fine Ceram and E. C. Henry, Electronic Ceramics.

Cere 4054. Process and

Control Instrumentation
3-3-4. Prerequisites:
consent of school.
The mathematical and physical basis for the PID control algorithm is covered. Analog and digital temperature instrumentation is explaine

CERE 4102. Refractories

3-3-4. Prerequisites: CERE 3006 and CHEM 3412.

Fundamentals of refractory materials seleci and application are stressed. The raw materia for manufacturing refractories and heat transi through refractory walls are covered.
CERE 4110. Energy Conversion and Contr 2-3-3. Prerequisites: CERE 3007 and CERE 2-3-3.
4102.

Principles involved in converting various en ergy resources to thermal energy for use in devices used in such senergy conversion and reviewed Principles and methods of energy reviewed. Principles and methods of energy co trol are detailed

CERE 4115. Independent Research Project $1-0-1$. Prerequisite: senior standing in Cerami Engineering.
Each senior conducts an original investigatio on an approved ceramic subject under the supervision of the instructor in charge. The object of this course is to place the student
own initiative and to coordinate the knowlge that he has previously received.
ERE 4116. Independent Research Project II 3-1. Prerequisite: CERE 4115.
The senior student formulates an experimen plan under supervision of his advisor, asambles equipment and materials, and begins ctual laboratory experimentation.
ERE 4117. Independent Research Project III 6-2. Prerequisite: CERE 4116.
Completion of all laboratory work on investiation, submission of preliminary write-up one onth before end of quarter and final submision of approved write-up in acceptable format ne week before examination week.
CRE 4801-2-3-4-5. Special Topics through 5 credit hours, respectively Tequisite: consent of school
New developments in ceramic materials, pecialized independent study on topics of curnt interest.

ERE 6002. Refractories, Selection and Application
Fundamentals of refractory materials selection and application are stressed. The raw materials or manufacturing refractories and heat transfer hrough refractory walls are covered.

CERE 6003. Physical Ceramics

 2.3-3.Structural imperfections, diffusion, sintering, and reaction kinetics of ceramic systems are considered. The resultant physical, mechanical, tlectric, and magnetic properties are related to atomic and macroscopic structures
CERE 6004. Thermodynamics Applied to Ceramics
The laws of thermodynamics are applied to ceramic processes and materials. The influence of oxygen pressure on nonstoichiometric compounds is emphasized.
CERE 6011. Colloidal Properties of Hydrous Alumino Silicates
3.0-3. Prerequisite: consent of school

The physiochemical properties of the plastic and nonplastic hydrous alumino silicate are studied including viscosity, dispersion, flocculation, and permeability.
Text: at the level of Van Olphen, An Introduc tion to Clay Colioid Chemistry
CERE 6012. Colloidal Properties of Hydrous Alumino Silicates

3-4 Prerequisite: consent of schoo
Plastic properties of clay-water systems and
ndustrial applications. Interactions of clay and organic compounds.
Text: at the level of Lawrence, Clay-Water Systems.

CERE 6013. Colloidal Properties of Hydrous Alumino Silicates
3-0-3. Prerequisite: consent of school.
Basic surface properties are studied for application to gas absorption surface area measurements and mineral flotation processes.
CERE 6014-5. Ceramic Applications to the Phase Rule
3-0-3 each. Prerequisite: CERE 3105 or consent of school.

Phase equilibria in one, two, and three component systems reviewed. Melting and solidification behavior in complex three-componen systems examined. Efect oxyen pressure on phase relations in micomport surveyed. Applications of thermodynamics to phase diagrams

CERE 6017-8. Glass Technology

3-0-3 each.
Constitution of glass is studied using dynamic considerations. The reasons for the failure of oxide melts to crystallize on cooling are emphasized. Mutual polarization of ions is utilized in analyzing the various glass structures. The different experimental techniques available to study glasses are reviewed.
Text: at the level of Doremus, Glass Science
CERE 6030. Crystal Structure of Materials I 3-0-3. Prerequisite: consent of school.

Basic crystal structures and relation of different chemical compounds with similar crystal structures. Structures of various clays and com plex oxides.
Text: at the level of Evans, Crystal Chemistry and Wells, Structural Inorganic Chemistry.
CERE 6031. Crystal Structure of Materials II 3-0-3. Prerequisite: consent of school.
Relationship of crystal structure to chemical, physical, and optical properties of high physical, and optical properties

CERE 6035. Research and Control Methods 2-3-3. Prerequisite: consent of school. Emphasis on the experimental and instrumen al techniques for research and control measurements. Review of optical, physical, electrical, mechanical measurement lechniques, in strumentation, laboratory demonstration.
Text: at the level of Wilson, Introduction to Scientific Research and Ackoff, Scientific Method.

Cere 6041. Crystal Studies 2-6-4. Prerequisite: CERE 4003 or consent of school.
Fundamentals, methods, and instruments in applications at X-ray diffraction especially the powder method to problems in ceramics and metalurgy.
Text: at the level of Azaroff, Elements of X-ray Crystallography.
CERE 6052. Quantitative Optical and X-ray Crystallography
3-3-4
Interaction of light and x-rays with periodic crystal lattices is developed in relation to structive identification and quantitative analysis in polycrystalline and monocrystalline ceramics
CERE 6053. Electronic and Technical Ceramics
3-3-4.
Processing, properties and structure of dielectrics, piezoelectrics, ferroelectrics, ferrites, garnets, and other technical ceramics.

CERE 6054. Digital Temperature Instrumenta-

 tion and Control Systems2-3-3.
Process control theory is reviewed. Analog and digital instrumentation are compared. Digital control algorithms for simple loops, cascaded loops, and distributed control are discussed.
CERE 6055. Refractory Failure Analysis 2-3-3.
Methods of determining the reason for premature failure of refractories in service are presented. Detailed case studies will be discussed and evaluated in the laboratory.
CERE 6056. Practical Electron Microscopy 2-3-3.
The various types of electron microscopes and how they function will be discussed. The usage of SEM techniques to investigate solid materials will be emphasized
CERE 6110. Kiln and Furnace Design 2-3-3.
Principles, methods, and devices used to provide heat for operating kilns and furnaces are reviewed. Principles of automatic control are covered. Student designs a kiln equipped with an
automatic control system.

CERE 7000. Master's Thesis

CERE 8102-3-4-5-6-7-8-9. Special Topic Credit to be arranged.
Specific, well-defined study and measurement problems will be considered and approved for redit upon completion.

CERE 8112-3-4-5-6-7-8-9. Special Topic
redit to be arranged
Specific, well-defined study and measu problems will be considered and approve redit upon completion

CERE 8501-2-3. Special Problems
redit to be arranged.
CERE 9000. Doctoral Thesis

School of Chemical Engineering

Established in 1901
Director and Professor-Gary Poehlein Associate Director and Professor-Jude Sommerfeld; Chemical Engineering Facul Professors-Charles W. Gorton, Michae Matteson, John D. Muzzy, Robert J. San uels, A. H. Peter Skelland, Henderson C Ward, Jack Winnick; Associate Professon -William R. Ernst, Larry J. Forney, Jeffr S. Hsieh, Allan S. Myerson, Ronnie S. Roberts, Amyn Teja, Mark G. White, Ait Yoganathan; Assistant Professors-Pr deep K. Agrawal, F. Joseph Schork, D. William Tedder; Adjunct Professors-G. Samuel Brockway, George A. Fowles; tallurgy Faculty: Professors-Helen Gren Robert F. Hochman, John Husted, Ervin Underwood; Associate Professors-Miro slav Marek, Pieter Muije; Fracture \& Fati Research Laboratory-Director and Pro-fessor-Stephen D. Antolovich.

Chemical Engineering Program

General Information

Chemical engineers perform essential functions in industries that convert raw materials into useful finished products by means of chemical and physical processes. Almost every major manufacturing industry employs chemical engineers in research, development, design, production, sales, consulting, and management positions. Industries that employ substantial numbers of chemica engineers include petroleum, petrochemical, pulp and paper, plastics, metallurgical, fiber, fertilizer, nuclear energy, space, rub ber, food, photographic, heavy and fine chemical, mineral, pharmaceutical, textile, and dye. Energy problems and environmental and pollution control activities also require an increasing number of chemical engineers.
The School of Chemical Engineering offers programs leading to the degrees Bachelor of Chemical Engineering, Master of Science in Chemical Engineering, Masler of Science in Metallurgy, and Doctor of Philosophy. The doctoral program may concem either chemical engineering or metallurgy. Interdisciplinary programs and undesgnated degrees are also available. The following curriculum leads to the degree Bachelor of Chemical Engineering and seeks to train students not only for positions immediately upon graduation, but also for additional study leading to the master's and doctoral degrees
It is a regulation of the School of Chemical Engineering that any student who accumulates a total of three or more grades of "F", "D", or "W" in required chemical engineering courses 1) will not be permitted to enroll in any more chemical engineering courses, and/or 2) will not be certified for graduation by the School. Exceptions to this regulation will be permitted only after the affected student submits a specific written petition for exemption from this regulation and approval of said petition by the faculty of the School of Chemical Engineering. A six-week summer study program in the Department of Chemical Engineering of the University College London in London,

England was initiated in the summer quar er, 1975. Selected juniors who participate in this program are allowed twelve credit hours of free or technical electives, some o which may be substituted for selected chemical engineering laboratory and social science courses.

Students whose previous academic backrounds differ substantially from that of Georgia Tech are strongly advised to consider lightened academic loads during their first several quarters at Georgia Tech. Such students may also wish to take advantage of the option of auditing one or two of the first sophomore courses in chemical engineering (CHE 2207 and 2208) before electing these required courses for credit.
The School of Chemical Engineering requires that all of its students have a working knowledge of the FORTRAN programming language before scheduling any sophomore-level courses.

Graduate Programs

The School of Chemical Engineering offers a graduate program of advanced study and research in chemical engineering and metallurgy. Graduate activities in metallurgy are described in detail within the general description of the Metallurgy Program which follows. Chemical engineering graduate work can lead to the Master of Science and the Doctor of Philosophy degrees, both involving a combination of advanced level courses and independent research or design work.

Master's degree candidates must complete a research or design thesis. Course selection for both the master's and doctoral degrees is quite flexible with individual plans of study developed for each student.
Research opportunities exist in a broad range of areas of importance to chemical engineers and society including air pollution control, biochemical engineering, polymer science, process design and simulation, chemical reaction engineering, development of alternate energy sources, biomedical engineering, pulp and paper engineering, transport phenomena, fine particle technology, minerals processing, thermodynamics, electrochemical engineering, and process control.

Fracture and Fatigue Research Laboratory

The Fracture and Fatigue Research Laboratory (FFRL) was established to encourage interdisciplinary research and educational opportunities in the field of fracture and fatigue of materials. Faculty members representing various academic departments of Georgia Tech, as well as staff members of the Engineering Experiment Station (EES), are involved in its activities. The research programs, which focus on the fracture and fatigue behavior of engineering materials, are interdisciplinary and based on a combined fracture mechanics-materials science point of view. Projects involving the behavior of metals, ceramics, polymers, and composites all fall within the scope of the laboratory.
Graduate students participating in FFRL research usually enroll for the master's or doctoral degree in the traditional discipline of their choice. However, they pursue coursework related to a broader understanding of materials and benefit from the association with other students and faculty in the interdisciplinary setting. Students with backgrounds in materials science, metallurgy, ceramics, chemistry, physics, or any branch of engineering are encouraged to apply.

Metallurgy Program

General Information

The field of metallurgy is a vital component of the industrial economy because of its central contribution to the selection and use of metals in all engineering and scientific fields. The program at Tech offers a master's degree in metallurgy and a doctoral degree. An excellent selection of undergraduate courses is offered in preparation and support of graduate studies. Course offerings and research activities cover a range of subject areas in the broad field of metallurgy. Subjects include chemical and extractive metallurgy, corrosion science and engineering, physical metallurgy, mechanical metallurgy, and metallurgical processing and mineral engineering.

Undergraduates desiring to specialize grees or backgrounds in other fields (e.g., metallurgy can pursue an undesignated physics, chemistry, geology and chemical, degree program which is equivalent to ceramic, mechanical, nuclear, or geological creditation Board for Engineering and Tesengineering) may qualify by taking certain nology (ABET) requirements for an accer minimum prerequisites during the early part ited degree at any other school. of their graduate studies. To assure a
Research facilities are among the prosmooth transition into the graduate Metalgram's strongest features. Excellent gefllugy Program, the student should select eral corrosion laboratory equipment is a appropriate electives during his or her unor the corrosion research facilities in whidergraduate studies.
of the corrosion research facilities in whidergraduate studies.
hydrogen embrittlement, metal dusting The Master of Science in Metallurgy hydrogen embrittlement, metal dusting, stress-corrosion-cracking, and medical implant and dental material investigation are carried out. Structural investigations metals and alloys are performed in the x - $:$ laboratory having a variety of general equis, ment and in the electron microscopy lat ratories. These labs house a Seimens research electron microscope and the n ly-acquired TEM-100C scanning transmis sion electron microscope, which is the mol advanced equipment in the field. Metall graphic equipment, heat treatment furnaoas and alloy-melting equipment allow inves gators to design and produce new mater als. Mechanical testing facilities include both standard and specialized equipme most notably the MTS universal mechan cal testing equipment now being used fatigue research in a range of alloys.
Graduates find employment with manu facturing firms in light and heavy industr and in research laboratories of private firms and federal agencies. Several rea graduates have filled positions of high responsibility in the Atlanta area and har been instrumental in advancing the leveld materials engineering practice in Georgia
The Metallurgy Program faculty particpate in several multidisciplinary programs including materials engineering, mineral gineering, manufacturing engineering, and in the interdisciplinary program in si face science technology.

The Master's Degree

The program in metallurgy offers gradua work leading to the degree of Master of Science in Metallurgy. The student adm ted for graduate work will normally have completed an undergraduate program in metallurgy or metallurgical engineering. However, students with undergraduate d

The Master of Science in Metallurgy uriculum offers two options: (1) physical netallurgy and (2) chemical metallurgy.
Both have a common core of basic studies ut differ in other aspects. Specialization in ne of these areas does not alter the Master of Science degree. The student must prepare the individualized program study for this degree in conference with sor her graduate advisor. The proposed rogram must receive the approval of the raduate advisor and the director and will nclude a thesis.

hysical Metallurgy

his option deals with the relationships vetween chemical composition, structure, and properties of metals and alloys. Activiies of the physical metallurgist include the study of atomic structure of solids, alloy development, and the mechanical, physical, development, and havior of metals and aland corrosion behavior oplications.

Chemical Metallurgy

This option deals with the concentration of minerals from natural resources and the extraction of pure metal from these con centrates. Recycling of metal scrap and other waste products is also a specialty of the chemical metallurgist. The industries that usually require the services of the chemical metallurgist are iron, steel, aluminum, copper, and other basic metal producers. In addition, the chemical metallurgy option deals with the fundamental characteristics of metal and alloy deterioration (corrosion) and the properties and structures of metal surfaces (surface science) in liquid and gas environments.

The Doctoral Degree

The Doctor of Philosophy degree is directed toward the goal of attaining proficiency
in the conduct of independent scholarly work. The degree program comprises course work in the principles of metallurgy, additional specialized courses both in the area of the doctoral thesis and in one or two of ther areas, demonstration of reading comother areas, demonstration of reading com-
petence in a foreign language, the passing of a comprehensive examination, and an independent research investigation.

Except for the requirement that the student must earn fifteen credit hours in a minor field, which may be any technical or nontechnical field that he or she chooses, there are no definite course requirements for the doctoral degree in metallurgy. Most students find that they will schedule abou sixty to seventy hours of courses.
Students should commence participation in the departmental research programs early in their graduate careers. The undertaking of a doctoral thesis is usually reserved until the candidacy examination is passed, usually the second graduate year for a well prepared student.

Financial Aid

A number of fellowships and research assistantships from outside sources and industry are available to provide financial assistance for qualified graduate students. In addition, a limited number of Presidential Fellowships, as well as Teaching and Research Assistantships, are available from the Institute. Waiver of out-of-state tuition the institule. Waiverified students. Further is possible for qualified students. Friting the information can be obtained by writing the
director of the School of Chemical Engineering.

Freshman Year

Course
1st Q. 2nd Q. 3rd Q.
CHE 1101
Introduction to
Chemical
Engineering
CHEM ${ }^{1}$ 1111-2
General
Chemistry
CHEM 2113
Chemical
Principles
3-3-4

Courses of Instruction

CHEmical engineering

CHE 1101. Introduction to Chemical Engineering
$1-0-1$. For freshmen only or consent of schooi
An orientation to chemical engineering. Na ture of chemical engineering, the types of opportunities available, and the requirements for graduation and a successful career.
CHE 1110. Elements of Chemical Engineering Design
2-3-3. For freshmen only or consent of school
An introduction to chemical engineering design in which simplified problems of current interest are used as a basis for a design project. Basics of FORTRAN programming.
Text: At the level of Rudd, Watson, and Siirola, Process Synthesis and Ageloff and Mojena, Applied FORTRAN, 77.
CHE 1750. Introduction to Bioengineering 3-0-3.
An introduction to the aspects of science and technology pertinent to the engineering analysis of biological systems. Also taught as AE 1750, EE 1750, ESM 1750, ME 1750.

CHE 2207. Chemical Process Principles I 3-0-3. Prerequisite: MATH 1309. Corequisite: CHEM 2113.
commended that the technical electives be taken in the junior and senior years.

Free Electives-Fifteen hours of free electives are provided so that a student will be able to pursue specific interests. See the ROTC Credit section for the maximum hours in this area that may be applied toward degree requirements. If six credild be scheduled begin are elected, they should be scheduled begin ning the first quar No course which covers the sam an other courses in a students plan of study can be used as a free elective.
${ }^{6}$ Students may select the course MATH 4805 (Differential Equations for Chemical Engineers, a five-hour course) in place of the required CHE 2210 (a three-hour course). The addional wo hours from MATH 4805 may be counted for free or technical elective credit.
Students may select a three-hour design elec tive from the following list: CHE 4433, CHE 4449 , CHE 6622. Note that a 2.7 cumulative GPA is required if an undergraduate student wishes to elect a graduate level course (6000 or higher level).

The material balance is developed. Gas behavior, systems of units, and material and thermodynamic properties are discussed. Emphasis is on the application of material balances to steady state physical and chemical processes

Text: At the level of Felder and Rousseau, Elementary Principles of Chemical Processes,
CHE 2208. Chemical Process Principles II
3-0-3. Prerequisite: CHE 2207.
A continuation of CHE 2207. The energy balance is developed. Thermophysical and thermochemical concepts are discussed. Emphasis is on the application of combined material and energy balances to steady and unsteady state physical and chemical processes.
Text: At the level of Felder and Rousseau, Elementary Principles of Chemical Processes.
CHE 2210. Chemical Engineering Analysis 3-0-3. Prerequisite: Knowledge of FORTRAN programming. Corequisite: CHE 2208
Quantitative analysis of chemical engineering processes. Numerical methods are introduced and applied to the solution of chemical engineer ing problems. Emphasis is placed on solving problems by digital computer.

CHE 2310. Fluid Mechanics

Fundamental principles and applications of momentum transfer. The analysis of chemical engineering processes and operations involving fluid flow.
Text: At the level of Geankopolis, Transport Processes and Unit Operations, 2nd Edition.

CHE 3302. Transport Phenomena

Laboratory I
0-3-1. Prerequisite: CHE 2310.
Laboratory experiments in momentum and energy transfer.
CHE 3303. Transport Phenomena Laboratory II
0-3-1. Prerequisite: CHE 3311
Laboratory experiments in heat and mass transfer.

CHE 3309. Unit Operations Laboratory I
0-3-1. Prerequisite: CHE 3313.
Laboratory experiments in stagewise operations.
CHE 3310. Unit Operations Laboratory I
0-3-1. Prerequisite: CHE 3312.
Laboratory experiments in diffusional processes.

CHE 3311. Heat Transfer

3-0-3. Corequisites: CHE 2310, CHE 3320 Fundamental principles and applications of energy transfer. The analysis of chemical engi-
neering processes and operations involving transfer.
Text: At the level of Incropera and DeW Fundamentals of Heat Transfer.

CHE 3312. Mass Transfer

3-0-3. Corequisites: CHE 2310, CHE 3320
Fundamental principles and applications of mass transfer. The analysis of chemical eng. neering processes and operations involving ma
Text: At the level of Treybal, Mass Trans Operations, 3rd Edition.
CHE 3313. Stagewise Operations 3-0-3. Prerequisite: CHE 2208. Corequisite 3321.

Topics in stagewise operations.
Text: At the level of Henley and Seader, Equilibrium Stage Separation Operations in Chemical Engineering

ynamics I

3-0-3. Prerequisite: CHE 2208
Principles of thermodynamics with industria applications. Applications of first and second law applications. Applications of first and second state, fluid properties, corresponding states Text: At the level of Reynolds and Parkin Engineering Thermodynamics, 2nd Edition.
CHE 3321. Chemical Engineering Thermo dynamics II
3-0-3. Prerequisite: CHE 3320
Principles of thermodynamics with industria applications. Phase equilibria, fugacity, activi mixtures, non-ideal solutions, gas solubility, re tion equilibria
lext: At the level of Van Ness and Abbott, Classical Thermodynamics of Nonelectrolyte Solutions.
CHE 3750. Introduction to Biofluid Dynamic 3-0-3. Prerequisites: MATH 2309, PHYS 2123 consent of instructor

Study of blood flow in the cardiovascular system, with emphasis on the modeling of flows and the potential of flow studies for clinical research applications.

Also taught as AE 3750 and ESM 3750.
CHE 4111. Mineral Engineering: Fossil Fuel 3-0-3.

An introductory course in fossil fuels. Gives majors in engineering a background in fuels raw materials.
CHE 4414. Air Pollution Control 3-0-3.

Application of mass transfer principles of the design of pollution control systems utilizing adsorption, absorption, filtration, and precipitation

Other topics are process optimization, fuel pretreatment.
Text: At the level of Work and Warner, Air Pollution-Its Origin and Control.

HE 4415. Reactor Design

 $3 \cdot 0-3$.3413.

Kinetics and mechanisms of industrial chemiai reactions. Effects of temperature, pressure reactions. Design of batch, backmix, tubular, and semibatch reactors.
Text: At the level of Hill, An Introduction to Chemical Engineering Kinetics and Reactor Design.
CHE 4416. Process Contro
3/3-4. Prerequisite: EE 3700. Corequisite
CHE 4415.
Dynamics of chemical processes and theory of control techniques. Mathematics using primarily Laplace transforms is applied with instrumentation and process constraints to system design.
Text: At the level of Coughanowr and Koppel, Process Systems Analysis and Control.
CHE 4431. Chemical Engineering Economics 3-0-3. Prerequisite: CHE 3312. Corequisite: CHE 3313.
A study of techniques required in project anal ysis in areas of systems cost analysis and the use of the economic balance for design and opimization.
Text: At the level of Peters and Timmerhaus, Plant Design and Economics for Chemical Engineers.
CHE 4433. Chemical Process Synthesis, Design, and Optimization
2.3-3. Prerequisites: CHE 2208, 3313, 4431. Principles of chemical flowsheet creation and integration with recognized design constraints. Applications of heuristic rules, dynamic program ming, and multivariate state optimization to minimize processing costs.
Text: At the level of Rudd and Watson, Strategy of Process Engineering.
CHE 4434. Chemical Plant Design
1-6-3. Prerequisites: ICS 2250 and all other required CHE courses
A comprehensive problem in plant design.
CHE 4449. Computer Aided Process Design 2-3-3. Prerequisite: CHE 2210, 3321 or consent of school.
A study of the synthesis and operation of large-scale computer systems for steady-state simulation of chemical processes as a design tool.

Text: At the level of Seader, FLOWTRAN Simu-tation-An Introduction.

CHE 4453. Polymerization Process Analysis 3-0-3. Prerequisites: MET 3301, CHE 4415 or consent of school.
Polymerization processes are analyzed with egard to reaction mechanisms, kinetics, and reactor design. Methods of controling polymer structure during polymerization are emphasized.

CHE 4455. Plastics Industry Manufacturing

 Policy3-0-3. Prerequisite: consent of school
Case studies of practical problems contributed by industry concerning plastics manufacturing, marketing, and management. Decision-making
processes in the plastics industry are emphasized
Text: At the level of Skinner and Rogers,
Manufacturing Policy in the Plastics Industry.

CHE 4750. Polymer Science and

Engineering

3-0-3. Prerequisites: CHEM 1102, PHYS 2123. An introduction to the chemistry and structure of polymers. Polymerization processes, major polymer systems, and methods of polymer identification are presented. Also taught as TEXT 4750.

Text: At the level of Rodriguez, Principles of Polymer Systems.

CHE 4751. Polymer Science and

Engineering II

3-0-3. Prerequisites: CHEM 1102, PHYS 2123. An introduction to the physical states and transitions, fabrication processes, and mechanical properties of polymers. Also taught as TEX 4751.

Text: At the level of Rodriguez, Principles of Polymer Systems
CHE 4753. Survey of Pulp and Paper Technology
3-0-3
A survey is made of the mechanical systems sed in paper manufacture. The chemistry of pulp preparation and nonfibrous additives is outlined. Also taught as TEXT 4753.

CHE 4760. Polymer Science and

Engineering Laboratory
-6-3. Corequisite: CHE 4751.
Experiments in polymerization, processing and property evaluation of polymers. Also taught as TEXT 4760.
CHE 4771. Pulp and Paper Processes
3-0-3. Prerequisite: consent of school.
A survey of the processes in a kraft pulp mill necessary to convert raw material to sulfate pulp. Wood preparation, wood chemistry, and morphology. The chemical and mechanical char-
acteristics of kraft pulping and chemical recovery processes. Also taught as ME 4771.

CHE 4772. Pulp and Paper Processes II 3-0-3. Prerequisite: consent of school
The major pulping processes other than kraft pulping. General knowledge of the various factors affecting each pulping process and pulp bleaching. The unique advantages and disadvantages of each pulping and bleach process. Also taught as ME 4772.
CHE 4773. Paper Formation and Properties 3-0-3. Prerequisite: consent of school.
The processes in the fabrication of paper and paper products from pulp. The effects on paper properties of chemical and mechanical pretreatment of pulp. The measurement of paper properties. Also taught as ME 4773 and TEXT 4773.

Text: At the level of Casey, Pulp and Paper Chemistry and Chemical Technology, Vol. 2.

Control

Control
3-0-3. Prerequisite: consent of school Methods of control of gaseous, liquid, and solid wastes from pulp and paper mill operations. Major biological, chemical, and physical methods for treatment of waste streams.

CHE 4801-2-3-4-5-6. Special Topics

1 through 6 credit hours, respectively.
Prerequisite: consent of school
Topics relevant to chemical engineering, not currently covered in the undergraduate curriculum, are presented as demand or interest warrants.
CHE 4901-2-3. Special Problems
Credit to be arranged. Prerequisite: CHE 3311 The student is given an opportunity to develop initiative and to apply fundamental principles by doing semioriginal laboratory or theoretical investigation of a chemical engineering problem.

CHE 6001. Biochemical Engineering I
 $3-0-3$. Prerequisite: consent of instructor.

Engineering aspects of enzyme systems. Transport phenomena in biological systems and elementary biological reactor design.
CHE 6002. Biochemical Engineering II
3-0-3. Prerequisite: consent of school.
Advanced biological reactor design. Analysis of complex biological systems.

CHE 6601. Chemical Engineering

Thermodynamics
3-0-3. Prerequisite: CHE 3321 or consent of chool
The laws of thermodynamics with application o pure substances and mixtures. Calculation of lar thermodynamics and potential functions. The
corresponding states principle and its applicatior CHE 6615. Transport Phenomena I
Equations of state. Phase equilibrium calcula $3 \cdot 0 \cdot 3$. Prerequisite: CHE 3311 or consent of ions at high pressures.
Text: At the level of Prausnitz, Molecular The Advanced theory and applications of momenmodynamics of Fluid Phase Equilibria.

CHE 6602. Chemical Engineering

Thermodynamics II

$3-0-3$. Prerequisite: CHE 6601 or consent school.
Thermodynamics of solutions. Ideal and nos ideal nonelectrolyte solutions. Phase equilibia involving gas, liquid, and solid phases. Molecll properties of liquid and liquid mixtures. Engineering applications.
Text: At the level of Prausnitz, Molecular Thermodynamics of Fluid Phase Equilibria.

CHE 6607. Thermochemical Conversion

 3-0-3. Prerequisite: CHE 4434 or consent school.Thermochemical conversion to fuels or chemical feed-stocks with emphasis on fee materials of solid wastes and biomass.
CHE 6610. Aerosol Technology
3-0-3. Prerequisite: consent of school Presents basic concepts describing the behavior ormping and size analyseludes gene ton, sampling and size analyses, diffusion, agulatic seng, kinamics, rostatic and optical properties
Text: At the level of Mercer, Aerosol Techn
CHE 6611. Industrial Emission Contr
Air quality criteria, ambient and emis dards and industrial sources are analyzed. covery and utilization of waste gaseous and particulate matter are presented.
Text: at the level of Crawford, Air Pollution Control Theory.
CHE 6612. Atmospheric Reactions
3-0-3. Prerequisite: consent of school
The principles of atmospheric chemical and photochemical reactions, including primary an derived air pollutants, sources and sinks of carbon, nitrogen, sulfur, and oxygen compound Text: At the level of Seinfeld, Air Pollution, Physical and Chemical Fundamentals.
CHE 6613. Technology of Fine Particles 3-0-3. Prerequisite: CHE 3311 or consent of school.
An examination of the properties of finely divided materials. Size, surface, pores are treate in relation to reactivity, absorptivity, catalytic behavior, and process engineering operations Text: At the level of Allen, Particle Size Measurement.
m transport
Text: At the level of Bird, Stewart and Lightfoot ansport Phenomena.
HE 6616. Transport Phenomena II 0-3. Prerequisite: CHE 6615 or consent of chool.
Advanced theory and applications of energy spoort.
Text: At the level of Bird, Stewart and Lightfoot, Transport Phenomena
CHE 6617. Transport Phenomena III 3.0.3. Prerequisite: CHE 6616 or consent of school.
Advanced theory and applications of mass ansport.
Text: At the level of Bird, Stewart and Lightfoot, iransport Phenomena.
CHE 6619. Chemical Engineering Calculations I
0-3. Prerequisites: CHE 3313, MATH 2308. A study of the application of classical matheAlcal methods (including Laplace transforms nd Bessel functions) to the solution of typica mical engineering problems.
Text: At the level of Jenson and Jeffries, athematical Methods in Chemical Engineering, nd Edition.

HE 6620. Chemical Engineering

Calculations II

A study of the application of modern mathematical techniques (including numerical methods and optimization procedures) to the solution of typical chemical engineering problems. Text: At the level of Jenson and Jeffries, Mathematical Methods in Chemical Engineering, 2nd Edition
HE 6622. Advanced Reactor Design 3.0-3. Prerequisite: CHE 4415.

A study of chemical kinetics and mechanisms in complex homogeneous and heterogeneous reaction systems. Design of chemical reactors or such systems.
Text: At the level of Smith, Chemical Engineering Kinetics.
CHE 6628. Advanced Unit Operations 3-0-3. Prerequisite: CHE 3313.
Flow through conduits, metering of fluids nixing of liquids, flow and heat transfer in heat exchangers, packed columns, and fluidized beds.

CHE 6629. Advanced Unit Operations II 3-0-3. Prerequisite: CHE 3313.

Thermal radiation in furnaces, measurement f elevated temperatures, condensation of mixed vapors and evaporation
Text: At the level of Hottel, Radiative Transfer.
CHE 6635. Advanced Unit Operations III 3-0-3. Prerequisite: CHE 3313.
Vapor liquid equilibrium and separation by distillation of binary and multicomponent mix ures. Factors influencing design and performance of fractionating equipment. Application of azeotropic and extractive distillation.
Text: At the level of Robinson and Gilliland, Elements of Fractional Distillation.
CHE 6637. Advanced Unit Operations IV 3-0-3. Prerequisite: CHE 3313 or consent of school
An advanced study of adsorption and stripping in simple and in multicomponent systems. De signs and performance of equipment. Solid liquid and liquid-liquid extraction. Properties I
$3-0-3$. Prerequisite: consent of school.
Morphology and structure, linear and nonlinear viscoelasticity, anisotropic mechanical properties and yield and fracture behavior of polymers with applications to textile fibers and plastic products. Also taught as TEXT 6750.
Text: At the level of Ward, Mechanical Properties of Solid Polymers.

CHE 6751. Polymer Structure and Physical

 Properties II3-0-3. Prerequisite: consent of school
Structure-property relationships of elastomers, reinforced plastics, fibers, foams, and natural polymers with emphasis on proteins and the composite nature of all polymers and polyme products. Also taught as TEXT 6751.
Text: At the level of Ward, Mechanical Properties of Solid Polymers.

CHE 6753. Surface Science and Technology

Laboratory

3-18-9 Prerequisite: consent of school.
A highly specialized laboratory course using modern analytical and research instrumentation to characterize and study the surface properties of materials. Also taught as CHEM 6753 and PHYS 6753.

CHE 6754. Electrochemistry
3-0-3. Prerequisite: consent of school
A study of electrochemical instrumentation; the thermodynamics, structure, absorption of the electrical double layer, and the kinetics of simple and complex electrode processes. Also taugh as CHEM 6754
Text: At the level of Bockris and Reddy, Mod ern Electrochemistry, Vol. 2.

CHE 6775. Advanced Engineering
Programming Methods
3-3-4. Prerequisite: FORTRAN programming knowledge.
Advanced engineering programming concepts and their implementaton on large scale digital engineering data manage, dynamic programs, engineering data management, primary memory management, engineering problem-oriented language development, and ICES. Also taught as

CHE 6787. Heterogeneous Catalysis
$3-0-3$. Prerequisite: CHE 6622 or consent of
instructor.
Physics and chemistry of surfaces, thermodynamics, kinetics and mechanism of chemisorption and surface reactions; industrial catalysts.
Also taught as MET 6787
Text: At the level of Satterfield, Heterogeneous Catalysis in Practice.

CHE 7000. Master's Thesis

CHE 7750. Surface and Solution Propertie

of Polymers

3-0-3. Prerequisite: consent of school
Study of plasticized polymers, solutions, and colloids: sorption, polymer characterization; interfacial phenomena, and coagulation using thermodynamics, statistical mechanics, information, and fluctuation theories and relaxation methods. Also taught as TEXT 7750.

CHE 7751. Energetics

3-0-3. Prerequisite: consent of school
Energetics applied to polymers and fibers using Newtonian mechanics, thermodynamics statistical thermodynamics, and quantum mechanics to relate macroscopic and molecular descriptions of processes and materials. Also taught as TEXT 7751.

CHE 7752. Kinetics

3-0-3. Prerequisite: consent of school
Kinetics applied to polymers and fibers including fluid flow, viscoelasticity, heat transfer, diffusion, electrical conductivity, rates of chemical reactions and phase changes and irreversible thermodynamics. Also taught as TEXT 7752.

CHE 7753. Polymer Flow

3-0-3. Prerequisite: CHE 6750 or TEXT 6750 or consent of school.
The fluid mechanics, heat transfer, and mixing of non-Newtonian fluids. Experimental methods for characterizing fluids and the extrusion of polymer melts are emphasized. Also taught as TEXT 7753.
CHE 7999. Preparation for Doctoral Qualifying Examinations
Noncredit. Prerequisite: consent of director.
Students who are preparing for their qualifying
examinations will be expected to register this course. Occasionally this may be the course for which a student is registered.

CHE 8011-12-13. Seminar

1-0-1 (Audit only). Advanced.
Presentation of advanced research and sign topics in chemical engineering,
CHE 8100. Special Topics In Chemical Engineering
$3-0-3$. Prerequisite: consent of school.
Lectures on special topics of current inter in chemical engineering
CHE 8500. Special Problems In Chemica Engineering
Credit to be arranged
Lectures, laboratory, and library work on cial problems of current interest in chemical engineering.
CHE 9000. Doctoral Thesis
Credit to be arranged.

METALLURGY

MET 3301. Principles and Applications of Engineering Materials
4-3-5. Prerequisites: CHEM 1101 and 1102 1111 and 1112, 2113, PHYS 2123.

The principles of engineering
ed toward their application in engineering sign. Equilibrium and nonequilibrium structu and properties. Corrosion. Engineering applic tion and failure analysis.
Text: At the level of Van Vlack, Materials fo Engineering.

MET 3325. General Metallurgy

3-0-3. Prerequisites: CHEM 1102, PHYS 212 Introductory physical metallurgy and charac teristics and engineering applications of cast irons and steels. Static and dynamic propertie of metals and alloys. Not open to students in
the School of Chemical Engineering.
Text: At the level of Keyser, Materials Sciena
of Engineering.
MET 4110. Mineral Engineering: Introductio to Formation and Accumulation of Mineral Resources
3-0-3.
The processes of formation and accumulation ores. Industrial minerals and rocks and fuels, and an introduction to mining and beneficiation MET 4112. Mineral Engineering: Introduction to Mineral Economics
3-0-3.
Factors pertaining to the economics of the mineral industries and theoretical and pragmati concerns in the utilization of mineral resources

MET 4114. Mineral Engineering: Introduction to Mining
3.0-3. Prerequisite: consent of school.

Evaluation of mining sites; surface and underground mining methods and related equipment. Coal, ores and industrial minerals and rocks. Safety and environmental aspects of mining.
MET 4115. Mineral Engineering: Economics of the Mineral Industries
3-0-3. Prerequisite: consent of school.
Mineral property titles and concessions, valuation, acquisition and operating costs, marketing, taxation, environmental considerations, and the role of minerals in industrialized nations.

MET 4116. Mineral Engineering: Separation Technology
3-0-3. Prerequisite: junior standing.
A study of the processes for separating mine products and other materials and solid fuels; crushing, grinding, volumetric sizing, classifying and concentration.
MET 4403. Introductory Nuclear Metallurgy 3-3-4. Prerequisites: CHEM 1102, PHYS 2123. Fundamentals of physical metallurgy, metal crystals, phase diagrams, properties, fabrication and testing with emphasis on metals used in nuclear reactor systems. Primarily for NE stu dents. Not open to CHE students.

MET 4411. Basic Extractive Metallurgy $3-0-3$. Prerequisite: CHEM 3413 or equivalent. Theory and practice of extraction and refining of ferrous and nonferrous metals. Calculations and reactions related to pyrometallurgical and hydrometallurgical extractive processes will be emphasized.
Text: At the level of Gilchrist, Extraction Metallurgy.
MET 4421. Nonferrous Metallography 2-3-3. Prerequisite: MET 3301 or equivalent. The influence of processing variables on the structure and properties of nonferrous alloys. Pyrometric instrumentation applied to heat treating and thermal analysis.
Text: At the level of Gordon and Phillips, Structure and Properties of Alloys.

MET 4422. Ferrous Metallography

 3-3-4. Prerequisites: MET 3301, 4421 or equivalent.The influence of processing variables on the microstructure and properties of steels and ferrous alloys. Heat treating and thermal analysis of ferrous materials.
Text: At the level of Brick, Gordon and Phillips, Structure and Properties of Alloys.

MET 4423. Metallurgical Fabrication

3-0-3. Prerequisite: MET 3301 or equivalent. Primary forming techniques and secondary
fabrication and joining processes. Some of the processes to be discussed are casting, rolling, forging, extrusion, drawing, machining, and welding.
MET 4441. Theoretical Physical Metallurgy 3-0-3. Prerequisite: MET 3301 and CHEM 3413 or equivalent.

A study of the physical and mechanical properties of metals and alloys in the light of their structure.
Text: At the level of Cottrell, An Introduction to Metallurgy.
MET 4445. Electron Microscopy
2-3-3. Prerequisites: MATH 2308 and MET 3301
Theory and principles of electron optics and electron microscopy. Preparation and observaion of materials by electron microscopy
Text: At the level of Thomas, Transmission Electron Microscopy of Metals.

MET 4446. X-ray Metallography

3-3-4. Prerequisite: MET 3301.
Theory and application of X-ray diffraction to metallurgy. Crystal studies, texture studies, phase diagram determination, and chemical analysis.
Text: At the level of Cullity, Elements of X-ray Diffraction, 2d. Ed., and Azaroff and Donahue, aboratory Experiments in X-ray Crystallography

MET 4463. Metallurgical Testing

2-3-3. Prerequisite: MET 3301.
Stress-strain relationships. Elastic and plastic deformation. Elementary dislocation concepts. Laboratory experiments include tension, creep, fatigue, impact, and hardness testing. Metallic ceramic, plastic, and filamentary materials.
Text: Dieter, Mechanical Metallurgy, 2d Ed

MET 4464. Nondestructive Testing

2-3-3.
Principles and theory of industrial nondestructive testing methods. Emphasis on testing the soundness and reliability of primary and sec-
ondary fabricated metal structures.
Text: Nondestructive Testing Handbook.
MET 4491. Corrosion and Protective Measures $3-0-3$. Prerequisites: CHEM 3413 and MET 3325 or 3301 .
The electrochemical theory of corrosion, recommended materials, and protective measures for chemical processing equipment and for atmospheric, underground, underwater, and elevated temperature exposures.
Text: Scully, The Fundamentals of Corrosion.
MET 6005. Dental-Medical Materials
2-0-2. Prerequisites: MET 3301 and MET 4491 Theoretical requirements and compatibility of metals as medical implants and a review or up-to-date research. Special lectures will be given by visiting researchers.

MET 6011. Pyrometallurgy
3-0-3. Prerequisite: MET 4411 or equivalent Pyrometallurgical processes for the production or recycling of ferrous and nonferrous metals.
MET 6012. Hydrometallurgy
3-0-3. Prerequisite: MET 4411 or equivalent. Hydrometallurgical processes used in the production of copper, aluminum, zinc, uranium, and
other metals. other metals.

MET 6014. Electrometallurgy

2-3-3. Prerequisite: CHEM 3413 or equivalent. Electrolytic dissolution and deposition of metals, electrolytic purification, electroplating, anod izing, and electropolishing.
MET 6021. Metallurgical Design Problems
1-6-3. Prerequisite: full graduate standing
Selection of process equipment, design of special equipment, plant layouts and preparation of equipment, utilities. Production costs. Design methods are discussed, evaluated, and utilized.

MET 6025. Powder Metallurgy

Prerequisite: MET 4423
Physical and chemical production of metallic powders. Pressing, slipcasting, sintering, and the theoretical aspects of these processes. Ho materials. Text: At
Text: At the level of ASM Powder Metallurgy selected literature by Steinburg, Kuczynski and

MET 6033. High Temperature Metallurgy 2-0-2. Prerequisites: MET 3301, 4491.
Effects of temperature on properties and microstructures. Deformation mechanisms, theories and phenomenological relationships. Grain boundary sliding, migration. Constitutive equa tions, deformation mechanism maps, time-
mperature parameters.
Text: At the level of F. Garofalo, Fundamentals of Creep-Rupture in Metals.
MET 6035. Advanced Nuclear Materials
3-0-3. Prerequisite: MET 4403 or equivalent.
Physical metallurgy of alloys used in fission rials to irradiation systems. Response of matesion. Design of new alloys, fracture, and corrosion. Design of new alloys.

Eorrosion

3-3-4. Prerequisite: MET 4491
The subject matter covers the latest theories and concepts of metallic corrosion.
MET 6421. Quantitative Characterization of Microstructures
3-0-3. Prerequisite: graduate standing or consent of instructor.

General, statistically-exact methods for de- MET 7053. Advanced Dislocations and scribing geometrical attributes of microstructur Strengthening Mechanisms II materials or sections. Applications to actua automatic image anal apimens. Manual al
Text: Undermage analysis techniques.
Text: Underwood, Quantitative Stereology.
MET 6787. Heterogeneous Catalysis 3-0-3.
Physical chemistry of surfaces; thermodyna ics, kinetics and mechanisms of chemisorpti and surface reactions, industrial catalysts. At laught as CHE 6787.
Text: At the level of Satterfield, Heterogenea Catalysis in Practice.

MET 7000. Master's Thesis

MET 7041. Advanced Physical Metallurgy 3-0-3. Prerequisites: CHEM 3411 or equivale MET 4441.
Thermodynamic and solid state of metals and alloys. Phase stability. Systems for predio tion of properties. Lattice dynamics. Electronic properties.
Text: At the level of W. Hume-Rothery, Atomic Theory for Students of Metallurgy.
MET 7045. Advanced Electron Microscopy 3-0-3. Prerequisite: MET 7051.
This course will emphasize the dynamical theory of image contrast in thin crystalline foi and is application to the interpretation of lattio defects.
MET 7046. Advanced Electron Microscopy 3-0-3. Prerequisites: MET 4445, 7045 .
This course will emphasize the application theories of electron diffraction and image contrast in thin foils to the types of problems commonly encountered in metallurgy.
MET 7051. Advanced Mechanical Metallurg 3-0-3. Prerequisite: MET 4463.
Basic elasticity theory. General elasticity equations. Applications to dislocations; stresses forces, displacements, interactions, energies Origin, multiplication, and movement of disloca tions. Single-phase, two-phase, and particle strengthening
Texts: G. E. Dieter, Mechanical Metallurgy; Weertman and J. R. Weertman, Elementary Dislocation Theory.
MET 7052. Advanced Dislocations and Strengthening Mechanisms I
3-0-3. Prerequisite: MET 7051.
dislocation networks and their will be on dislocation networks and their effect on the monotonic byclic prerials including bo
Text: Hertzberg properties.
Text: Hertzberg, Deformation and Fracture Mechanics of Engineering Materials.
$0-3$. Prerequisite: MET 7052
The emphasis in the teraction of dislocations with other defects and the correation of these maerials including mechanical properties of materials Tironments effect on racures Texts: Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, Fatigue and Microstructure, American Society for Metals
MET 7062. Magnetism In Metals 308-3.
Magnetism in materials. Electron theory, statistical and thermodynamic interpretation of ferro-antiferro- and helimagnetism. Ferromagnetism in metals and alloys. Domain theory of hysteresis behavior. Anisotropy and magneto-stricktion Magnetic measurements.

MET 7068. Neutron Diffraction

3-0-3. Prerequisites: PHYS 6231, MET 4441 4446.

Neutron scattering properties. Neutron diffraction techniques. Analysis of alloy and magnetic structure. Simple structural systems. Reciproca space and Fourier transform methods. Inelastic scattering by phonons and magnons.
Text: At the level of Bacon, Neutron Diffraction, second edition.
MET 7081. Metallurgical Thermodynamics 3-0.3. Prerequisites: MET 4441, CHEM 3412.
Chemical thermodynamics of metals, alloys, and metallurgical processes. Chemical equilibrium. Solution thermodynamics. Phase equilibria. Text: Gaskell, Introduction to Metallurgical Thermodynamics.
MET 7085. Metallurgical Kinetics
3-0-3. Prerequisite: MET 7081.
Heat and mass transport. Empirical kinetics. Phase transformations. Diffusion mechanisms. Nucleation. Growth. Solidification. Recrystalliza ion. Precipitation. Spinodal decomposition. Decomposition of austenite. Radiation damage.

MET 8001-2-3. Semina

$2 \cdot 0-1$ each. Prerequisite: graduate standing The latest advances in metallurgical research and development will be presented by the enrolled students from articles in recent issues of recognized periodicals.

MET 8100. Special To

3-0-3. Prerequisite: consent of school Representative subjects include alloy theory, phase transformations, magnetic and electric phenomena in metals, and special topics in diffraction analysis.

MET 8500. Special Problems (Master's) Credit to be arranged.

Lectures, laboratory, and library work on special topics of current interest in metallurgy suitable for a master's candidate.
MET 9000. Doctoral Thesis
Credit to be arranged.

School of Civil Engineering

Established in 1896
Director-J. Edmund Fitzgerald; Assistant Director-Paul H. Sanders; Regents' Pro-fessors-Satya N. Atluri, Paul G. Mayer, George F. Sowers; Professors-Richard D. Barksdale, Austin B. Caseman, Edward S. K. Chian, Donald O. Covault, Leroy Z. Emkin, Daniel W. Halpin, James S. Lai, Charles S. Martin, Peter S. Parsonson, Charles S. Martin, Peter S. Parsonson, Fred G. Pohland, Quentin L. Robnett,
William M. Sangster, Thomas E. Stelson Earl M. Wheby, Paul H. Wright; Associate Professors -Mustafa M. Aral, Barry J. Goodno, Lawrence F. Kahn, Boris M. Khudenko, F. Michael Saunders, Calvin W. Tooles, I. Edwin Wilks, Kenneth M. Will; Assistant Professors-Robert C. Bachus, Ashintya Haldar, Roozbeh Kangari, Byung R. Kim, Sai Hyun Lee, Srinivasa R. G Rao, Philip J. W. Roberts, Shahrokh Rouhani, Terry W. Sturm; Adjunct Professor -Patrick M. Quinlan; Senior Research Scientist-Wendell H. Cross; Research Scientists 1 Timothy Dodd, Stacy V. Stringer; Research Scientists I-J.P. Gould, David B. Green, P.A. Jensen, O. Watanabe; Senior Research Engineer-Manuel J. Moskaluk; Research Engineers 1-Robert Abernathy, Harvey Chatham, Hamid Zand; Adjunct Research Engineers 1 Y. Chen, Bilu Yu; Research Engineers II-D.W. Keck, Michael Lee, Fu Run Lu, Dein Shaw, Michael H Swanger.

General Information

The School of Civil Engineering offers courses in civil engineering and engineering graphics and programs leading to the degrees Bachelor of Civil Engineering, Bachelor of Science (undesignated), Master o Science in Civil Engineering, Master of

Science in Environmental Engineering Master of Science (undesignated), and Doctor of Philosophy. Also offered is a joint two-year program leading to the degrees Master of Science in Civil Engineering or Master of Science (undesignated, major in transportation engineering), and Master of City Planning.
Multidisciplinary Programs
See table on page 79 .

Program in Engineering Graphics

 The School of Civil Engineering offers EGR 1170, Introduction to Visual Communication and Engineering Design. Many engineering curricula require this course; other engineering and non-engineering curricula accept engineering graphics as an elective.The objective of the course is to teach the student the principles of graphic expression. Thus, the student should schedule this course during the freshman year, so that principles learned therein may be used in later engineering courses.

Bachelor of Civil Engineering
The four-year curriculum leading to the degree Bachelor of Civil Engineering enables the graduate to enter professional practice as an engineer or to continue his or her studies in programs leading to advanced degrees in the following broad fields of specialization: construction, environmental engineering, fluid mechanics, hydraulics, hydrology, materials, soil mechanics, structures, surveying, transportation, and water resources planning and management.
The graduate of the B.C.E. curriculum may function in the areas of planning and design, construction, research and development, operations, and maintenance. Since the inauguration of its accrediting program in 1936-1938, the Accreditation Board for Engineering and Technology has continuously accredited the curriculum leading to the Bachelor of Civil Engineering degree. Graduates of the B.C.E. curriculum are eligible to seek licensing as registered professional engineers.
The course requirements of the Bachelor of Civil Engineering degree are listed here. Although students do not have to take
the courses during the quarter indicated EVGL 1001-2 they must satisfy all prerequisites for ap lintroduction to ticular course.

In addition to campus-wide academic requirements for graduation with a bacm Humanities/Social Ior's degree, the following are also requife for the B.C.E. degree.
(a) The scholastic average shall be a Electives ${ }^{2}$ minimum of 20 for those quarters durim which the student takes the last fifty-fou hours toward the degree.
(b) The number of quality points earn in civil engineering courses taken towar the degree must be at least twice the number of credit hours in those courses
(c) No more than twelve hours of fre electives may be taken on a pass/fail basis. No other courses may be taken a pass/fail basis.

Students who complete both the bacheSor's and master's degres in lor's and master's degrees in the School (102, Inorganic Civil Engineering may use up to nine creen Chemistry hours of graduate level course work (as CE 2264 approved by the C.E. School) in the mar Surveying discipline for both degrees. In order to qualify for this option, the student must complete the undergraduate degree with cumulative grade point average of 3.30 higher and complete the master's degres within two years after the award date of tt bachelor's degree.

Freshman Year
Courses 1st Q. 2nd Q. 3rd
CHEM 1101 3rd

Inorganic Chemistry
BIOL 1720
Biological Principles 4-3-5
PHYS 2121
Physics
MATH 1307-8-9
Calculus I, II, III
EGR 1170
Visual
Communications

CE 1503 ${ }^{1}$

Freshman
Engineering Elective 2-3-3
ECON 2000
Economics
lectives ${ }^{3}$
Physical
Sophomore Year
Courses

PHYS 2122

Physics
Elective ${ }^{7}$
Either PHYS 2123,

Economics

Physical Education $\frac{x-x-1}{x-x-18} \frac{x-x-1}{x-x-18} \frac{x-x-2}{x-x-18}$

1st Q. 2nd Q. 3rd Q.
\qquad Calculus IV, V MATH 3709 Mathematics for Systems Engrg.
ESM 2201
Statics ESM 3201 Dynamics ESM 3301
Mechanics of DeMechanics of De-
formable Bodies 5-0-5 Electives ${ }^{6}$ Electives ${ }^{6}$
Humanities/Social Science/Modern Language $\quad 3-0-3 \quad 3-0-3 \quad 3-0-3$

Electives ${ }^{2}$
Free
Totals

Junior Year

Courses

CE 3513

Digital Computers	$3-0-3$	\ldots.
CE 3224			
Structural Analysis	$3-3-4$	\ldots.

CE 3534 Stochastic Methods	3-3-4		
GEOS 2100 Physical Geology	3-0-3	
GEOS 2102 Physical Geology Laboratory	0-3-1	
Elective ${ }^{7}$ Either ME 3720, Thermodynamics or CHEM 2113, Chemical Principles	X-X-4
CE 4108-18 Environmental Engineering I, II		3-0-3	3-0-3
CE 3309 Materials of Construction	3-3-4	
CE 3053-4 Fluid Mechanics I, II	3-0-3	3-3-4
ENGL 3023 Technical Writing	3-0-3	
Elective ${ }^{4}$ Free	3-0-3	
CE 4204 Metal Structural Components			3-3-4
CE 4154 Behavior of Soil and Rock	3-3-4
EE 3700^{8} Elements of Electrical Circuits and Instruments	3-0-3
EE 3740^{8} Electrical Instrumentation Laboratory			0-3-1
Totals	X-X-19	15-3-16	5-12-19
Senior Year Courses	1st Q.	2nd Q.	3 rd Q
CE 4214 Concrete Structural Components	3-3-4	
CE 4163 Soil and Rock Engineering	2-3-3	
CE 3061 Fluid Mechanics Laboratory	0-3-1		

Electives ${ }^{5}$			
CE	3-0-3	3-0-3	3-0-3
CE 4353			
Hydrology	3-0-3	
Electives ${ }^{6}$			
Humanities/Social			
Science/Modern			
Language	3-0-3	6-0-6	6-0-6
CE 4304			
Transportation			
Engineering I	3-3-4	
ISYE 4725			
Engineering			
Economy	3-0-3	
CE 4003			
Construction		2-3-3
Elective ${ }^{4}$			
Free			3-0-3
Totals	-9-17		

Master of Science

The School of Civil Engineering awards three degrees in this category: Master of Science in Civil Engineering, Master of Sci ence in Environmental Engineering, and
${ }^{1}$ See College of Engineering section "Curricula and Courses of Instruction" for engineering electives which can be substituted for CE 1503
${ }^{2}$ These free elective courses may be taken at any time during a student's course of study. Physical education courses may not be used to satisfy this requirement.
${ }^{3}$ See "Curricula and Courses of Instruction," Department of Physical Education and Recre ${ }^{4}$ ation, for physical education requirements. ${ }^{4}$ Six hours of free electives at the 3000 level or higher, except Physical Education, must be tak${ }^{5}$ en if advanced ROTC is not taken.
${ }^{5}$ CE Electives. Nine hours chosen from 4000level CE courses, not otherwise required in the BCE curriculum, or graduate level CE courses as approved by advisor and director (minimum of 2.7 average required for an undergraduate to take a graduate course).
${ }^{6}$ See "Information for Undergraduate Students" section of this catalog for humanities, social ${ }^{7}$ science, and modern language requirements ${ }^{7}$ CHEM 1102 is prerequisite for CHEM 2113 , recommended for specialization in Environmental Engineering. PHYS 2123 is corequisite for ME 3720 .
${ }^{8}$ EE 3700 is corequisite for EE 3740, but the reverse is not true.
the undesignated Master of Science. C mon requirements for these degrees, in addition to those specified in the sectio "Information for Graduate Students," ar listed below.

1. A minimum of fifty hours of course wo none of which was used to satisfy quirements for a previous degree, is required with the approval of the stu dent's advisor and the director (see ception below)
2. Up to fifteen of the fifty hours can be Environmental Engineering are accredited 3000-4000 level courses. Courses re quired for the B.C.E. degree cannot used to satisfy this requirement; othe 3000-4000 level courses may be use with the approval of the advisor and director (see exception below).
3. Up to six of the fifty hours may be tak on a pass/fail basis with the approval the advisor and director.
4. Each M.S. student must either (a) w an M.S. thesis and schedule at least seventeen hours of CE 7000, or (b) wri an M.S. special research problem an schedule between six and twelve ho of CE 8756. No more than seventeen hours of CE 7000, nor more than twel hours of CE 8756, may count as part of the fifty hours required for the M.S degree.
5. Students electing to write an M.S. the sis must take at least eighteen hours course work in their major field. Students electing to write an M.S. spec research problem must take at least twenty-seven hours of course work cluding CE 8756) in their major field.
Only those students who have previously earned the B.C.E. degree or its equivaler may receive the Master of Science in Ci Engineering degree. The School awards the Master of Science in Environmental Engineering degree only to those students who have previously earned the B.C.E. degree or who have earned an accredited bachelor's degree in enginee ing and taken those undergraduate cours (for no credit toward the M.S.) required b) heir advisor and the director. Students wh do not meet the above requirements, bul satisfy all prerequisites for the courses in their M.S. program, receive the undesignate Master of Science degree.
6. Up to fifteen of the fifty haineering and Master of Science in

A wide range of M.S. programs is available in fields such as construction, environmental engineering, fluid mechanics, hydraulics, hydrology, soil mechanics, materials, structures, transportation, and water resources planning and management. The chool encourages latitude in the selecion of courses in an M.S. program, providthat the resulting program leads to a definable goal.
The degrees Master of Science in Civil
ingineering and Master of Science in Environmental Engineering are accredited and Technology. The undesignated Master Science degree is not an engineering degree; holders of this degree may not be licensed as professional engineers, unless they have an ABET accredited bachelor's degree in engineering
Students who complete both the bachelor's and master's degrees in the School of Civil Engineering may use up to nine credit hours of graduate level course work (as approved by the CE School) in the major discipline for both degrees. In order to qualify for this option the student must qualify for this option the student undergraduate degree with a cumulative grade point average of 3.3 or higher and complete the master's degree within two years after the award date of the bachelor's degree
Graduates of technology programs are not directly admissible to graduate study in the School of Civil Engineering.

Doctor of Philosophy

The Ph.D. is the highest degree awarded and as such requires the highest level of proficiency and achievement, both in knowledge and in the performance of research presented in a written dissertation. While there are no specific course requirements, most doctoral students spend approximately two years in course work beyond the bachelor's degree while conducting their research activities, plus at least another year on full-time research.

Courses of Instruction

CIVIL ENGINEERING

CE 1503. Introduction to Civil Engineering CE 2 -3 Not offered summer quarter
2-3-3. Not offered summer quarter.
What engineering is, what civil engineering is, What engineering is, what civi civil engineers do. The civil engineerand what civil engineers do. The cankind's ing approa

CE 2264. Plane Surveying

3-3-4. Prerequisite: EGR 1170
Use of modern instruments and office procedures to obtain and analyze field data for use in engineering planning, design, and construction. Introduction to photogrammetry.

CE 3053. Fluid Mechanics I

3-0-3. Prerequisite: ESM 3201.
Elementary mechanics of fluids with emphasis on analysis, fluid kinematics, equations of moon analysis, fluid kinematics, equations momentum and energy principles, surface and form resistance.

CE 3054. Fluid Mechanics II

3-3-4. Prerequisite: CE 3053

Elementary mechanics of fluids with emphasis on engineering applications. Enclosed conduit flow, open-channel flow, hydraulic machinery, fluid measurements, dynamic similitude.

CE 3061. Fluid Mechanics Laboratory

0-3-1. Prerequisite: CE 3054
Experiment, demonstration and analysis of basic fluid phenomena and exercises in laboratory techniques.

CE 3224. Structural Analysis

3-3-4. Prerequisite: ESM 3301.
Determination of internal forces and deflections in statically determinate trusses, beams, and frames. Introduction to analysis of statically indeterminate structures and to formulation of influence lines.

CE 3254. Advanced Surveying I

3-3-4. Prerequisite: CE 2254. Not offered winte quarter.

Field astronomy. Precise taping, leveling, triangulation, sub-tense bar, adjustments of level nets and triangulation figures, special problems in land division, introduction to photogrammetry
CE 3309. Materials of Construction
CE 3309. Materials of Construction 3 -3-4. Prerequisites: ESM 3301, GEOL 2100, 3-3-4.
2102.
Basic principles of the properties of materials. Basic principles of the properties properties of Physical, chemical, and mechanical properties of metals, concrete, timber, masonry, and aspha tions and writing reports.

CE 3513. C.E. Applications of Digital

 Computers3-0-3. Prerequisite: MATH 1308.
The application of digital computers to the solution of civil engineering problems using FORTRAN. This course is prerequisite to all CE courses shown in CE curriculum after first quarter, junior year.
CE 3534. Stochastic Methods and Applications in Civil Engineering
3-3-4. Prerequisite: MATH 2308
Identification and modeling of non-deterministic problems in civil engineering and treatment thereof relative to engineering design and decision making. Probability and simulation models in the various areas of civil engineering

CE 4003. Construction

2-3-3. Prerequisite: ISYE 4725
The construction industry, contracts, and forms of construction company organization. Financing, equipment, manpower, and materials. Time and cost control methods are introduced.
CE 4013. Design of Construction Operations 3-0-3. Prerequisite: junior standing.
Modeling and analysis of construction operations at the job site level. Productivity calculations and allocation of construction resources

CE 4053. Applied Hydraulics

3-0-3. Prerequisites: CE 3054, 4353
Analysis and design of hydraulic works and structures. Typical exercises: stability of dams spillway design, stilling basins, culverts, pipe systems, sediment transport, erosion and ero sion control.
CE 4063. Introduction to Environmental Fluid

Mechanics

3-0-3. Prerequisite: CE 3054
Introduction to fluid mechanical aspects of the water environment as applied to lakes, rivers, estuaries, and coastal zones. Mechanisms of transport processes and flushing. Practical engineering applications.
CE 4108. Environmental Engineering I 3-0-3. Prerequisites: MATH 2308, CHEM 1101 Introduction to physical, chemical, and biological properties of the aquatic environment with reference to environmental quality. Quality of water for domestic use. Basic principles of aquatic microbiology and chemistry.
CE 4118. Environmental Engineering II 3-0-3. Prerequisite: CE 4108. Corequisite CE 3054.
Introduction to waste and water treatmen processes. Physical, chemical, and biologica principles of biological treatment for BOD removal. Coagulation, sedimentation, filtration, nu-
trient removal, and other treatment processe Engineering of treatment systems
CE 4128. Environmental Engineering III 2-3-3. Prerequisite: CE 4118.
The layout, hydraulic process, and operatio design of water and wastewater systems. Supervised design problems and inspection tir

E 4133. Engineering Aspects of

Environmental Health

3-0-3. Prerequisite: CE 4118
Sanitary engineering in public health admin stration and control of environmental health problems.
CE 4138. Environmental Monitoring and Impact Assessment
3-0-3
An introduction to techniques of monitoring and assessing the impacts of engineering sys tems on environmental quality
CE 4142. Environmental Microbiology Laboratory
1-3-2. Corequisite: CE 4148
Basic laboratory exercises and discussions for the understanding of fundamental and applied microbiological principles in environmenta engineering.

CE 4143. Man in His Environment 3-0-3.

Open to students from all fields. On popula. tion, resources, wastes, and health as related development of science and technology.
CE 4148. Application of Microbiology in Environmental Engineering
3-0-3.
Introduction to fundamental and applied mi. crobiological principles in environmental engineering with emphasis on microbial growth an metabolism in biological processes
CE 4154. Physical Behavior of Soil and Rock
3-3-4. Prerequisites: CE 3309, GEOS 2100, 2102.

An introduction to the engineering properties of soil and rock. The origin, composition, and structure of soils. The effect of water and contro

CE 4163. Soil and Rock Engineering

2-3-3. Prerequisite: CE 4154
Mechanics of soil and rock masses as applied to civil engineering design and construction, footing and pile foundations, retaining walls, bulkheads, fills, embankments, control of landslides.
CE 4204. Metal Structural Components 3-3-4. Prerequisites: CE 3309, 3224
Principles of behavior of tension and com-
ression members, beams, and connections with application to the design of elementary structures.

CE 4213. Structural Analysis II

2.3-3. Prerequisites: CE 3513, 3224

Flexibility and stiffness matrix methods of slatic structural analysis. Computer programming
CE 4214. Concrete Structural Components 3.3-4. Prerequisites: CE 3309, 3224.

Principles of behavior of reinforced concrete Peams, columns, and slabs with application to the design of elementary structures.

CE 4223. Structural Design

2-3-3. Prerequisites: CE 4204, 4214, 4154. Design of structures in metal and concrete with emphasis on buildings and bridges.
CE 4233. Design in Timber and Prestressed Concrete
2-3-3 Corequisite: CE 4214
Principles of behavior of timber and of prestressed concrete structural members, application to the design of elementary structures.

CE 4283. Advanced Route Surveying

2-3-3. Prerequisite: CE 2264

Horizontal and vertical curves in transporta tion systems, application of transition curves, earthwork computations, problems involving fixed points and relocations.
CE 4304. Transportation Engineering I 3-3-4. Prerequisite: CE 3309.
Planning, design, and construction of streets and highways. Computer-oriented laboratory problem acquaints student with modern highway design techniques and criteria.
CE 4313. Transportation Engineering 3-0-3. Prerequisite: senior standing.
History and economics of transportation sys tems, traffic and planning problems and techniques, planning and design of air, rail, highway, and water transportation facilities as a system.

CE 4353. Hydrology

3-0-3. Prerequisite: CE 3054
Occurrence and movement of water of the earth, hydrologic measurements, elementary meteorology, precipitation, evapotranspiration and runoff, ground water, frequency analysis.

CE 4363. Applied Hydrology

3-0-3. Prerequisites: CE 3054, 4353. Winter quarter.

Applications of hydrology in the design of hydraulic structures for water supply, irrigations, power, drainage, and flood control facilities.

CE 4373. Water Resources Development 2-2-3. Prerequisite: CE 4353. Spring quarter Comprehensive planning for water resources management, identification of needs, problems
and issues, alternative creative solutions, economic and financial evaluation, institutional setting, and public participation.
CE 4383. Groundwater Hydrology
3-0-3. Prerequisites: CE 4353, GEOL 2100. Spring quarter.

Occurrence, distribution, and movement of water below the surface of the earth, groundwater resources, and dependable supply rates from wells, artificial recharge, and waste disposal.
CE 4801-2-3-4-5-6. Special Topics Credit hours equal last digit of course number. CE 4811-2-3-23. Special Topics Credit hours equal last digit of course number.

4900. Special Problems

Credit hours to be arranged.
CE 6003. Construction Administration 2-3-3. Fall quarter.

Management tools used to carry out administrative aspects of construction project management. Estimating and bid control. Quantity take off procedures, cost accounting, insurance, bonding, finance, and safety.
CE 6013. Civil Engineering Management I 2-3-3. Corequisite: ISYE 6739. Winter quarter.
Scientific methods in the management of Scientific methods in the managenes as C.P.M. and P.E.R.T. for planning, scheduling, and control of construction projects.

CE 6023. Civil Engineering Management If 2-3-3. Prerequisite: CE 6013. Corequisite SYE 6734. Spring quarter.
Continuation of CE 6013. Additional topics include linear and dynamic programming, queueing models and simulation as applied to construction project management.
CE 6051. Intermediate Fluid Mechanics I 3-0-3. Prerequisite: CE 3054. Fall quarter.
Basic analytical techniques of fluid mechanics; kinematics and dynamics of fluid flows; conservation of mass, momentum, and energy; Bernoulli and Navier-Stokes equations; potential flow.
CE 6052. Intermediate Fluid Mechanics II 3-3-4. Prerequisite: CE 6051. Winter quarter. Low Reynolds number flows. Turbulent flow. Laminar and turbulent boundary layers, boundary layer controls. Lift and drag, cavitation.
CE 6054. Engineering Hydrodynamics 3-0-3. Prerequisites: CE 6051, MATH 4320. Fall quarter.

Irrotational flow, potential and stream functions, principles of continuity, energy, and momentum. Hydrodynamic singularities, conformal
transformations, discontinuous flows, and free-stream-line solutions. Analytic and approximate methods.
CE 6061. Environmental Fluid Mechanics 3-0-3. Prerequisite: CE 3054. Spring quarter. Basic analytical techniques for predicting pol lutant transport in various hydrologic situations. shear flows. Mechanics turbulent flows and
plum
2-3-3 Prenvironmental Fluid Mechanics II
Prequisite: CE 6061. Summer quarter Practical application of basic principles to reservoirs, estuarions. Mixing in rivers, physical models.
CE 6071. Flow Through Porous Media I 3-0-3. Prerequisite: CE 6051. Spring quarter Darcy's Law and fundamental equations of groundwater flow. Mathematics models and analytical solutions to elementary groundwater flow problems. Basic concepts of unsaturated flow and approximate methods
CE 6072. Flow Through Porous Media II 3-0-3. Prerequisite: CE 6071. Summer quarter Fundamental equations of saturated-un saturated groundwater flow. Mechanics of dis persion in groundwater flow. Multiphase flow. Approximate methods of solution.

CE 6081. Flow in Open Channels

2-3-3. Prerequisite: CE 3054, 3061. Fall quarter. Flow of liquids with free surfaces in natural and artificial channels. Application of energy and momentum principles, analysis of flow resistance, computation of gradually-varied flow profiles.
CE 6082. Flow in Open Channels II 2-3-3. Prerequisite: CE 3054, 3061. Winter quarter
Flow of liquids through open channel transiions and controls including weirs, free overfalls, spilways, expansions, contractions, and culverts. reatment of unsteady flow in

CE 6084. Transient Flow In Enclosed Conduits -3-3. Prerequisite: CE 3054. Spring quarter. Unsteady flow of compressible and incom pressible fluids in conduits, pressure wave propagation, one-dimensional wave equations, meth d of characteristics, pulsating flow, water ham mer, hydraulic machinery, column separation

CE 6086. Sediment Transport

3-0-3. Prerequisite: CE 3054 . Spring quarter Sediment properties, initiation of sediment motion by flowing water, suspended sediment discharge, bed load discharge, bed form mechanics, hydraulic resistance to flow. Reservoir sedimentation.

CE 6091. Coastal Engineering
3-0-3. Prerequisite: CE 6051. Winter quarter coastal zones: hydrodynamic principles to efraction diffraction and of wave motion, w heory of tides, harbor resonaction, equilibriu nalysis of waves and tidenance, harmonic nalysis of waves and tides.

CE 6102. Physical Principles in Environment

 Engineering4-0-4. Fall quarter.
Analysis of the physical principles of w quality control such as: sedimentation, floca ion, filtration, inertial separation, gas transier and principles of reactor design
CE 6103. Aquatic Chemistry
3-0-3. Prerequisite: CE 6136. Spring quarter
Chemical behavior of natural aquatic systen lakes, oceans, rivers, estuaries, groundwater, wastewater, treatment systems. Analysis of n ural waters using physical chemistry principles

CE 6105. Application of Instrumental

 Analysis in Environmental Engineering 2-3-3. Prerequisites: CE 6136 and CE 6137 Fall quarter.Theory, design, sensitivity and limitations environmental sampling instruments. Spectropho tometric, electromechanical and gas chromat graph analysis of solid waste, water and wast: water.
CE 6109. Environmental Engineering Design 3-3-4. Spring quarter.

Theory and design of structures for capture purification, conditioning and distribution of pu lic water supplies.
CE 6115. Hazardous Waste Management 2-3-3. Summer quarter
Introduction to hazardous waste managemer with special emphasis on identification of sources characteristics, transportation requirements treatment and disposal methods.

CE 6116. Environmental Engineering
Processes Laboratory
1-6-3. Prerequisites: CE 6140, 6141, and 6142 Summer quarter.
Laboratory evaluation of various physicalchemical and biological processes which form the basis of many water quality control operations including coagulation, thickening, adsorption, as transfer, membrane separations, filtration, dewatering and biological oxidation.
CE 6118. Solid Waste Technology I 2-3-3. Prerequisite: consent of school. Winter quarter.
An introduction of the fundamentals of solid waste characterization, handling and disposal systems, physical and chemical methods of solid waste analysis.

6119. Environmental Engineering

 sign II-4. Summer quarter
Theory and design of structures for collection, atment, disposal and reuse of municipal sewage d liquid industrial wastes

66120. Treatment

Characterization, stabilization, conditioning, hickening, dewatering, conversion, recovery, trans pration and disposal of air, water and wasteater treatment residues.
E 6125. Industrial Waste Treatment and Disposal
-0.3 . Spring quarter.
Evaluation of industrial waste problems, charcteristics of wastes produced from industry and application of engineering principles and pro-
cesses for waste treatment, recovery and disposal
CE 6126. Introduction to Air Pollution
$\cdot 0-3$. Winter quarter
Sources of primary and secondary air polluion. Application of thermodynamics and kinetics production of air pollutants from combustion processes and atmospheric photochemical reacions. Dispersion and control.
2.3-3. Spring quarter.

Principles of air sampling and sampling trains Techniques of sampling inorganic gases and aerosols. Evaluation of data.
CE 6128. Solid Waste Technology II 2.3-3. Prerequisite: CE 6118. Spring quarter. Evaluation of typical solid waste problems, application of fundamental principles to derational and management, case stud methods, advanced solid waste systems, new methods, advanced topics.
CE 6130. Environmental Processes in Surface Water Systems
${ }_{3-0-3}$. Prerequisite: CE 4118. Winter quarter. Analysis of chemical, physical and biological processes occurring in natural water systems such as streams, lakes and estuaries.

CE 6136. Applications of Chemistry in

 Environmental Engineering$3 \cdot 0-3$. Fall quarter.
Kinetic and equilibrium relationships controlling the chemical behavior of the aquatic environment. Distribution and behavior of chemical species in dilute aqueous systems.
CE 6137. Fundamentals of Chemical Analysis in Environmental Engineering
in Environmental Engineering 1-3-2 Corequisite: CE 6136 . Fall quarter
Basics of wet chemical analysis of aqueous samples. Titrametric and spectrometric techniques
of importance in sanitary and environmenta engineering as well as general laboratory methods.
CE 6138. Applied Limnology
2-3-3. Spring quarter.
Consideration and application of limnological principles as they pertain to evaluating the impact wastewater disposal will have on the biological productivity of inland waters.

CE 6140, Environmental Engineering

Processes I
4-0-4. Prerequisites: CE 3054 CE 4118, 6102 and CE 6136 . Winter quarter.
Theory and application of the physical and chemical processes of coagulation, flocculation, sedimentation and filtration in water and wastewater treatment.

CE 6141. Environmental Engineering

Processes II
4-0-4. Prerequisites: CE 4118, CE 4148, CE 6102 and CE 6136. Winter quarter.
Study of biological and chemical processes employed in water and wastewater treatment systems. Biological growth kinetics, biological re actor configuration including activated sludge, trickling filters, lagoons and oxidation ponds.

CE 6142. Environmental Engineering

Processes III

3-0-3. Prerequisite: CE 6102. Spring quarter. Advanced treatment processes in environmental Advanced realment prombrane separation, adsorption and ion exchange.
CE 6146. Field Methods in Environmental Engineering
0-15-5. Summer quarter.
Organization and conduct of water quality surveys and field studies for natural waters.

CE 6148. Advanced Microbiology of Water

 and Wastes2-3-3. Prerequisite: CE 4148. Winter quarter. Microbial growth in water and waste treatment systems, enrichment cultures, and their application in process design. Respiratory mechanisms and fermentations in waste treatment and stream pollution.
CE 6153. Dock, Harbor, and Shore Structures 3-0-3. Prerequisite: CE 4214. Spring quarter. Function, design and construction of marine structures such as docks, bulkheads, dry docks, breakwaters, channels, and shore protection works.
CE 6154. Advanced Soil Mechanics
3-3-4. Prerequisite: CE 4163. Winter quarter.
Flow of water through soil and rock, design of drainage systems, earth dams and dam foundations. Elastic and plastic equilibrium applied to problems of slope stability.

CE 6159. Rock Mechanics

3-3-4. Prerequisite: CE 4163. Spring quarter. Mechanics of rock masses and influence of geologic features on their engineering properties Discussion of relevant tests for determination of both in situ and laboratory properties of rocks.

CE 6163. Physical and Physiochemica

Properties of Soils

3-0-3. Prerequisite: CE 4154. Fall quarter Formation of soils, physical chemistry of soi minerals and soil water, consolidation, swell, shrinkage, shear strength and related phenomena, geology of soil deposits.
CE 6164. Advanced Foundation Engineering 3-3-4. Prerequisite: CE 4163. Spring and summer quarters
Analysis and design of foundations, bearing capacity and settlement theory. Analysis of pile pressure, design of earth-retaining structurth

CE 6172. Soil Testin

-3-2. Prerequisite: CE 6194. Winter quarter Theory of physical testing of soils for engineering design and research, laboratory exercises in consolidation and shear testing, illustrations of est procedure effects on character of data.
CE 6173. Terrain Evaluation and Applications 2-3-3. Prerequisite: CE 4163. Fall quarter. Structure of soil and rock formations and thei reflection in the terrain. Analysis of terrain features by aerial photographs and other forms of remote sensing
CE 6183. Soil Construction
2-3-3. Corequisite: CE 4154. Fall quarter.
The migration of soil moisture, frost action, compaction, soil stabilization, evaluation of subgrades and bases for pavements.
CE 6193. Dynamics of Massive Media 2-3-3. Prerequisite: CE 6194. Spring quarter Introduction to dynamics of massive media with applications to analysis of complex engineering dynamics problems. Dynamic properties of soil and rock.

Mechanics I

4-0-4. Corequisite: CE 6163. Fall quart
Theories of elastic equilibrium quarter application to analysis of complex soil masses, application to analysis of complex soil engineering problems such as stresses and set

CE 6199. Theoretical and Applied Soi

 Mechanics II4-0-4. Prerequisite: CE 6194. Winter quarter. Theories of plastic equilibrium of soil masses, application to analysis of complex soil engineering problems. Pressures on earth retaining
structures, anchored bulkheads, laterally-10 piles.

CE 6203. Structural Planning

3-0-3. Prerequisite: CE 3224. Spring and summer quarters.
Introduction to planning aspects of structur design, economic proportions, erection proce dures, comparison of determinate and indte minate structures, stress control, normal hybrid behavior.
CE 6204. Reinforced Concrete Structures 4-0-4. Prerequisite: CE 4214. Fall quarter. Review of working stress methods, analysis and design procedures based on ultimate loa capacity, effects of creep, shrinkage and tem perature, torsional stresses and reinforcing, deflections.
CE 6209. Reinforced Concrete Structures 4-0-4. Prerequisite: CE 6204. Winter quarter

Principles and practice of prestrer quarter crete, systems and techniques for applying prestress, analysis and design of determing and indeterminate pre-stressed concrete stru tures, ultimate strength behavior.

CE 6213. Experimental Analysis I
3-0-3. Winter quarter.
Data acquisition from models. Stress analys: through strain measurements. Transducers, the circuitry and related indicating and recording equipment. Motion measurement, equivalen circuits.
CE 6214. Indeterminate Structural Theory I
4-0-4. Prerequisite: CE 3224. Fall quarter
Study of principles and fundamental theorem frminate structures: with applications to inde

CE 6219. Matrix Methods of Structural

 Dynamics4-0-4. Prerequisites: CE 6229, CE 6248. Winter quarter.
Linear and nonlinear dynamic matrix analysis multi-degree of freedom structural systems Substructuring techniques. Analysis and desin for wind and earthquake. Computer programmin

CE 6229. Principles of Matrix Structura

Analysis

4-0-4. Prerequisite: CE 3224. Fall quarter.
Matrix formulation of the governing equation framed structures, linear elastic behavior, physical and geometrical nonlinearities, force and displacement methods, nonlinear analysis

6234. Advanced Structural Mechanics

 4-0-4. Prerequisite: MATH 2308 Winter quatStudy of advanced topics from mechanics of materials with application to civil engineering structures. Typical topics: generalized stress
and strain, failure theories, torsion, shear flow, suckling, fatigue.

E6238. Finite Element Method of

 Structural Analysis3.0.3. Prerequisite: CE 6229. Spring quarter. Introduction to finite element method, matrix rmulation. Plates in plane stress, plane strain nd bending. Three-dimensional solids and shells. tatic and dynamic, linear and nonlinear analysis.

E 6244. Plastic Design in Steel

$0-4$. Prerequisite: CE 4204. Spring quarter. Analysis and design procedures based on utimate load capacity are applied to steel beams rames and their connections.
E 6248. Structural Dynamics
3.0-3. Prerequisite: consent of school. Fall quarter.
Vibration and dynamic response of simple ear and nonlinear structures to periodic and eneral disturbing forces. Response analysis of multi-degree of freedom systems. Wind and arthquake effects.
CE 6249. Reinforced Concrete Structures II 4-0-4. Prerequisites: CE 6209, MATH 2308. Spring quarter.
Analysis and design of slab and thin-shel structures, additional applications of prestressing, yield-line theory, shells of revolution, cylindrical shells, folded plates, hyperbolic paraboloids pre-stressed tanks.
CE 6273. Legal Principles of Land Surveying 2-3-3. Prerequisite: CE 2264. Winter quarter, alternate years
History and development of legal principles controlling boundary location of real property. Witing, interpreting, and locating of deed descriptions.
CE 6303. Pavement Design 3.0-3. Prerequisite: CE 4304, 4154. Winter quarter.
Theory of flexible and rigid pavement behavor, stress condition and deflection, climate, pave ment design methods, and evaluation of pavement performance.
CE 6305. Advanced Transportation Planning 2-3-3. Prerequisite: CE 6344.
Examination of advanced methods and problems in transportation planning, land use models, the Urban Transportation Planning System (UTPS), and evaluation of transportation plans; computer modeling.
CE 6308. Concrete Technology
2-3-3. Prerequisite: CE 3309, 4214. Winter quarter.
Design theories for concrete mixes, mixes for specific conditions of workability, density, strength,
dmixtures and air entrainment. Preparation and asting of concrete mixtures, minor research in concrete.

CE 6313. Airport Planning and Design
-3-3. Prerequisite: CE 4304. Fall quarter.
Airport site selection, runway length and orientation, traffic control, drainage and lighting, ong-range planning, government responsibility for air transportation.

EE 6315. Computerized Traffic Surveillance

and Contro

3-0-3. Prerequisite: CE 6333
Real time monitoring and control of traffic on treets and freeways. Detectorization, computer trategies and software, communications, signals, implementation. TRANSYT program for optimal signal timing.
CE 6318. Asphalt Technology
2-3-3. Prerequisite: CE 4313, 4154. Spring quarter.
Theory of asphalt mix design. Preparation of asphaltic mixes for stability, durability, economy. Use of various materials and grades of asphat in bituminous concrete pavements.

CE 6323. Transportation Administratio

2-3-3. Fall quarter.
Advanced study of national transportation policies, financial problems, administrative procedures relating to development of transportation facilities.

CE 6328. Mass Transit Planning

3-0-3. Prerequisite: consent of school. Spring quarter.

Characteristics and costs of present and in novative mass transit systems. Roles of engieer planner and others in estimating transi usage and choosing optimal plan.
CE 6333. Traffic Engineering
2-3-3. Prerequisite: CE 4304. Fall quarter
Characteristics of drivers and vehicles, traffic studies, capacity, signal systems, engineering solution of traffic movement problems. Supervised traffic engineering studies.
CE 6338. Advanced Traffic Operations 2-3-3. Prerequisite: CE 6333. Winter quarter. Application of traffic control devices to improve capacity, safety of urban street systems. ems, application of computer simulation models.

CE 6343. Design of Highways and Transit

Facilities

2-3-3. Prerequisite: CE 6333. Spring quarter. Geometric configurations of streets, express ways, busways, railways and their terminals to meet characteristics of vehicle performance and operator limitations.

CE 6344. Urban Transportation Planning
3-3-4. Prerequisite: CE 6333. Winter quarter
Planning of urban transportation facilities, math ematical models for prediction of traffic flow, assignment, interrelationship of land use and trips, parking and the transportation problem
CE 6353. Economic and Financial Aspects of Public Works Planning
3-0-3. Fall quarter
Discounting techniques for public works planning. Microeconomics in project formulation. Ap plications from welfare economics, capital formation theory, input-output analysis
CE 6363. Economics of Water Resources Development
2-2-3. Prerequisite: CE 6353. Winter quarter. Principles of resource allocation, benefit-cost analysis, water-resources project formulation, justification, allocation of joint costs in multipurpose developments.
CE 6371. Statistical Hydrology 2-3-3. Prerequisite: consent of instructor. Winter quarter.
Probability distributions applicable to hydrologic events; analysis of extreme events, floods and droughts, regression and correlation analysis of hydrologic variables.

CE 6372. Stochastic Hydrology

3-0-3. Prerequisite: CE 6371. Spring quarter. Stochastic modeling of hydrologic processes. Problems of model specification, parameter identification, and validation. Application to forecasting and synthetic events

CE 6373. Flood Management

3-0-3.
Hydrology and hydraulics of flood management measures. Analysis of flood control and llood damage abatement: levees, floodways, channel improvements, reservoirs
CE 6374. Physical Hydrology
3-0-3. Prerequisite: CE 4353. Fall quarter.
Study of physical processes governing occurmospheric transpont and distribution of water; atprecipitation; evaporation; transpiration; snow; melt- infiltration; eroundw, transpiration; snowmelt; infiltration; groundwater flow; and catchment morphology

CE 6381. Watershed Models I
3-0-3. Prerequisite: CE 4353. Winter quarter.
Development of deterministic watershed simulation concepts including surface runoff, overland flow, streamflow, flood routing, reservoir routing. Linear catchment models. Data preparation techniques for watershed models.
CE 6382. Watershed Models II 2-3-3. Prerequisite: CE 6381. Spring quarter.

Characterization of existing deterministic ve CE 8003. Research Seminar in Environmental tershed simulation models, model selection, dents will calibrate several rechniques. to measured data.

CE 6384. Urban Hydrology
3-0-3. Prerequisite: CE 4353. Spring quarter
Effects of urbanization on storm runoff, s mentation, water quality, and water supply. Moc ing of urban runoff. Urban watershed in plannt and design. Legal, institutional, and economic framework.
CE 6399. Water Resources Systems I 3-0-3. Prerequisite: ISYE 6734 or equivale or consent of instructor. Spring quarter.
Review and application of operations researd methodologies including classical optimization linear programming, non-linear programming ar dynamic programming, to planning and design source systems.
CE 6772. Advanced Computer Interfacing and Design
2-3-3. Prerequisite: NE 6770. Spring quarter. A study of system design using MSI and chips, and programmable digital devices as system modules. Subjects include Boolean optimization and register transfer design tect niques.
CE 6773. Computer Control of Real-Time Systems
$3-3-4$. Prerequisites: NE 6770, EE 4077 or equivalent. Summer quarter.
A study of concepts common to all compute controlled real-time systems. Subjects include evolution of time sets, vectored interrupts, and statistical alarm conditions

CE 6775. Adva

 3-3-4. Prerequisite: CE 3513 or equivalent. Summer quarterAdvanced engineering programming concen and their implementation on large scale digital engineering data management, engin programs, em oriented language development and

CE 7000. Master's Thesis

Credit hours to be arranged.
CE 7999. Doctoral Examinations Preparation Credit hours to be arranged.
For students preparing for doctoral qualitying or language examinations or both

CE 8002. Seminar in Environmental Engineering 0-2-1
Developments in environmental engineering science and technology, current research and special topics related to environmental quality assessment and control.

8003. Re

1. Prerequisites: CE 4148, CE 6136 and raduate status.
Discussions of current research topics in enironmental engineering. Emphasis on critical in lepth review of published research re
E 8031. Seminar in Soil and Rock Mechanic 0.2-1. Corequisite: CE 6154 and consent of he school. Winter quarter.
Case histories of design and construction roblems involving soil and rock mechanics, cluding excavations, drainage, dams, retaining tructures, and slope stability.
E 8041. Seminar in Foundation Engineering $1 \cdot 0-1$. Prerequisite: CE 6154. Corequisite E 6164. Spring quarter.
Case histories of design, construction and periormance of foundations. Special topics such as machine foundations, foundations in seismic
2. Seminar in Transportation

Engineering
$0-1$. Prerequisite: consent of school. Winter quarter.
Developments in the design and planning of traffic engineering and transportation systems, mpact of current literature and technology on the field.

CE 8061. Construction Seminar
0-2-1. Corequisite: CE 6003
Engineered construction. Whenever possible, guest speakers from the construction industry. Graduate students will present results of required special research projects and thesis research.
CE 8071-81-91. Seminar in Hydraulics, Fluid Mechanics, and Hydrology
1-0.1 each. Fall, winter, and spring quarters. Presentation and discussion of research developments, currerch in hydraulics, fluid meate student resea chanics, and hydrology
CE 8101-2-3-4-5. Special Topics Credit hours equal last digit of course number. CE 8113-4-23. Special Topics Credit hours equal last digit of course number. CE 8500-1-2. Special Problems Credit hours to be arranged.
CE 8756. Master's Special Research Problem Credit hours to be arranged.
Six to twelve hours of master's research prob lem to be scheduled by master's students no writing thesis during two or more successive quarters.

CE 8999. Doctoral Thesis Preparation Credit hours to be arranged
For student in preliminary stages of formulat ing doctoral research program but who has not obtained formal approval of thesis topic.

CE 9000. Doctoral Thesis

ENGINEERING GRAPHICS

EGR 1170. Introduction to Visual Communication and Engineering Design I 2-3-3.
Theory and application of the design process, assigned design project and report. Elements of projection theory that enhance ability to communicate graphically.

School of Electrical Engineering

Established in 1896

Director and Professor-Demetrius T. Paris; Associate Director and Professor-Roger P. Webb (Georgia Power Chair); Assistant Director for Graduate Affairs and Profes-sor-Dale C. Ray; Assistant Director for Undergraduate Affairs and ProfessorThomas M. White, Jr.; Assistant to the Director for Laboratory Instruction-Thomas E. Brewer; Regents' Professors-John W. Hooper, George P. Rodrigue, Ronald W. Schafer (John O. McCarty/Audichron Chair), Kendall L. Su; Professors-Cecil O. Alford, Thomas P. Barnwell III, Henry C. Bourne, Jr., Aubrey M. Bush, J. Alvin Connelly, Atif S. Debs, Robert K. Feeney, Daniel L. Fielder, Thomas K. Gaylord, Abraham H. Haddad, Joseph L. Hammond, Jr., Edward B. Joy, W. Marshall Leach, Jr., Russell M. MerWereau John D. Norgard John B. Peatsereau, Joph M. Pettit William T. Rhodes, man, Joseph M. Pettit, William T. Rhodes, William E. Sayle II, Jay H. Schlag, Albert P. Sheppard, Jr.; Associate ProfessorsWilliam R. Callen, Jr., David R. Hertling, G. Keith Huddleston, Hidefumi Kobatake (Adjunct), Athan P. Meliopoulos, Mohamed F. Moad, Hans B. Pütgen, Glenn S. Smith, John P Uyemura, John M. Wallace, Jr, Assistant Professors - John A. Buck, Mark A. Clements, Kent R. Davey, John F.
A. Clements, Kent Rays, Donald J. Healy, Frank L. Lewis, Stephen R. McConnel (on
leave), Mohamed G. Moharam, Paul G. Steffes, Erik I. Verriest; Adjunct Instructor -Stephen P. Krosner; Lecturers-Antoine Ayoub, Jon F. Gedymin, Walter L. Hibble, Terence E. Keene, Morris D. Prince; Principal Research Scientist-J. Lee Edwards; Principal Research Engineers-Donald G. Bodnar, N. Walter Cox, James D. Echard, Larry D. Holland, Richard C. Johnson, Edward K. Reedy, James C. Wiltse; Senior Research Engineer-James A. Fuller; Research Engineers II-Charles E. Gimarc, Christopher J. M. Hodges, Daniel J. Schae fer; Research Associate II-Irene G. Wells; Research Technologist 1 -Russell Beason, Jr.

General Information

Electrical engineers have pioneered the fields of electronics, computers, control, power, and communication. Their work is vital in almost every sector of society. The tremendous effect of electrical engineering on society can be explained by the fact that electrical energy is the only known form of energy which can be transmitted efficiently under controlled conditions, even through a vacuum, and by means of which intelligence can be processed and transferred effectively even over extremely long distances.

The School of Electrical Engineering seeks to attract students who possess a verba and written command of the English lan guage; exhibit logical thinking, creativity, curiosity, imagination, persistence, and patience; and demonstrate a mastery of mathematics, chemistry, and physics.
At the undergraduate level, a broad range of electives balances the basic required program of instruction in fundamental theory and laboratory practice. These electives are available in a wide variety of major areas such as audio engineering, integrated circuits and systems, digital signal processing, fiber optics, applied electromagnetics, communications, computer engineering, and energy engineering. The student, with the counsel and guidance of faculty advisors, designs an electives program around his or her own special interests.
The graduate programs leading to the master's and doctoral degrees provide a broad education covering more than one
specialty, followed by in-depth studies major and minor interest areas. The dodi program requires, in addition, concentra tion in a single specialty or in a group o cosely related specialties.
Graduate programs include communic tions, computer systems, controls and sys tem theory, electric power, electromagnetic networks, modern electronics, modern of tics, physical electronics, and signal processing. Multidisciplinary non-degree programs in areas such as computer enginee ing and acoustic engineering are offered jointly with other engineering schools on campus. Full programs of courses are offered during the summer quarter, mak ing it possible for part-time students to continue an uninterrupted program of stuo throughout the year. Full-time students ca complete their master's program in one calendar year.

Housed in a modern facility, the Schoo maintains a vigorous program of student centered research conducted in wellequipped laboratories.
Additional information about the program may be obtained from the School's Student Handbook, available upon request, 0 by calling the School at (404)894-2900. Every student enrolled must consult this source of information with respect to spe cial rules and degree requirements.

Certificate Program in Compute
 Engineering

Computers have become an integral part of today's society and are now used in al facets of society including scientific research, industry, business, commerce, an even the home with calculators and computer controlled appliances. With this increasing use comes an increasing demand for people who understand the design, construction, operation, and applica. tion of computers. To satisfy this demand, the School has developed new programs in computer engineering.
Computer engineering in the School of Electrical Engineering encompasses both traditional areas of computer engineeringthe engineering of computers and engineering with computers. Engineering of computers emphasizes the design of com
uters and requires expertise in compuational theory, digital design, and computer architecture. Engineering with computers amphasizes the use of computers in engineering systems and requires computer eering systems and requires low level and terfacing techniques, both low level and
igh level programming techniques, and a eneral knowledge of computer operating ystems. Both areas require an in-depth inderstanding of computer software at the lementary and systems level. Hence, comuter engineering encompasses all aspects design, theory, and practice relating to: stems for digital and analog computation and information processing; components and information processing; components and circuits for computing systems; rele-
ant portions of supporting disciplines; production, testing, operation, and reliability of computing systems; applications, use, and rogramming of computing devices and information processing systems; and the se of computers in electrical and electronic engineering.
Those undergraduate engineering students who specialize in the area of Computer Engineering will receive a Certificate in Computer Engineering. To qualify for this certificate, a student must complete all requirements for an ABET-accredited bachelor's degree in an engineering discipline and, in addition, must successfully comand, in with a grade of C or better, the following nine elective courses, totaling thirty following nine elective courses, totaling 3033, EE 3034, EE 4075, EE 4077, EE 4080, ICS 2100, and MATH 2012. None of these courses may be specifically required by title and number for the bachelor's degree in the student's major field. Nonelectrical engineering students may substitute EE 3360 for one of the EE courses stitute EE 3360 for on
listed in the program.
Interested students may obtain further information by directly contacting the School of Electrical Engineering.
Multidisciplinary Programs
See table on page 79.

Freshman Year Course	1st Q. 2 n	2nd Q. 3	3rd Q.
Electives ${ }^{1}$	\ldots	3-0-3
Electives ${ }^{2}$ Humanities/ Social Science/ Modern Language	3-0-3	3-0-3
ENGL 1001-2	3-0-3	3-0-3
Elective Any one of the freshman engineering electives ${ }^{5}$	X-X-3	\ldots
MATH 1307-8-9 Calculus I, II, III	5-0-5	5-0-5	5-0-5
PHYS 2121 Particle Dynamics			4-3-5
CHEM 1101-2 General Chemistry	4-3-5	4-3-5
Electives ${ }^{3}$ Physical Education	X-X-2	X-X-1	$x-X-1$
Totals	$x-X-18$	$x-x-17$	$\mathrm{X}-\mathrm{x}-17$
Sophomore Year Course	1st Q.	2nd Q.	3 rd Q.
Electives ${ }^{1}$	3-0-3
Electives ${ }^{2}$ Humanities/Social Science/Modern Language	3-0-3	3-0-3
ESM 2201 Statics	3-0-3	
ESM 3201 Dynamics I		3-0-3	\ldots
MATH 2307 Calculus IV	5-0-5	\ldots
MATH 2308 Calculus V	5-0-5	-........
MATH 3308 Differential Equations	s	5-0-5
PHYS 2122 Electromagnetism	4-3-5	5
PHYS 2123 Optics and Modern Physics	\ldots	4-3-5	5
EE ${ }^{4}$ 3200-50 Elements of Electrical Engineering 3-0-3	$3 \quad 3-0-3$

EE 3400			
Instrumentation			
Laboratory		-	1-3-2
EE 3360			
Digital			
Hardware			3-0-3
EE 3411			
Junior EE			
Laboratory 1 0-3-1			
Totals	18-3-19	15-3-16	15-6-17
Junior Year			
Course	1st Q.	2nd Q.	$3 \mathrm{rd} Q$.
Electives ${ }^{1}$	4-0-4	4-0-4	4-0-4
Electives ${ }^{2}$			
Humanities/Social			
Science/Modern			
Language	3-0-3	3-0-3	3-0-3
EE 3300-10-20			
Electromagnetics	3-0-3	3-0-3	3-0-3
EE 3210-20			
Circuits and			
Systems	3-0-3	3-0-3
EE 3215			
Signals and			
Systems		3-0-3	
EE 3260			
Engineering			
Electronics	3-0-3		
EE 3270			
Nonlinear Devices			
EE 3330			
Electromechanical			
Systems and Energy			
Conversion		3-0-3
EE 3421-31			
Junior EE			
Laboratory II, III	0-3-1	0-3-1
Totals	16-0-16	16-3-17	16-3-17
Senior Year			
Course	1st Q.	2nd Q.	3 dr Q
Electives ${ }^{1}$	10-0-10	13-0-13	13-0-13
Electives ${ }^{2}$			
Humanities/ Social			
Science/Modern			
Language	3-0-3	3-0-3	3-0-3
EE 4350			
Materials Science	3-0-3	,	

EE 4411-21
Senior EE
Laboratory I, II

EE 4430

Project Laboratory
Totals
0-3-1
$1 \quad 0-3-1$

16-3-17 \quad 16-3-17.....
Electives: The electrical engineering curricu lum contains fifty-seven hours of electives addition to four hours of specified physical education electives and thirty hours of spec humanities/social science/modern language ele ives. The fifty-seven hours of electives must include a minimum of:
Three hours of freshman engineering electiva
See "Curricula and Courses of Instruction:" College of Engineering.
Three hours of junior-level or senior-level
course work in written or verbal communic
tions of ideas which may be one of the followi
English courses: ENGL 3015, ENGL 3023, ENGL 3024.
Twelve hours of technical electives subject school approval. Generally, the technical ele tives are junior or senior engineering (not EE), mathematics, or natural science course These electives must include one of the following five thermodynamics options: (1) ME 3720 (2) ME 3726 (3) ME 3322 and N 3323 (4) PHYS 3141 or (5) a course or courses approved by the School of Electric Engineering. In addition, one course in gran ics is strongly recommended. Eighteen hours of electrical engin tives, subject to school approval.
Three hours (minimum) of applied probabilify selected from: (1) EE 3340 (2) PHYS 3145 (3) ISYE 3027 (4) BIOL 3333 (5) MATH 3711 (6) MATH 3215 or (7) MATH 4215. EE 3340 will apply toward satisfying the EE elective course requirements; all other courses will apply toward satisfying the technical breadth requirement for the bachelor's degree in ele trical engineering.
Twenty-one hours of free electives. These free electives may be taken at any time durin a student's course of study. Up to six hours 0 basic ROTC and a maximum of nine hours advanced ROTC may be used for elective credit in the program.
${ }^{2}$ Three credit hours each of history and politio science must be included. Additional humanities/social science/ modern language electives and their required distribution are given in "In formation for Undergraduate Students," Academ ic Regulations.
${ }^{3}$ See "Information for Undergraduate Students, Academic Regulations, for physical education requirements for both men and women. ${ }^{4}$ Utilization of Institute computer facilities to
bilty

Courses of Instruction
 EE 1001. Introduction to Electrical Ingineering

. Enrollment limited to freshmen An introduction to electrical engineering, both Georgia Tech and in industry. Lectures, dis-
ssion, and outside work provide insight to the xcting directions the profession is taking.

E 1010. Computer Programming and Graphics
$2 \cdot 3 \cdot 3$.
Computer programming and graphics using a roblem solving approach. Programs are written FORTRAN for the main campus computer
DC Cyber 77) and a CALCOMP PLOTTER.
Text: Ageloff and Mojena, Applied FORTRAN 7 Featuring Structured Programming.

EE 1011
Survey of the diverse areas within electrical ngineering. Basic engineering concepts develped and applied quantitatively to representare engineering problems.
EE 1750. Introduction to Bioengineering 3.0.3.

An introduction to aspects of science and achnology pertinent to bioengineering, with emhasis on ongoing activity at Georgia Tech.

E 1900-1-2-3. Special Problems

redit to be arranged. Normally taken by fresh-
solve engineering problems is required in the asic electrical engineering curriculum. Each student is expected, by means of formal course work, seminar attendance, or independent study, 10 acquire knowledge of basic programming in sither FORTRAN or Pascal and in the use of insitute computing facilities prior to enrollment \square EE 3200 . Formal courses which provide the opportunity to acquire this knowledge are EE 1010 , ICS 1400, ICS 1700, and NE 1010. Computer solutions to engineering problems are puter solutions to engineer in EE 3200 and subsequent courses. ${ }^{\text {required }}$ "Curricula and Courses of Instruction," College of Engineering, for a listing of freshman engineering electives.
Additional degree requirements: all students are required by the University System of Georgia to take certain examinations in Constitution gia history and in English proficiency. These examinations are described under Academic Regulations, "Information for Undergraduate Students."

Special engineering problems are assigned according to each student's needs, interests, and capabilities.

EE 2900-1-2-3. Special Problems

Credit to be arranged. Normally taken by sophomores.
Special engineering problems are assigned according to each student's needs, interests, and capabilities.
EE 3015. Mechanical Plant of Buildings $3-0-3$. Prerequisite: either EE 3200, 3700 or $3-0-3$.
3725.
Electrical power distribution systems for buildings and plants. Study of National Electrical Code. Lighting design considering sources, luminaires, and reflectances.
Text: McGuinness, Stein, Gay and Fawcett, Electrical Equipment for Buildings.
EE 3032. Computer Engineering I
3-0-3. Prerequisites: EE 1010, 3360
Machine language, machine organization, and design concepts of digital computers. Loaders, assemblers, subroutines, recursive and reentrant programs. Input, output, storage devices, and arithmetic logic units.
Text: 8080/8085 Assembly Language Programming, Intel Corp.
EE 3033. Computer Engineering II
3-3-4. Prerequisite: EE 3032
Register transfer level design of computing structures including sequences for instruction fetch, arithmetic/logic unit operations, microoperations, and timing and control. Discussion of bus structures, interrupts and input/output. Design projects based on CDL implementations.

EE 3034. Computer Engineering III

3-0-3. Prerequisite: EE 3032.
A study of computational algorithms for computers and their implementation via hardware and software. Topics include fixed point, BCD, and point operations, special functions, residue arithmetic, and multivalued logic.

Text: Hwang, Computer Arithmetic.

EE 3036. Computational Methods for

Simulation
3-0-3. Prerequisite: MATH 2309 or 3308
A study of numerical algorithms for solving complex electrical engineering problems using digital computers. Theoretical approaches and practical algorithms are discussed.

EE 3042. Electrical Measurements

3-3-4. Prerequisites: EE 3270, 3360, 3421.
A study of measurements of electrical quantities using electromechanical and electronic, analog, and digital methods, consideration of recording, indication and processing of measurement data.

Text: Cooper, Electronic Instrumentation and Measurement Techniques.

EE 3200. Elements of Electrical Engineering 3-0-3. Prerequisites: PHYS 2122, MATH 2307 Introduction to basic concepts of circuit elements, circuit models, and techniques for circuit analysis.
Text: Su, Fundamentals of Circuits, Electronics, and Signal Analysis.
EE 3210. Circuits and Systems I
3-0-3. Prerequisites: EE 3250, MATH 3308.
System analysis in the time and frequency domains. Convolution, Fourier series, and Fourier transforms with applications.

EE 3215. Signals and Systems

3-0-3. Prerequisite: EE 3220.
An introduction to the fundamentals of signal representation, system characterization, and signal processing with applications to communication, control, and instrumentation.

EE 3220. Circuits and Systems II

3-0-3. Prerequisite: EE 3210.
Representation of continuous and discrete
dynamic systems utilizing transform and state variable techniques. Properties of closed loop systems. Stability analysis.
EE 3250. Elements of Electrical Engineering II 3-0-3. Prerequisite: EE 3200.
Development of concepts in modeling termi nal characteristics of electronic devices and
Texts: Su, Fundamentals of Circuits,
Texts: Su, Fundamentals of Circuits, Electronics and Signal Analysis and Millman and Halkias,
Integrated Electronics.

EE 3260. Engineering Electronics
3-0-3. Prerequisite: EE 3250
Development of techniques necessary for the
analysis of active linear electronic circuits.
Text: Millman, Microelectronics.
EE 3270. Nonlinear Devices and Circuits
3-0-3. Prerequisites: EE 3210, EE 3260.
Presentation of concepts important in the analysis and design of systems utilizing linear and nonlinear devices and circuits.
Text: Millman, Microelectronics.

EE 3300. Electromagnetics I

3-0-3. Prerequisites: MATH 3308, PHYS 2122 and EE 3250.
A study of Maxwell's equations. Electromag netic theory of simple media. Electrostatics, magnetostatics, and electromagnetostatics. Text: Paris and Hurd, Basic Electromagnetic Theory.
EE 3310. Electromagnetics II
3-0-3. Prerequisites: EE 3300, 3210

Electromagnetic energy and momentum. EE 3431. Junior Electrical Engineering tual work and forces. Reflection and refraciin of plane waves in dissipative media. Trave waves and standing waves.
Text: Paris and Hurd, Basic Electromagne Theory.
EE 3320. Electromagnetics III
3-0-3. Prerequisite: EE 3310.
Transmission lines and waveguides. Wi aperture antennas. Arrays. Quasistatics.
Text: Paris and Hurd, Basic Electromagn Theory.

EE 3330. Electromechanical Systems an Energy Conversion
3-0-3. Prerequisites: EE 3310, 3210.
Fundamentals of electromechanical ener conversion, electromechanical devices and lems. Energy state functions, force energy ionships, basic transducers, introduction to and D.C. machines.
Text: Fitzgerald, Kingsley, and Kusko, Ele Machinery.
EE 3340. Random Signals and Noise 3-0-3. Prerequisite: EE 3215.
Study of probability, random variables an random processes for applications in electric engineering.

EE 3360 . Digital Hardware

3-0-3. Corequisite: EE 3411
A study of gates, flip-flops, counters, regis ters, memory devices, and integrated circuit Consideration of the architecture of compu and digital systems.
Text: Greenfield, Practical Digital Design Us IC's.
EE 3400. Instrumentation Laboratory 1-3-2. Prerequisite: EE 3200.
Introduction to instrumentation equipment techniques. Basic laboratory techniques and practice. Operation of oscilloscopes and me Measurement of parameters of electrical en neering components and devices.
EE 3411. Junior Electrical Engineering Laboratory I
0-3-1. Corequisite: EE 3360
Exercises in combinational and sequential design and hardware implementation utilizing TTL gates, flip-flops, multiplexers and counter

EE 3421. Junior Electrical Engineering Laboratory II
$0-3-1$. Prerequisite: EE 3400. Corequisite: EE 3270.

Experiments in linear circuits and electron with emphasis on the relationship between a cuit models and their physical realization.
3.1. Prerequisites: EE 3270, 3400 Presentation of topics for experimentation in dircuits and electronics which iliustrate the operation and application of integrated circuits. Text: Connelly, Experiments with Integrated Circuits and Systems.

3700. Elements of Electric Circuits and

 instruments3.0.3. Prerequisites: PHYS 2122 and MATH 2307 For non-electrical engineering students. Elements of electric and electronic circuits principally om a terminal characteristics viewpoint. Text: Carlson and Gisser, Electrical Engineering Concepts and Applications.

3710. Introduction to El

For non-electrical engineering students. FunFomental active circuits are reviewed and basic linear and digital building blocks developed. Modular approach to system design is stressed through the use of integrated circuits
Text: Carlson and Gisser, Electrical Engineering Concepts and Applications.

E 3725. Electric Circuits and Fields

2.3-3. Prerequisites: PHYS 2122 and MATH 2308 For non-electrical engineering students. Study of electric circuit elements and the steady state and transient response of circuits to periodic and step inputs.
Text: Fitzgerald, Higginbotham, Grabel, Basic Electrical Engineering.
EE 3726. Elementary Electronics 2-3-3. Prerequisite: EE 3725
For non-electrical engineering students. An troduction to electronic and semiconductor evices and a study of circuits containing such lements. Both linear and digital systems are onsidered. Laboratory experiments.
Text: Fitzgerald, Higginbotham, Grabel, Basic Electrical Engineering.
eE 3727. Electric Power Conversion 2-3-3. Prerequisite: EE 3725 .
For non-electrical engineering students. A study of energy conversion principles and devices such as motors, generators, transformers, and rectifiers. Lecture and laboratory periods. Text: Fitzgerald, Higginbotham, Grabel, Basic Electrical Engineering; Lab Manual: Meliopoulos, Electrical and Electromechanical Energy Conversion Devices.
EE 3740. Electrical Instrumentation Laboratory 0-3-1. Corequisite: EE 3700
For non-electrical engineering students. An introduction to the operation and application of basic electrical instruments. Coordinated descriptive lectures and laboratory exercises.

EE 3900-1-2-3. Special Problems
Credit to be arranged. Normally taken by juniors
Special engineering problems are assigned according to each student's needs, interests, and capabilities.

EE 4011. Analog Filter Design

3-0-3. Prerequisite: EE 3220
An introduction to the theory, design techniques, and applications of analog passive and active filters.

Text: Johnson, Introduction to Filter Theory

EE 4012. Electric Energy Conversion

3-3-4. Prerequisite: EE 3330.
Principles of rotating A.C. and D.C. machines Analysis techniques and application studies of individual and interconnected devices. Coordi-
nated laboratory exercises.
Text: Matsch, Electromagnetic and Electrome chanical Machines.
EE 4015. Principles of Feedback Control 3-3-4. Prerequisite: EE 3220
A study of automatic control systems. Basic control principles, system modeling, and analysis techniques. Coordinated laboratory exercises.

EE 4017. Pulse Circuits

3-0-3. Prerequisite: EE 3270.
Systems analysis/design for processing analog and digital data, generation and synchronization of sweeps, switching considerations of MOSFET multivibrators, active-element memories, D.-A. and A.-D. converters.
Text: Millman, Microelectronics.

EE 4019. Power System Analysis

3-0-3. Prerequisite: EE 3330 or consent of school
A study of power systems, power system components, and techniques of analysis.

EE 4020. Solid-state Electronics

3-3-4. Prerequisite: EE 4350.

Study of underlying physics and resultan terminal properties of solid-state devices such as transistors, charge coupled devices, and microwave to optical devices
EE 4021. Electromagnetic Properties of Solids 3-3-4. Prerequisite: EE 4350 .
Properties of dielectric and magnetic materials including piezoelectricity, superconductivity, magnetic domain dynamics, and ferromagnetic resonance. Applications as transducers, memories, logic elements, and microwave devices.
EE 4022. Industrial Electronics
3-3-4. Prerequisites: EE 3210, 3270, 3360.
A study of analog and digital process control including signal conditioning, transducers, actuators, and control elements,
Text: Johnson, Process Control Instrumentation Technology

EE 4023. Integrated Circuits and Systems 3-0-3. Prerequisite: EE 3270 ,
A study of integrated circuit technology avail able today. The merits and drawbacks to availtronic applications offered by circuit configuratronic applications offered by circuit configuraText: Millman, Microelectronics.

EE 4024. Speech Analysis, Synthesis, and Compression

$3-0-3$. Prerequisite: EE 3210 or consent of school.
Modern speech analysis and synthesis techniques as applied to the communication problem of speech synthesis. Classical phonology, vocoders, vocal track analogs, spectral analysis of speech.

Text: Flanagan, Theory of Speech Analysis, Synthesis and Perception.
EE 4025. Information Theory
3-0-3. Prerequisite: EE 3340 or equivalent. Definitions and applications of the measure of information, redundancy, channel, channel ca poding theorems are presented withonnon's on communication problems on communication problems.
EE 4026. Audio Engineering
3-0-3. Prerequisites: EE 3270, 3310.
An introduction to the application of the tools of electrical engineering to the detection, measurement, processing, recording, and reproduction of audio frequency signals. Basic principles of sound. Microphones. Loudspeakers. Power amplifiers. Disk phonograph systems. Magnetic tape systems. Broadcast audio. Audio signal processing. Acoustical instrumentation.
EE 4027. Computer Graphic Design 3-0-3. Prerequisite: EE 1010 or equivalent and junior standing.
Principles of computer-aided design (CAD), with emphasis on interactive graphics. Engineering applications and introduction to hardware and programming for interactive computing.

EE 4028. Communication Engineering

 3-3-4. Prerequisites: EE 3210, 3270.Circuit design for communication systems operating below one gigahertz. Impedance matching, introduction to random noise, small signal and power amplifiers, primarily for analog system applications.
EE 4030. Communication Engineering 3-3-4. Prerequisite: EE 3210, 3270. Theory and practice in the design of radio and television receivers. Also a study of signa propagation, radio frequency interference, frequency allocation, and fundamental antennas.

EE 4032. Communication Circuits
3-3-4. Prerequisite: EE 3210.
A study of two-port communication circuils
means of methods of modern network synthes
Text: Temps and LaParta, Circuit Synthesis and Design.
EE 4034. High-frequency Measurements 3-0-3. Prerequisite: EE 3320.
High-frequency measurements emphasizing the characteristics of standard laboratory equi ment together with the techniques of hight-fer quency measurements. Includes system dere and state-of-the-art measurements.
Text: Thomas and Clarke Handb
tronic Instruments and Measurement Techni
EE 4035. High Frequency Amplifier Design
3-0-3. Prerequisites: EE 3270, EE 3320.
An introduction to the techniques used in
analysis and design of high frequency amplifie with emphasis placed on design.
Text: Carson, High Frequency Amplifiers.

EE 4036. Ultra-high-frequency Techniques

3-3-4. Prerequisite: EE 3320
Introduction to waveguides, cavities, kly magnetrons, traveling wave tubes, impatt diodes, ferrite gyrators and circulators. Associat laboratory emphasizes microwave measurements.
Text: Collin, Foundations for Microwave Engineering.

EE 4037. Antennas

3-3-4. Prerequisite: EE 3320 ,
introduction to linear antennas, linear arrays and aperture antennas. Far field pattern calou tion and measurement are presented. Studen design and construct antennas in associated laboratory.
Text: Elliott, Antenna Theory and Design.
EE 4039. Electrical Sensors and Transducen 3-0-3. Prerequisite: senior standing or consent of school.
Survey of how electrical sensors function an their system applications. Classical, state-of-the-art and advanced sensors and systems ar examined for design purposes
EE 4041. Illumination Engineering
3-0-3. Prerequisites: PHYS 2123, EE 3310.
An introduction to interior and exterior lightin design. Basic topics considered are light, sigh color, photometry, illumination, luminaires, and sources.
EE 4042. Electrical Design
3-3-4. Prerequisite: EE 3220 or consent of school.
Team-oriented electrical and electronic system design problems of various types. Topics
ten specified in advance and often related to ten specified in advance and often related

4043. Linear Graph Theor

Comprehensive and unified study of oriented nd nonoriented graphs for use in network poology, analysis and synthesis, signal flow sory, and communication networks.
E 4045. Power System Protection $0-3$. Prerequisite: EE 4019.
An introduction to fundamental concepts in he protection of electric power system apparatus. Text: Blackburn, Applied Protective Relaying.
4046. Power System En
0.3 . Prerequisite: EE 4019 .
Modeling of power system elements and comModering elements of steady state operation and ower system protection.
EE 4047. Power Electronic
3.0-3. Prerequisite: EE 3270

An introduction to power semiconductor de ices and to the electronic circuits incorporating hese devices that can be used in the amplication, generation, and control of electrical energy.
EE 4050. Optical Engineering 3-0.3. Prerequisite: EE 3320 or consent of 3-0-3. Pi
school.
Introduction to optics and optical systems as Introduction to optics and optical systems as
soplied to modern engineering problems. Image applied to modern engineering problems. Image formation, holography, optical ata prtical sysoptical memories,
tems, fiber optics.
Text: Meyer-Arendt, Classical and Modern Text: M
Optics.
EE 4051. Fiber Optics
3.0-3. Prerequisite: EE 3310 or consent of school.
Exploration of state-of-the-art material related to the fabrication, measurement and use of optical fibers. Development of the theory of dielectric waveguides.
Text: Cherin, An Introduction to Optical Fibers for Engineering and Physics Students.
EE 4061. Communication Systems
3-0.3. Prerequisites: EE 3340 or equivalent, EE 3215.
Definitions, basic concepts, and applications of analog and digital modulation techniques are considered. Modulators for generating various signals and demodulators for information recovery are studied.
EE 4062. Communication Systems Laboratory
0.3-1. Prerequisites: EE 3340 or equivalent,

EE 3400. Corequisite: EE 4061
Experiments in signal processing and communication systems.

EE 4074. Local Computer Networks
3-0-3. Prerequisites: EE 3032 and a course in probability.
An introduction to the design and performance analysis of local computer communication networks, emphasizing analysis of representative multiaccess procedures. Polling networks, random access networks, and ring networks are considered in detail.
EE 4075. Microcomputer-Based Design 3-3-4. Prerequisites: EE 3032 and EE 3360 or equivalent.
Development of the ability to define and design "smart" microcomputer-based instruments is emphasized.

EE 4076. Special Purpose Digital Systems

Design

3-3-4. Prerequisites: EE 3360 and EE 4075.
Digital circuitry which augments the capabilities of a microcomputer is discussed. Designing for maintainability is emphasized.

Text: Peatman, Digital Hardware Design.
EE 4077. Interfacing Small Computers
3-3-4. Prerequisite: EE 3360
The input-output structure and programming of small computers is studied together with the characteristics of a variety of peripheral devices. Emphasis is placed on design problem work.

Text: Data General and Georgia Tech, Interfacing Small Computers.
EE 4078. Digital Signal Processing 3-0-3. Prerequisite: EE 3215.

An introduction to the theory and application of processing discrete data. Special attention will be paid to the design and implementation of both FIR and IIR digital filters.
EE 4079. Introduction to Automaton Theory 3-0-3. Normally taken by seniors.

A study of the properties of linear sequential systems in relation to their applications in various digital tasks.
EE 4080. Introduction to Sequential Systems 3-0-3. Prerequisite: EE 3360 or equivalent.
A study of procedures for synthesis of synhronous and asynchronous sequeniar sys Text: Torng, Switching Circuits Theory and Logic Design.
EE 4081. Introduction to Bioelectronics $3-0-3$. Prerequisite: EE 3270 or consent of school.
An introduction to the study of the electrical phenomena of biological systems. The measurement and control of biological systems.

EE 4082. Linear System Theory

3-0-3. Prerequisite: EE 3220.
Linear system theory with emphasis on trans-
form and state-variable methods. Applications to both continuous and discrete systems.
EE 4083. Computer Simulation of Systems 3-3-4. Prerequisite: EE 3220.
Simulation methods by analog, digital, and hybrid computers. Digital simulation languages State variable approach to system simulation. Simulation of complicated systems. Examples and class problems.
EE 4084. Transistor Circuit Analysis 3-0-3. Prerequisite: EE 3270. Corequisite: EE 3-0-3. Prerequisite: EE 3270. Corequisite: E
4085 .

An.
Analysis and design of linear electronic circuits. Single stage amplifiers, multistage ampli fiers, tuned amplifiers with emphasis on design techniques.
Text: Pierce and Paulus, Applied Electronics.
EE 4085. Electronic Design Laboratory
0-3-1. Corequisite: EE 4084.
Practical design problems which emphasize creativity and imagination are posed and their solutions are individually implemented in the laboratory.
EE 4086. Operational Amplifier Design 3-3-4. Prerequisite: EE 3270.

Theory and applications of operational amplifiers as they are currently utilized in today's electronic systems to produce both linear and nonlinear functional operations
Text: Irvine, Operational Amplifier Characteris tics and Applications.

EE 4087. Biomedical Instrumentation $3-3-4$. Prerequisite: EE 3220 or 3700 or PHYS 2122.

Instrumentation used in the hospital and clinic from a systems viewpoint. Includes a review of pertinent physiological and electrophysiological concepts.

Text: Webster, Medical Instrumentation Application and Design.
EE 4090. EE Senior Seminar
1-0-1. Prerequisite: EE junior standing.
Bridge between an undergraduate electrica engineering education and a postgraduate career. Talk followed by a question and answer period with various authorities.

System

3-0-3. Prerequisite: EE 4019 or consent o school.

Analysis of transient conditions in power systems. System parameters. Types of transients. Protective devices and techniques.

EE 4350. Materials Science

3-0-3. Prerequisites: EE 3320, 3270.
A study of the physical, electrical, and optical
properties of metals, semiconductors, dielect and magnetic materials with emphasis on microscopic as well as macroscopic behavie
Text: Omar, Elementary Solid State Physi
EE 4411. Senior Electrical Engineering Laboratory I
0-3-1. Prerequisite: EE 3400. Corequisite: 3320.

The use, operation, and limitations of stan electromagnetic field measurement and sign generating equipment
EE 4421. Senior Electrical Engineering Laboratory II
0-3-1. Prerequisites: EE 3330, 3400
Experimental studies of electromagnetic

lectromechanical systems

4430. Project Laboratory

 by seniors.Individual experimental investigations and ects tailored to student interests. Projects are selected in consultation with student's facult advisor.
EE 4751. Laser Theory and Applications 3-0-3. Prerequisite: PHYS 2123.
Principles of laser operations. Types of lase Survey lectures on the applications of lasers various fields. Course intended for both EE and non-EE majors. Also taught as PHYS 3751.

EE 4780. Energy Conversion Engineering 3-0-3. Prerequisite: thermodynamics.
Principles of advanced energy conversiont electric power. Operation and engineering con siderations. Also taught as ME 4780 and NE 4780.

Text: Angrist, Direct Energy Conversion.
EE 4801-2-3-4-5. Special Topics
3-0-3 each. Normally taken by seniors.
New developments in electrical engineering
are presented as demand or interest warrants
EE 4900-1-2-3. Special Problems
Credit to be arranged. Normally taken by senio
Special engineering problems are assigned according to each student's needs, interests, and capabilities.

EE 6050. Random Processes
3-0-3. Prerequisite: graduate standing.
An introduction to the concepts of probabili theory and random variables with applications electrical engineering problems.
EE 6051. Random Processes II
3-0-3. Prerequisite: EE 6050 or equivalent
An introduction to the theory of stochastic processes. Filtering and harmonic analysis. E
gy properties. Wiener, Poisson, Gaussian, Marprocesses. Engineering applications are emhasized.
EE 6057. Telecommunications I
$3 \cdot 0-3$. Prerequisites: EE 6050, EE 6070, or
Basic binary and M -ary digital signalling techiques with emphasis on the effects of noise. erformance analysis and companions of alterative systems.
E 6058. Telecommunications II
3.0-3. Prerequisite: EE 6057.

Extension of EE 6057. Intersymbol interference, patrol response systems, and synchronization techniques and other signalling techniques.

aE 6063. Methods in Pattern Recognition

 3-0-3. Prerequisite: EE 6050Introduction to pattern recognition. Several approaches to pattern classification, feature exraction, and training are considered including the use of linear discriminant functions, clustering, gradient methods, and syntactic pattern recognition. Several examples of pattern recognition systems are also included.
EE 6070. Fourier Techniques and Signal Analysis
3.0-3. Prerequisite: graduate standing

Fourier Transform applications to the analysis of signals in communications, controls, electromagnetics, optics, and signal processing.

EE 6072. Fourier Optics and Holography

 3.0.3. Prerequisite: EE 6070 .Principles of diffraction, lenses, coherent and incoherent imaging, optical information processing, and holography presented in a linear systems framework.

EE 6081. Information Theory

3-0-3. Prerequisite: EE 6050.
Introduction to information theory. The concepts of information, information rate, and chan nel capacity are developed and applied to communication theory problems.

EE 6082. Coding

3-0-3. Prerequisite: graduate standing or consent of school.
Coding techniques for efficient, reliable communication are introduced. Techniques studied include parity-check, maximal-length, Hamming, BCH and convolutional codes, Viterbi decoding and coding for burst-noise channels.

EE 6092. Computer Communication Systems 3-0-3. Prerequisite: graduate standing.
A study of quantative design techniques for computer communication networks. Capacity assignment, concentrator and buffer design, and choice of network geometry are among topics covered.

EE 6100. Linear Networks and System 3-0-3. Prerequisite: graduate standing. Introduction to a rigorous treatment of linear systems theory. Topics include theory of vector spaces, linear transformations, state variables, linear dynamical systems, controllability, and observability.
EE 6101. Time Varying and Nonlinear Systems 3-0-3. Prerequisite: EE 6100
Analysis and design of engineering systems with time varying and/or nonlinear characteristics. Systems representation and properties of the presentation. Linearizationd Propov's theories. bility analysis using Liapunov and Popov's theories
EE 6111. Feedback Control Systems 3-0-3. Prerequisite: EE 6100.
Optimal control approach to control system design. Formulation of optimal control problems using state-space programming, calculus of variations and maximum principles.
EE 6112. Feedback Control Systems 3-0-3. Prerequisites: EE 6050, 6111 or consent of school.

Design techniques for stochastic dynamical systems. Analysis of stochastic systems, state estimation, stochastic control, and adaptive control.
EE 6113. Feedback Control Systems
3-0-3. Prerequisite: EE 6100.
-0-3. Prerequisite: EE 6 time control to continuous systems. Time and frequency domain analysis of sampled data systems.

EE 6131. Optimum Linear Filters 3-0-3. Prerequisite: EE 6050, 6100 or consent of school.

Estimation theory, both classical and modern approaches. Applications in communication and control. System identification techniques.

EE 6152. Computer Simulation

3-0-3. Prerequisite: graduate standing or consent of school and elementary programming ability.
A study of computational methods for use in the digital simulation of deterministic systems. Several simulation projects are a part of the course.
EE 6153. Computer Simulation
3-0-3. Prerequisite: EE 6050 or consent of school and elementary programming ability.
A study of problems associated with simulating nondeterministic systems. Generating and analyzing random time series, spectral estimation, and statistical inference for computer generated data are among topics covered.

EE 6161. Digital Systems Engineering 3-0-3. Prerequisites: EE 3033, 4075.
A study of the basic concepts of computing structures and their impact on performance. Data types, addressing modes, fixed and float ing point instruction timing, cache memory operation, error detection and correction, memory mapping, virtual memory, and parallel processing Text: Processor Handbook PDP 11/04/34/44/60 70, Digital Equipment Corp.
EE 6162. Digital Systems Engineering II
3-0-3. Prerequisite: EE 3033, 4075 or equivalent
Concepts of microprogramming. Comparison of hardwired control and microprogrammed control. Design of a hypothetical microprogrammed computer. Design using bit slice technology, FPLA's, PAL's, ROM's, and sequencers.
Text: Mick and Brick, Bit Slice Microprocessor Design.
EE 6163. Digital Systems Engineering III 3-0-3. Prerequisites: EE 3032, 4075.
A study of information structures. Structures include stacks, deques, queues, circular lists, linked lists, doubly linked lists, trees, and collec tion of memory arrays, and orthogonal lists. Dynamic allocation is also treated.
Text: Knuth, Fundamental Algorithms: The Art of Computer Programming, Vol. 1.

EE 6170. Advanced Microcomputer-Based

 Design2-3-3. Prerequisite: EE 4075 or equivalent The study of software development for instrument design applications. High level language and assembly language are applied in a realtime operating system environment.
EE 6201. Automata Theory I
3-0-3. Prerequisite: graduate standing
An introduction to broad classes of digital systems including computer components as special cases. A detailed study is made of steps leading to optimum design.
EE 6202. Automata Theory II
3-0-3. Prerequisite: EE 6201.
A continuation of digital system study including fault detection and decomposition of systems. Reliability, memory span, and quadded logic are also examined.
EE 6203. Automata Theory III
3-0-3. Prerequisite: EE 6202 or consent o school
An introduction to finite automata through study of sequential circuits. Concepts in modern algebra are developed for direct application to sequential circuits.
EE 6251. Applied Electromagnetics 3-0-3. Prerequisite: graduate standing or consent of school.

Advanced electromagnetic theory. Particy and complementary solutions of the wave et tion for both discrete and continuous cases Analysis, synthesis, and boundary value pro ems ems.
EE 6252. Microwave
3-0-3. Prerequisite: EE 6251
Field analysis of guided waves. Equivalen circuit theory of microwave systems. Broadb mpedance matching. Passive microwave de vices. Microwave cavities. Periodic structures and filters.

EE 6253. Antennas

3-0-3. Prerequisite: EE 6251
Classical antenna theory. Antenna array a ysis and synthesis. Electromagnetic characte zation and design of several antenna types uch as wire, aperture, broadband, parasic, introduction to antenna measurm ants.

EE 6254. Antenna Measurements $3-0-3$. Prerequisite: EE 4037 or EE 6253 or oo sent of school.
Electromagnetic parameters of antennas ield, near field, and compact range antenna measurements. Laboratory demonstrations an included.
EE 6301. Electrooptics
3-0-3. Prerequisite: graduate standing or con sent of school.
Introduction to electrooptics with emphasis lasers and modern optics. Topics include Gauss beams, laser theory and laser types, mode-loc ing, Q-switching, harmonic generation, parametric oscillation, and light modulation. Applic ons discussed include high power laser syste and optical communications.

EE 6340. Integrated Optics

3-0-3. Prerequisite: graduate standing.
Theory and design of guided wave optical devices and integrated guided wave optical systems including fiber optics.

EE 6341. Fiber Optics

3-0-3. Prerequisite: graduate standing
Fiber optics technology as applied to communication systems. Optical fiber waveguides, sources, and detectors. Power launching and coupling. Optical fiber fabrication and cabling.
EE 6351. Advanced Electrical Measuremeni 3-3-4. Prerequisite: graduate standing. Theory of measurement and practical applic tion of instrumentation. Measurement uncertainties system modeling, component parts of system accuracy, data accumulation, reduction, and in terpretation are considered.

E 6361. Integrated Circuits

 -3. Prerequisite: graduate standing Design, fabrication, and application considera ns of monolithic linear ICs. Analysis of the conventional circuitry contained in typical ingrated circuits. Applications of available linear6380. Frequency Synthesizers 3.0.3. Prerequisite: graduate standing or consent of school.
The study of generating any arbitrary frequency from a given frequency standard. Digital and analog phase locked loops, frequency mixers, spurious signals, and phase noise are considered.
EE 6381. Low-Noise Electronic Design $3-4$. Prerequisite: graduate standing or consent of school.
Sources of noise in electronic instrumentation design and employment of design techniques to rduce the effects of noise

EE 6401. Advanced Network Theory I $3-4$. Prerequisite: graduate standing. Special techniques of network analysis that re not usually covered in undergraduate curricula. Topics include networks involving active slements, multiport or multiterminal elements, pathological elements.
EE 6402. Advanced Network Theory I 3.3-4. Prerequisite: graduate standing. A survey of various techniques of passive analog filter design. The objective is to enable e student to design pracical under landing of underlying principles.
EE 6403. Advanced Network Theory 1 $3 \cdot 3 \cdot 4$. Prerequisite: graduate standing Techniques of synthesizing networks using sources, immittance transducers, operational am plifiers. Practical filter design using these elements.

EE 6412. Time-Domain Synthesis of Linear

 Networks3.0.3. Prerequisite: graduate standing

Methods of specifying a network function to give a prescribed time-domain response. Math ematical techniques suitable for obtaining the time-domain approximating functions.

E6413. Digital Filters

3.0-3. Prerequisite: graduate standing or consent of school.
An introduction to the theory and application of digital signal processing. Fourier and z-trans lorm representations of discrete signals and systems. Design and implementation of digital filters and computational methods of discrete spectrum analysis.

EE 6414. Advanced Digital Signal Processing 3-0-3. Prerequisite: EE 4078 or 6413. A selection of advanced topics in digital signal processing. Topics include homomorphic systems, auto-regressive modelling, adaptive filtering, and power spectrum estimation.
EE 6415. Digital Processing of Speech Signals 3-0-3. Prerequisite: EE 4078 or EE 6413.
A detailed treatment of the theory and application of digital speech processing. Provides undamental knowedge abour speen shout how and speech processing mplied in speech trans digital techniques are appis, speech recognition mission, speech syntios, speech recognitio and speaker verification

EE 6421. Advanced Network Theory I 3-0-3. Prerequisite: graduate standing or consent of school.
An introduction to applied combinatorics including combinations, permutations, recursion, partition, generating functions, inclusion and exclusion, rook polynomials and Polya's theorem.

EE 6422. Advanced Network Theory II

3-0-3. Prerequisite: graduate standing.
Topological analysis of networks. Current interest topics presented from a linear-graph aspect. Concepts and techniques of network and system analysis by topological methods.

EE 6431. Electroacoustics

3-0-3. Prerequisite: graduate standing or consent of school.

The practical application of electrical circuit theory to the solution of acoustical problems. Terminology. Basic solutions to the wave equation Mechanical and acoustical circuits. Transducers, Radiation impedances. Acoustical elements. Direct radiator loudspeakers. Acoustics of enclosures Loudspeaker system synthesis. Horn loudspeakers.
EE 6451. Electrical Properties of Materials 3-0-3. Prerequisite: graduate standing or consent of school.
Basis of quantum mechanical formulism and modeling to serve as an introduction to the modern study of electrical properties of materials
EE 6452. Magnetic and Dielectric Properties of Materials
$3-0-3$. Prerequisite: EE 6451 or consent of school.
Dielectrics, piezo- and ferroelectrics and their application to electromechanical devices. Quanum basis of magnetism. Magnetic interactions, domains, resonance and devices.

EE 6453. Solid-state Electronic Devices $3-0-3$. Prerequisite: graduate standing or consent of school.
Study of charge and energy transport in
semiconductors with applications in pn junction, interface and thin film, optoelectronic and bulk-effect devices.

EE 6461. Modern Magnetic Materials and

Devices
$3-0-3$. Prerequisite: EE 6452 or consent of school.
Basic operation and design of magnetic memories and microwave devices. Crystal structure, chemical composition. Properties of ferrites, gar nets, and orthoferrites.
EE 6500. Introduction to Management and Control of Energy Systems
3-0-3. Prerequisite: EE 6100 or consent of school.
Fundamentals of static as well as dynamic system theory as applied to typical energy engineering problems. Optimization theory, deci sion analysis techniques for large-scale systems.

EE 6501. Planning of Power Systems

3-0-3. Prerequisite: EE 4019 or consent of school.

An introduction to planning procedures for large scale technical operations. Technical and economic constraints on planning. Techniques for formulation of rational planning problems.

EE 6502. Control and Operation of Intercon-

 nected Power Systems3-0-3. Prerequisite: EE 4019, 6100 or consent of school.
Power flow analysis techniques. Modern control of power systems with emphasis on security, economic and environmental issues.
EE 6503. Evaluation of Power System Reliability
3-0-3. Prerequisite: EE 4019 or consent of school.

Techniques for the study of power system reliability. Probabilistic models for power system performance. Techniques for subsystem and composite system reliability analysis.

EE 6511. Transmission Lines
3-3-4. Prerequisite: graduate standing
A study of electric power transmission line parameters, models and techniques for analysis of steady state and transient conditions. A.C., D.C., HV and underground transmission.

EE 6520. Real-Time Control of Power Systems 3-0-3. Prerequisites: EE 4019, EE 6100, or consent of school.
Real-time control functions in power systems. Energy control centers. Hierarchical, automatic generation, reactive power, and emergency controls. Security constraint economic operation.
EE 6521. Power System Stability 3-0-3. Prerequisites: EE 4019, 6100. Methods of stability analysis of interconnected
power systems. System modeling, analysis to
 stability.
EE 6530. Power Semiconductor Devices 3-0-3. Prerequisite: graduate standing or con sent of school.
The study of the physical considerations in
The study of the physical considerations in tor devices.
Text: Ghandi, Semiconductor Power Devic

EE 6531. Solid-State Power Conversion

 $3-0-3$. Prerequisite: graduate standing or sent of school.The study of the physical and electrical co siderations involved in the analysis and des of solid-state inverters and converters.
Text: Dewan and Straughen, Power Semic ductor Circuits.
EE 6771. Engineering Computer Software Systems
3-3-4. Prerequisite: NE 6770 or consent of school.
Computer programming for realime control systems in complex multiple-task dev oriented environments. Subiects include assem programming, operating systems, and real in systems on minicomputers. Also taught as NE 6771.

EE 6772. Advanced Computer Interfacing and Digital Design
2-3-3. Prerequisite: consent of school. For non-electrical engineering students, and for e trical engineering students whose major program area is not computers or digital system
A study of system design using MSI and L chips, and programmable digital devices as system modules. Subjects include Boolean ootin zation and register transfer design techniques Also taught as CE 6772, ME 6772 and NE 6772.

EE 6773. Computer Control of Real-time Systems
3-3-4. Prerequisite: consent of school. For non-electrical engineering students, and for ele rical engineering students whose major proram area is not computers or digital systems
A study of concepts common to all comput controlled real-time systems. Subjects include evolution of time sets, vectored interrupts and statistical alarm conditions. Also taught as CE 6773, ME 6773 and NE 6773.

EE 6965. Power System Relaying

3-3-4. Prerequisite: EE 4045 or consent of school.
Principles and techniques of electric power system protection. Application of relaying tech niques for system stabilization, protection of

EE 6976. Advanced Electrical Transients
30-3. Prerequisite: graduate standing or conient of instructor.
Development and application of those aspects d complex variable and transform theory which re helpful in the study of transients and which particularly useful to electrical engineers in oeneral.

EE 7000. Master's Thesis
EE 7051-2-3. Advanced Communication Theory
3 each. Prerequisites: EE 6051, 6062 Latest developments in communications are ated in lecture and seminar. Emphasis on rrent literature and open research areas.

EE 7101. Advanced Feedback Control Theory 3.0-3. Prerequisite: EE 6100 or equivalent. Advanced techniques for analysis and design of automatic control systems.
E 7251-2-3. Advanced Electromagnetic Theory
-4 each. Prerequisite: EE 6251 or consent of school.
Topics of fundamental importance in electromagnetics. Advanced developments in the fields of antennas, propagation, and microwave theory and practice.
EE 7254. Antennas and Wave Propagation in Matter
3.0-3. Prerequisite: EE 6251 or consent of school The analysis of antennas embedded in or near material bodies such as the earth or the ocean Field equations and constitutive parameters in material regions; theoretical analyses of wire antennas; antennas as probes; wave propagation near a material interface; theory and construction of experimental scale models.
EE 8001-2-3. Seminar
1.0.1 each. Prerequisite: graduate standing and consent of school
EE 8140 through 8149. Special Topics 1.0.1 each.

Special topics of unusual current interest; introductory treatments of new developments in dectrical engineering.

EE 8240 through 8249. Special Topics 2-0.2 each.
EE 8340 through 8349. Special Topics 3-0.3 each.
EE 8430 through 8439. Special Topics 4-0.4 each.
EE 8440 through 8449. Special Topics 5-0.-5 each.

EE 8500-1-2-3. Special Problems
Credit to be arranged.
Problems meeting the special interests of the student. Approval to schedule must be obtained in advance of registration.
EE 9000. Doctoral Thesis

School of Engineering Science and Mechanics

Established in 1959

Director and Professor-Milton E. Raville; Associate Director and Professor-Wilton W. King; Regents' Professor-Andrew W. Marris; Professors-William J. Lnenicka, David J. McGill, George M. Rentzepis, George J. Simitses, Charles E. S. Ueng James T. S. Wang, Gerald A. Wempner; Associate Professors-Donald G. Berghaus, Michael C. Bernard, Hyland Y. L. Chen, Robert W. Shreeves, Raymond P. Vito, Wan-Lee Yin; Assistant Professors-William A. Johnston, Arthur J. Koblasz, Richard K Kunz, John G. Papastavridis, Donald L. Vawter

General Information

The School of Engineering Science and Mechanics administers the undergraduate curriculum leading to the degree of Bachelor of Engineering Science and Mechanics and graduate programs leading to the degrees of Master of Science, Master of Science in Engineering Science and Mechanics, and Doctor of Philosophy.
The undergraduate curriculum prepares students for careers in engineering and related fields through emphasis on the fundamental principles and techniques in mathematics and the engineering sciences-solid mechanics, fluid mechanics, materials science, electrical sciences, heat transfer, and thermodynamics. The curriculum, totaling 206 credit hours, provides for 74 hours of elecives, including 16 hours of free electives 30 hours of technical electives, 24 hours of humanities/social science/modern language electives, and 4 hours of physical education electives. The engineering science and mechanics curriculum is considered particularly well-suited to the bet-
ter-than-average student who has not yet formulated specific goals within the general framework of engineering and the physical sciences.
Elective options provide in-depth study in interdisciplinary, technically-related areas as well as preparation for professional schools of business, law, and medicine. Thus, the engineering science and mechanics graduate has a wide choice of specialized areas that can provide a foundation for starting his or her career or for entering postgraduate study.
Graduate study and research in the School of Engineering Science and Mechanics includes work in modern continuum mechanics, stress analysis, stability, structures, dynamics, vibrations, space me chanics, fracture mechanics, finite element methods and other computational techniques, fluid mechanics, biomechanics, acoustics, wave propagation, applied stochastic processes, optimization techniques, materials science, and experimental stress analysis. The ESM graduate student will also find a great number of related courses in the other schools of the Institute. The School encourages flexibility and interdisciplinary interests in the planning of individual programs of study.
The faculty members of the School of Engineering Science and Mechanics hold degrees in most of the recognized branches of engineering, as well as mathematics and physics. Housed in two buildings, ESM has excellent classroom, office and shop facilities, and modern, newly-equipped laboratories. Various grants, assistantships, and fellowships are available to students of outstanding merit.
Multidisciplinary Programs
See table on page 79.
Freshman Year

Course	1st Q.	2nd Q.	$3 \mathrm{rd} Q$.
Elective ${ }^{1}$			
Engineering	X-X-3	\ldots	
CHEM 1101-2			
Inorganic Chemistry	4-3-5	4-3-5	
EGR 1170			
Visual Communication Engineering			
Design I	2-3-3	

Design I

MATH 1307-8-9
PhyS 2121
Physics
ENGL 1001-2-3
Analysis of Literature and Language
Electives ${ }^{2}$ Free
Elective ${ }^{6}$
Physical Education

Totals

Sophomore Year
Course
Engineering
Design I, II
ESM 2201
ESM 3201-2
EE 3200
Elements of
Electrical
Engineering
MATH 2307
Calculus IV
MATH 2308
Calculus and Linear
Algebra
MATH 2309
or 3308 Differentia
Equations
PHYS 2122-3
Physics

Electives

Humanities/Social Science/Modern
Language

Elective ${ }^{2}$

Free
Totals

Courses of Instruction

Note: Some ESM courses are offered on an alternate year basis. The designation "even years" in a course description refers to even academic years, e.g., 80-81, 82-83. And "odd years" refers to odd academic years, e.g., 81-82, 83-84.
ESM 1101. Introduction to Engineering 2-3-3.
The engineer and design, relation between the student's curriculum and his or her career in engineering. Emphasis placed on student participation in creative design process.
Text: at the level of Beakley and Leach, Engineering: An Introduction to a Creative Profession.
ESM 1750. Introduction to Bioengineering 3-0-3.
Bioengineering aspects of human body including its mechanics, nervous system control, material properties, and biological fluid flows. Diagnostic techniques and assisting and replacement prosthetic devices. Also listed as AE 1750, EE 1750, ME 1750.
ESM 2101. Engineering Design I
0-3-1. Prerequisite: ESM 1101 or consent of school.
Study of a problem that arises from a need of society. Proposals for a creative solution studied to select best design. Substitution permissible for co-ops

ESM 2102. Engineering Design II

0-6-2. Prerequisite: ESM 2101
Continuation of ESM 2101. Solution of design problem to be completed, a model to be submitted as part of final report.
ESM 2201. Statics
3-0-3. Prerequisite: PHYS 2121. Prerequisite or corequisite: MATH 2307
Elements of statics in two- and threedimensions, centroids, analysis of structures and machines, friction
Text: at the level of Beer and Johnson, Vector Mechanics for Engineers: Statics.
ESM 3111. Experimental Methods in Engineering Science and Mechanics 2-3-3. Prerequisites: EE 3400, MATH 2309, ESM 3201, 3301, ENGL 3023.
Methods used to observe behavior of physical parameters in engineering problems, photo-optics, signal analysis, transducers and transducer circuits, models and analogies.
Text: at the level of Tuve and Domholdt, Engineering Instrumentation.

ESM 3201. Dynamics I
3-0-3. Prerequisites: ESM 2201, MATH 230 Kinematics and kinetics of rigid bodies in plane motion
Text: at the level of Higdon, Stiles, Davis Evces, Dynamics.
ESM 3202. Dynamics II
3-0-3. Prerequisite: ESM 3201
Kinematics and kinetics of three-dimensio
motion of rigid bodies.
Text: at the level of Higdon, Stiles, Davis a Evces, Dynamics.
ESM 3301. Mechanics of Deformable Bod 5-0-5. Prerequisite: ESM 2201. Prerequisite or corequisite: MATH 2308.
Definition and analysis of strain and stress applications to axially loaded elements, torsio or circular shafts and bending of beams, intro
Text: to simple plasticity and to column stab
Text: at the level of Popov, Introduction to
Mechanics of Solids.

ESM 3302. Mechanics of Material

3-0-3. Prerequisite: ESM 3301
Analysis and design of beams (using singule ty functions), various structural elements (usim: energy methods), thick-walled cylinders, rot discs, curved beams. Theories of failure. Text: at the level of Budynas, Advanced Strength and Applied Stress Analysis.

ESM 3451. Computer Applications in

 Engineering Science and Mechanics 2-3-3. Prerequisite or corequisite: ESM 3302 3501, 4210 or consent of school.Introduction to the use of the digital compu FORTRAN languages, computer solutions of problems in statics, dynamics, mechanics of deformable solids, vibrations and fluid mechanic

ESM 3452. Microcomputers in Engineering

 Science3-0-3. Prerequisite: junior standing
An introduction to microcomputers emphasiz ing laboratory applications in the engineering sciences: data conversion and display and trol of experiments. Project required.

ESM 3501. Fluid Mechanics

5-0-5. Prerequisite: ESM 3202. Prerequisite o corequisite: MATH 2308
Kinematics of fluid motion, material and spa ial coordinates, acceleration, continuity, vorticit perfect fluid motion, introduction to the motion
a viscous fluid
Text: at the level of Owczarek, Introduction Fluid Mechanics.
ESM 3701. Statics
3-0-3. Prerequisites: ARCH 2301, MATH 1309,
PHYS 2111

Elements of coplanar statics, particle and rigid ody equilibrium, centroids, centers of gravity, distributed loads, analysis of structures and teams, shear and bending moment Text: at the level of Beer and Johnston, Mechanics for Engineers: Statics.

ESM 3702. Mechanics of Materials 3.0-3. Prerequisite: ESM 3701

Simple stresses and strains, mechanical oroperties of materials, Hooke's Law, moments of inertia of areas, analysis and design of beams and columns, deflection of beams Text: at the level of Popov, Mechanics of Materials.
ESM 3750. Introduction to Biofluid Dynamics 3-0.3. Prerequisite: MATH 2309, PHYS 2123, or onsent of instructor
Introduces students to the study of blood flow in the cardiovascular system, with emphasis on he modeling of such flows and the potential of low studies for clinical research application Also taught as AE 3750 and CHE 3750.
ESM 3901 through 3909. Special Problems in Engineering Science and Mechanics
Credit to be arranged. 3 hours maximum. Prerequisite: junior standing.
Individual study and analysis of problems of current and future interest in engineering and science, approved by faculty advisor.
ESM 4111. Introduction to Experimental Stress Analysis
1-6-3. Prerequisite: ESM 3301 or equivalent, senior standing.
Plane stress analysis using transmitted light photoelasticity and photoelastic models, study of surface strain using resistance strain gauges, Iransducer design and application.
Text: at the level of Holister, Experimental Stress Analysis.
ESM 4122. Project in Engineering Science and Mechanics I
0.3-1. Prerequisite: senior standing neering Science and Mechanics.
Through discussions with the faculty advisor and other members of the faculty, students will determine the design-related engineering problem that they wish to study. A detailed written project proposal will be submitted to and approved by the student's faculty project advisor prior to the end of the quarter.

ESM 4123. Project in Engineering Science and Mechanics II
1.3-2. Prerequisite: ESM 4122.

Continuation of ESM 4122. Student will complete an experimental and/or a theoretical investigation of an engineering problem and submit a written report for the approval of his/her laculty project advisor.

ESM 4201. Intermediate Dynamics
3-0-3. Prerequisite: ESM 3202 or consent o school.
Kinematics and kinetics of particles and particle systems, applications include motion in resisting medium, redistribution of mass, central force motion, effects of earth rotation.
Text: at the level of Marris and Stoneking, Advanced Dynamics.

ESM 4202. Intermediate Dynamics II

3-0-3. Prerequisite: ESM 4201 or consent of school.
Two-and three-dimensional motion of a rigid body, Euler's equations, introduction to energy methods, and Lagrange's equations.
ESM 4210. Mechanical Vibrations I 3-0-3. Prerequisites: ESM 3201, 3301 and MATH 2309 or their equivalent.
Single degree-of-freedom system, two degrees-f-freedom system, and finitely many degrees-of-freedom system, complex representation, applications.
Text: at the level of Timoshenko, Young, Weaver, Vibration Problems in Engineering.

ESM 4211. Mechanical Vibrations II

3-0-3. Prerequisites: ESM 4210 and ESM 3302 or equivalent. Fall quarter.
Complex representation, step and impulse loads, many degrees of freedom, influence coefficients, matrix methods, stability of solution, vibrations of strings, beams and membranes, approximate methods.
Text: at the level of Timoshenko, Young,
Weaver, Vibration Problems in Engineering.
ESM 4301. Mechanics of Deformable Bodies 3-0-3. Prerequisite: ESM 3301.
Small strain linear elasticity in two- and three-dimensions, applications in generalized plane stress and plane strain, torsion and bending of noncircular prisms.

ESM 4302. Stress Analysis
3-3-4. Prerequisite: ESM 4301
Continuation of ESM 4301, further treatment of torsion and bending, strain energy, introduction to thin plates and simple shells, approximation methods.

ESM 4351. Continuum Mechanic

3-0-3. Prerequisites: MATH 2309, ESM 3301 Geometrical foundations, analysis of stress and deformation, balance laws, constitutive equations, finite and infinitesimal elasticity.

ESM 4451. Biomechanics

3-0-3. Prerequisites: MATH 2309 or equivalent, 3-0-3. Prerequisites: MAT
Elastic and inelastic behavior of biomaterials muscle mechanics, mechanical modeling of
biological structures. Hemodynamics, properties of blood, flow in the circulatory system.

ESM 4760. Engineering Acoustics and Nois

 Control I3-0-3. Prerequisite: senior standing
Acoustics related to noise and its control, acoustic terminology, wave propagation, solutions to the wave equation, instrumentation, sound field in large and small rooms, noise legislation. Also taught as AE 4760, ME 4760.

ESM 4761. Engineering Acoustics and Noise Control II
-0-3. Prerequisite: ESM 4760 or equivalent.
Continuation of ESM 4760 emphasizing techniques for the solution of noise problems. Vibration isolation, energy absorption, dissipative and reactive mufflers, enclosures, barriers, properties of materials, panel damping. Also
taught as AE 4761, ME 4761 .

ESM 4770. Structural Integrity and Durability 3-0-3. Prerequisite: ESM 3301 or AE 2101
Simple stress-concentration problems involving plastic deformation, residual stresses, hys teresis, creep and relaxation. Introduction to fatigue and fracture mechanics. Crack-growth calculations and wearout models. Also taught as AE 4770.
ESM 4801 through 4809. Special Topics in Engineering Science and Mechanics $1-0-1$ through $9-0-9$, respectively. Prerequisite: senior standing.
Special courses not included in regular course
offerings. offerings.
ESM 4901 through 4909. Special Problems in Engineering Science and Mechanics Credit to be arranged. 3 hours maximum. Prerequisite: senior standing.
Individual study and analysis of problems of current and future interest in engineering and science, approved by faculty advisor.

ESM 6111. Theory of Experimental Stres

 Analysis2-3-3. Prerequisite: ESM 3301 or consent of chool. Spring quarter.
Study of surface stress and strain using brittle coatings and strain gauges. Electrical reistance cemented and welded strain gauges, strain gauge circuits, static and dynamic problems, transducer design and circuits. Vibrating wire strain gauges. Application of failure theories
ESM 6117. Experimental Photomechanics I 2-3-3. Prerequisite: ESM 3301 or equivalent. all quarter, odd years.
Polarized light, mathematical description, ligh transformations, photoelastic models, use of
transmitted light for stress analysis in two dimensional problems, birefringent coatings.

ESM 6118. Experimental Photomechanic

 2-3-3. Prerequisite: ESM 6117. Winter quarter, odd years.Three dimensional photoelastic stress an sis using transmitted light and scattered light methods, numerical methods, Moire fringes, holographic interferometry.
ESM 6201. Advanced Dynamics I 3-0-3. Prerequisite: ESM 4210 and MATH 2309, or equivalent. Fall quarter.
Kinematics and kinetics of particles, angula velocity, inertia properties, rigid body dynam generalized coordinates and forces, nonholono systems, solutions by vector methods and Lagrange's equations.
ESM 6202. Advanced Dynamics II
3-0-3. Prerequisite: ESM 4202 or 6201 . W ter quarter.
A continuation of ESM 6201. Hamilton's principle, Hamilton's canonical equations gy and momentum integrals, Hamilton-Jacobi theory, study of selected papers from recent dynamics literature.

ESM 6221. Vibrations

3-0-3. Prerequisite: MATH 4582 or consent school. Fall quarter.
Lagrange's equations, small oscillations of conservative and nonconservative systems, ural modes; response of multi-degree-of-freed systems; introduction to vibration of continuo systems.

ESM 6222. Vibrations II

3-0-3. Prerequisite: ESM 6221, 6321, or 634 Vinter quarter
Free and forced longitudinal, torsional and lateral vibration of bars; vibration of membrane plates, shells and extended elastic bodies; ap proximate methods

ESM 6223. Wave Propagation in Solids 3-0-3. Prerequisite: ESM 6222 or consent of school. Spring quarter.
Wave propagation in elastic solids; dilatation equivolumnal and surface waves, reflection and refraction; waves in structural elements analysis of impact problems.
ESM 6241. Gyroscopic Motion and Device 3-0-3. Prerequisite: ESM 6201 or equivalent. Spring quarter, odd years.
Motion of a rigid body about a fixed point, the op, precession and nutation of the earth, the grocompass, rate and integrating gyros, the monorail, ship stabilizers.

SM 6261. Space Mechanics

$3-0-3$. Prerequisite: graduate standing. Fall quarter, even years.

The two-body problem, Kepler's equation, ransfer orbits, Hohmann transfer, dynamics of rocket motion, rocket staging.

ESM 6262. Space Mechanics II

-0.3. Prerequisite: ESM 6261 or consent of chool. Winter quarter, even years. Celestial sphere, aberration, parallax, Laplace's and Gauss' methods, three- and n-body prob ems, Lagrangian points, Lagrange brackets perturbations of an oblate planet, and atmo spheric drag.

SM 6281. Random Vibrations

 .0-3. Prerequisites: MATH 4215 and ESM 4210,years.
Statistical analysis of mechanical systems, correlation function, power spectral density, re sponse to random inputs, method of normal modes, fatigue failures, nonstationary inputs, vibration of beams.

ESM 6282. Random Vibrations II

3-0-3. Prerequisite: ESM 6281. Winter quarler, even years.
Continuation of ESM 6281. Advanced engineering problems in random theory, nonstationary random inputs and response, measurement of power spectra, Fokker-Planck techniques, nonlinear systems.
ESM 6301. Advanced Strength of Materials 3-0.3. Prerequisites: MATH 2309, ESM 3301. 3.0-3. Prerequis
Summer quarter

Shear centers for beams, analyses of stresses Snd deflections in unsymmetrical bending, stresses and deflections in curved flexural members, and deflections in curved ficts.

ESM 6321. Applied Elasticity I

3-0-3. Prerequisite: ESM 3301 or equivalent.
Fall quarter.
Analysis of stress and strain, stress-strain relations, equilibrium, compatibility and boundary conditions, simple three-dimensional applica tions, plane elasticity problems in Cartesian and polar coordinates.
ESM 6322. Applied Elasticity II
3-0-3. Prerequisite: ESM 6321 . Winter quarter. 3.0-3. Prerequisite: ESM 6321. Winter quarter.
Continuation of Applied Elasticity I, torsion Continuation of Applied Elasticity I, and flexure of bars, finite-difference approxima licity, finite-elemetion method as applied to elas tions and relaxation method as applied to elas ticity problems
ESM 6341. Theory of Elasticity 3.0.3. Prerequisites: ESM 3301 and MATH 2309 or consent of school. Fall quarter. Introduction to generalized tensors, analysis of deformation, equations of motion, linearly elastic materials, formulation of the first, second and mixed boundary value problems.

ESM 6342. Theory of Elasticity II
3-0-3. Prerequisite: ESM 6341 or consent of school. Winter quarter
Continuation of ESM 6341, linear elasticity, Saint-Venant's theory of torsion, bending of beams, Love's strain function, Galerkin vector, Papkovich-Neuber representation, stress potentials, Airy's stress function.
ESM 6343. Theory of Elasticity III
3-0-3. Prerequisite: ESM 6342 or consent of school. Spring quarter.
Continuation of ESM 6342, variational formulation of elasticity, energy theorems, introduction to thermoelasticity, representation of biharmonic functions by analytic functions of a complex variable.
ESM 6361. Theory of Elastic Stability 3-0-3. Prerequisites: ESM 3301, MATH 4582 or consent of school. Winter quarter.
Various stability methods and their applicabili-
ty, the elastica problem, snap and bifurcation
buckling, stability of conservative systems, buckling of beams on elastic foundation, lateral buckling
ESM 6362. Theory of Elastic Stability II 3-0-3. Prerequisite: ESM 6361 or consent of 3-0-3. Prerequisite: ESM
school, Sprility of various systems-velocity dependent, conservative, dissipative, circulatory and nonstationary, with examples of each, recent developments in elastic stability theory.

ESM 6371. Theory of Plates

$3-0-3$. Prerequisite: graduate standing and MATH 4582 or equivalent. Spring quarter.
Von Karman theory of plates, pure bending of laterally loaded rectangular and circular plates, approximate methods, nonlinear considerations, stiffened and layered anisotropic plates.

ESM 6372. Theory of Shells

3-0-3. Prerequisite: ESM 6371 or consent of chool. Summer quarter
Stresses and deformation of shells with and without bending under various loading conditions, shells forming surfaces of revolution, hyperbolic paraboloidal and elliptic paraboloidal shells.

ESM 6381. Plasticity

$3-0-3$. Prerequisite: ESM 6321 or 6341 or consent of school. Spring quarter.
Stress-strain relations in three dimensions, three-dimensional yield conditions and flow laws, thick-walled tube and sphere, torsion of bars, slip line fields, technological processes, plates.

ESM 6391. Finite Elasticity

3-0-3. Prerequisite: ESM 4351 or consent of school. Winter quarter.
Kinematics of finite deformation, stress, de
formation and strain tensors, classical theory of finite elasticity for isotropic materials introduction to simple materials.

ESM 6401-2. Optimization Techniques

3-0-3 each. Prerequisite: graduate standing Winter and spring quarters, even years. Applications of calculus of variations to optimization of engineering systems and processes, end and corner conditions, discontinu ous optimal processes, control and state variable inequality constraints, direct methods, etc

ESM 6411. Energy Methods in Mechanics

 3-0-3. Prerequisites: ESM 3301, MATH 458 or consent of school. Summer quarter.Virtual work, minimum total potential energy, minimum complementary energy, Castigliano's theorems, applications of calculus of variations, Rayleigh-Ritz method
ESM 6450. Finite Elements, Boundary Elements and Other Computational Methods in Mechanics I
3-0-3. Prerequisite: graduate standing in engineering. Fall quarter.
Review of weighted residual methods; linea solid and structural problems; finite element variational method-assumed displacement meth od; element interpolation, integration; assembly and solution of large systems of equations; convergence of finite element method; edge function method; boundary elements methods, plane and 3-D elasticity.

ESM 6451. Finite Elements, Boundary Elements and Other Computational Methods in Mechanics II
3-0-3. Prerequisite: ESM 6450 or consent of instructor. Winter quarter
Mixed and hybrid methods; assumed stress and multifield finite elements, combined finite elements and boundary elements; plate and shell problems; application to fracture-composites; finite deformation analysis; alternate stress and strain measures; objective stress rates-strain rates, finite element rate (incremental) methods.
ESM 6452. Finite Elements, Boundary Elements and Other Computational Methods in Mechanics III
3-0-3. Prerequisite: ESM 6451 or consent of instructor. Spring quarter.
Rate (incremental) analysis of finite strain problems; finite elasticity-finite strain elasto plasticity; alternative variational rate finite ele ment methods; stability; transient dynamic re sponse; current developments in discrete ap-
proximations in fluid flow.

ESM 6461. Biosolid Mechanics

3-0-3. Prerequisites: ESM 3301 or equivalent, MATH 2309 or equivalent, ESM 4351 equivalent.
Mechanics as applied to living tissues. Bio viscoelastic solids: The constitutive equation for blood vessels, muscles, cartilage, bone other tissues.
ESM 6501-2. Fluid Mechanics I and II
3-0-3. Prerequisite: graduate standing. Fall winter quarters.
Mechanical principles of rational fluid mech ics. Kinematics, balance laws, examples of c stitutive equations of fluids including perfect, flows, viscometric flows, insen fuids, potentia flows, viscometric flows, introduction to appro imate solutions and boundary-layer theory.
ESM 6751-2. Complex Systems Design I, 2-4-3 each. Prerequisite: graduate standing of any school or senior with consent of school. Winter and spring quarters.
Interdisciplinary team design of systems current interest to society which have large technological factors. Individual research and interaction with nonuniversity resource perso and faculty. Grades based on oral and writter eports. Cross-isted with AE EE, CE, CP, ISYE and ME.
ESM 6760-1-2. Acoustics I, II, and II 3-0-3 each. Prerequisite: MATH 4349 or con sent of school. Fall, winter, and spring quarter introductory analytical methods, and stoch iic process, the wave equation in a compres ible fluid, radiation of wind, reflection, refractio diffraction and scattering of sound waves, dua acoustics. Also listed as AE 6760-1-2 and ME 6760-1-2.
ESM 6763. Noise Reduction and Control (Industrial Applications)
3-0-3. Prerequisite: ESM 6760, ESM 4760
or equivalent. Spring quarter.
Methods of noise reduction and control ap plied to systems in industry. Measurement of sound power, material acoustic properties, bari ers, enclosures, mufflers, vibration reduction and damping methods. Also taught as AE 6763 E 6763 .

SM 6764. Ocean Acoustics
3-0-3. Prerequisite: GEOL 4300 or consent of schoo. MATH 4321, 4582, ESM 6760 recommended. Spring quarter.
Propagation of Sound waves in the oceans, stress-strain relationships, asymptotic ray theory. Propagation in shallow water and deep wate Also taught as AE 6764, GEOL 6764, ME 6764.

IM 7000. Master's Thesis

7101-2-3-4-5. Master's Report

 $10-1$ through $5-0-5$, respectively. Prerequisite: onsent of advisor.A theoretical and/or experimental investigation major area of interest of an M.S. candidate. Witten report must be approved by faculty
dvisor. Required of all M.S. students not doing a thesis.
SM 7201. Mechanics of Composite Materials 3.0-3. Prerequisite: ESM 6371, ESM 6321 6341, or consent of instructor. Summer quarter Basic theory of anisotropic elasticity, equa ons for laminated composites, properties of aminates, estimation of the composite aniso ropic moduli, bending, buckling and failure crileria of laminates.
SM 7221. Nonlinear Vibrations
3.0-3. Prerequisites: ESM 4210, 6201 and MATH 4582 or their equivalents. Winter quarter, MATd years.
Vibrations of autonomous one degree-ofreedom systems, method of approximated charcleristics, topological methods, analysis of ingularities and stability, free damped nonlinear ibrations, self-excited oscillations.

ESM 7222. Nonlinear Vibrations II 3-0.3. Prerequisite: ESM 7221. Spring quar ler, odd years.
Nonlinear vibrations of nonautonomous one degree-of-freedom systems, method of Duffing pertubation method, Bogoliuboff method, Ritzaveraging method, stability criteria, subharmonics, two degree-of-freedom systems.

ESM 7231. Wave Propagation In

 Continuous Media3-0-3. Prerequisite: ESM 6501 or consent of school. Fall quarter, odd years.
The theory of propagation of singular surfaces in three dimensions, Hadamard's lemma, Maxwell's theorem, compatibility conditions for weak singular surfaces, general balance at a singular surface, weak waves, applications to wave prop agation in various materials.
ESM 7371. Stability of Shells
3-0-3. Prerequisite: ESM 6361, 6372. Fall quarter.
Linear and nonlinear theories for shell bucking, stability of thin stiffened and unstiffened plates and cylindrical shells under various loads, edge effects, imperfection sensitivity studies.

ESM 7501. Viscoelasticity

3-0-3. Prerequisite: ESM 6391, 6501 or con sent of school. Spring quarter.
The theory of viscoelasticity, simple fluids, viscometric flows and the determination of material functions.

ESM 7511. Analytical Fracture Mechanics
ESM 7511. Analy MATH 4320 or equivalent. Spring quarter.
Half-plane problems. Symmetric crack prob-Half-plane problems. Cymmeria. Antisymmetric crack problems. Williams' series. Effect of nearby crack problems. Design problems

ESM 7750. Biofluid Mechanics
3-0-3. Prerequisites: AE 6000 or ESM 6501, 6502 or consent of instructor. Summer quarter.
A unified treatment on hemorheology, hemo dynamics, pulsatile flows, microcirculation, joint lubrication, pulmonary physiology, elc., with emphasis on quantitative approach. Also listed as AE 7750 .
ESM 7999. Preparation for Doctoral Qualifying Examination
Credit to be arranged. Prerequisite: consent of advisor.
ESM 8001-2-3. Graduate Seminar
1-0-1 each.
ESM 8103-13-23-33-43-53. Special Topics
3-0-3. Prerequisite: consent of advisor
Special ad hoc courses not included in regular ESM graduate course offerings.
ESM 8104-14-24-34-44-54. Special Topics
4-0-4 each. Prerequisite: consent of advisor.
Special ad hoc courses not included in regular ESM graduate course offerings.
ESM 8105-15-25-35-45-55. Special Topics
5-0-5 each. Prerequisite: consent of advisor. Special ad hoc courses not included in regular ESM graduate course offerings
ESM 8501-2-3. Special Problems
Credit to be arranged. Prerequisite: consent of advisor.
Individual study and analysis of problems of current and future interest in engineering and science.

ESM 8999. Doctoral Thesis Preparation

Credit to be arranged.
For student in preliminary stages of formulating doctoral research program but who has no obtained formal approval of thesis topic
ESM 9000. Doctoral Thesis

School of Industrial and Systems Engineering

Director-Michael E. Thomas, Robert N. Lehrer (Emeritus); Associate Director for Undergraduate Programs-Nelson K. Rogers; Associate Director for Graduate Programs-William W. Hines; Professors - Mokhtar S. Bazaraa, Leslie G. Callahan, Stuart J. Deutsch, Paul T. Eaton (Emeritus), Augustine O. Esogbue, David E. Fyffe, John J. Jarvis, Robert G. Jeroslow (Adjunct),Cecil G. Johnson, Lynwood A. Johnson, Douglas C. Montgomery, Ury Passy, H. Donald Rat liff, William B. Rouse, Richard L. Serfozo, C.M. Shetty, Harold E. Smalley, Matthew J. Sobel (Adjunct), Rocker T. Staton (Emeritus), Gerald J. Thuesen, Harrison M. Wadsworth, Jr., Gideon Weiss, John A White, Jr.; Associate Professors-Jerry Banks, Willard R. Fey, Russell G. Heikes, Leon F. McGinnis, Justin A. Myrick, Robert G. Parker, Alan L. Porter, Frank E. Roper, Gunter P. Sharp, Donovan B. Young; Assistant Professors-Faiz A. Al-Khayyal, Jane C. Ammons, John J. Bartholdi III, John S. Carson II, Marc Goetschalckx, T. Govindaraj, Steven T. Hackman, John M. Hammer, Christine M. Mitchell, Loren K Platzman, James J. Swain, Craig A. Tovey; Lecturers - Edward H. Ely, Howard P. Fagin, James D. Gantt, Thomas L. Sadosky, Charles Y. Thomason; Principal Research Scientist-Orlando J. Feorene.

General Information

Industrial and systems engineering provides both a basic engineering foundation and a grounding in the interactions between technology and management. Students in the program are usually interested in obtaining a fundamental engineering background as the basis for professiona specialization in activities associated with the field-operations research, management science, systems engineering, methods, organization, planning-or as preparation and foundation for other endeavors, such as management, law, medicine, health systems, or other pursuits. The study of industrial and systems engineering places emphasis upon developing the student's abilities to analyze and design systems that
integrate technical, economic, and soc behavioral factors in industrial, service social, and government organizations. degree program offered is the Bachelor Industrial Engineering (B.I.E.)

B.I.E.

The principal strength of the program lei ing to the Bachelor of Industrial Enginet ing degree lies in a solid, well-coordinat core of courses in systems analysis and systems design, which relies heavily um the engineering sciences, basic science and social sciences. Elective hours mak the program flexible as does the senior year design sequence, which permits a student to gain experience in design act ties in manufacturing, service, health ca or government industries. The broad spe trum of required course work associated with the design sequence qualifies the student to perform in operations and fao ities, management information and control and systems engineering environments. Technical and free electives may be use to satisfy requirements for the Health Sy tems Option under the B.I.E. curriculum.

Options for Exceptional
 Students

An option program is available to encour age students with superior abilities to par ticipate in a range of unusual educational opportunities. Participation in these programs requires demonstrated scholastice cellence and prior arrangements with the student's advisor. The program includes the following options, individually or in combi nation.

Graduate level courses in lieu of senio year electives
Students with a cumulative grade-point average of 3.3 or above may schedule un to nine credit hours of approved graduate level courses. These credits, when approved by the student's advisor, may ap. ply subsequently toward a graduate degree

Accelerated study

Students with a 3.3 or above average during the three preceding quarters (includ ing at least forty-five credits) may complete
course requirements for any nonproject dustrial and systems engineering course their own pace by self study with coun eling and guidance by the course instruc or. Students may register for any number of courses but must satisfy instructor and course examination requirements. Class attendance is not required. Students must make arrangements with course instructors rior to the start of the quarter.
dividual project and research work tudents with a 3.0 or above average uring the preceding three quarters (includg at least forty-five credits) may schedule p to twelve credits of project work, research vork, or both. The student will perform this work, which may substitute for senior-year electives, in collaboration with the faculty or advanced graduate students. Students with ess than a 3.0 average are limited to six credits of such project or research work.

vernor's intern program

SYE seniors enrolled in the governor's intern program may receive six hours of design credit (4104-5) and six hours of ISYE elective credit for participation in the program.

Visiting Scholar/Practitioner Offerings

Occasionally, the School brings to campus selected individuals of unique accomplishment for course offerings built around their special areas of activity, thus making their special areas of activiy, course mateavailable a broader range of the regularly provided. The typical rials than regularly provided. The typical
schedule is Friday afternoon and evening instruction four times during the quarter.

Program in Health Systems

Health systems is the field of study and practice aimed toward improving the delivery of health care services through the application of systems science and management engineering. Programs emphasize systematic planning, engineering design, systematic planning, engineering design, and scientific management in respect health car
methods

The program in Health Systems is an academic aspect of the School of Indus trial and Systems Engineering and is affili-
ated with the Medical College of Georgia. The Program has education, research, and service components, and it engages in interdisciplinary and interinstitutional research, continuing education, and community outreach activities through the Health Systems Research Center.

Undergraduate preparation for this field is provided by a Health Systems Option under the B.I.E. degree curriculum. The undergraduate program prepares students for professional careers as health systems analysts and hospital management engineers.

Graduate Programs

The School of Industrial and Systems Engineering offers graduate programs leading to the degrees Master of Science in Indus trial Engineering, Master of Science, Master of Science in Operations Research, Master of Science in Statistics, Master of Science in Health Systems, and Doctor of Philosophy.

The M.S.I.E. program is available for students holding the B.I.E. degree and for other engineers who satisfy requisites covering the principal subject matter of the current B.I.E. curriculum. The M.S.O.R., M.S.S., and M.S.H.S. programs are available for students holding the B.S. in engineering mathematics, or science. Requisites include work in probability, statistics, engineering economy, linear algebra, advanced calculus, and optimization, as well as selected application area work. The stu dent must satisfy these requirements after enrollment; however, such course work may not apply toward fulfilling the degree requirements. The undesignated M.S. is in tended for those students who desire to follow programs in systems analysis, industrialization, or other special programs.
Except for the industrialization and systems analysis programs, a student has two options: either thirty-three quarter hours of course work and a thesis or fifty quarter hours of course work. The industrialization program requires forty-three quarter hours of course work and a thesis, and the systems analysis program requires thirty-three quarter hours of coursework and a thesis.

The doctoral program is intended for highly gifted individuals for whom past
accomplishments and evaluation indicate a high potential for successful completion of the program requirements and a subsequent creative contribution to the field. Admission is, therefore, dependent upon student qualification rather than educationa background in any specified discipline.

All degree curricula of the school are offered on a twelve-month basis. Students may begin graduate programs in any quarter
Financial aid is available in the form of traineeships, fellowships, sponsored externships, and research and teaching assistantships.
Multidisciplinary Programs
See table on page 79.

Program In Statistics

The School of Industrial and Systems Engineering in the College of Engineering, the School of Mathematics in the College of Science and Liberal Studies, and the College of Management offer graduate work leading to the Master of Science in Statistics. The nature of this cooperative program emphasizes statistics as a science necessary in a technological environment such as that at Georgia Tech. Within this program, students can concentrate their studies on a specific area of application such as engineering, quality control, or management. Although this program can lead to further work towards a doctorate in statistics, it will primarily provide the background requisite for a professional career in statistics.
Career fields for graduates of this program may be found in virtually all areas of research, industry, and government. The program is designed to provide the graduate with competence to organize the collection, analysis, and interpretation of data reinforced by a sound understanding of statistical principles. Students will work with faculty actively engaged in research and prepared to teach the latest developments in statistics. By following either a thesis or non-thesis program, the student may complete the degree program in fifteen months. Students holding or anticipating an undergraduate degree from an accredited college or university in engineering, mathematics, science, or some other field that indicates a likelihood of
successful completion of the program an encouraged to apply.
The programming and mittee apogram is administered by a con mittee appointed by the three schools. Currently the members of the committee are: Harrison M. Wadsworth, Jr. (Industiin Electromagnetism and Systems Engineering), chairman; M. PHYS 2123 Carl Spruill (Mathematics); and Fred E. Williams (Management). Interested students may obtain information regarding tri program from any of these persons or from the associated schools.

The B.I.E. Curriculum Freshman Year
Course 1st Q. 2nd Q. 3rd

ENGL 1001-2-3 Introduction to
 introduction

 LiteratureCHEM 1101-2 General Chemistry MATH 1307-8-9 Calculus I, II, III EGR 1170 Visual Communication and Engineering Design I ICS 1400 Introduction to Algorithms \& Computing $\stackrel{\text { or }}{\text { ICS }} 1700$ Digital Comput Digital Comput
Organizational Organizational
Programming PHYS 2121

Particle Dynamics	
Electives ${ }^{1}$		
Physical Education	X-X-2	X-X-1
Electives ${ }^{2}$		
Social Science		3-0-3
Totals	X-X-18	X-X-17

Totals

Sophomore Year
Course 1st Q. 2nd Q. 3rd Q
ICS 1401
Computer Programming
and Problem Solving 3-0-3
or

ISYE 3010
Man-Machine
Systems
3-0-3
..........
ISYE 3115
Industrial and Sys-
tems Engineering
Measurements
3-0-3
ISYE 3260
Introduction to Sys-
tems Engineering 3-0-3
ISYE 3131-2
ISYE 3131-2
Operations
Research I, II 3-0-3 3-0-3
ISYE 4044
.......... 2-3-3

ISYE 3100
The Professional
Practice of Industria
ractice of Industria
and Systems
ENGL 3015
Public Speaking 3-0-3
ENGL 3023
Written Communi-
cation in Science
Business, and
Industry
Totals

Senior Year
Course
1st Q. 2nd Q. 3rd Q.
EE 3700
Elements of Electric
Circuits and Instru-
ments
ISYE 4101
Operational Plan-
ning and Scheduling 3-3-4
ISYE 4102
Operations and
Facilities Design
3-3-4
ISYE 4103
Management Information and Control
Systems
or
CS 4351
MIS Methodology
MGT 3050
Computer-Based
Mgt. Systems
ISYE 4104-5
ISYE Design I, II 0-9-3 0-9-3

ISYE 4039
Quality Contro

Social Scienc

Electives ${ }^{6}$
Approved Technical
Electives
Totals
Totals

Health Systems Option

Industrial engineering undergraduates who wish to prepare themselves for practicing their profession in the rapidly expanding health industry may do so by enrolling in the Health Systems Option under the B.I.E. curriculum.

Health care is humanitarian, and health services are important to society; the industry is large, expensive, and in need of improvement. This specialty field is an op portunity to use modern scientific methods in the performance of a vital public service The required health orientation is provided by a series of courses and project work, utilizing electives in the B.I.E. curriculum, as follows:

See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshman physical education requirements for both men and women.
${ }^{2}$ Social Science electives must include three hours of U.S. History, three hours of U.S. Government, and six credit hours of Social Science.
${ }^{3}$ See "Information for Undergraduate Students" for humanities electives to satisfy the College of Engineering requirements.
${ }^{4}$ ICS 1400 must be paired with ICS 1401, or ICS 1700 must be paired with ICS 2100.
${ }^{5}$ Freshmen who waive English 1001, 1002, or 1003 as a result of English Department Placement Tests may substitute 2000 level or higher English courses which qualify as Humanities. Freshmen may substitute an approved English humanities course for English 1003 when the latter course is unavaliable.
${ }^{6}$ A list of approved technical electives is available to all seniors in ISYE.

Quarellomance. Examination of impact of individual Hours needs, leadership styles, and organizational de-

HS 3001 Introduction to Health Systems 3 HS 3011 Hospital Functions
HS 4115 Health Field Applications I HS 4116 Health Field Applications II ISYE 4104 ISYE Design ${ }^{2}$ ISYE 4105 ISYE Design ${ }^{2}$
Approved Elective ${ }^{3}$
Total $=$

Certificate in Health Systems

Students who successfully complete the Health Systems Option and other degre requirements will be awarded both the Bachelor of Industrial Engineering degre and a Certificate in Health Systems. The credentials signify competence to practice industrial engineering in the health industin
Students completing requirements for oth er bachelor's degrees will also be awarde a Certificate in Health Systems if their tra scripts include credit for the following courses: HS 3001, 3011, 4115, 4116, ISY 3010, 3025, 3029, 3115, 4101, 4102, 4103 4104,4105 ; and a three-hour approved elective.

Courses of Instruction

INDUSTRIAL AND SYSTEMS ENGINEERING

ISYE 3010. Man-Machine Systems

3-0-3.
Introduction to methods for analysis and design of man-machine systems. Stresses quani tative techniques in analysis of work center design and work systems design.
ISYE 3014. Systems and Productivity 3-0-3. Prerequisites: ISYE 3010.
Human contributions to productivity and inte action of technical advances with human per-
${ }^{1}$ Students enrolled in the Health Systems Option are permitted to use HS 3001, 3011, 4115, hours of approved the B.I.E. requirement of twelva 2The ISYE 4104-5 technical electives.
tailored, health-oriented sence is an individually provides real-world field training ${ }^{3}$ This elective will satisfy thaining.
of free electives in the B.IE Curriculum hours of free electives in the B.I.E. Curriculum and is to be selected from a list of HS and other
courses approved by the faculty.

ign on productivity.

ISYE 3025. Engineering Economy
3.0.3. Corequisite: MGT 2000 or equivalent, imited to ISYE and HS students only.
Methods of economic analysis in engineering including decision problems, value measurement, interest relationships, criteria for decisions under certainty, risk, and uncertainty.
ISYE 3027. Applications of Probability 3.0-3. Prerequisite: MATH 1309. Introduction to probability, emphasizing appliations in science and engineering. Topics indude probability concepts, random variables, discrete and continuous distributions.

YYE 3028. Engineering Statistics I -.3. Prerequisite: ISYE 3027 for ISYE students.
Introduction to statistical methodology, em hasizing applications in science and engineerg. Topics include estimation, hypothesis testing and process control.
SYE 3029. Engineering Statistics II 3-0-3. Prerequisite: ISYE 3028 or equivalent. Introduction to analysis of planned and iplanned experiments. Topics with applications sion and analysis of variance with applications to problems in engineering and science.

ISY 3100. The P

Industrial and Systems Engineering
0.3-1. Prerequisite: junior standing.

A laboratory seminar wherein students meet industrial and systems engineering practitioners to discuss their current work problems and career progression.

SYE 3105. Organizational Structure

 3-0.3.The organizational elements, activities, and structures within which an industrial engineer functions.
ISYE 3113. Physiological and Biomechanical Analysis of Work
$3 \cdot 0-3$. Prerequisite: ISYE 3010 .
Techniques of data collection and analysis for effective man-power oriented tool and work place design.
ISYE 3115. Industrial and Systems Engineering Measurements
3-0-3. Corequisites: ISYE 3028, 3105, or consent of school.
The techniques used by industrial engineers 10 measure the physical characteristics of systems, human activities, and costs.

ISYE 3131. Operations Research
3-0-3. Prerequisite: MATH 2307 or MATH 2010 Models and methods of operations research in solving engineering and management problems. Includes linear models, linear programming, duality, post optimality, and network analysis.
ISYE 3132. Operations Research II 3-0-3. Prerequisite: MATH 2307

Nonlinear and stochastic models and method in operations research to solve engineering and management problems. Includes application of optimality conditions, search conceps, branch and-bound, dynamic programming, Mark chains, and decision-making under risk

ISY 3260 .
3-0-3. Prerequisite: MATH 3709
Introduction to classical/modern system anal ysis and feedback dynamics as applied to indus trial engineering problems. Transfer functions, state models, transient and steady state behavior, stability and compensation.
ISYE 4000. Introduction to Systems Theory 3-0-3. Prerequisite: consent of school.
The basic classical and modern concepts and tools required for modeling, analysis and synthesis of linear, discrete and continuous, de erministic and dynamic systems.

ISYE 4005. Nonlinear Programming
3-0-3. Prerequisite: ISYE 3131 or equivalent. Solution procedures for nonlinear programs. Unconstrained optimization, gradient and graLagrange multipliers, penalty functions and linear approximation methods.
ISYE 4006. Integer and Dynamic Programming 3-0-3. Prerequisite: ISYE 3131 or equivalent. Optimization by dynamic and integer programming. Decision trees, optimality principle and recursive relationships. Optimization in integer by cutting planes, branch and bound and implicit enumeration.
ISYE 4022. Job Evaluation and Wage Incentives
Incentives
Study of principles used to establish wage rates and salaries. Emphasizes characteristics and objectives of wage incentive plans and design and analysis of incentive formulas.

ISYE 4024. Fundamentals of Materials

 Handling2-3-3. Prerequisites: ISYE 3010, 3025, 4102.
Development of procedures and technique for analysis and solution of materials handling problems. Plant trips and laboratories utilized to illustrate modern materials handling methods.

ISYE 4028. Introduction to Feedback

 Dynamics2-3-3.
Examination of feedback processes as causes of dynamic behavior in socioeconomic and man agerial systems. Emphasizes feedback loop per formance characteristics and computer simulation of multivariate non-linear systems.

ISYE 4035. Project Management Systems

 Design2-3-3. Prerequisite: ISYE 3131 and senior
standing or consent of school.
Project planning and control using activity network analysis. Emphasizes network logic, scheduling computations, resource scheduling, time-cost trade off algorithms and multiproject resource allocation

ISYE 4039. Quality Control

3-0-3. Prerequisite: ISYE 3028 or equivalent Design of quality control systems. Quantitative techniques for establishing product specifications, process controls, acceptance inspection and other techniques of quality assurance.

ISYE 4044. Simulation

2-3-3. Prerequisites: ISYE 3028, ICS 1400 or 1700 . Discrete simulation methodology emphasizing statistical basis for simulation modeling and modeling and experimentation. Overview of computer languages and continuous flow models. Laboratory exercises illustrating model architecture, inference, and optimization.

SYE 4073. Storage and Distribution

 Systems Design3-0-3. Prerequisite: ISYE 4102
Fundamentals of designing efficient materials and product distribution systems emphasizing warehouse planning, materials and information flow, equipment selection, building design and location, automated warehousing and transportation.

ISYE 4090. Legal and Ethical Phases of Engineering
3-0-3. Prerequisite: senior standing or consent of school.
Introduces the engineer to the ethical, legal, and professional attitudes to be encountered in he future working environment. Includes business, patent, and copyright law considerations.

SYE 4101. Operations Planning and

 Scheduling3 -4. Prerequisite: ISYE 3131
Analytical methods for production and inveninventory models, application of mathemniques programming and network models, sequatical and scheduling techniques and line balancing.

SYE 4102. Operations and Facilities D
3-3-4. Prerequisite: ISYE 3115
Principles and practices in the design of perations and facilities for a productive s

SYE 4103. Management Information and

 Control Systems3-0-3. Prerequisite: ISYE 4101.
Principles of the analysis and design of agement information and control systemsespecially those involving electronic data processing
ISYE 4104. ISYE Design I
0-9-3. Prerequisite: ISYE 4101, 4044, 4102 Must be followed by ISYE 4105 in consec quarters. Limited to ISYE students only.
Senior isYE group design project requir
problem definition and analysis, synthesis, sp fication and installation of a designed solutio off-campus enterprise environments.

ISYE 4105. ISYE Design II

0-9-3. Prerequisites: ISYE 4103, 4104. Limit to ISYE students only.
Senior continuation of ISYE group design project sequence (ISYE 4104) requiring prob lem definition and analysis, and synthesis, Sp fication, and installation of a designed solutio

ISYE 4145. Simulation Applications

2-3-3. Prerequisite: ISYE 4044
Continuation and extension of ISYE 404 Discrete-event simulation methodology with phasis on analysis of systems and models. input data analysis, validation, output analys inference, comparison of systems, optimizatio of systems. Advanced modeling techniques computer simulation language such as GPSS
ISYE 4725. Engineering Economy 3-0-3. Prerequisite: sophomore standing. Not available to ISYE students.
Fundamental principles and basio techniqu of economic analysis of engineering projects including economic measures of effetiven time value of money, cost estimation, breakev and replacement analysis.

ISYE 4756. Technological Forecasting 3-0-3. Prerequisite: senior standing or consent school
Emphasizes forecasting future trends and spe eif developments in areas of technology. Deveops methodologies for identifying future functiona apabilities and needs. Case histories in technological forecasting utilized.
ISYE 4757. Technology Assessment
3-0-3. Prerequisite: senior standing
Systematic efforts to anticipate impacts on introduced, extended, or modilied. Cology is
epts, organization and uses of various spec assessment methods

E 4897-8-9. Special Topic

Coach. Prerequisite: consent of school Courses in special topics of timely interest to he profe

4991-2-3. Special Problems
edit to be arranged. Prerequisites: senior stand g in ISYE and prior faculty topic approval. A one to three hour credit opportunity to evelop initiative and apply fundamental princies by performing semioriginal laboratory or search work in industrial and systems enineering.
YE 4994-5-6. Research and Projects I, II, II redit to be arranged. Prerequisite: senior stand ng in ISYE and prior faculty topic approval. Research or project work in conjunction with reulty investigations, which may result in uncrgraduate thesis. Limited to six hours for tudents with less than a 3.0 cumulative point average.

YE 610

3.0.3.

A comprehensive study of the theories of ndustrial organization with particular emphasis on analyzing, evaluating and integrating organizational activities.
SYE 6103. Organizational Decision-Making 3-0-3. Prerequisite: ISYE 6101, 6734 . A course integrating behavioral findings with mathematical models of the decision process. The major focus is on these processes in organizational settings.

SYE 6107. Management of Improvement 3-0.3.
Concepts of the management of improvement endeavors, strategies and tactics for achieving continuous improvement within organizations. Theoretical bases and approaches to encourage innovation are studied.

SYE 6211. Analysis and Evaluation of

 Industrial Projects3-0-3. Prerequisite: ISYE 3025 or equivalent This course deals with the financial feasibility analysis of new ventures and other industrial projects. Starting with the generation of ventur ideas for new ventures, all steps involved in feasibility analysis are covered. The final topic is the preparation of the investment proposa ISYE 6215. Models of Man-Machine Interaction 3-0.3. Prerequisite: ISYE 3010 or equivalent. The development and use of mathematical models of human behavior are considered. Ap proaches to modeling that are discussed include
estimation theory, control theory, queueing theory fuzzy set theory rule-based models, pattern recog nition, and Markov processes. Applications considered include flight management, air traffic control, process monitoring and control, failure detection and diagnosis, and human-computer interaction.
ISYE 6218. Work Systems Design
3-0-3. Prerequisite: consent of schoo
Advanced study of the design of work systems with emphasis on the human operator and that role in the work system.
SYE 6219. Human Factors Engineering 3-0-3.
Application of information on human capabiliies and limitations in the design process. Deign problems are used to aid understanding of application of human factors data.

ISYE 6220. Work Physiology

An evaluation of the various factors affecting human physical performance in the industria environment. Topics: anthropometry, biomechanics, energy expenditure, heat stress, fatigue, training, strength.
ISYE 6221. Man-Machine Control Systems
3-0-3. Prerequisite: consent of school.
An introduction to the application of systems theory and methodology to the analysis and theory of man-machine control systems.

ISYE 6222. Ergonomics Semina

3-0-3. Prerequisite: ISYE 6219
Seminar in the human factors areas pertinen to the design of work systems. Topics: shift work, sex difference, aging, rest periods and occupational safety and health.

ISYE 6223. Understanding and Aiding Human

 Decision Making3-0-3. Prerequisite: ISYE 3010 or equivalent. Prescriptive and descriptive theories of human decision making are discussed and con trasted. Approaches to aid the 1 and making are considered in the conlext of tese theoretical frameworks. Applications-oriented ssues are emphasized

ISYE 6225. Advanced Engineering Economy 3-0-3. Prerequisites: ISYE 3025, 3131.
Advanced engineering economy topics, includ Advanceding economic worth, economic optimization under constraints, analysis of economic risk and uncertainty, foundations of utility theory.

ISYE 6226. Replacement Analysis

3-0-3. Prerequisites: graduate standing, ISYE 3025, 6734 or equivalent.
Emphasis on analytical methods utilized to evaluate the economic desirability of replace-
ment and retirement options. Use of asset records and analytical methods for estimating asset service lives.
ISYE 6301. Quality Control Systems 3-0-3. Prerequisite: ISYE 4039.
The design of quality control systems for production and service enterprises. Topics include costs of quality, quality control systemsdesign and evaluation of system performance.

SYE 6305. Forecasting Systems

3-0-3. Prerequisite: MATH 4241 or equivalent.
Techniques and systems for forecasting time series. Statistical methods for generating shortterm forecasts, analysis of forecast error and design of forecasting systems.
SYE 6306. Inventory Systems
3-0-3. Prerequisite: ISYE 3027, 3131 or equivalent.
An introductory course in inventory theory. Deterministic lot size models, probabilistic models of continuous and periodic review policies, dynamic models and multiechelon systems.
ISYE 6307. Scheduling Theory
3-0-3. Prerequisite: ISYE 6650
Analysis of sequencing and scheduling activities. Static scheduling problems, dynamic sched uling systems, simulation studies of priority dispatching rules, priority queueing models.

ISYE 6308. Analysis of Production o

 Operations3-0-3. Prerequisites: ISYE 6306, 6669.
Mathematical models for production planning Applications of mathematical programming, dynamic programming, network theory and heuris tic methods to problems of planning production, inventories and capacity.
ISYE 6400. Design of Experiments I
3-0-3. Prerequisite: ISYE 6739 or equivalent.
Analysis and application of standard experimental designs, including factorials, randomized blocks, latin squares, confounding and fractional replication multiple comparisons, and an introduction to response surfaces.
ISYE 6401. Applied Regression Analysis I 3-0-3. Prerequisite: ISYE 3028 or ISYE 6739 or equivalent.

Analysis of data from unplanned experiments Emphasis on the application of statistical principles to empirical model building.

ISYE 6402. Time Series Analysis

3-0-3. Prerequisite: ISYE 3029 or equivalent. Building empirical-stochastic models of the autoregressive moving-average form for stationary and nonstationary phenomena. Topics include identification procedures, parameter estimation, diagnostic checking and modelforecasting.

Text: at the level of Box and Jenkins, Series Analysis, Forecasting and Control.

ISYE 6404. Nonparametric Statistics
3-0-3. Prerequisite: ISYE 6739 or equivalent Basic concepts and applications of nonpa metric statistics. Order statistics, runs, good of fit tests, one-sample, two-sample and k-sample tests for location and scale.
ISYE 6405. Response Surfaces I
3-0-3. Prerequisite: ISYE 6400.
Introduction to response surface methodol Topics include canonical analysis, steepest cent, first and second order response surfac: designs, concepts of rotatable and uniform pi: ision designs, orthogonal blocking.
Text: at the level of Myers, Response Surt Methodology.

ISYE 6406. Response Surfaces

3-0-3. Prerequisite: ISYE 6405.
A continuation of ISYE 6405. Topics include optimal designs for fitting polynomials, experl ments with mixtures, multiple response prob. lems, mechanistic model building, and sequen designs.

SYE 6407. Sampling Techniques
3-0-3. Prerequisite: ISYE 3029 or equivalent. Survey sampling techniques. Topics include simple random and stratified random sampling ration estimation, regression techniques, syste atic, cluster and multistage sampling and soure of error
Text: at the level of Cochran, Sampling Techniques, third edition.
ISYE 6409. Quasi-Experimental Design 3-0-3. Prerequisite: ISYE 6400
Design, application, statistical analysis, and critical evaluation of quasi-experiments (i.e., extension of experimental design concepts int field settings that preclude ideal, randomized experiments).

SYE 6427. Applied Statistical Decision Theo -0-3. Prerequisite. MATH 4241 or equivalent An intermediate-level course in statistical de cision theory and its application to problems in generations research, industrial and systems engineering.
Text: at the level of Raifa and Schlaifer, Applied Statistical Decision Theory.
ISYE 6515. Analysis of Distribution System 3-0-3. Prerequisite: ISYE 4044, 4101 or equivalent.
Study of the various types of transportation ystems available to enterprises for distributive services. Analysis of distribution alternatives stressed, emphasizing design of economic and control systems encountered.

YE 6524. Material Flow Systems
$0-3$. Prerequisites: ISYE 4101-2 or consent t school.
Methodology useful in analysis and design of noplant material flow systems and their interaces with transportation and distribution sysams emphasizing quantitative and simulation lechniques.
ISYE 6650. Probabilistic Models in
Dperations Research
perations Research 3027 or equivalent. Introduction to stochastic models and their apvications. Discrete and continuous-time Markov processes. Poisson and renewal-reward processes. Elementary queueing and reliability models. Slatistical estimation of model parameters.
Text: at the level of Ross, Introduction to Probability Models, 2nd ed.

ISYE 6656. Queueing Theory
3-0-3. Prerequisite: ISYE 6650
Equilibrium Markov and embedded-Markov queues. Effects of order of service on waiting times. Jackson networks. Applications to produchon, service, and telecommunications systems. Text: at the level of Cooper, Introduction to Queueing Theory.
ISYE 6669. Linear Deterministic Models in Operations Research
4-0-4. Prerequisite: ISYE 3131 or equivalent. The optimization of linear models including he revised, dual, and primaldual simplex meth ods, dualiy theore
plane algorithms, some networministic Model
In Operations Research
4.0-4. Prerequisite: ISYE 3131 or equivalent. Algorithms for solving nonlinear constrained and unconstrained problems at the level of Aoki Introduction to Optimization Techniques. Quadratic programming, dynamic programming and enumerative methods.

ISYE 6671. Discrete Deterministic Models in

 Operations Research3-0-3. Prerequisite: ISYE 6734 or equivalent. The optimization of discrete deterministic mod els including general enumerative methods and special algorithms for well known discrete prob lems on graphs and networks.

SYE 6679. Co

ptimization

odge of FORTRAN
Strategies and techniques for translating optimization theory into effective computational oftware. Emphasis on applications in linear, nonlinear and integer programming, networks and graphs.

ISYE 6680. Location Theory
3-0-3. Prerequisite: ISYE 6669 or consent of school.

Applications of optimization theory to the location of facilities. Area and point location prob lems in discrete and continuous space are examined. Private and public sector applications are considered.

ISYE 6734. Methods of Operations Research 5-0-5. Prerequisite: MATH 2309. Corequisite: statistics.

An introduction to the methods for the analytical formulation and solution of decision problems. Mathematical methods of optimization and classical operations research models are introduced. Not available for degree credit to ISYE students.
ISYE 6739. Experimental Statistics
4-0-4. Prerequisite: MATH 2308
An introduction to the application of statistics Topics include probability concepts, sampling distributions, point and interval estimation, hypothesis testing, multiple linear regression, analy sis of variance. Not available for degree credit ISYE students
Text: at the level of Hines and Montgomery, Probability and Statistics.
ISYE 6751-2. Complex Systems Design I, II 2-4-3 each. Prerequisite: graduate standing.
This two-quarter sequence permits students from all schools to meet, form an interdisciplinary team and carry out preliminary design of a significant complex system.

SYE 6800. Systems Research and

 Applications I3-0-3. Prerequisite: ISYE 4000 or consent of school.
Individual work and study of cases reflecting the application of the systems engineering process to the modeling, analysis, design and implementation of various classes of manmachine, socioeconomic and ecological systems.

SYE 6801. Systems Research and

Applications II
-0-3 Prerequisite: ISYE 6800
An interdisciplinary class project requiring small eam organization and directed at the application of the systems engineering process to a single problem area

ISYE 6805. Reliability Engineering 3-0-3. Prerequisites: MATH 4215, 4221 or equivalent.
Reliability prediction for nonmaintained systems, availability prediction for maintained sys tems, life demonstration test design, the concept of system effectiveness.

ISYE 6806. Introduction to Feedback Dynamics
-0-3
Philosophy of feedback causality. Methodology for formulation, analysis, and synthesis of feedback models and real implementation. Emphasis on large social systems with intangible variables. Student project.
ISYE 6807. Feedback Dynamics Principles
3-0-3. Prerequisite: ISYE 6806 .
Detailed model building. Simulation by hand and DYNAMO. Study of oscillation, growth, frequency sensitivity, phasing, noise in feedback models. Model trouble-shooting and improvement. Student project.
ISYE 6808. Feedback Dynamics Applications 3-0-3. ISYE 6806, 6807 suggested, but not required.
Design/modification of human organizations. Extensive student project illustrates principles presented in ISYE 6806-7 and provides exercise in creative real-system synthesis and recommendation implementation.

ISYE 6831. Advanced Simulation

3-0-3. Prerequisites: ISYE 4044, ISYE 6400
Extension of discrete-event, digital simulation methods presented in ISYE 4044. Emphasis on model building and the design and analysis of simulation experiments for complex systems.

ISYE 6841. Decision Support Systems

 2-3-3. Prerequisites: ISYE 6734 or equivalent, ISYE 6739 or equivalent.Interactive computer support of design, analysis, and decision making. Hands-on project in decision-aiding system development. APL programming language syntax and practice.
ISYE 7000. Master's Thesis
Required of degree candidates in the master's thesis option.

ISYE 7400. Design of Experiments II

3-0-3. Prerequisite: ISYE 6400 .
A continuation of experimental design stressing fractional factorials, analysis of unbalanced data and covariance models. Topics include con founding and fractional designs, incomplete blocks, general methods for the analysis of unbalanced data, and covariance analysis.

ISYE 7401. Applied Regression Analysis II

 3-0-3. Prerequisite: ISYE 6401A continuation of the concepts of multiple regression analysis begun in ISYE 6401. Topics include multicollinearity diagnostics, biased estimation, detection of high leverage observations, robust fitting, and an introductionto nonlinear regression.

ISYE 7441. Linear Statistical Models I 3-0-3. Prerequisites: MATH 4241 and IS 6400.

Introduction to full rank linear statistica models, including least squares and maxim likelihood estimation, interval estimation and hypothesis testing. Regression models discussed.
Text: at the level of Graybill, Linear Stat Models.
ISYE 7442. Linear Statistical Models II 3-0-3. Prerequisite: ISYE 7441
inear statistical mol linear statistical models of less than full rank Balanced designs, including fixed, mixed ano random models are stressed.
Text: at the level of Graybill, Linear Statisi
Models. Models
ISYE 7656. Advanced Queueing Theory 3-0-3. Prerequisite: ISYE 6656.
For those interested in advanced work and research. Topics include imbedded Markov ch queueing models, waiting times under variou queue disciplines and current research proble

SYE 7671. Foundations of Optimization

 3-0-3. Prerequisite: MATH 4311Conditions for optimality and nonlinear dua generalized to nonconvex functions, and its nonlinear programming.
Text: at the level of Mangasarian, Nonlinea Programming.
ISYE 7672. Optimization: Adjacent Extreme Point Methods
3-0-3. Prerequisite: ISYE 6669
A study of current literature in adjacent extreme point methods including quasi concavity ecent duadratic and stochastic programming th

SYE 7673. Nonlinear Programming
3-0-3. Prerequisite: ISYE 6670 .
Nonlinear programming algorithms with em. phasis on strategy and convergence at the leve of Zangwili, Nonlinear Programming. Derivative and derivative-free methods, Lagrange multipil ers, penalty functions, conjugate directions, sible directions and cutting planes.
ISYE 7674. Dynamic Programming
3-0-3. Prerequisite: ISYE 6669 or equivalent.
Advanced Advanced treatment of the elements of formalism Pric programming via the state spao formalism. Problem formulation, computational aspects, and dimensionality reduction. Application to various fields

ISYE 7675. Network Flows

3-0-3. Prerequisite: ISYE 6669
Current literature in networks including char-
derization theorems and algorithms for flow oblems, flow with gains, multicommodity flows, isconnecting sets, and matching theory.

YE 7676. Combinatorial Optimization

0.3 . Prerequisite: ISYE 6669 or consent of nstructor.
Principal topics include independent sets and diques in graphs, graph coloring, trees and recuits, planarity and matching. Some complexity ssues are covered as well as worst case performance for efficient heuristics.
ISYE 7677. Integer Programming
-0.3. Prerequisite: ISYE 6669
The methods and applications of integer proramming including cutting plane methods, imlicit enumeration, heuristic techniques, group theoretic and other developments.

ISYE 7678. Decomposition Methods for Large Systems
30-3.3. Prerequisite: ISYE 6669
Solution strategies, illustrated with examples, for handling complex systems with large numbe of variables and/or restrictions, linear and nonlinear.
ISYE 7680. Advanced Location Theory
30-3. Prerequisite: ISYE 6670, 6680, or consent of school.
Theoretical aspects of location problems are emphasized, drawing upon results from linear and nonlinear programming, graph theory and network analysis. Recent research literature is covered.
ISYE 8011-12-13. Seminar
1.0.-1 each. Audit basis only.

ISYE 8100-1-2. Special Topics
$3 \cdot 0-3$ each. Prerequisite: consent of school. Special topic offerings not included in regular courses.
ISYE 8561-2-3. Seminar in Operations Research
Credit to be arrang
Topics within the area of operations research of a special interest to the faculty and graduate students and which are not included in regularly offered courses.
ISYE 8601-2. Projects in Operations Research Credit to be arranged. Prerequisite: consent of school.
This course provides, through project work, experience in the application of operations research methods to real-world systems.

ISYE 8704-5-6. Special Problems in

Industrial Engineering
redit to be arranged. Prerequisite: consent of school

HEALTH SYSTEMS

HS 3001. Introduction to Health Systems HS 3001. Introduction
Historical background; nature, problems, and costs of health care institutions; health resource osinn finance, health care policy, role of planning, methods improvement and management engineering.

HS 3011. Hospital Functions

3-0-3. Prerequisite: HS 3001.
Internal structure, functions, and management problems of hospitals, including departmental interactions, hospital and medical terminology, process flows of materials, supplies, personnel, patients, paperwork, and information.
HS 3221. Health Information Systems 3-0-3. Prerequisites: HS 3001, ICS 1700, MGT 2000.

Hospital and medical information systems, data collection, storage, processing and reporting, file design, record structure, processing requirements, design, record sort formats, medical records, and statistical audits.

HS 3331. Hospital Cost Analysis
3-0-3. Prerequisites: HS 3001, MGT 2001.
Microeconomic analysis of health care delivery, hospital cost finding and cost analysis, evaluating financial alternatives, budget development, pricing policy, rate setting, reimbursement formulas, and cost containment.
HS 3341. Health Systems Planning
3-0-3. Prerequisite: HS 3001
The systems approach to health planning, poliy and program decisions, functional systems specifications, recycling for compromise, systems integration, facility and manpower requirements.

HS 4115. Health Field Applications I
3-0-3. Prerequisites: HS 3011, ISYE 3010, 3115.
Establishing and operating a hospital management engineering program; applications of methods engineering, work measurement, sampling, job evaluation, and incentives to hospital management systems problems.
HS 4116. Health Field Applications II
3-0-3. Prerequisites: HS 3011, ISYE 3025, 3028, 3131.

Applications of industrial engineering, operations research, and other quantitative methods to hospital management systems problems. Techniques include statistics, forecasting, mana gerial control, queueing, simulation, economic analysis, and optimization.
HS 6001. Introduction to Health Systems 3-0-3.

Description of the health care system and its interactive resource components, with emphasis upon accessibility, availability, distribution, and cost. Health systems inputs, processes, and outputs.

HS 6115. Health Systems Applications I 3-0-3. Prerequisites: HS 6001, ISYE 3010, 3115. Applications of industrial engineering techniques to hospital management problems. Improving work methods, measuring performance, staffing and scheduling, job analysis, employee compensation, and dealing with variability
HS 6116. Health Systems Applications II 3-0-3. Prerequisites: HS 6001, ISYE 3028, 3131. Applications of operations research and other quantitative methods to hospital management problems. Forecasting, managerial control, waiting lines, facility planning, resource allocation, and information systems.

HS 6117. Health Systems Applications III

 3-0-3. Prerequisites: HS 6001, ISYE 3025, MGT 6000.Applications of economics, engineering economy, and cost accounting to hospital management problems. Case-mix methodologies, budgeting, revenue enhancement, cost containment, and governmental regulation.
HS 6231. Project Management
3-0-3. Prerequisite: HS 6001
Principles and techniques of managing a health systems service program; project planning, diubtleties; managreal dealing with environmental subtleties; management reporting and project mplementation

HS 6341. Health Systems Planning 3-0-3. Prerequisites: HS 6001, ISYE 3028
Community health planning, facility master planning, health care requirements analysis, sys tems integration, financial planning, and life-cycle costs.
HS 6342. Community Health Systems 3-0-3. Prerequisites: HS 6001, ISYE 3028
Planning for health care needs of a community as a system. Analysis of community structure decision-making, planner-community interactions and accessibility barriers to services.
HS 6351. Research and Evaluation Methods 3-0-3. Prerequisite: graduate standing. Principles and techniques of planning, pro posing, conducting, evaluation, and reporting research projects. Elements of the scientific method. Critical reviews of theses, research reports, and publications.
HS 6571-2-3-4-5-6. Graduate Field Training 0-3-1 through 0-18-6. Prerequisite: HS 6351. Open to HS students only.

Field training for individual graduate stuo in relation to health care institutions, health service organizations, or health planning a oral presentation. Normallyal written report, oral presentation. Normally part time over th
or three quarters.

HS 6665. Graduate Case Studies

3-0-3. Prerequisites: HS 6001, 6115, 6116.
Applications of hospital management engines ing and health systems planning techniques using examples drawn from professional pra and research reported in the literature

HS 7000. Master's Thesis

Prerequisite: prior arrangements with schoo
HS 7665. Graduate Projects
1-6-3. Prerequisite: prior arrangements w schoo
Research projects addressed at real life proo lems confronting operational health care inst tions and employing modern principles and a proaches of health systems analysis. Projed report.
HS 8092-3. Graduate Seminars 1-0-1 each.
Guest speakers, discussions of health issues, problems and solutions, field training periences, and employment opportunities.
HS 8161-2-3-4. Topics in Health Systems 3-0-3 each. Prerequisite: prior arrangements school.
Provides formal coursework on special topi not included in regular health systems gradi ate courses.

HS 8261-2-3-4. Special Topics
1-0-1 through 4-0-4. Prerequisite: prior arrange ments with school.
Special or experimental offerings of topical coverage not included in regular health system graduate courses.
HS 8971-2-3-4. Special Problems
Credit to be arranged. Prerequisite: prior arrange ments with school.
Individual student projects that apply system echniques to health care management and planning problems with emphasis upon student initi. ative, methodology, problem solution, and writen report

hool of Mechanical ngineering

tablished in 1888
lirector and Professor-John A. Brighton.
lechanical Engineering Faculty egents' Professors-S. Peter Kezios, Allan Pierce; Professors John T. Berry, William Black, Walter O. Carlson, Gene T. Colwell ssociate Director), Steven L. Dickerson Associate Director), Pandeli Durbetaki, Jerry Ginsberg, Alan V. Larson, Terence F. J. Quinn, Peter H. Rogers, Ward O. Winer; Associate Professors-Wayne J. Book, J larl Davidson (Assistant Director), Prateen Desai, Thomas L. Eddy, James G. Hart. Harold L. Johnson, Prasanna V. Kadaba amuel V. Shelton; Assistant Professors Joseph A. M. Boulet, Gregory N. Brooks homas M. Eidson, Robert B. Evans, theidon M. Jeter, Larry D. Koffman, Geoftrey L. Main, David L. McDowell, Carolyn W. Meyers, Benson H. Tongue, William J. Wepier, Wendell M. Williams, Paul J. Yoder; Lecturer-James W. Brazell; Research Engireer - Roger W. Oehmke; Research Engiree II-Scott S. Bair; Research Scientist -Gary P. Schwaiger: Research Technolo -Gary P. Schwigh, Research Technologist -Harry L. Vaughn; Research IT-Robert T. Murray; Adjunct Principal gist II-Robent T. Murray, Add W. Lyons.
Research Engineer-Donald

Nuclear Engineering and Health Physics Faculty
egents Protessor-G.G. Eichholz; Callavay Professor-W.M. Stacey, Jr.; Neely Pro-essor-M. W. Carter; Georgia Power Pro-lessor-R.W. Carlson; Professors J. D. Clement, M. V. Davis, D. S. Harmer, B. Kahn, J. M. Kallfelz (Associate Director), R. A. Karam, A. Schneider; Associate Pro-lessors-R. G. Bateman, Jr., P. H. McGinley (visiting), J. W. Poston; Senior Research Scientist-J. L. Carden, Jr.; Research Scientist - Marcia D. Wilson.

MECHANICAL ENGINEERING PROGRAM

General Information
Mechanical engineering traditionally deals with the largest diversity of engineering
problems. Because of this general nature mechanical engineering allows a number of multidisciplinary activities to be conveniently organized within it.
Mechanical engineering embraces the generation, conversion, transmission, and utilization of thermal and mechanical energy, the design and production of tools and machines and their products, the consideration of fundamental characteristics of materials as applied to design, and the synthesis and analysis of mechanical, thermal and fluid systems, including the auto mation of such systems. Design, production, operation, administration, economics, and research are functional aspects of mechanical engineering.

The undergraduate curriculum covers the fundamental aspects of the field, emphasizes basic principles, and educates the student in the use of these principles to reach optimal design solutions for engineering problems. Specific design subject matter and materials are also drawn from such engineering activities as solar energy and biomechanical systems as well as from the more traditional areas.
Emphasis in the freshman and sophomore years is on mathematics, chemistry, and physics. Students must pass all required mathematics courses with a grade of "C" or better. The junior and senior years are devoted to the strength of materials and metallurgy, applied mechanics, heat transfer, fluid mechanics, systems and controls, design, and the application of fundamenals to the diverse problems of mechanical engineering. The curriculum stresses laboratory work and design projects. Satisfactocompletion of the curriculum leads to the degree Bachelor of Mechanical Engineering.

Optional Programs

Although the structure of the curriculum meets the general educational goals of the
majority of mechanical engineering students the School regularly considers and approves modifications of the basic program to allow a student with certain well-conceived
educational objectives to pursue minor fields within the school or within Georgia Tech while earning a degree in mechanical engineering. In this way, a student may achieve his or her basic degree in mechanical engineering while specializing in any one of a large number of other fields. The student who follows the regular ME cur riculum takes a number of electives as well as special problems and projects, all of which allow latitude in pursuing his or her educational goals and special interests.

Graduate Programs

The School of Mechanical Engineering has a rapidly expanding and vigorous graduate program of advanced study and research in the areas of acoustics and noise control, applied mechanics, automatic controls, combustion, computer integrated manufacturing systems, control of machine tools, dynamics and vibration, energy engineering, engineering design, environmental quality control, flammability, fluid mechanics, fluidics and fluid power, heat transfer, lubrication, magnetogasdynamics and plasma, computer-aided design, computeraided manufacturing, manufacturing engineering, materials processing, materials science, mechanisms (synthesis and analysis), plasma engineering, rheology, robotics, solar power, vehicle propulsion, thermal systems, thermodynamics, transport processes, turbomachinery, and two-phase flows.

These graduate programs lead to the degrees Master of Science in Mechanical Engineering, Master of Science, and Doctor of Philosophy for qualified graduates having backgrounds in engineering, mechanics, mathematics, the physical sciences, and the biological sciences.
Multidisciplinary Programs
Mechanical Engineering is particularly active in the Computer Integrated Manufacturing Systems (CIMS) Program for study at the graduate level of the integration of design, information and material processing, and management in manufacturing systems.

Financial support is available to highly CUa NATH 1307-8-9
fied students in the form of the IBM ass Calculus I, II, III tantships in CIMS. Industry interaction ${ }^{2}$ EGR 1170 unique laboratory opportunities are aval Visual Communication $\quad 2-3-3$ able in the program. For a complete de Elective ${ }^{1}$ scription and for other multidisciplinan) Freshman Engiprograms, see Page 79.

School Facilities
reshman Engihas many types of specialized instrum and equipment associated with labora tories for the study of two-phase flow, lut cation and rheology, material processing fire hazard and combustion, magnetofire hazard and combustion, magnetogasdynamics, energetics, fluidics and flui
power control, heat transfer, vibration power control, heat transfer, vibration
and thermal stress, computer-aided desi and thermal stress, computer-aided desig, applications, manufacturing automation noise, plasmas, robotics, and other areas Total The School is housed in a four-building, classroom-research complex. Part of this complex is a modern classroom-semina conference building which serves the en ire Institute.
The buildings of the School house ma remote terminals linked to the main cam. pus research and teaching computer; als provided are extensive microcomputer to cilities. The machine and instrumentation shops, supported by a full-time staff of echnicians, enhance the School's resear activities.
Students may obtain additional informa tion about the programs by requesting the Guide to Student Life or Graduate Stud Information Brochure or by calling the School at (404)894-3203. Every student rolled must consult these sources of infor mation with respect to special rules and degree requirements.

Program for the Bachelor of Mechanical Engineering

Freshman Year
Course 1st Q. 2nd Q. 3rd Q.

CHEM 1101-2
General Chemistry $\quad 4-3-5 \quad 4-3-5$
HYS 2121
Particle Dynamics
dives ${ }^{4}$
manitives ${ }^{4}$ cial Science Modern Language Electives ${ }^{5}$ Thysical Education Aquatics Fitness
Elective Electives ${ }^{2}$

1st Q. 2nd Q. 3rd Q.

PHYS 2122

 Electromagnetism4-3-5
PHYS 2123 Optics and Modern Physics
MATH 2307
Calculus IV
MATH 2308
MATH 2308
Calculus and Linear
Algebra

MATH 2309

Differential Equations

ESM 2201 Statics

 ESM 3201 Dynamics I ESM 3301 Mechanics of Deformable Bodies 5-0-5 ME 2212Materials Science _......... 3-0-3

Electives ${ }^{4}$

Humanities
Social Science Modern Language $\frac{3-0-3}{15-3-16} \frac{3-0-3}{17-3-18} \frac{6-0-6}{17-0-17}$

Junior Year ${ }^{7}$ Course	1st Q. 2 n	nd Q. 3r	rd Q.
ME 3322-3-4 Thermodynamics	3-0-3	3-0-3	3-0-3
ME 3340-1 Fluid Mechanics I, II	3-0-3	3-0-3
ME 3346 Heat and Mass Transfer I		3-0-3
EE 3725 Electric Circuits and Fields	2-3-3	\ldots
EE 3726 Elementary Electronics	\ldots	2-3-3	
EE 3727 Electric Power Conversion			2-3-3
ME 3212 Materials Technology	3-3-4
ME 3016 ME Computer Applications	2-3-3
ME 3056 Experimental Methodology	2-3-3
ME 3113 Kinematics and Dynamics of Linkages	3-0-3
ME 3114 Dynamics of Machinery			3-0-3
ME 3181 Machine Elements	3-0-3	
Electives ${ }^{4}$ Humanities Social Science Modern Language		3-0-3	3-0-3
Totals	14-6-16	16-6-18	16-6-18
Senior Year Course	1st Q.	$2 n d$ Q.	3rd Q.
ME 4183 Design Theory	3-0-3	
ME 4184 Design Engineering	g		0-6-2
ME 4318 Thermal Systems Analysis and Design		4-0-4	

ME 4055

Experimental
Engineering

ME 4346

Mass Transfer II 3-0-3
ME 4212
Material Processes 3-3-4
ME 4445
Automatic Control 3-0-3
ISYE 4725
Engineering
Economy
Electives ${ }^{3}$
Technical
Electives ${ }^{4}$
Humanities
Social Science
Modern Language $\quad 3-0-3 \quad 3-0-3 \quad 3-0-3$
Electives ${ }^{6}$
ME Design
Totals
\qquad 3-0-3
${ }^{1}$ See College of Engineering section "Curricula and Courses of Instruction" for engineering electives.
${ }^{2}$ These free elective courses may be taken at any time during the course of study. If ROTC is elected by the student these six credit hours elected by the student these six credit hours
may be applied for basic ROTC, which should be scheduled beginning the first quarter the student is enrolled.
${ }^{3}$ Nine hours of technical electives chosen from ME 3000,4000, and 6000 level courses. Graduate courses (6000 level) must have consent advisor. Courses other than these consent of lected from mathematics, physics, memistry biology, another field of engineering, or graduate courses.
A student who wishes to take courses not in ME must so notify the director concerning his or her choice and obtain approval at advance registration for the first quarter of his advance senior year A lab first quarter of his or her scheduled in place of a (3-0-3) may be student completing his or her junior year grade average of 25 or higher mar year with a technical elective from the higher may elect one ME 4901 through 4912 (The particular courses selected depends on the number of hours of credit needed) This student will follow hours of of individual study under the guidance of a faculty member with the the guidance of a director. Nine hers the approval of the school director. Nine hours of electives may be replaced
by advanced ROTC.

NUCLEAR ENGINEERING AND HEALTH PHYSICS PROGRAMS

General Information

Nuclear engineering is the branch of e neering directly concerned with the release, control, and utilization of all types energy from nuclear sources and its en ronmental impact. Today, the diversity of clear energy allows a wide variety of ap. plications, from the exploration of outer space and the powering of human heat pacemakers to the generation of elecricity. With the limited supply of fossil fuels? the growing concern about their environmental effect, the need for nuclear powe o produce the large amounts of energy demanded by our society becomes more and more pressing. Programs in Nuclear Engineering and Health Physics are playin a vital role in educating the technical manpower required to meet this need
In addition to the Bachelor of Nuclear Engineering degree, the School adminis. ters the program leading to the Bachelor Science degree in Health Physics. Heatt physics is an applied science concerned with the protection of man and the environment from the hazards of radiation an chemical pollutants. Typical activities of health physicists today are: development of a sound philosophy and principles of rad ation protection; practical application of these principles on the job in an industrie or medical setting or with a regulatory agency; and devising new methods and instrumentation for the protection of individual workers and the general public.
${ }^{4}$ For selection of acceptable courses see list o electives allowed by the College of Engineering in "Information for Undergraduate Students." ${ }^{5}$ See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshman physical education require${ }_{6}^{6}$ ments for both men and women.
${ }^{6}$ Approved design electives are marked with an ${ }^{7}$ asterisk in the list of ME courses.
${ }^{7}$ All ME courses at the 3000 level or above have as a prerequisite a working knowledge of a high level computer language and the ability to use the campus central computer.

Undergraduate Programs

he curriculum leading to the degree Bachtor of Nuclear Engineering is structured to eet the needs of both the student who intemplates employment immediately afrgraduation and the student planning to rsue graduate study. It provides maximum exibility in the form of options for each udent to develop his or her unique interests capabilities. The core curriculum covers e basic principles of nuclear engineering: vclear reactor core design, nuclear fuel sign, reactor systems engineering, nuclear el process engineering, nuclear power conomics, and reactor operations.
Studies for the bachelor's degree in Health Physics may lead to careers in rajation protection, environmental surveilance, or medical physics, or may prepare he student for further study at the graduate evel and eventually for a professional areer as a health physicist. The program so provides an excellent premedical
education.
In addition to the Institute's academic requirements for graduation with a bacheor's degree, the average aggregate grade woint ratio in nuclear engineering and health physics courses taken toward the B.N.E degree or B.S.H.P degree shall be 2.0 or higher. Further, for students in the B.N.E program, the average aggregate grade point ratio for courses taken in engineering thermodynamics and transport phenomena shall be 2.0 or higher. Only the highest grade received in any repeated course will se used in calculating quality points for hese supplemental criteria.

Graduate Program

Graduate programs in Nuclear Engineering and Health Physics lead to the degrees Master of Science in Nuclear Engineering, Master of Science, Master of Science in Health Physics, and Doctor of Philosophy. The program at the master's level provides ten areas of emphasis: reactor engineering, reactor operations, nuclear fuels engineering, computer applications, plasma physics and fusion technology, radiation technology, environmental engineering, health physics, medical physics, and industrial health protection.

These curricula are constructed from various combinations of nuclear engineering courses, supplemented with courses in other schools as appropriate. For the first eight areas, students with a Bachelor of Science degree in engineering take the Master of Science in Nuclear Engineering degree while students with a Bachelor of Science degree in science will enroll for the Master of Science degree. While students completing studies in radiation technology or environmental engineering receive the Master of Science degree, students studying health physics receive the Master of Science in Health Physics degree.
Depending on the career objectives of the student, the School may encourage a thesis as part of the Master of Science program. When appropriate, students may substitute approved courses and research experience on a special problem for a thesis.
The doctoral program is designed with great latitude to capitalize on variations in experience and interests of individual students. The School encourages its students to enroll in not only nuclear engineering courses, but also courses related to their subject areas and offered by other schools.

Multidisciplinary Programs.

See table on page 79

Facilities

The facilities available on the Georgia Tech campus for instruction and research in nuclear engineering include the following: a 5 -megawatt research reactor, a sub-critical assembly, 100,000 curie co-balt-60 sources, several small digital computers, a CDC CYBER 170/855 and 170/ 835 computer, IBM 4341 and VAX 11/750, hot cells for handling radioactive materials, a complete nuclear instrumentation laboratory, facilities for analyzing environmental samples by nuclear techniques, nuclear radiography, and radiochemical laboratories.

Program for the Bachelor of Nuclear Engineering

Freshman Year Course	1st Q.	2nd Q.	3rd Q.
CHEM 1101-2 General Chemistry	4-3-5	4-3-5	
MATH 1307-8-9 Calculus I, II, III	5-0-5	5-0-5	5-0-5
PHYS 2121 Particle Dynamics	4-3-5
NE $1100{ }^{1}$ Energy \& Engineers in Society	2-3-3	
EGR 1170 Visual Communicatio and Engineering Design	n	2-3-3	
NE $\mathbf{1 0 1 0}^{\mathbf{2}}$ Computer Programming for Nuclear Engineers			2-3-3
Electives ${ }^{3}$ Humanities/Social Sciences	3-0-3	3-0-3	3-0-3
Electives ${ }^{4}$ Physical Education	0-4-1	2-2-2	0-4-1
Totals	$\overline{\text { 14-10-17 }}$	16-8-18	4-10-17
Sophomore Year Course	1st Q.	2nd Q.	3rd Q.
PHYS 2122 Electromagnetism	4-3-5
PHYS 2123 Optics and Modern Physics	\ldots	4-3-5	...
MATH 2307-8 Calculus IV, V	5-0-5	5-0-5
Math 2309 Differential Equations			5-0-5
ESM 2201 Statics	3-0-3	
ESM 3201 Dynamics	3-0-3
ESM 3301 Mechanics of Deformable Bodies	5-0-5

Program for Bachelor of Science in Health Physics

Freshman Year Course	1st Q.	2nd Q.	3rd Q.
CHEM 1101-2 General Chemistry	4-3-5	4-3-5	
PHYS 2121 Particle Dynamics			4-3-5
MATH 1307-8-9 Calculus, I, II, III	5-0-5	5-0-5	5-0-5
EGR 1170 Visual Communication and Engineering Design	2-3-3	
Elective ${ }^{1}$ Technical	2-3-3	
Electives ${ }^{2}$ Humanities/Social Science/Modern Language	3-0-3	3-0-3	3-0-3
Elective ${ }^{3}$ Physical Education	0-4-1	2-2-2	0-4-1
Elective ${ }^{4}$ Free			3-0-3
Totals	14-10-17	16-8-18	15-7-17

Sophomore Year

Course

PHYS 2122
Electromagnetism
PHYS 2123
Optics and Modern Physics

1st Q. 2nd Q. 3rd Q.

MATH 2307
Calculus IV
MATH 2308
Calculus and Linear 5-0-5
Algebra
Alg
MATH 2309
Ordinary Differentia
Equations
BIOL 1110-1
Principles of Biology 3-3-4 3-3-4
NE 1010
Computer Program
ming for Nuclear
Engineers
3-0-3

HP 2401-2-3 Introduction to Health Physics	1-0-1	1-0-1	1-0-1
Electives ${ }^{4}$			
Electives ${ }^{2}$ Humanities/Social Science/Modern Language			
Totals	16-6-18	16-6-18	18-0-18
Junior Year Course	1st Q.	2nd Q.	3rd Q.
PHYS 3001 Introduction to Modern Physics			
PHYS 3211 Electronics			
NE 3110 Nuclear Radiation Detection			
HP 4411-2-3 Radiation and Health Physics			
MATH 4582 Advanced Engineering Mathematics 3-0-3			
BIOL 3335			
BIOL 4415 Introduction to Radiation Biology			
MATH 4215^{5} Statistics	3-0-3		
Electives ${ }^{2}$ Humanities/Social Science/Modern			
Electives ${ }^{6}$ Technical	3-0-3		3-0-3
Electives ${ }^{7}$			
Totals	17-3-18	17-9-20	17-9-20
Senior Year Course	1st Q.	2nd Q.	3rd Q.
NE 4011-2-3 Nuclear Engineering Seminar	1-0-1	1-0-1	1-0-1

to Health
Electives ${ }^{4}$
Electives ${ }^{2}$
Humanities/Socia
cience/Modern
Totals $\quad \frac{3-0-3}{16-6-18} \frac{3-0-3}{16-6-18} \frac{3-0-3}{18-0-18}$
Junior Year
Course HYS 3001
Introduction to

HP 4411-2-3
Health Physics $\quad 3-3-4 \quad 3-0-3 \quad 3-3-4$
(10n
BIOL 4415
Introduction to

Statistics
Electives ${ }^{2}$
Science/Modern

Electives ${ }^{7}$
Biology
3-0-3

Senior Year
Course
$1-0-1 \quad 1-0-1 \quad 1-0-1$

Semar Engineering
Seminar

CHEM 4701

Chemistry of
Nuclear Technolog

PHYS 4211

Electronic
Instruments
Radiation Shield
HP 4401-2-3
Health Physics
Seminar
NE 4701-2-3
Nuclear Reactor
Engineering
HP 4903
Special Problem
in Health Physics
Electives ${ }^{2}$
Humanities/Social
Science/Modern
Language
Electives ${ }^{4}$
Free
Elective ${ }^{6}$
Technical
Totals
\qquad 17-0-17 16-6-18

For selection of approved elective courses, ee Freshman Engineering Electives in "Curria and Courses of Instruction," College of Engi. neering. EE 1010 cannot be used as a substitution.
See Humanities and Social Sciences Require ments in "Informationfor Undergraduate Student See Department of Physical Education and Recreation in "Curricula and Courses of Instrue tion."
If ROTC is elected by the student, a maximur of six credit hours of basic ROTC and nine credit hours of advanced ROTC may be counte as free elective hours.
${ }^{5}$ Other courses in statistics or data analysis may be substituted. A list of these courses is available in the office of the Nuclear Engineering and Health Physics Programs.
${ }^{6}$ Technical electives will be selected by the student after consultation with his or her adviso ${ }^{7} \mathrm{~A}$ list of acceptable biology electives is avail. able in the office of the Nuclear Engineering and Health Physics Programs.

Courses of Instruction
 WECHANICAL ENGINEERING

ME 1001. Introduction to Mechanical Engineering
1-0-1. Prerequisite: MATH 1307
Survey of the field to acquaint the student
with the profession, nature, function and workng tools, curriculum and topic orientation, engineering in a social context.
ME 1110. Creative Decisions and Design 2.3-3.

Basic concepts for creative decisions in engineering problem solving and design. Exposure to practicing engineers, their industries, problems, and accomplishments. Field trips. ME 175
$3 \cdot 0 \cdot 3$.
Aspects of science and technology pertinent to bioengineering. Cross-listed with AE 1750, EE 1750, ESM 1750.
ME 2212. Materials Science
3.0-3. Prerequisites or corequisites: MATH 2309, PHYS 2123.
Mechanical behavior, elastic and plastic prop-
orties, annealing of cold-worked materials leadarties, annealing of cold-worked materials lead-
ing from atomic concepts, crystallography and ing from atomic concepts, crystallography, and relation of crystal defects to properties.

ME 3016. Computer Appications 2.3.3. Prerequisites: MAT
FORTRAN programming.

Organization and application of digital computers. Application of numerical methods to the solution of mechanical engineering problems. solution of malysis, solution techniques, compute program organization, and error analysis are program
ME 3056. Experimental Methodology 2.3-3. Prerequisites: MATH 2309 and ME 3322 Presentation of experimental methodology and basic instrumentation used in mechanical engineering and its calibration and use, accuracy, error, and uncertainty in experimental measurements.
ME 3113. Kinematics and Dynamics of Linkages
$30-3$. Prerequisite: ESM 3201
Kinematics and dynamics of linkages with emphasis on inertial forces. Balancing of rotating and reciprocating systems.

ME 3114. Dynamics of Machinery 3-0-3. Prerequisites: ME 3113, MATH 2309. Dynamic modelling of systems with mechanical, fluid, thermal, and/or electrical elements Analysis including linearization, transient and
frequency response, and stability. Vibration of mechanical systems.

ME 3181. Design of Machine Elements

3-0-3. Prerequisites: ESM 3301, ME 3212.
Methodology and practice in designing machine components by means of integrating the general principles and empiricisms of solid mechanics, materials, metal fatigue, and other disciplines.
ME 3183. Rational Descriptions and Engineering Design*
3-0-3. Prerequisite: junior standing in engineering. Information-theory decision analysis for engineering design with practical applications to the design of mechanical, thermal and electrical components and systems.

ME 3212. Materials Technology

3-3-4. Prerequisite: ME 2212.
Mechanical and physical properties of metallic and nonmetallic materials related to behavior under service conditions. Phase equilibria, microstructure, steels, heat treatment, annealing, fracture, fatigue, creep.
ME 3322. Thermodynamics I
3-0-3. Prerequisites or corequisites: PHYS 2123 MATH 2308

An introduction to thermodynamics. Thermodynamic properties, state postulate, work interactions, steady state and transient energy and mass conservation, entropy and the second law.

ME 3323. Thermodynamics

3-0-3. Prerequisite: ME 3322 .
Continuation of ME 3322. Applications and corollaries of the second law. Availability, available energy, Carnot theorem, ideal and real gas mixtures, psychrometry, generalized thermodynamic function.
ME 3324. Thermodynamics III
$3-0-3$. Prerequisite: ME 3323 .
Continuation of ME 3323. Gas and vapor
power cycles, vapor and gas absorption refrig owtion cycles. First and second law analysis of combustion, Gibbs phase rule, chemical equilibrium.

ME 3340. Fluid Mechanics

3-0-3. Prerequisites: ESM 3201, ESM 3301, MATH 2309.
Pre or Corequisite: ME 3322.
Introduction to fluid mechanics, fluid statics, integral and differential control volume analyses with applications, study of similitude, simple laminar flows.
ME 3341. Fluid Mechanics II
3-0-3. Prerequisite: ME 3340 .
Transition and stability of laminar motion, turbulent flows with engineering applications, inviscid
and incompressible flows, boundary layers, compressibility effects in fluid mechanics.
ME 3346. Heat and Mass Transfer I 3-0-3. Prerequisite: MATH 2309
Pre or Corequisite: ME 3322
Introduction to the study of heat and mass transfer, transport coefficients, steady state diffusion, transient diffusion, radiative heat transfer

ME 3720. Thermodynamics

4-0-4. Prerequisites or corequisites: PHYS 2123, MATH 2308. Not for ME students.
Fundamentals of engineering thermodynamics, thermodynamic properties of matter, the concept of conservation of energy, the second law of thermodynamics and application to engineering processes.

ME 3734. Environmental Technology In

 Architecture I3-0-3. Prerequisite: PHYS 2113 or 2123. Not for ME students.
Needs of modern structures. Water supply and drainage. Fire protection. Environmental comfort Design heat load calculations. Generation, trans port, and distribution of heat with associated costs.
ME 3735. Environmental Technology in Architecture II
2-3-3. Prerequisite: ME 3734. Not
or ME students
Effects of solar energy. Cooling load esti mates. Air conditioning systems. Delivery methods. Energy management, conservation, and total energy systems. Latest topics in environmental control.

ME 4025. Engineering Analysis
3-0-3. Prerequisite: consent of school
Emphasis is placed on well-ordered analytical thought processes required in the application of fundamental principles of engineering sciences to the analysis of unfamiliar engineering situations.
ME 4055. Experimental Engineering
1-3-2. Prerequisite: ME senior standing
Engineering situations involving various disciplines are solved by experimental means. Students must plan experimental approach, gather data, interpret results and prepare a formal engineering report

ME 4091. Seminar

$1-0-1$. Prerequisite: senior standing in mechanical engineering. Fall quarter only
Civic and professional responsibilities and opportunities are brought to students by leaders in engineering, business, and community affairs.

ME 4183. Design Theory

3-0-3. Prerequisite or corequisite: ME 3181. The design process including the topics of
creativity, probability, the use of statistical ods, reliability theory, decision theory, optim zation, and the patent system.

ME 4184. Design Engineering

0-6-2. Prerequisite: ME senior standing
The design process is applied to real mul isciplinary problems by a team. Problems ected from a broad spectrum of interest ar including biomedical, ecological, environme

ME 4185. Mechanics of Machines*

3-3-4. Prerequisites: ME 3114, MATH 2309
Continuation of ME 3114 with emphasis the analysis of complex machines. Instrum tion and analog computer simulation of me nism.

ME 4186. Biomechanical Design*
3-3-4. Prerequisite: ME 4445 or equivalent.
Design of systems utilizing human opera
dynamics in the loop. Biological systems trea as structures, power sources and information systems, operator modeling.
ME 4187. Kinematic Design*
2-3-3. Prerequisite: ME 3113 or consent of school
The design of mechanisms to generate sp fied point paths or analytical functions. Grap ic and analytic design methods are shown.

ME 418. Cams and Gears

3-0-3. Prerequisite: ME 3113 or equivalent. helicection and design of gears, spur, beve helical, and worm gearings are treated. Cam systems.
ME 4204. Manufacturing Processing Machining and Deformation
2-3-3. Prerequisites: ME 4212, ESM 3301.
Theory and application of metal machining Effects of work material, tool material and ge ometry, feed, speed and other variables are studied.
ME 4205. Manufacturing Processing: Casting and Joining
2-3-3. Prerequisites: ME 4212, ESM 3301 An intermediate level treatment of two impo tant manufacturing operations, emphasis on the engineering and technological aspects of these processes, applications and design criteria

ME 4212. Material Processes

3-3-4. Prerequisite: 9th Qtr. Standing. Conseni of instructor for non-ME students.
Fundamentals of various techniques for solidifir cation, working, and shaping materials. Machining, casting, joining, and metal forming are maio opics. Laboratory practice supplements class. room treatment.
4263. Mechanical Testing of Materials 3.4. Prerequisite: either MET 3301, ME 12 or consent of school.
Destructive and nondestructive test methods metallic and nonmetallic materials. Emphasizes he significance of results and the choice of
aterials based on test data.
IE 4265. Materials Science and Engineering 0.3 . Prerequisite: ME 3212.

Advanced studies of metals, polymers, ceram s. Atomic and molecular structure, crystal
ding, defects, relationship of properties to mirostructures. Phase equilibria, strengthening, bilure, steel constituents, hardenability.

4318. Thermal Systems Analysis and

 Design0-4. Prerequisites: ME 3324, 4183, 4346; SYE 4725.
Analysis, design, and optimization of thermal bystems and components with examples from such areas as power generation, refrigeration, and propulsion. Energy conservation schemes, bial energy systems and their characteristics.
ME 4319. Thermoeconomic Design*
3-0.3. Prerequisite: ME 4318
Design via synthesis and optimization of sys ms, components, and subcomponents modled from thermal phenomena or their direct nalogs while considering constraints from cost, ize, weight, government regulations, and other such factors.
ME 4320. Internal Combustion Engines 3-4. Prerequisites: ME 3324, 3340 Principles, practice, and characteristics of in ernal combustion engines with experimental aboratory in engine testing and performance.
IE 4321. Principles of Air Conditioning* 3.3-4. Prerequisite: ME 3324, 4346, or consent of school.
Psychrometric principles. Thermal comfort. oad estimates. Environmental control. System design using load wedge and supply area concepts. Experiments to determine components and system performance.
ME 4324. Power Plant Engineering 3.0-3. Prerequisites: ME 3324, 3344, or consent of School.
Steam and gas turbine power cycles. Modern power plants. Combined power plants. Energy and availability analysis. Economics of power generation. Design problems and field trips
ME 4326. Principles of Turbomachinery* 3.0-3. Prerequisite: ME 3341 or consent of school.
Head, flow, and power relationships for turbomachines and their systems. Design of impel-
ers and casings for various types of compressors, turbines, and pumps.

ME 4327. Combustion and Flames 3-0-3. Prerequisite: ME 3324, 3341, or equivaent.
Stoichiometric and thermochemical analysis of uel-oxidant reactions. Heat and mass transfer with chemical reaction applied to combustion of gas jets, solid and liquid fuels.

ME 4329. One-Dimensional Compressible

 Flow3-0-3. Prerequisites: ME 4346, 3324
Fundamentals of one-dimensional steady and unsteady compressible flows. Isentropic flows, flows with friction and heat transfer and with shocks are examined.

ME 4331. Refrigeration* ${ }^{*}$

3-0-3. Prerequisite: ME 3324
Refrigeration cycles and systems. Balanced design concepts in selecting components. Sys em performance at off-design conditions. Heat pumps.
ME 4339. Gas Turbines*
3-0-3. Prerequisites: ME 3324, 3341
Applications of gas turbines including limitations and advantages as compared with other prime movers. Design of compressor, combustor, and turbine components.
ME 4343. Heating, Ventilating, and Air Conditioning Design*
3-0-3. Prerequisite: ME 4321
Sizing of equipment for environmental control. Design of transportation and delivery systems. Energy recovery schemes. Total energy concepts and design features.

ME 4346. Heat and Mass Transfer II
3-0-3. Prerequisites: ME 3341, ME 3346
Laminar and turbulent boundary layers for heat and mass transfer, forced convection, natural convection, phase change effects, applications to heat and mass exchangers.
ME 4347. Elements of Nuclear Power
3-0-3. Prerequisite: ME 3324 or equivalent.
Nuclear energy generation, fuels, materials, radiation damage, shielding and safety. Nuclear reactors: boiling water, pressurized water, gas cooled and fast breeder reactors.

ME 4357. Plasmas and Engineering

Applications

3-0-3. Prerequisite: undergraduate thermodynamics, senior standing.

Occurrence of plasmas, review of electromagnetic theory, thermodynamics of ionized gases, equations of magnet hydrodynamics, MHD waves channel flow, application to electric arcs, MHD energy conversion and fusion

ME 4367. Solar Utilization Systems 3-0-3. Prerequisite: ME 3324 (or ME 3720 with consent of school)
Solar energy resources, collector models, ac tive DHW and space heating systems, passive tive DHW and space heating systems, passive Introduction to cooling, photo-voltaic, wind, and OTEC systems. Design projects

ME 4445. Automatic Contro

3-0-3. Prerequisites: ME 3016, ME 3114.
Analysis and modeling of linear systems and compensation of feedback controlled systems using classical methods. Hydraulic, pneumatic, thermal, electrical, nuclear, chemical, and biomechanical examples.

ME 4449. Numerical Control of Machine

Tools*

3-0-3. Prerequisite or corequisite: ME 4445
Study of design and operation of typical digital control systems for machine tools, includ ing the flow of signals through the system.

ME 4714. Heat Transfer

3-0-3. Prerequisite: ME 3720, 3016 or equivalent. Not for ME students.
Transport processes, concepts of conduction, convection, and radiation. Boundary layer analysis in convective laminar and turbulent flows. Stationary systems, including external/interna resistance criteria.

ME 4760. Engineering Acoustics and Noise

 Control I3-0-3. Prerequisite: senior standing.
Study of acoustics related to noise and its control, acoustic terminology, wave propagation solutions to the wave equation, instrumentation sound fields in large and small rooms, noise legislation.
ME 4761. Engineering Acoustics and Noise Control II
3-0-3. Prerequisite: ME 4761 or equivalent Continuation of ME 4760 emphasizing tech niques for the solution of noise problems. Vibration isolation, energy absorption, dissipative and reactive mufflers, enclosures, barriers, properties of materials, panel damping.

ME 4771. Pulp and Paper Processes
3-0-3. Prerequisite: consent of school.
A survey of the processes in a kraft pulp mill necessary to convert raw material to sulfate pulp. Wood preparation, wood chemistry and morphology. The chemical and mechanical characteristics of kraft pulping and chemical recov-
ery processes. Cross listed with CHE.
Text: Britt, Handbook of Pulp and Paper Technology.

ME 4772. Pulp and Paper Processes II 3-0-3. Prerequisite: consent of school.
The major pulping processes other than pulping. General knowledge of the various ors affecting each pulping process and pu bleaching. The unique advantages and dis vantages of each pulping and bleaching pro
cess. Cross listed with CHE
Text: Britt, Handbook of Pulp and Paper Technology.
ME 4773. Paper Formation and Propertic
3-0-3. Prerequisite: consent of school.
The processes in the fabrication of pap paper products from pulp. The effects on properties of chemical and mechanical pretreatment of pulp. The measurement of pape properties. Cross listed with CHE
Text: Britt, Handbook of Pulp and Paper Technology.

ME 4780. Energy Conversion Engineering $3-0-3$. Prerequisite: ME 3720 or equivalen. Energy sources, basic principles of semic ductors, thermoelectric converters, solar po hermionic systems, MHD, applications of the evices for power generation, environmental effects, cost factors
ME 4801-2-3-4-5. Special Topics, Mechan Engineering
-0-1 to 5-0-5, respectively
Special topic offerings of current interest not included in regular courses.
ME 4901 through 4912. Special Problems, Mechanical Engineering
Credit to be arranged.
Individual studies in certain specialized are and mathematical analyses and/or experimental investigations of problems of currenti terest in mechanical engineering

ME 6014. Engineering Instrumentation

 3-3-4. Prerequisite: ME 3055 or equivalent o graduate standing.Methods and techniques of modern instru mentation in engineering research. Emphas analytical methods in planning and evaluatio experiments, integration of experimentation ory with practical aspects of instrumentation problems.
I, II
3-0-3 each. Prerequisite: ME 4346, ESM
3302 , or equivalent.
Variational methods applied to the optimizatio of engineering systems, the formulation and ar proximate solution of differential equations with application to nonlinear vibration, fluid mechan ics, heat transfer, hydrodynamic stability, and automatic control.
6121. Advanced Dynamics of Machinery $0-3$. Prerequisite: consent of school. Design-oriented dynamics. Dynamics of sysams with constraints, application of virtual work minimum potential to systems, dynamical equaions of Lagrange, Hamilton.

6122. Machine Vibration

0-3. Prerequisite: consent of school. Application of dynamic theory to practical stuations, natural frequencies of systems, imract impulse and momentum, discrete and continuous system techniques, periodic and random sources.
ME 6125. Mechanism Synthesis - -3 . Prerequisite: ME 4187 or equivalent. A continuation of ME 4187. Advanced topics n curvature theory. Finite displacement of a plane, Burmester theory. Current developments n kinematics. Graphic and analytic design methods.
ME 6126. Mechanism Synthesis II: Computer Methods
2-3-3. Prerequisite: ME 6125 Analog-computer simulation of linkages. Com-plex-number approach to linkage synthesis Digital computation of Sandor-rreudenstein and Bloch. "Best fit" by Chebyshev polynomia approximations.
ME 6127. Spatial Mechanisms
The analysis and ME 6125 . linkages in general. Extension of the Grubler theory, number theory, special mechanisms.

ME 6133. Elastic Yield Design of Machine

 Members3-0.3. Prerequisite: consent of schoo
The methods of strain-energy, virtual work, area-moment, and Castigliano's theorem are applied to the design of machine members against excessive deformation.
ME 6170. Engineering Design
3 3-6-5. Prerequisite: consent of school.
$3-6-5$. Prerequisite: consent of school.
Design concepts, life design, fatigue and fail ure, thermal stress, and the elements of optimum design are studied.

ME 6175. Fundamentals of Computer-Aided Design
3.0-3. Prerequisites: graduate standing, ME 3016, ME 4183 and ME 4445 or equivalent. Introduction to the use of interactive computing techniques of engineering design with emphasis on interactive graphics and man-machine interaction.
ME 6176, Computer Aided Design SystemsComponents and Techniques
3-0-3. Prerequisite: ME 6175 or consent of instructor.

An in-depth study of necessary hardware and software for development of computer-aided design systems with special emphasis on manmachine interface

ME 6239. Materials for Design

3-0-3. Prerequisite: ME 4212.
Properties, behavior, and selection of materials for practical design applications. Topics include effects of elastic and plastic deformation brittle fracture, fatigue, creep, and corrosion

ME 6240. Advanced Materials for Design

3-0-3. Prerequisite: ME 6239 .
Advanced studies of materials, their properties, selection, and applications to high and low tem perature environments. Economics, engineering, and design considerations are emphasized

ME 6271. Deformation of Metal

3-0-3. Prerequisite: ME 4212.
Advanced study of atomic structure and imperfections in crystalline solids. Topics include plastic deformation, strain hardening, annealing processes, creep, fatigue, ductile and brittle fracture.

ME 6272-3. Fabrication of Metals I, II 3-0-3 each. Prerequisite: ME 6271.

Fabrication processes of metals including forg ing, rolling, extrusion, drawing, deep drawing and pressing. Frictional phenomena, slip line fields, upper bound forces, material properties, and characteristics.

ME 6322. Thermodynamics I

3-0-3. Prerequisite: undergraduate thermodynamics.

Thorough study of the principles of macroscopic formalism of thermodynamics. Thermodynamic systems, pure substance, multi-phase mixtures, reactive systems.

ME 6323. Thermodynamics II

3-0-3. Prerequisite: undergraduate thermodynamics.

Microscopic thermodynamics based on classical mechanics, quantum mechanics, and information theory. Prediction of macroscopic properties and system behavior from statistical considerations.
ME 6324. Thermodynamics III
3-0-3. Prerequisite: ME 6323 or equivalent.
Statistical thermodynamic calculation of properties of ideal gases, real gases, solids, and gas mixtures. Kinetic theory and transport properties. Thermodynamics of special systems.

ME 6325. Information Theory

Thermodynamics

3-0-3. Prerequisite: ME 6323 or consent of school.

A derivation from information theory of the fundamentals of thermodynamics and statistical mechanics. Applications to irreversible thermodynamics and the design of thermosystems.

ME 6332. Heat Transfer

3-0-3. Prerequisite: ME 4346 or consent of school
Conduction-steady state and transient, one and multi-dimensional geometries. Emphasis on analytical methods-exact and approximate, on numerical and graphic techniques.

ME 6333. Heat Transfer II

3-0-3. Prerequisite: ME 6332 or consent of school.
Convection-forced and free, in laminar and turbulent, internal and external flows. Analogy between momentum and heat transfer. Scaling laws and partial modeling.

ME 6334. Heat Transfer II

-0-3. Prerequisite: graduate standing.
Radiation-electrodynamics, radiation optics, phoon gas concept, black body radiation, surace characteristic, exchange in enclosures, ra diation through continua, experimental methods.
ME 6338. Advanced Theory of Heat Transfer 3-0-3. Prerequisites: ME 6332, 6333
Advanced mathematical methods in conducand fluidized beds, ablation, solidification, packed and fluidized beds, condensation, boiling heat transfer, heat transfer in porous media, transien oundary layers.
ME 6342. Fluid Flow I
3-0-3. Prerequisite: ME 3340 or consent of school.
A general development of the continuity, linea and angular momentum and energy equations followed by the fundamentals of perfect fluid theory.
ME 6343. Fluid Flow II
3-0-3. Prerequisite: ME 6342 or equivalent.
Viscous flow theory including derivation of Navier-Stokes equations, a study of their general properties and their applications to creeping flow and to laminar and turbulent boundary layers
ME 6344. Fluid Flow III
3-0-3. Prerequisite: ME 6343 or equivalent.
Turbulent flow theory, origins of turbulence, turbulent stress, mixing-length models, free turbulent now, flow in pipes and boundary layers, statistical description of turbulence.

ME 6351. Direct Energy Conversion

3-0-3. Prerequisite: ME 3720 or equivalen
Analysis of performance characteristics, based on thermodynamic and fluid flow principles of direct energy conversion devices such as therm-
ionic, thermoelectrics, photovoltaic, magnet hydrodynamic, electrohydrodynamic genera and fuel cells.

ME 6352. Energy Conversion Systems 3-0-3. Prerequisite: ME 3324 or equivalent. A study of alternative energy conversion tems and analysis of their economic and co mercial performance characteristics.
Comparative analysis of Otto, Diesel, Bray Rankine, solar and direct energy conversion systems.

ME 6353. Diagnostics of Combustion Ga and Plasmas
3-0-3. Prerequisite: statistical thermodynamic Study of diagnostic techniques for combus gases and plasmas. Review of relevant phy phenomena. Spectroscopic, interferometric, la ser, and probe techniques. Treatment include latest techniques and procedures.

ME 6355. Combustion I

3-0-3. Prerequisite: graduate standing
Conservation laws and constitutive equatio in reactive media. Reactions kinetics, lamina and turbulent diffusion flames.

ME 6356. Combustion II

3-0-3. Prerequisite: ME 6355 or equivalent.
Combustion of liquid and solid fuels. Comber tion in laminar boundary layers.
ME 6357. Combustion III
3-0-3. Prerequisite: ME 6356 or equivalent.
Combustion in turbulent boundary layers. Sp aneous ignition and explosions. Flame propa gation and flammability limits
ME 6360. Solar Energy Engineering
3-0-3. Prerequisite: graduate standing.
Fundamentals of solar radiation, transmissio and absorption. Flat plate and focusing collec. tors. Thermal storage. Heating and cooling of structures. Distillation. Process heat supply. Po er generation.
ME 6370. Thermal Environmental Control 3-0-3. Prerequisite: consent of school. Thermodynamic relations of moist air. Air conditioning processes. Environmental system for thermal comfort. Direct and indirect contao ransport processes
ME 6371. Advanced Refrigeration
3-0-3. Prerequisite: consent of school.
Development of design and performance cha acteristics of vapor compression, absorption an several other work and heat input refrigeration cycles. Specification of desirable refrigerant prop erties.
ME 6376. Internal Combustion Engine Design -0-3. Prerequisite: undergraduate design, ME 4324 , or equivalent.

Iternal combustion engine design practice to mmodate challenges of application, efficienemissions, and balance.
6377 . Internal Combustion Engines -3. Prerequisite: ME 6355 or equivalent. Principles of operation of reciprocating and lating engines including analysis of pollutant mation and methods of its control
6379. Turbines

Q3. Prerequisite: either ME 4339, 4326 or onsent of school.
Basic fluid mechanics and thermodynamics of expansion processes in various types of and axial flow turbines. Current literature discussed.
6383. Lubrication
3. Prerequisite: consent of school. Hydrodynamic, hydrostatic, liquid and gas lucation, elastohydrodynamic lubrication, lion and solid lubricants are covered from fundamen lal development through design considerations.
ME 6424. Feedback Control Systems I 3.0-3. Prerequisite: graduate standing. Linear systems. Integration of classical (root locus, frequency response) and moder (stial ledback, observers) techniques. Mechanical hermal, fluid, chemical and nuc.
ME 6425. Feedback Control Systems II 3.0-3. Prerequisite: either ME 4445, 6424 or quivalent.
Discrete time and nonlinear systems. Sampled data and digital control. Phase plane, describing functions and Lyapunov methods.
ME 6426. Feedback Control Systems III 300-3. Prerequisite: ME 6424 or equivalent Optimal systems. Maximum principle and dy namic programming. Quadratic linear optimization Kalman filtering. Computational methods.
ME 6437-8. Digital Control Systems I and II 3-0-3, 3-3-4. Prerequisite: graduate standing or school. ME 6437 is prequisite to 6438 .
The basic theory and techniques employed in the design of control systems for numerically controlled machine tool and digital computers.

ME 6439. Control System Components 2-1-3. Prerequisite: ME 4445 or equivalent. The performance characteristics and the mathematical modeling of control system compo nents, including transient and frequency response lests.
ME 6440. Fluid-Power Control Systems 3.0-3. Prerequisite: ME 4445 or equivalent. Analysis and synthesis of control systems using
liquids and gases. Dynamic characteristics and specifications of control system components, closed-loop fluid-power control systems.
ME 6471. Control of Engineering Processes 3-0-3. Prerequisite: ME 6424 or equivalent. Large-scale computer solutions and simulaion Distributed parameter system modeling and analysis. Current interest topics of practical significance not in ME 6424-5-6.

ME 6750. Systems Design Methodology 2-3-3. Prerequisite: graduate standing or consent of school.
Relationship of technological systems to society is studied using economic concepts. Emphasis on the use of engineering type analysis in resolving value laden problems. Examples. Cross-listed with AE, EE, CE, CP, ISYE.
ME 6751-2. Complex Systems Design I, II 2-4-3 each. Prerequisite: graduate standing in any school or senior with consent of school. Interdisciplinary team design of systems o current interest to society which have large technological factors. Individual research and interaction with noninstute resource persitten and faculty. Grades based on reports. Cross-listed with AE, EE, CE, CP ISYE.

ME 6760-1. Acoustics I and II

-0-3 each. Prerequisite: MATH 4349 or con sent of school.
Governing equations of sound waves from the onservation laws. Acoustic momentum, enery, and intensity. Propagation, reflection, aborption, and scattering. Effects of the physical properties. Application of the theory of sound to real systems. Transmission of sound in real media

ME 6762. Acoustics III

3-0-3. Prerequisite. ME 6761
Advanced duct acoustics, wave dispersion and attenuation, acoustics in moving media, geometrical acoustics, nonlinear acoustics.

ME 6763. Noise Reduction and Control (In-

 dustrial Applications)-0-3. Prerequisite: ME/AE/ESM 6760, ME
4023 or equivalent
Methods of noise reduction and control applied to systems in industry. Measurement of plound power, material acoustic properties, barrisors, enclosures, mufflers, vibration reduction, and damping methods.

ME 6764. Ocean Acoustics
3-0-3. Prerequisite: GEOS 4300 or consent of school. MATH 4321, 4582, ESM 6760 recommended.
Propagation of sound waves in the oceans, stress-strain relationships, asymptotic ray theo-
ry. Propagation in shallow water and deep water Cross-listed with AE, GEOS, ESM.

ME 7000. Master's Thesis

NE 7035. N

3-0-3. Prerequisite: graduate standing
Numerical analysis of deterministic engineering systems. Numerical approximations to mathematical operations. Initial and boundary value problems. Computational stability for ordinary and linear partial differential equations.

ME 7122. Advanced Machine Vibrations

3-0-3. Prerequisite: ME 6122 or consent of school.
Applications of vibration theory. Machinery response on resilient mounting. Kinematic and dynamic stability. Nonlinear systems in electro mechanical and mechanical design.
ME 7140. Decision Theory for Engineering Design
3-0-3. Prerequisite: MATH 4215 or consent of choo
Use of information-theory decision analysis in solving practice problems in engineering design and reliability which cannot be effectively treated by any other method

ME 7220. High Temperature Deformatio

 Processes3-0-3. Prerequisite: ME 4265
Mechanical properties of materials at elevated temperatures, creep behavior, deformation mechanisms, stress analysis. Design for temperature effects, thermal stress, notches, fracture, fatigue, corrosion, and oxidation.
ME 7222-3. Fracture and Fatigue of Material I, II
-0-3 each. Prerequisite: ME 6221
Advanced study of failure of structural materials under load. Mechanics of fracture, micro scopic and macroscopic aspects, fracture of pecific materials; steels, nonferrous alloys, nonmetallic materials.

ME 7322. The

 Processes3-0-3. Prerequisite: graduate standing
Principles and formalism of thermodynamics of near-equilibrium states. Phenomenological equations and the Onsager-Casimir reciprocal relations. Coupled linear processes and crosseffects.

ME 7323. Thermodynamics of Irreversible Processes II
3-0-3. Prerequisite: ME 7322 or equivalent
Further study of the application of irreversible formulation for nomics in linear processes. Variationa formulation for nonequilibrium thermodynamics,
current contributions towards the solution o nonlinear problems.

ME 7336. Forced Convection Heat Exchan 3-0-3. Prerequisite: ME 6333.
Theory of forced convection heat exchange recuperators, regenerators, and devices with multaneous heat and mass transfer, with en phasis on performance and thermal design.
ME 7338. Advanced Topics in Heat Tran
3-0-3. Prerequisites: ME 6332, 6333, 6334 Latest advances in heat transfer, boiling wo-phase flows, liquid metal heat transfer, influence of main stream turbulence, separa flows, porous media, radiation and conductio Flow
3-0-3. Prerequisite: consent of school
Dispersed and separated flows-field and co stitutive equations, jump conditions. Interfacia phenomena, nucleation. Two-fluid and drift mo els, similarity, criteria. Dynamics, propagation phenomena, kinematic waves.

ME 7342. Transport Phenomena In Two-Ph

 Flow II3-0-3. Prerequisite: consent of school. Foiling regimes, pressure drop, void fraction. Boiling forced convection vaporization. Atom tion. Burn out and critical heat flux. Spray cooling. Condensation phase separation.
ME 7999. Preparation for Doctoral Qualifyin Exam
Audit only. Prerequisite: consent of school. ME 8010-1-2-3. Seminars in Mechanical Engineering
-0-1. Prerequisite: graduate standing.
Seminars involving current research projects presented by graduate students, ME faculty, and invited industrial speakers.
ME 8039. Heat Transfer Seminar 1-0-1.
Two presentations by each student of curren research activities: thesis work and special pro ems, presentation of thesis proposals. Atten dance in curriculum-related seminars.

ME 8041-2-3-4-5. Fluid Mechanics Seminar , $2,3,4,5$ credit hours, respectively. Prerea ite: consent of school.
Advanced current topic in fluid mechanics an uid engineering including applications of interest to mechanical engineering.
ME 8101-2-3-4-5. Special Topics in Design 1, 2, 3, 4, 5 credit hours, respectively. Preequisite: consent of school
Special topic offerings of current interest and not included in regular courses.

8201-2-3-4-5. Special Topics in Materiais e: consent of school.
Special topic offerings of current interest d not included in regular courses
8301-2-3-4-5. Special Topics in Energetics 2,3,4,5 credit hours, respectively. Prerequiconsent of school.
Special topic offerings of current interest dd not included in regular courses.
8401-2-3-4-5. Special Topics in Systems and Controls
, $3,4,5$ credit hours, respectively. Prerequiconsent of school.
Special topic offerings of current interes nd not included in regular courses.

8501 through 8517. Special Problems in lechanical Engineering
redit to be arranged. Prerequisite: consent of chool.
Individual studies in certain specialized areas and mathematical analyses and/or experimental investigations of problems of current
interest in mechanical engineering.
ME 8999. Preparation for Doctoral Dissertation Audit only. Prerequisite: consent of school.
ME 9000. Doctoral Thesis

NUCLEAR ENGINEERING

NE 1010. Computer Programming for Nuclear Engineers
3-0-3. Prerequisite: none
FORTRAN computer programming, graphics, and elementary numerical methods for NE freshmen will be taught using terminals to interact with the main computer on campus.
NE 1100. Energy and Engineers in Society NE 1100.
$2 \cdot 3-3$.
Deals with the concept of energy, society's requirements, the sources of supply, power gengration methods, and related environmental infuences.

NE 3110. Nuclear Radiation Detection 2-6-4. Prerequisite: PHYS 3001.
A laboratory introduction to the principles and characteristics of basic detectors for nuclear radiations and the electronic systems associated with them.
NE 3211. Elements of Nuclear Engineering NE 3211. Elements of Nuciear Engineering MATH 2309 .
An introduction to the field of nuclear engineering. Topics include neutron interactions in matter, the classification of fission chain reactors, nuclear fuels, and neutron diffusion theory

NE 4011-2-3. Nuclear Engineering Seminar 1-0-1 each.

A regularly scheduled course required of NE seniors. Various topics presented by guest speak ers, faculty members, and graduate students
NE 4115. Nuclear Engineering Calculations with Digital Computers I
2-0-1.
Introduction to computer programming with emphasis on solution of problems relevant to nuclear engineering
NE 4201. Nuclear Reactor Physics I
3-0-3. Prerequisites: PHYS 3001, NE 3211; corequisite: MATH 4582.
The course covers the physical principles of nuclear reactors. Major topics include the diffusion equation, neutron moderation, neutron ther malization, and criticality conditions.
NE 4202. Nuclear Reactor Physics II
3-0-3. Prerequisite: NE 4201
Topics include the multigroup diffusion method, heterogeneity effects, reactor kinetics, and reactivity changes.

NE 4205. Reactor Laboratory

1-6-3. Prerequisite: NE 4202. Students regis tering for NE 4205 must receive an access permit to the nuclear reactor from the direc tor of the Nuclear Research Center one quarter prior to taking the course.
Reactor principles and operational para meters. Approach to criticality, measurements of control rod worth, power distribution, void and temperature coefficients, importance function, absolute flux and the thermal spectrum.

NE 4210. Reactor Operations

1-6-3. Prerequisites: senior standing and consent of school. Students registering for NE 4210 must receive an access permit to the nuclear reactor from the director of the Nuclear Research Center one quarter prior to taking the
course. operation.
NE 4211. Reactor Engineering I 3-0-3. Prerequisite: ME 3720, CHE 3301 or equivalent.

Current and proposed nuclear reactor power plants. Therrodynamic and fluid flow aspects of reactor system design. Heat generation and conduction in nuclear reactor systems.

NE 4212. Reactor Engineering II
3-0-3. Prerequisite: NE 4211, ISYE 4725 or equivalent.

Single- and two-phase heat convection in nuclear power plants. Analysis of load and thermal stresses in nuclear power plant compo nents. Nuclear power plant fuel cycle and economics.

NE 4230. Nuclear Engineering Design
2-6-4. Prerequisites: NE 4212, 4202
A complete design project of a nuclear power plant section or of a nuclear fuel cycle facility.
NE 4260. Radiation Transport and Shielding 3-0-3. Corequisite: NE 4202 or equivalent.
Transport theory as applied to radiation tran port in homogeneous and heterogeneous bulk media. Emphasis on neutron and gamma-ray transport, both theoretical and applied.

NE 4261. Boiling Water Reactor Systems

and Operations

$3-0-3$. Prerequisites: NE 4701 and 4201 or consent of school.
An analysis of operating characteristics of boiling water reactors.
NE 4265. Light Water Reactor Technology 3-0-3. Prerequisite: senior standing in nuclear engineering.
A systematic survey of the technology of both pressurized and boiling water reactors with emphasis on the nuclear steam supply system and its associated safety and control systems.

NE 4301. Nuclear Fuel Cycle

3-0-3. Prerequisite: senior standing in nuclear engineering or consent of school
Systematic review of technologies used at fuel cycle facilities (other than reactors). Introduces economic, energy, environmental, safety, and licensing aspects.
NE 4610. Introduction to Fusion Power 3-0-3. Prerequisite: senior standing in science or engineering.

An introduction to the concepts of fusion power. Basic plasma physics and technology of magnetic confinement fusion devices. Current reactor designs are discussed

NE 4620. Nuclear Technology and the

 Environment3-0-3. Prerequisite: senior standing in science or engineering or consent of school. No credit to NE or HP students.
Survey of technical and social aspects of nuclear technology that relate to the natural environment and to national energy policies.
NE 4630. Isotopic Tracer Methodology 2-3-3. Prerequisite: senior standing in science or engineering or consent of school.
scientific and industrial applications in tes for scientific and industrial applications in the biological, physical, medical, or environmental sci-
ences.

NE 4701. Nuclear Reactor Engineering I
3-0-3. Prerequisite: Math 2309.
NE 4701-2-3 are designed to provide a
comprehensive sequence in nuclear reactor en-
gineering. Topics include nuclear reactions eraction of radiation with matter and diffus neutrons.
NE 4702. Nuclear Reactor Engineering \|I 3-0-3. Prerequisite: NE 4701
Steady state reactor theory; use of multi neutron diffusion theory computer codes, rea field trips of nucts fission product poisoning, trips of nuclear installations.

3-0-3. Prerequisite: NE 4702

Reactor control, reactor operation, energ moval, reactor design, reactor systom tions, field trips.
NE 4780. Energy Conversion Engineering 3-0-3. Prerequisite: ME 3720 or equivalent.
Energy sources, demand and supply; lar electric generating systems (fossil, hydro, nu ar), energy storage, advanced generating sy ems (solar, geothermal, fusion), direct enero conversion (thermoelectric, thermionic, MHD, tiu cells).
NE 4801-2-3. Special Topics
3-0-3. Prerequisite: consent of school
The purpose of this course is to permit
Nuclear Engineering Program to offer formal courses on topics of special interest on an ad hoc basis.
NE 4901-2-3-4. Special Problems
Credit to be arranged. Prerequisite: consent o school.
Special engineering problems will be assigne to the student according to his or her needs and capabilities to foster individual effort and experience in research techniques.
NE 6101. Introduction to Nuclear Materials 3-0-3.
Introduction to the nuclear fuel cycle, raw materials, extraction, enrichment, fabrication, processing. Metallurgy of uranium, ceramic fuels, cladding and control materials and coolants.

NE 6102. Nuclear Fuel Elements 3-0-3. Prerequisite: NE 6101 or consent of school.
Reactor fuel technology, including fuel preparation, assembly and testing. In-core performance of fuel elements and fuel design procedures.
NE 6103. Nuclear Reactor Analysis I 3-0-3. Prerequisite: graduate standing or consent of school
Covers nuclear reactor physics at the graduate level. Major topics include neutron thermalization, diffusion theory, and energy
group constants. group constants.

NE 6104. Nuclear Reactor Analysis II 0-3. Prerequisite: NE 6103
Topics include reactivity variation with lifeme, reactor kinetics, neutron transport theory, and derivation of diffusion theory from transport
Teory:

6110. Radiation Detection I

6-4. Prerequisite: PHYS 6011 or equivalent. Principles of radiation detection systems in ommon use. Included are interaction mechaisms, detector response, design, and select

E6111. Advanced Radiation Detection

 0 -3. Prerequisite: NE 6110 or equivalen Selected topics on modern radiation detection nethods and fast pulse-circuit systems. Emhasis on neutron detection methods, scintillaon detectors, and semiconductor devicesIE 6113. Radiation Effects on Materials -0.3. Prerequisite: NE 6101 or equivalent. Review of major effects of radiation damage ind related structural changes in solids. Semiconductors, organic materials, and reactor components are covered.
NE 6125. Nuclear Engineering Calculations with Digital Computers II
3.0-3 Prerequisite: NE 4115 or equivalent. Reviews numerical analysis with application to problems of nuclear reactors and associated nuclear physics and engineering. Programs are witten and run in FORTRAN.

NE 6126. Monte Carlo Methods in Nuciear

Engineering

3.0-3. Prerequisite: consent of school. Introductory course with application to radiafion transport. Statistical background, generation and testing of pseudorandom numbers, random variables, applications to shielding and reactor physics, variance reduction methods.
NE 6140. Advanced Nuclear Fuel Cycle 3-0-3. Prerequisite: consent of school. Survey of the nuclear fuel cycle. Technologies of raw materials production, uranium conversion and enriching, fuel fabrication and reprocessing waste management, economic and safety analy ses.

NE 6201.

Physics I
3.0-3. Prerequisite: NE 6104

The course covers the neutron transport equa tion and its solution by spherical harmonics, Fourier transforms and discrete ordinates methods. Multigroup methods are also covered.

NE 6202. Advanced Nuclear Reacto
Physics II
3-0-3. Prerequisite: NE 6201
A continuation of NE 6201. Topics include: adjoint equation, perturbation theory, variational methods, neutron thermalization, resonance, absorption, and reactor dynamics.
NE 6205. Nuclear Engineering Laboratory 1-6-3. Prerequisite: NE 6104. Students registering for NE 6205 must receive an access permit to the nuclear reactor from the director of the Nuclear Research Center one quarter prior to taking the course
Sequence of experiments elucidating reactor physics principles. Nuclear reactors, subcritical assembly, pulsed neutron generators, and isotopic assembly, pulsed neutron gre used

NE 6211. Nuclear Reactor Technology 3-0-3. Prerequisite: ME 3720 or equivalent.
Current and proposed nuclear reactor power plants. Thermodynamic and fluid flow aspects of reactor system design. Heat generation and conduction in nuclear reactor systems.
NE 6212. Nuclear Reactor Technology II
3-0-3. Prerequisite: NE 6211 or 4211.
Single- and two-phase heat convection in nuclear power plants. Analysis of load and thermal stresses in nuclear power plant components. Nuclear power plant fuel cycle and economics.
NE 6220. Advanced Engineering Design 2-6-4. Prerequisites: NE 4202 and 4212 or
6212.

Course intended to give experience in the synthesis of principles of nuclear engineering in the design of nuclear reactors and other facilities.

NE 6229. Applied Reactor Theory
3-0-3. Prerequisite: NE 4202 or 6104
The course covers the physical principles employed in computer codes used in the design of fast and thermal reactors. The codes will be used by the students to calculate design parameters.
NE 6230. Reactor Kinetics and Control -0-3. Prerequisite: NE 4202 or equivalent The course includes equations describing reThe course incordent behavior, elementary control theory, feedback effects, and stability analysis.

NE 6232. Nuclear Fuel Management 3-0-3. Prerequisite: NE 6251, 6760 or equivalent.
Nuclear fuel procurement options will be ex amined with regard to financing, scheduling, guarantees, risk, and cost. Calculational emphasis will be on in-core fuel management

NE 6235. Nuclear Reactor Safety 3-0-3. Prerequisite: consent of schoo Licensing procedures, sources of potentia hazard, accident transients, engineered safeguards, incipient failure, diagnostic techniques, guards, incipient failure, diagnostic techniqu
and safety analysis reports are discussed.

NE 6237. Fast Reactor Physics and

 Technology3-0-3. Prerequisite: NE 6104.
The course covers reactor physics and design topics of importance for fast breeder reactors.
NE 6251. Fundamentals of Nuclear Engineering
3-0-3. Prerequisite: PHYS 6011.
Reactor principles, operation, materials, con-
trol and use. trol and use.

NE 6260. Radiation Attenuation

3-3-4. Prerequisite: NE 6104.
Interaction of radiation with matter in bulk, absorption, scattering and attenuation of nuclear radiation, radiation transport theory, geometrical considerations, and transport solution methods.
NE 6601. Radioisotope Engineering I
3-0-3. Prerequisite: PHYS 6011 or equivalent.
Production and handling of radioisotope sources. Industrial and medical applications of tracer methods and radiation sources. Design procedures for radiation gauges and high-level irradiation facilities
NE 6602. Radioisotope Engineering II
3-0-3. Prerequisite: NE 6601.
Production and economics of large-scale radiation sources for process systems and power sources. Analysis and design of practical systems and case studies.

NE 6615. Fusion Fundamentals

3-0-3. Prerequisite: Graduate standing in engineering or science.
A review of selected topics in mathematics and physics that are required for graduate study in fusion. Atomic processes in ionized gas, nuclear reactions, interaction of radiation with water, reactor analysis, generalized curvilinear coordinates, and Fourier analysis are covered.
NE 6623. Fusion Plasma Analysis I
-0-3. Prerequisite: NE 4610 or equivalent.
Fundamental fusion plasma properties, modescription of plasmas, and magnetic fields, fluid in magnetically confined plasmas in magnetically confined plasmas.
NE 6624. Fusion Plasma Analysis II 3-0-3. Prerequisite: NE 6623.
Plasma equilibrium and stability waves in plasmas, plasma heating and fueling, radiative processes, plasma-wall interaction, plasma dynamics, fusion reactor plasma parameters.

NE 6625. Fusion Reactor Technology 3-0-3. Prerequisites: NE 6624 and NE 663 Technology and physics aspects of fusion reactor plant analysis and design, supercondue magnets, neutral beams, vacuum systems, confinement concepts, economics analysis a optimization.
NE 6626. Plasma Equilibrium and Transpu
3-0-3. Prerequisite: NE 6624 .
ows, fluid and kinetic theories of equilibria transport, and the evolution of flux surface configurations.

NE 6627. Plasma Waves and Instabilities 3-0-3. Prerequisite: NE 6624.
Study of the plasma as a dielectric medium Construction of the dielectric tensor and disot sion relations for magnetized plasmas. Instabilit in homogeneous and inhomogeneous plas
NE 6631. Fusion Nuclear Engineering I NE 6631. Fusion Nuclear Engineering I
$3-0-3$. Prerequisite: NE 4610, NE 6615, NE 3-0-3. Prerequisite: NE 4610, NE 6615, NE
6103 or equivalent. Neutronics and.
Neutronics and photonics analysis and desii of the blanket and shield for fusion reactors, tritium breeding, nuclear heating, response funs tions, induced activation, radiation transport ari protection.

NE 6632. Fusion Nuclear Engineering II 3-0-3. Pre/Corequisite: NE 6631, MET 4403, ME 3212, or equivalent
Materials and thermal-hydraulics analysis an design of the first wall and blanket for fusion reactors, radiation damage and radiation effecti heat transfer and transport.
NE 6680. Advanced Energy Conversion I 3-0-3.
Topics include energy sources, dynamic sys tems, thermoelectric conversion, fuel cells, sol power, MHD and the design of practical and useful power systems.
NE 6681. Advanced Energy Conversion II 3-0-3. Prerequisite: NE 6680.

Explores the topics covered in NE 6680 in greater depth. Current programs aimed at veloping advanced power sources are discuse

NE 6760. Financial Management and

 Economics of Nuclear Power3-0-3. Prerequisite: consent of school.
Topics include nuclear reactor and fuel cycle electrical power systems and utility economics, financial management and system modeling. Identical to ECON 6760.

6770. Small Computer Interface

 ingineering and Applications2.6-4.
The use

The use of computers in data acquisition and wontrol digital logic, interfacing, computer strucures, and the hardware-software trade-off are covered. First course in computer engineering options.
E6771. Engineering Computer Software
stems
3-4. Prerequisite: NE 6770 .
Computer programming for real-time process ontrol systems in complex multiple-task deviceporamming, operating systems, and real-time systems on minicomputers.

E 6772. Advanced Computer Interfacing

 nd Digital Design.3-3. Prerequisite: NE 6770.
A study of system design using MSI and LSI hips and programmable digital devices as sysmodules. Subjects include Boolean optimi-
ation and register transfer design techniques.
VE 6773. Computer Control of Real-time ystems
3-4. Prerequisite: NE 6770, EE 4077 or quivalent.
A study of concepts common to all computer controlled real-time systems. Subjects include evolution of time sets, vectored interrupts, and statistical alarm conditions.

NE 6775. Advanced Engineering Programming Methods
3.3-4. Prerequisite: FORTRAN programming knowledge.
Advanced engineering programming concepts and their implementation on large-scale digital computers. Dynamic data, dynamic programs, engineering data management, primary memory management, engineering problem-oriented language development and ICES.

NE 7000. Master's Thesis

Credit to be arranged.
NE 7999. Preparation for Doctoral Qualifying Examination
Audit only. Prerequisite: consent of school Students who are preparing for their qualifying examinations will be expected to register for this course. Occasionally this may be the only course for which a student is registered.

NE 8011-2-3. Seminar

1.0-1 each.

Regularly scheduled course required of all NE majors. Various topics presented by guest speakers, faculty members, and graduate students.

8110-1-2-3. Soecial Topics

Purpose of this course is to permit the Nuclear Engineering Program to offer formal courses on topics of special interest on an ad hoc basis.

NE 8501-2-3-4. Special Problems
Credit to be arranged. Prerequisite: consent of school.
The student is encouraged to exercise resourcefulness and originality in attacking a probem of special interest to himself or herself and a member of the NE faculty.
NE 8999. Doctoral Dissertation Preparation Audit only.
NE 9000. Doctoral Dissertation Credit to be arranged.

HEALTH PHYSICS

HP 2401-2-3. Introduction to Health Physics I, II, III
1-0-1 each. Prerequisite: sophomore standing A course designed to familiarize the student with the health physics profession and the role of the health physicist in industry, medicine, and public health.
HP 4401-2-3. Health Physics Seminar
1-0-1 each. Prerequisite: consent of school.
Intended primarily for students who plan a career in health physics. Review of current literature and current activities in the profession with class discussions.

HP 4411. Radiation Physics

3-3-4. Prerequisites: MATH 2309, PHYS 2123. This course provides the physical basis for understanding the effects of ionizing radiation on matter, for developing a philosophy of radiation protection for individuals and the environment.

HP 4412. Principles of Health Physics

 3-0-3. Prerequisite: PHYS 3001 or HP 4411. Course emphasizes the biophysical basis of radiation protection and the development of protection criteria.HP 4413. Applied Health Physics
3-3-4. Prerequisite: HP 4412 or consent of school.
Topics covered include personnel monitoring bioassay, air sampling and respiratory protection, radiation surveys of nuclear reactors, accelerators, and X-ray installations.
HP 4440. Effect of Nonionizing Radiation and Protection Standards
and Protection Standards 3-0-3. Prerequisites: consent of school and HP
4412 or equivalent. A study of metho
A study to nods of production and con exposureffect of human exposure and a radiation protection standards.

HP 4901-2-3-4. Special Problems in Health Physics
Credit to be arranged. Prerequisite: consent of school.
Special problems in health physics will be assigned to students based on their interests and that of a member of the NE\&HP faculty. The students are encouraged to exercise resourcefulness and originality in attacking individual special problems.
HP 6401. Radiological Health Physics
3-0-3. Prerequisite: consent of school. Corequi site: PHYS 6011 or equivalent.

An evaluation of radiation protection standards, their development and enforcement. Covers topics such as effects of radiation, internal and external exposure, health physics practice and dosimetry.
HP 6405. Health Physics Practice
3-0-3. Prerequisite: HP 4413 or 6401 or equiva-$3-0-3$
lent.
A review of many types of radiation problemsboth basic and applied-relating to the qualifications of a certified health physicist.
HP 6410. Radiation Dosimetry
3-0-3. Prerequisites: HP 6401 and NE 6110, or consent of school.

Fundamental principles of dosimetry of ionizing radiation: photons, charged particles, and neutrons. Cavity and interface theory. Measurement and calculation of exposure and absorbed dose.
HP 6414. Radiation Technology Laboratory 2-6-4. Prerequisite: NE 6110
Advanced laboratory course covering various aspects of radioisotope applications, tracer tech nology, radiation chemistry, and activation analysis as applied in health physics.

HP 6421. Health Physics Internship $0-9-3$. Prerequisite: By special arrangement and consent of school.
Field training for individual graduate students in actual medical diagnostic, therapeutic, or research facilities. May be used as substitute for special problems by students in the medical health physics option. Requires grade project, formal written report, and oral presentation.
HP 6423. Physics of Radiation Therapy 2-3-3. Prerequisite: HP 6410 or consent of school
Physical basis of radiation therapy. Teletherapy machine calibration and quality control. Methods for dose distribution calculation for external beam and brachy therapy.
HP 6424. Radiation Oncology
2-3-3. Prerequisite: HP 6423 or consent of school.
Description of common tumors, histology, routes
of spread, treatment modalities. Methods mor localization and treatment planning for exte nal beam, implants, and intracavity sources

HP 6429. Particle Accelerator

2-3-3. Prerequisite: PHYS 6011 or consent school.
Principles of particle accelerators including acceleration methods, ion sources and targets characteristics of machines such as electrost generators, betatrons, linear accelerators, cy trons, synchrotons, and synchrocyclotrons. D. sign and operation of X-ray and neutron gen ators covered in laboratory.
HP 6430. Radiation Protection in Nuclear Facilities
3-0-3. Prerequisites: HP 6405 or 4413 and 710 or equivalent.
Review of radiation protection requirements nuclear facilities, radiation monitoring, environ mental surveillance planning, and procedures sample analyses and waste management.
HP 6442. Applied Health Physics Laborato 1-6-3. Corequisite: HP 6430.
A laboratory course covering practical aspe of monitoring problems in nuclear facilities and environmental surveillance analyses.
HP 6641. Environmental Surveillance and Radioactive Waste Disposal
3-0-3. Prerequisite: consent of school.
Advanced course on environmental radioacti
ty and environmental aspects of nuclear powe Radioactive waste treatment, reactor effluents, and waste disposal. Identical to HP 6783 but without the laboratory.
HP 6643. Environmental Impact of Nuclear Power Stations
Power Stations $3-0-3$. Prerequiste: HP 6641 or consent 3-0-3. P
school.

Specific
Specific impact of nuclear facilities on the environment. Practical and regulatory aspects reactor siting and the preparation of environmental impact statements.

HP 6783. Environmental Surveillance and Radioactive Waste Disposal
3-3-4. Prerequisite: CE 6133, HP 6401 or consent of school.
Advanced course on environmental radioactiv ty and environmental aspects of nuclear powe Radioactive waste treatment, reactor effluents and waste disposal. Lecture portion of this course is identical to HP 6641.
HP 6800. Industrial Health Protection Surve 2-3-3.
A survey of the major physical and chemical hazards in the industrial environment emphasiz ing recognition, monitoring technology, engineer ing control methodology, best practice, and cur:
rent regulations.

School of Textile Engineering

Established in 1899

Director-Albin F. Turbak; Callaway Professor-John L. Lundberg; Professors -Winston C. Boteler, Walter C. Carter, W. Denney Freeston, Wayne C. Tincher; Associate Professors-Wallace W. Carr, Fred L. Cook, L. Howard Olson, Agaram S. Abhiraman; Research Associate \longmapsto Elisha A. Edmiston; Research Scientist II-Matthew Sikorski.

General Information

Textiles, one of man's oldest commercial ventures, continues to find new applications in the modern world. Fiber assemblies have many varied uses in our every day life and are playing critical roles in new complex systems in space, medicine, safety, environmental control, transportation, and construction.
Textile engineering encompasses the synthesis of polymers by nature and man, fiber fabrication processes, assembling of fibers into one-, two- and three-dimensional structures, modification of structural properties through dyeing, finishing, and coating and measurement of complex aesthetic and mechanical properties of fiberbased systems. New polymers and fibers, new methods of assembling fibers into useful products, and new applications of fibers are continually developing.
The School of Textile Engineering prepares students for rewarding careers in the polymer-fiber-textile industry. Graduates obtain positions in manufacturing supervision, technical service, sales, product and process development, research, quality control, and corporate management. They participate in the design, development, manulacturing, and marketing of a broad range of fiber-based and associated products. Many hold key management decisionmaking positions at a young age.
The textile industry is by far the larges manufacturing industry and employer in the Southeast. If apparel and other associated segments of the industry are included, the textile-based industry is the largest
in the United States, representing one out of every eight manufacturing jobs. This is more than five times the number employed in the automobile industry. The textile industry's needs for textile graduates each year far exceed the number of graduates.

Multidisciplinary Programs

See table on page 79

Curricula

Three study programs are available leading to the degrees Bachelor of Textile Engineering, Bachelor of Science in Textile Chemistry, and Bachelor of Science in Textiles. Students may pursue each degree in a regular four-year program or the fiveyear cooperative plan.

Because of the multidisciplinary nature of textiles, the curricula stress a broad background. Emphasis in the freshman and sophomore years is on mathematics, chemistry, and physics, and in the junior and senior years on materials science, polymer and textile chemistry, applied mechanics, business administration, and application of each field to the broad range of problems encountered in textiles. All three programs allow the student to select a number of courses from a wide range of general and technical electives.
In place of the many conventional laboratory sessions, textile students participate in a student operated and managed business venture. Students design, develop, produce, and market novelty textile products. Every participant is exposed to all facets of the business environment.
Since most of the textile course work is concentrated in the last two years of the programs, students from junior colleges and community colleges can readily transfer into selected programs of the School of Textile Engineering.
In addition to campus-wide academic requirements for graduation with a bachelor's degree, the number of quality points earned in textile courses taken toward the degree must be at least twice the number of credit hours in those courses.

Textiles For Other Majors

Students with other majors often enter the textile industry. To further their careers, the School of Textile Engineering has developed coordinated course offerings that will be helpful to students with this goal. Listings of recommended course sequences in textiles are available in the School of Textile Engineering office.

Graduate Program

The School of Textile Engineering offers a graduate program leading to the Master of Science and Doctor of Philosophy degrees. Students holding an undergraduate degree in any one of several fields of science or engineering may qualify for admission. An undergraduate degree in textile engineering, textiles, or textile chemistry is not a specific requirement. Each student pursues an individually structured program.

The graduate course offerings encompass advanced study and research in polymer synthesis, mechanics of fibrous structures, process dynamics, dyeing and dye synthesis, viscoelasticity, experimental design, properties of materials, polymer flow, polymer environmental stability process control, energetics, and kinetics. The School of Textile Engineering has a variety of active research programs in which students participate.

The School of Textile Engineering is housed in the Hightower Building, a fourstory classroom and laboratory facility. The building contains equipment illustrating most major types of textile processing. Well equipped laboratories are also available for the chemical and physical characterization of polymers, fibers, and fiber assemblies. Specialized equipment is available for fabric flammability studies, polymer environmental stability experiments, fiber-reinforced composite testing, and energy conservation and water pollution studies. Machine shop and instrumentation facilities with full-time supporting technicians are also housed within the building.

EE 3726
Elementary
Electronics
.......... 2-3-3
EE 3727
Electric Power 2-3-3
TEX 4306
TEX 4306
Dyeing and Printing 3-3-4
TEX 4420
Analysis of Textile 3-3-4
Materials
ISYE 4725 Engineering
Economy

TEX 4405-6-7	1-0-1	$1-0-1$	$1-0-1$

TEX 3480-1
Texile Manufactur-
ing Processes IV, V 0-3-1 0-3-1
TEX 3484
Problems in Textile
Management II 0-3-1
TEX 4901 ${ }^{3}$
Special Problems 0-3-1 0-3-1
TEX 4751
Polymer Science
and Engineering II 3-0-3
TEX 3600
Elementary Heat
and Mass Transfer 3-3-4
Electives
Humanities/Social
Science/Modern
Language
Electives ${ }^{2}$
Totals

$\frac{\text { …........... }}{\text { 3-0-3....... }}$| $3-0-3$ |
| ---: |
| $12-12-16$ |
| $15-12-19-16$ |

${ }^{1}$ See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshman physical education require ments for both men and women.
${ }^{2}$ Twelve hours of electives must be approved by the department. Six must be humanities/social science/modern language. These free electives may be taken at any time during a students course of study. Up to six hours of basic ROTC and a maximum of nine hours of advance ROTC may be used for elective credit. ${ }^{3}$ TEX 4481-2 can be substituted for TEX 4900-1.

Program for the Bachelor of Science in Textiles Degree

Freshman Year Course			
CHEM 1101-2 General Chemistry	4-3-5	4-3-5	
ENGL 1001-2-3 Analysis of Literature	3-0-3	3-0-3	3-0-3
MATH 1711-2-3 Mathematics for Management I, II, III	5-0-5	5-0-5	5-0-5
TEX 1100 Introduction to Textile Engineering		3-0-3	
TEX 2103 Yarn Processing			3-0-3
ICS 2250 Technical Information Resources		1-0-1
Electives ${ }^{1}$ Physical Education	X-X-2	X-X-1	X-X-1
Electives ${ }^{2}$	2-0-2	2-0-2	2-0-2
Totals	X-X-17	X-X-19	X-X-15
Sophomore Year Course	1st Q.	2nd Q.	3rd Q.
PHYS 2111-2-3 Physics	4-0-4	4-0-4	4-0-4
ENGL 3023 Written Communication			3-0-3
ECON 2000-1 Economic Principles and Problems		3-0-3	3-0-3
EGR 1170 Introductionto Visual Communications and Engineering Design I	2-3-3	
TEX 2104 Yarn Processing II	3-0-3		
TEX 3110 Woven Structures I		3-0-3	
TEX 3112 Knit Fabrics	\ldots		3-0-3
TEX 2180-1-2 TextileManufacturing Processes I, II, III	0-3-1	0-3-1	0-3-1
Electives ${ }^{2}$	6-0-6	6-0-6	3-0-3
Totals	15-6-17 1	16-3-17	16-3-17

Junior Year Course	1st Q.	2nd Q.	3 rda
TEX 3122			
Structures of			
Organic Polymers	3-0-3		
TEX 4305			
Chemical			
Preparation and			
Finishing of Textiles		3-0-3	
TEX 4306			
Dyeing and Printing			3.4
TEX 3113			
Nonwoven Fabrics	3-0-3		
TEX 3400			
Computer Applica-			
MGT 2000-1			
Accounting I, II	3-0-3	3-0-3	
MGT 3060			
Financial			
Management			3.0
MGT 3300			
Marketing I	3-0-3		
TEX 4200			
Fiber Science		3-0-3	
ISYE 3028			
Engineering			
Statistics I			3.0
TEX 3480-1-2			
Textile Manufacturing			
Processes IV, V, VI	0-3-1	0-3-1	0-3.
TEX 3483-4			
Problems in Textile			
Management I, II	0-3-1	0-3-1	
Electives ${ }^{2}$	3-0-3	6-0-6	3-0
Totals	15-6-17	15-6-17	14-9-1

See "Curricula and Courses of Instruction," Department of Physical Education and Recreation for freshman physical education requirements for both men and women.
${ }^{2}$ Twelve hours of wontives
Twelve hours of electives must be approved manities/social science/modern must be hutives. These free electives may language elec any time during a student's course of at up to six hours of basic ROTC and of study. of nine hours of advanced ROTC may be used of nine hours of advanced ROTC may be used

Senior Year

$\times 4420$

nnalysis of Textile
Materials

EX 4405-6-7

TEX 4405-6-7	$1-0-1$	$1-0-1$	$1-0-1$

TEX 4100
Textile Management \quad.......... 2-3-3
Decision-Making
TEX 4101
Planning and Control
in Textile Production
Systems
PSY 4401
ndustrial Psychology 3-0-3
MGT 4200
Industrial Relations 3-0-3
ISYE
Measurements
MGT 3150
Industrial Manage- - 3-0-3
ment Principles

TEX 3485
Problems in
Management III
TEX 4480
Problems in
Production
Elective
Elither TEX 4481-2,
Advanced Problems
in Textile Management and Production Innovation or TEX 4900-1, Special Problems

Electives

Totals

$6-0-6$	$0-3-1$	$0-3-1$
$13-9-16$	$12-6-14$	$6-0-6$
$16-3-17$		

Program for Bachelor of Science in Textile Chemistry

Freshman Year
Course \qquad
CHEM 1101-2

ºneral Chemistry
Gener
CHEM 2113

4-3-5

TEX 1100

Introduction to Textile Engineering		3-0-3	
ENGL 1001-2-3			
Analysis of Literature	3-0-3	3-0-3	3-0-3
MATH 1307-8-9 Calculus I, II, III	5-0-5	5-0-5	5-0-5
ICS 2250 Technical Information Resources			1-0-
Electives ${ }^{2}$ Physical Education	X-X-2	X-X-1	X-X-1
Electives ${ }^{3}$	2-0-2	2-0-2	2-0-2
	- X -1	- X -	

Sophomore Year

Course
CHEM 3311-2-3
1st Q. 2nd Q. 3rd Q.
Organic Chemistry $\quad 3-0-3 \quad 3-0-3 \quad 3-0-3$

CHEM 3381-2
Organic Chemistry
Laboratory

Laboratory
MATH 2307-8
Calculus IV, V
PHYS 2121
Particle Dynamics
4-3-5

PHYS 2122
Electromagnetism 4-3-5
PHYS 2123
Optics and Modern 4-3-5
Physics
4-3-5
ENGL 3023
Written
Communication
EGR 1170
Visual Communica-
tion and
Engineering
Engineering
Design I
2-3-3
TEX 3400
Computer
Applications in
Textiles
Electives ${ }^{3}$
Totals

3-..............	$2-3-3$	
$17-6-19$	$\frac{3-0-3}{15-9-18}$	$\ldots \ldots \ldots .$.
$12-12-16$		

17-6-19 15-9-18 12-12-16

EX 2180. Textile Manufacturing Processes I
3.1. Prerequisite or corequisite: TEX 1100. Orientation to manfacturing and management werations in the student operated enterprise.
TEX 2181. Textile Manufacturing
processes II
(:33-1. Prerequisite: TEX 2103 or consent of
ynool.
Yarn production operations within the student merated enterprise.

TEX 2182. Textile Manufacturing Processes III
133-1. Prerequisite: TEX 3110 or consent of
Woven fabric production operations within the :udent operated enterprise.
TEX 2500. Survey of Apparel Manufacturing 30-3.
Apparel engineering and manufacturing from planning and receipt of raw materials to the distribution of finished garments. chnology

chnology

. Not open to textile students.
An introduction to the history, structure, properties, fabrication, and use of polymers in he textile and related industries.
TEX 2701. Textile Industry Survey 3-0.3. Not open to textile students.
An overview of textiles, fibers and polymers and the associated complex of industries from raw materials to finished products including lextile arts and textile management. Credit can not be obtained for both TEX 1100 and TEX 2701.

TEX 2702. Survey of Fibrous Materials
3-0-3. Not open to textile students. A survey of natural and man-made fibers used in the textile industry.

TEX 3110. Woven Structures

3-0-3. Prerequisite: TEX 2104.
The weaving process and woven fabric construction, design, and properties are studied.
TEX 3111. Woven Structures II
3-0-3. Prerequisite: TEX 3110.
Dynamics, operating characteristics, and eco nomics of new weaving machines.

TEX 3112. Knit Fabrics

3-0-3. Prerequisite: TEX 2103
A study of warp and weft knit tabric produc tion, properties and design. Description of knitting machines as related to fabric design and control of properties.

TEX 3113. Nonwoven Fabrics
3-0-3. Prerequisite: TEX 2103
Chemically and mechanically bonded nonwoven fabrics, fabric formation processes, design, and properties.
TEX 3122. Structures of Organic Polymers 3-0-3. Prerequisite: CHEM 1102 or conșent of school.

A study of the chemical and physical structures of organic, fiber-forming polymers and the relationship of their structure to properties.
TEX 3400. Computer Applications in Textiles 2-3-3. Prerequisite: MATH 1712 or 1308 or consent of school.
Computer techniques are applied to textile engineering problems. An assembler language introduces FORTRAN. Applications include digital and analog interfaces to textile processes.

TEX 3480. Textile Manufacturing

Processes IV
$0-3-1$. Prerequisite or corequisite: TEX 3112 or consent of school.
Knit fabric production operations within the student operated enterprise.

TEX 3481. Textile Manufacturing

Processes V
0-3-1. Prerequisite: consent of school.
Evaluation of products produced by the studen operated enterprise.

TEX 3482. Textile Manufacturing

Processes VI

$0-3-1$. Prerequisite: TEX 4305 or consent of aho
Fabric finishing operations within the student perated enterprise

TEX 3483. Problems in Textile Management 0-3-1. Prerequisite: MGT 2000, MGT 3300 or consent of school.
Product marketing and cost accounting within the student operated enterprise.

TEX 3484. Problems in Textile

Management II

$0-3-1$. Prerequisite: consent of school.
Methods of plant maintenance and work studies within the student operated enterprise.

TEX 3485. Problems in Textile

Management III

$0-3-1$. Prerequisite: consent of school.
Personnel administration, scheduling, and planning within the student operated enterprise.

TEX 3500. Jacquard Design and Weaving

2-3-3. Prerequisite: TEX 3110.
The designing of Jacquard patterns and the techniques involved in the transfer of design to the fabric.

TEX 3510. Materials Preparation, Pattern Anal-

 ysis and Cutting in Garment Manufacture MeMethods, mechanics and analysis of materials preparation, pattern drafting and cutting in garment manufacture with emphasis on new methods and automation.

4-0-4.
Formation and mechanics of seaming incluc ing thread properties, stitch formation, sewing machines, heat sealing and ultrasonic, radio frequency, infrared and adhesive bonding.

EX 3512. Apparel Production, Planning and Engineering

4-0-4. Prerequisite: TEX 3510 or consent of school.
Analysis and design of apparel production from raw materials to finished product with emphasis on maximizing quality and productivity and minimizing time, cost, and waste.
TEX 3513. Apparel Shaping and Finishing 4-0-4. Prerequisites: TEX 3510, 3511 and 3512
or consent of school Prinsent of school
and finishing apparel with processes for shaping and finishing apparel with emphasis on design of systems and equipment for maximizing the quality/cost ratio.
TEX 3600. Elementary Heat and Mass Transfer 3-3-4. Prerequisite: MATH 1308, PHYS 2123. ME 3720 or CHEM 3412
Unit operations of chemical engineering em phasizing applications to fibers and textiles.
TEX 3700 . Survey of Fiber Processing
A . Not open to textile students.
A survey course in yarn manufacturing covering principles of processing natural and synthetic fibers.
TEX 3701. Survey of Fabric Production 3-0-3. Not open to textile students.
A survey of fabric assemblies including w
ven, knit, nonwoven, and flexible compoing woures. Discussion includes proessing destruc and mechanical behavior processing, design,

TEX 3702. Survey of Dyeing and Finishing of

 Textile Materials3-0-3. Not open to textile students.
Dyeing and finishing of textile materials made from natural and synthetic fibers.

TEX 3800. Special Topics

1-0-1. Prerequisite: consent of school Sern to the textile indurrent interest and concern to the textile industry.

TEX 4100. Textile Management DecisionMaking
2-3-3. Prerequisite: senior standing
Students practice making management simulations of textile market using compute

TEX 4101. Planning and Control in Terill Production Systems
3-0-3. Prerequisite: ISYE 3749 ,
A study of the basic planning and control functions required in textile production system including design of production facilities, anal planning.
TEX 4122. Chemical Structures and Phys Properties of Polymers
3-0-3. Prerequisite: CHEM 1102 or consent or chemical open to textile chemists, chemis A fundal engineers.
Acluding polymerization of organic polymers, including polymerization methods, chemical str ures, and structure/property relationships.

TEX 4200. Fiber Science

3-0-3. Prerequisite: PHYS 2121 or 2111.
The physical structure and properties of fib are examined and related to end-use performance.
TEX 4201. Mechanics of Fibrous Structure 3-0-3. Prerequisite: TEX 4200 or consent of school.
Yarn processing with emphasis on relationships between fiber properties and yarn propertie

Structures Mechanics of Fibrous

3-0-3. Prerequisite: TEX 4201 or consent of
Proc.
Processes, properties, and mechanics involve in the manufacture of woven and knitted fabric TEX 4203. Mechanics of Fibrous
Structures III
3-0-3. Prerequisite: TEX 4201 or consent of school.
Investigation of production processes, struc. tures and properties of adhesive and mechanicall bonded nonwoven fabrics and fiber reinforced materials.
TEX 4300. The Chemistry and Chemical
Processing of Fibers and Textiles I
The. Prerequisite: TEX 4751.
synthetic fibers with purification of natural and hip of fiber structure and bis on the relationcal processing al processing.
TEX 4301. The Chemistry and Chemical Processing of Fibers and Textiles II 3-3-4. Prerequisite: TEX 4751 or consent of school.

The dyeing and printing of textile material with emphasis on the relationship of fiber struc re and response of textiles to these processes.

EX 4302. Textile FInishing Processes

 0.3. Prerequisite: TEX 4751 or consent of chool.The chemical and mechanical finishing of extile materials to impart desired properties with emphasis on the relationship of fiber struc wre and response of textiles to these processes TEX 4305. Chemical Preparation and Finishing of Textiles
0 -3. Prerequisite: T
The chemical, thermal and mechanical processes used in the preparation and finishing of ibers, yarns, and fabrics.

EX 4306. Dyeing and Printing
-3-4. Prerequisites: TEX 3122 or TEX 475 consent of school.
The application of dyes and pigments to bers, yarns, and fabrics.
TEX 4310. Textile Instrumental Analysis 2-3-3. Prerequisite: consent of school. The theory and practice of modern instrumenmethods as used in the analysis of textile hemicals with emphasis on spectroscopy, chromatography, colorimetry, and differential thermal analysis.
TEX 4401. Introduction to Textile Literature -0.1.
Sources of textile information and an introducion to search techniques for the textile information system.
EX 4405-6-7. Semina
1-0-1 each. Prerequisite: senior standing. TEX 4405 and 4406 are to be taken audit only and are prerequisites for TEX 440
Presentations by invited speakers on new developments in textiles, job opportunities, and graduate education.
EX 4420. Analysis of Textile Materials 3-3-4. Prerequisites: TEX 4200, 3122 or 4751, ISYE 3028 or consent of school.
The methods used in the textile industry for assessing the effects of process variables on the end use performance of textile products are examined.
TEX 4480. Problems in Production Supervision 0-3-1. Prerequisites: TEX 2180-1-2, 3480-1. Supervision of the student operated enterprise production operations. Solving day to day problems in logistics, personnel relations, and manufacturing technology.

TEX 4481. Advanced Problems in Textile

 Management0-3-1. Prerequisites or corequisites: TEX 3483 4-5.
Supervision of one of the student operated enterprise's staff level departments.
TEX 4482. Product Innovation
$0-3-1$. Prerequisite or corequisite: TEX 4480. The student is part of a small entrepreneurial team developing new products for the student operated enterprise

TEX 4483. Special Problems in Textile Industrial Operations
$0-6-2$. Prerequisite: TEX 3702 or consent of school.
Available to textile and non-textile students who want to engage in special projects which involve the personnel or facilities of the student operated enterprise
TEX 4500. Technology of Carpet Manufacturing 3-0-3.
A study of materials and production systems used in carpet manufacturing. Carpet performance characteristics, dyeing, backcoating, and nonwoven carpet manufacturing methods are examined.
TEX 4502. Fiber Reinforced Material 3-0-3. Prerequisite: consent of school
Principles and engineering behavior of flexible and rigid fiber reinforced composites. Topics include influence of matrix, interface and voids, fabrication, fracture and fatigue characterization, evaluation of specific composite systems
TEX 4503. Science of Color
3-0-3. Prerequisites: CHEM 1102, PHYS 2113 or consent of school.

The physical, chemical, and biological principles involved in perception, measurement, and specification of color.

TEX 4504.

Texturing
3-0-3. Prerequisites: TEX 3122, 4751 or con sent of school.

Rheology mechanics, energetics, kinetics, phas transitions, and polymer structure in fiber formation by melt, dry, wet and reactive spinning, and drawing and texturing of fibers.
TEX 4505. Structure and Mechanics of Knit Fabrics
3-0-3. Prerequisite: TEX 3112 or consent of school.

The basic geometries of fabrics produced by warp and weft knitting, overall physical propertie of knit fabrics and fabric stress distribution.

TEX 4750. Polymer Science and

Engineering I
3-0-3. Prerequisites: CHEM 1102 or CHEM 1112 and PHYS 2123 or consent of school.
An introduction to the chemistry and structure
of polymers. Polymerization processes, major polymer systems, and methods of identification of polymers are presented. Also taught as CHE 4750.

mer Science and

Engineering II
3-0-3. Prerequisite: CHEM 1102 or CHEM 1112 and PHYS 2123 or consent of school. An introduction to the physical states and transitions, fabrication processes and mechanical properties of polymers. Also taught as CHE 4751.

TEX 4753. Survey of Pulp and Paper

 Technology3-0-3.
The mechanical systems used in paper manufacture. Chemistry of pulp preparation and nonfibrous additives. Also taught as CHE 4753
TEX 4760. Polymer Science and Engineering Laboratory
isite: TEX 4751 or CHE 475
Experiments in polymerization, processing and property evaluation of polymers. Also taught as

TEX 4773. Paper Formation and Properties 3-0-3. Prerequisite: consent of school.
The processes in the fabrication of paper and paper products from pulp. The effects on paper properties of chemical and mechanical pretreatment of pulp. The measurement of pape properties. Also taught as CHE and ME 4773.

TEX 4800-1-2. Special Topics

3-0-3 each. Prerequisite: consent of school. Studies of topics of current interest and concern to the textile industry

EX 4900-1. Special Problems

Credit to be arranged. Prerequisite: consent o chool
Special problems involving analytical and/or experimental investigations in the field of textiles.

TEX 6100. Advanced Fiber Science

-0-3. Prerequisite: graduate standing
Physical properties, mechanical properties, and microstructure of polymeric fibers are examined and related to end-use performance.
TEX 6101. Textile Testing and Evaluation
3-3-4. Prerequisite: graduate standing.
Study of methods used to characterize proprries that are important to an understanding of behavior of fibers, yarns, and fabrics

TEX 6200. Physical Methods of Investigati|

 Textiles3-6-5. Prerequisites: ISYE 3028, TEX 4420 o consent of school.
Study of modern techniques and instrument ion for the evaluation of physical properties o fibers, yarns, and fabrics.
TEX 6201. Process Control in the Textile Industry
3-0-3. Prerequisite: TEX 6200 or consent of chool.
Computer techniques are applied to problen in scheduling production equipment and in con rol of quality, inventories, and production. Topi include interfacing, costs, programming.

TEX 6210 .

-0-3. Prerequ sent of school.
The dynamic interaction of fibers and fiber assemblies during processing is examined. effects of fiber and bundle properties on processing variables are analyzed.

TEX 6211-2. Dynamics of Fiber Processing Systems II, III
3-0-3 each. Prerequisite: TEX 6210 or consen of school.
The dynamics of fabric forming mechanisms are examined. Weaving, knitting, sewing, heating and drying are typical processes which are considered.
TEX 6300. Preparation and Reactions of Polymers
3-0-3. Prerequisites: TEX 4750, 4751
A detailed treatment of the reactions involver polymers including both man-made and natura polymers including preparative and degradative reactions in polymer systems.

TEX 6320. Fundamental Aspects of Dyeing Processes
3-0-3. Prerequisites: TEX 4301 or 4306, 4751 or consent of school.
Models required for the interpretation of the dyeing behavior of textile materials are examined in order to provide useful semiquantitative descriptions of dye processes.

TEX 6321. Chemical Technology

Stabilization Processes
3-0-3. Prerequisites: TEX 4302 or 4305, 4751 or consent of school.
A comprehensive treatment of finishing processes used in the textile industry to impart desirable end-use performance characteristics to textile materials

EX 6400. Information Processes in Textile Science and Engineering
0.3 . Prerequisite: TEX 3400 or consent of chool.
Information aspects of textile science and chnology; use of computers in acquisition, rocessing, and utilization of information and nowledge in textile research and production EX 6750. Polymer Structure and Physical roperties I
-3. Prerequisite: TEX 4751 or CHE 4751 consent of school
Morphology and structure, linear and nonlinea scoelasticity, anisotropic mechanical propertie nd yield and fracture behavior of polymers with pplications to textile fibers and plastic prod ucts. Also taught as CHE 6750.
EX 6751. Polymer Structure and Physical Properties II
3.0-3. Prerequisite: TEX 6750 or CHE 6750 or consent of school.
Structure-property relationships of elastomers, einforced plastics, fibers, foams, and natural polymers emphasizing proteins and the composlie nature of all polymers and polymeric materi-
als. Also taught as CHE 6751.
TEX 7000. Master's Thesis

EX 7210. Recent Advances in Textile

 Manufacturing$3-0-3$. Prerequisite: consent of school
A detailed review of significant new processes, echniques and machines in the textile industry.

TEX 7220. Fiber Mechanics

3-0-3. Prerequisite: TEX 4751 or consent of 3-0-3.
schoo

The tensile compressive bending, and torsiona esponse of fibers. Fiber anisotropy and linear and nonlinear time dependent response are studied.
TEX 7221. Mechanics of Linear Assemblies 3-0-3. Prerequisite: TEX 4202 or consent of school.
The tensile, bending, and torsional response of continuous filament, staple and blended single yarns, the tensile response of plied yarns, cords and ropes, the tensile response of braided cords.
TEX 7222. Mechanics of Planar Assemblies 3-0-3. Prerequisite: TEX 7221.
A state-of-the-art study of woven, knit, and nonwoven fabric mechanics
TEX 7311. Polymer Degradation
3-0-3. Prerequisites: TEX 4750, 4751 or con sent of school.
A study of the physical and chemical changes in polymeric materials exposed to hostile environments during processing and use.

TEX 7313. Dye Synthesis
3-0-3. Prerequisite: consent of schoo
The industrial chemistry of dyes and their intermediates is covered. Structure is related to color, fastness, and affinity. Lapworth nomencla ture and recent patents are surveyed.
TEX 7750. Surface and Solution Properties of Polymers
3-0-3. Prerequisite: consent of schoo
Study of plasticized polymers, solutions, and colloids; sorption, polymer characterization, interfacial phenomena and coagulation using the modynamics, statistical mechanics, ion methods. and fluctuation theories and relaxation methods. Also taught as CHE 7750.

TEX 7751. Energetics

3-0-3. Prerequisite: consent of school.
Energetics applied to polymers and fibers using Newtonian mechanics, thermodynamics, and quantum descriptions of processes and materials.

TEX 7752. Kinetics

3-0-3. Prerequisite: consent of school.
Kinetics applied to polymers and fibers including fluid flow, viscoelasticity, heat transfer, diffusion, electrical conductivity, rates of chemical reactions and phase changes, and irreversible thermodynamics.
TEX 7753. Polymer Flow
3-0-3. Prerequisite: TEX or CHE 6750 or
consent of school.
The fluid mechanics, heat transfer, and mixing of non-Newtonian fluids. Experimental methods for characterizing fluids and the extrusion of polymer melts are emphasized. Also taught as CHE 7753.
TEX 7999. Preparation for Doctoral Qualifying Exams
TEX 8003-4-5. Seminar
1-0-1 each. Audit only.
TEX 8100-1-2. Special Topics in Textile
Science and Engineering
3-0-3 each. Prerequisite: consent of school.
Topics of current interest in textile science and engineering.
TEX 8500-1-2. Special Problems In Textiles and Textile Engineering
Credit to be arranged.
TEX 9000. Doctoral Thesis

College of Management

Established in 1969, school in 1948 department in 1934
School of Commerce in 1913
Acting Dean-Gerald J. Day; Assistan Deans-Andrew J. Cooper III, Marilu H McCarty; Callaway Professor-Eugene E. Comiskey; Mills B. Lane Professor-Bernell K. Stone; Professors-Philip Adler, Jr., Fred C. Allvine, William Carl Biven, Robert W. Carney, Kong Chu, Robert Earl Green Robert G. Jeroslow, Ferdinand K. Levy Mack A. Moore, Roderick F. O'Connor, Leonard J. Parsons, William A. Schaffer, Matthew J. Sobel, Fred A. Tarpley, Jr.; Associate Professors-Andrew J. Cooper III, Gerald J. Day, David M. Herold, John R. Kaatz, Jackie Kleiner, Naresh K. Malhotra, David C. Nachman, Peter G. Sassone, Myron B. Slovin, Marie E. Sushka, Richard D. Teach, Fred E. Williams; Assistant Pro-fessors-James V. Jordan, Dennis F. Karney, Robert C. Liden, Tom W. Miller, Charles W. Mulford, Jr., Charles K. Parsons, Kishore Pasumarty, Eliezer Z. Prisman, Arnold Schneider, Ralph A. Walkling; Instructor -Mark S. Zachmann.

General Information

The College of Management provides education of the highest possible quality to prepare students for careers as managers or for additional study at the graduate level. The increasing number of organizations and the growing complexity of modern industrial and government operations have resulted in a great need for college graduates with formal preparation in management and economics. Georgia Tech's College of Management concentrates on preparing students for meeting long-range career objectives
rather than developing specific job know edge.
The College of Management offers thre undergraduate programs leading to the Bachelor of Science in Management, th Bachelor of Science in Management Science, and the Bachelor of Science is Economics. All three degree programs follow a common core curriculum with o minor exceptions. However, each progran allows sufficient flexibility for the student to develop and follow his or her own edu cational goals.

Problem-solving takes place in a comp technical, social, and political environmen Students can sharpen the basic tools of management and economics by understana ing the natural, life, and social sciences, exploring the environment of the business enterprise, and gaining knowledge of the internal activities of the enterprise itself. Thus, every student is required to take substantial course work in laboratory science humanities, and social science. Students become familiar with the fundamental activities of management by taking courses such as accounting, economics, compute applications, marketing, production, and fl nance.
Graduate work in the College leads to the Master of Science and the Doctor of Philosophy in Management.

Bachelor of Science in Management

Students with a broad interest in all management activities and operating problem should profit from the management degre program. The program builds upon know edge of the functional, environmental, behavioral, economic, and legal aspects
business and provides analytic and conreptual tools for analyzing complicated problems. It prepares the student for managerial responsibilities and decisionmaking. The large number of elective hours Nows the student, with his or her advisor, failor a program to his or her individual tailor a prositives students may take ducational objectives. Students may take aconcentration of electives in such areas as organizational behavior, finance, accountng, computer applications, marketing, industrial relations, and general management.

Freshman Year

Course

Electives ${ }^{1}$

Science
ENGL 1001-2-3 Introduction to Literature 1st Q. 2nd Q. 3 rd Q. Social Science or Modern Language Electives ${ }^{2}$ Mathematics Electives ${ }^{3}$ Physical Education Elective ${ }^{4}$ Elective
History Elective ${ }^{5}$ American Governmen Totals

Sophomore Year

Course

Electives ${ }^{6}$
Engineering/
Science/

Mathematics		
Architecture	$X-X-3$	$X-X-3$

Elective

 MSCI 3100 Survey of Statistics 3-0-3 ENGL ${ }^{7}$ 2001-2-3 Survey of the Humanities ECON 2000-1 Principles of 3-0-3 3-0-3MGT 2000-1-2 Accounting I, II, II MSCI 2000 Management Applications
of Data Processing 2-3-3

Electives

Non-Industrial
Non-industrial
Totals \qquad

Junior Year Course	1st Q. 2nd Q.		d Q.
Electives ${ }^{8}$ Intermediate Economics	3-0-3	3-0-3
Electives ${ }^{6}$ Engineering/ Science/ Mathematics/ Architecture	X-X-3
MSCI 3400 Analytical Methods in Management I	3-0-3
MGT 3260 or 3261 Law I, Law II		3-0-3
MGT 3060 Finance I	3-0-3
MGT 3300 Marketing I	3-0-3
Elective ${ }^{9}$ Marketing	3-0-3	
ENGL 3015 Public Speaking			3-0-3
MGT 3150 Management Theory	3-0-3	
Electives Department Approved	3-0-3	3-0-3
MGT 4350 Production Management	\ldots	3-0-3
Elective Either MGT 3061, Finance II, or MGT 3070, Management Science Models in Finance	\ldots	3-0-3
MGT 4200 Industrial Relations	3-0-3		
	15-0-15	15-0-15	15-0-15

Senior Year Course	1st Q.	2nd Q.	3rd Q.
Electives ${ }^{10}$ Organizational Behavior	$3-0-3$	\ldots.	\ldots.
Electives Department Approved	$6-0-6$	$6-0-6$	$3-0-3$
Electives Free	$3-0-3$	$6-0-6$	$9-0-9$
Elective Psychology/Social Science/Modern Language	$3-0-3$	$3-0-3$	\ldots.
MGT 4195 Integrated Management Problems Totals	\ldots.	\ldots.	$3-0-3$

Bachelor of Science in Economics

Among the complex problems facing society today, economic issues stand in the forefront. In response to rapidly changing
${ }^{1}$ Science-one year of science is required in chemistry, biology, or physics (complete series). ${ }^{2}$ This requirement may be satisfied by bete series). following sequences: MATH 1711, 1712, 1713; MATH 1307, 1308, 1711; or MATH 1307, 1308 1309, 2307, 2308. Transfer students into the college must consult with the Management ofice college must consult with the Management office to determine their mathematics requirement at the time of transfer.
${ }^{3}$ No student may receive credit for more than four hours of PE towards degree. See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for fresh man physical education requirements for both men and women.
${ }^{4}$ Georgia History to be satisfied with one of the following: HIST 1001, 1002, 3010, 3011. ${ }^{5}$ U.S.-Georgia Constitution to be satisfied with POL 1251 or POL 3200
${ }^{6}$ One year required of approved engineering courses, architecture, science, or advanced math not required by the core curriculum. Students should consult the Management Handbook for restrictions.
${ }^{7}$ ENGL 2004 or 2007 may be substituted for ENGL 2003.
${ }^{8}$ Choice of two of the intermediate economics courses 3000, 3001, 3002
${ }^{9}$ MGT 3301, 3310, 3320, 3330, 4331, 4335
${ }^{10} \mathrm{MGT} 3100,4100$, or 4110 .
economic conditions, the public has becon: Sophomore Year
increasingly concerned with issues such? full employment, price stability, economi growth, adaptation to technological adgrowth, adaptation to technological ad-
vances, efficiency in the management of vances, efficiency in the management of
complex industrial organizations, and inte national prosperity. The program in eco nomics, based on the management core enables students to analyze complex en nomic problems and to understand polio or their solutions
Modern economics is analytically rigo ous. The curriculum for this option prepares the student to cope with the advances that have been made in this fiel of study. The program requires a background in mathematics, statistics, and ec nomic theory.
A degree in economics is suitable for students who wish to major in an academ. ic discipline at the undergraduate level. Stu dents also obtain professional managemer raining through the elective courses in management.The degree in economics provides an excellent background for gra uate work in economics, other social sci ences, or management.

Freshman Year

Course 1st Q. 2nd Q. 3rd 0
Electives ${ }^{1}$
Science
ENGL 1001-2-3 Introduction to Introductio
Literature Elective ${ }^{2}$ History
Elective ${ }^{3}$
American
Government
Elective
Psychology/Social
Science/Modern
Language
Electives ${ }^{4}$
Mathematics
Electives ${ }^{5}$
Physical Education $\frac{X-X-2}{X-X-17} \frac{X-X-1}{X-X-16} \frac{X-X-1}{X-X-16}$
Totals

Sophom Course

Electives ${ }^{6}$

Engineering Science/

Architecture
ENGL ${ }^{7}$ 2001-2-3
Sunve of the
ENGL ${ }^{7}$ 2001-2
Survey of the
Humanities
Humanities
MGT 2000-1
ECON 2000-1
Principles of
Economics I, II 3-0-3 3-0-3

ECON 3000
Economic Theory of 3-0-3
the Firm
the Firm
MSCl 2000
Management
of Data Processing
Elective
Modern Languag
Social Science
Psychology
Elective
Free
Totals

Junior Year
 Course

ECON 3001
ECON 3001
National Income
Analysis 3-0-3

Analysi
ECON 3002
MSCI 3110-1
Statistics I, II
MSCI 3400
Analytical Methods in Management I

MGT 3150

 Management Theory5 MG

MG
Fina
MG
Mar
MGT
Market
Elective ${ }^{8}$
Marketing

Bachelor of Science in
 Management Science

Students who possess strength and interes in applying mathematics to managerial prob lems will benefit from the management sci ence program at Georgia Tech. The program, based upon a foundation of applied mathematics and the institutional aspects of the modern business, develops analytic modes organized to allocate resources within the firm. The curriculum also contains a three-course sequence of special ization which permits the student either to concentrate in an applied area or to
strengthen his or her theoretical foundation.
Graduates of the option will typically be employed as staff analysts in industry and government, as systems analysts, or in a wide variety of positions where a high degree of analytic ability is required. The program also provides a strong base for graduate study in business, economics, management science, operations research, information systems, and related areas.

Freshman Year
Course 1st Q. 2nd Q. 3rd Q

Electives ${ }^{1}$
Science
ENGL 1001-2-3
Introduction to Literature
MATH 1307-8-9
Calculus I, II, III
Elective ${ }^{2}$
History
Elective ${ }^{3}$
American
Government

X-X-4	$X-X-4$	$X-X-4$
$3-0-3$	$3-0-3$	$3-0-3$
$5-0-5$	$5-0-5$	$5-0-5$
$3-0-3$	$\ldots \ldots \ldots .$.	$\ldots \ldots \ldots .$.

man physical education requirements for both men and women.
One year required of approved engineering courses, science, architecture, or advanced math not required by the core curriculum. Students should consult the Economics Handbook for restrictions.
ENGL 2004 or 2007 may be substituted for ENGL 2003.
May substitute any course taught by the Man-
${ }^{9}$ MGT 3100, 4100, or 4110.

Graduate Programs

The College of Management offers graduate programs leading to the degrees of Master of Science in Management (M.S.M.), the undesignated Master of Science, and the Doctor of Philosophy
The M.S.M. program, which is accredited by the American Assembly of Collegiate Schools of Business, provides a professional management education for students with baccalaureate degrees in any discipline. Calculus is the only prerequisite. For students who want to review and sharpen their mathematical skills, a three-week, intensive review course is offered immediately before each fall quarter

The M.S.M. program comprises twentyfour courses (normally seventy-two hours), fifteen of which are required. These fifteen courses form a common core of knowledge required of all M.S.M. students. The remaining nine elective courses provide considerable flexibility for students to build competence in one or more concentration areas. This freedom permits each student to fashion a unique curriculum directed to individual educational and career goals. Available concentration areas include accounting, economics, finance, general man

MGT 3100,4100 or 4110

${ }^{7} \mathrm{MSCl}$ concentration electives, subject to MSC advisor's approval are nine hours selected from MATH 3643, 4580, 4582, 4583, 4221, 4222 $4280,4281,4282,4283,4591,4643,4644$, 4545, ISYE 4005, 4006, 4007, 4010, 4011, 4028, 4044, 4053, 4056, and MSCI 3300, 3401 3402, 4110, 4120, 6101, 6102, 6105, 6106, 6410.
${ }^{3}$ Advanced MATH electives, subject to MSCI advisor's approval, six hours selected from MATH $2012,2020,3110,4110,4120,4431,4038,4140$, $4311-3,4391,4392,4441,4643,4644,4645$. ${ }^{9}$ Specialization electives, subject to MSCI advisor's approval, nine hours in a specific subject area to be chosen from ICS 2600, 2700 , area to be chosen
$3113,3400,3422,3600,3601,4300,4305$, $4334,4380,4410,4430,4560$, PSY 4401, 4402, 4403, 4404, 4405, 4407, 4410, 4411, 4424, 4750 or from the courses listed under MSC con or special project MSCI 4991,4992 and 4993 or adprenced electives in accounting finance, or marketing.
agement, management science, marketing, organizational behavior (including human resource management), and production and operations management.
Entry is in the fall quarter and the typical course load is four courses per quarter. Most of the common core is completed in the first academic year. Students with appropriate background are encouraged to substitute suitable advanced courses for some basic core requirements. Since summer coursework is minimal, the College encourages students to gain relevant work experience during the summer between the first and second years of the program. Only three required courses are scheduled in the second year so that students can devote most of the year to concentration area(s) and electives.

The undesignated Master of Science degree program serves students whose educational and career goals might not be best served by the M.S.M. program. Under these circumstances, the student can pursue a master's level curriculum specifically designed for his or her individual needs. The student and an academic advisor determine the course requirements for such a curriculum. The chairman of Graduate Programs and the Graduate Committee of the College of Management must approve individually designed programs in advance.
The doctoral program in the College of Management complements and reflects the technological emphasis of the Institute. The College requires that all doctoral stu dents gain expertise in both teaching and research.
All doctoral students take comprehensive examinations, which include both a general and a special examination. Students take the general examination when they complete one full year of graduate work and the special examination when they complete all of their course work. The student becomes a candidate for the degree after successful completion of the special examination and the approval of the prospectus of his or her dissertation. On completion of the dissertation, the student must take a final oral examination as prescribed in the general regulations of the graduate division.

Program in Statistics
For information concerning the graduate program in statistics, refer to page 142

Courses of Instruction

ECONOMICS

ECON 2000. Principles of Economics I
3-0-3. Prerequisite: sophomore standing.
$3-0-3$. Prerequisite: sophomore standing.
The behavior of economic units in pricing output decisions.

ECON 2001. Principles of Economics II 3-0-3. Prerequisite: sophomore standing. Surveys national income, employment, and banking, and international trade. Relates consumer, business, government, and interna. tional sectors to the aggregate economy.
ECON 3000. Economic Theory of the Firm 3-0-3. Prerequisites: ECON 2000-1 Intermediate price theory with applications management problems.
ECON 3001. National Income Analysis
3-0-3. Prerequisites: ECON 2000-1
An intermediate macroeconomic theory cours to enable the student to analyze the national economic environment relative to the firm and stabilization of the national economy.

ECON 3002. Money and Banking

3-0-3. Prerequisites: ECON 2000-1
An analysis of how money fits into the economic system and the problems of administeri monetary policy both domestically and internationally.
ECON 3095. Seminar in Economic Policy 3-0-3. Prerequisites: ECON 3000-1
Topics for discussion will be chosen to encourage the student to focus understanding of economic theory on a substantive problem. Designed for economics majors.
ECON 3100. Econometric Methods
$3-0-3$. Prerequisite: MSCI 3111.
An introduction to the statistical methods for estimating the quantitative relationships amo economic variables. Topics include model speciri cation, parameter estimation, prediction, and verification.
ECON 3400. The Process of American Industrial Development
3-0-3. Prerequisites: ECON 2000-1
The forces, unique characteristics, and problems associated with American industrialization

ECON 3401. European Economic History 3-0-3. Prerequisites: ECON 2000-1.
An economic survey of the major institutions,
entions, and innovations of the commercia evolution, the agricultural revolution, and the dustrial revolution in Europe

CON 3410. Economic Development $0-3$. Prerequisites: ECON 2000-1.
General theories of economic development. ach student will be required to analyze the economy of a developing country.
ECON 3500. Scope and Method of Political conomy
-03. Prerequisites: ECON 2000-1
The logical structure of scientific theory as it pplies to knowledge about political and ecoomic situations and events.
ECON 3501. Political Economy: Public Policy Analysis I
A-0-3. Prerequisites: ECON 2000-1 A theoretical perspective to explain and prefict the effects of actual and proposed public policy and to generate some standards of evaluation.
ECON 4000. Topics in Advanced wicroeconomics
3.0-3. Prerequisites: ECON 3000-1. Selected topics in advanced microeconomics esigned for economics majors.
CON 4050. Monetary Theory and Policy -0.3. Prerequisite: ECON 3001. The behavior of interest rates, the structure of ancial markets, aspects of various financial stitutions, and issues in monetary policy.

CON 4110. Mathematical Economics -0-3. Prerequisites: ECON 2000-1. Emphasizes the application of mathematical bols to economic analysis. Topics include static nalysis, comparative-static analysis, optimizaion, and dynamic analysis.
CON 4120. Economic Forecasting 3.0-3. Prerequisites: ECON 2000-1 Cyclical fluctuations in the total economy are Cyclical fluctuations in the total economy are
examined empirically. Methods of making forecasts of national and industry performance are resented.
CON 4230. Economics of the Labor Market 3-0-3.
The application of microeconomic theory to
vages, employment, and productivity.
ECON 4231. Labor History
3.0-3.

A survey of the times and conditions facing the working class in attempting to establish a body of industrial jurisprudence. econ
Federal and state regulation of worker securi-
y against occupational injury, unemployment, old-age, disability and discrimination, plus wage and hour legislation
ECON 4265. Labor Relations Law
3-0-3. Prerequisite: MGT 4200.
An examination of labor legislation, court decisions, and NLRB rulings on labor-management relations.
ECON 4300. International Economics
3-0-3. Prerequisites: two of ECON 2000-1.
Foreign trade and commercial policy, internaional finance, and current problems of interna tional economic relations.

ECON 4310. Public Finance
3-0-3. Prerequisite: ECON 3000
Analyzes government's role in resource allocation, income distribution, stabilization and growth through the economic effects of government spending and revenue raising activities.
ECON 4320. Managerial Economics
3-0-3. Prerequisite: ECON 3000
Relationships between economic concepts and managerial decisions. Topics covered include nonprofit goals of the firm, unstructured managerial decisions.

CON 4330. Regional Economics

3-0-3. Prerequisites: ECON 2000-1.
Theories of regional income determination and regional growth, spatial economic structure, central-place theory, and regional effects of public policy.
ECON 4331. Urban Economics
3-0-3. Prerequisites: ECON 2000-1
The economic dimensions of the processes and problems associated with urbanization.
ECON 4332. Economics of Industrial Location
3-0-3. Prerequisite: ECON 3000.
A survey of economic factors influencing industrial location. Consideration will be given locational patterns, the impact of transfer processing costs and land use competition.

ECON 4340. Economics of Industrial

Competition

3-0-3. Prerequisites: ECON 2000-1.
The competitive structure of the American economy in terms of economic models, alternative public policy goals, and the development of anti-trust laws.
ECON 4341. Economics of Regulated Industries 3-0-3. Prerequisites: ECON 2000-1

The problems and policy options associated with government regulation of particular industries.

ECON 4400. History of Economic Thought 3-0-3. Prerequisites: ECON 2000-1

A historical survey of schools of economic thought. The main body of the course is concerned with classical, neoclassical, Marxist, Keynesian, and modern economic thought.

America

3-0-3. Prerequisites: ECON 2000-1.
The principles of industrial development in emerging nations. The student prepares an analysis of the problems in a specific Latin American country.
ECON 4420. Comparative Economic Systems 3-0-3. Prerequisites: ECON 2000-1.
A critical study is made of the methods by which various economic systems meet common fundamental problems in production, exchange, distribution, and capital formation
ECON 4500. Political Economy: Nonmarket Decision Making I
3-0-3. Prerequisites: ECON 2000-1.
Collective choice through an economic-rational choice perspective, seeking to explain and predict the relationships among campaigns, voting, and public policy toward private enterprise.

ECON 4501. Political Economy: Nonmarket Decision Processes II
3-0-3.
The economics and politics of change, technological progress, price effects on innovation, and trade-offs between economic efficiency and political expediency in national policies for energy, research, etc.
ECON 4801-2-3. Special Topics in Economics 3-0-3 each.
A course designed to permit students to pursue a specialized interest in an area of economics not extensively treated in the offerings of the college.

ECON 4811-2-3-4-5. Special Topics in

Economics

1-0-1 through 5-0-5 respectively.
Courses designed to permit students and a professor to pursue a specialized interest in an area of economics not extensively treated in the offerings of the college.
ECON 4901-2-3. Individual Research in Economics
Credit to be arranged
Designed to permit independent study with a faculty member. To register, the student must obtain written approval of the associate dean and of the sponsoring professor.
ECON 4990. Georgia Internship Program Credit to be arranged. Prerequisite: consent of college.
Broadens the scope of the college curriculum
by offering students a community-based lea ing experience which stresses the completion a specific task.

ECON

Policy
3-0-3. Prerequisite consent of college An intensive treatment of economic conc which enables the prospective manager to un. derstand the economic environment within whit firms operate

ECON 6001. Macroeconomic Analysis and Policy
3-0-3. Prerequisite: consent of college Topics in economic analysis oriented to pro vide a framework for contemporary managem
ECON 6005. Cost-Benefit Analysis
3-0-3. Prerequisite: ECON 6000.
Methods for public project evaluation, including decision criteria, identifying and qua ing costs and benefits, sensitivity analysis, an

ECON 6050. Monetary Theory
3-0-3. Prerequisite: ECON 6000
The functions of and relationships between various financial markets and institutions, the behavior of interest rates, and the impact of monetary policy on financial markets.
ECON 6120. Economic Forecasting 3-0-3. Prerequisite: ECON 6001.
Macroeconomic theory and the analysis of overall economic conditions with their applica tion to management problems of the industria firm.
ECON 6230. Labor and the Economy 3-0-3. Prerequisite: previous course in labor relations.
Case course involving contract negotiations grievance handling, and arbitration.

ECON 6266. Wage and Employment Theor 3-0-3. Prerequisites: ECON 6000, 6001.
An analysis of the economic theories and institutional developments explaining the term conditions, and levels of employment.
ECON 6300. International Trade and Financ 3-0-3. Prerequisite: ECON 6001
Foreign exchange market, foreign trade and
commercial policy, international finance and cur. rent problems of international economics.

EON 6320. Managerial Economics

3-0-3. Prerequisite: ECON 6000.
Relationships between economic concepts an managerial decisions. Topics covered include nonprofit goals of the firm, unstructured mana gerial problems, and the determinants of good managerial decisions.

N 6330. Regional Economics

Survey of the economics of regions, emphaszing region delineation, systems of cities, measurement of regional activity, theories of inome, employment, and economic growth.

CON 6331. Economics of Industrialization

 $30-3$.An examination of long-run growth processe eeking causes of underdevelopment, exoring theories of economic growth, and ap ying these explanations to developed and inderdeveloped economies.
ECON 6335. The Economics of environmental Quality
-0.3. Prerequisite: consent of college. Topics included are the causes of market failre to provide a high quality environment, menity resources, and extra-market values.

ON 6340. Industry and Government

 -0.3. Prerequisite: ECON 6000.Organization and the structure of American ndustry, beginning with price theory under various forms of market structure.
ECON 3-0.3.
Major public issues from the viewpoint of merican economic history.
ECON 6410. Development of Economic hought
-0.3. Prerequisites: ECON 6000-1, consent of Dege.
Development of the various schools of ecolomic thought and their contributions to the given for both ECON 4400 and 6410.

CON 6750. The Changing Economy

 3.0.3.This course examines the long run forces within the economy that support economic growth and rising standards of living. Studies the changes in these sources of growth due to the recent performance of the economy.
ECON 6760. Financial Management and Econo
$3-0-3$.
Interdis
Interdisciplinary relationship of the nuclear vel cycle and reactor system to the electrical managdustry treated as a system, effect of ss. Also listed as NE 6760

ECON 7000. Master's Thesis

ECON 7010. Advanced Microeconomic Analysis $3 \cdot 0-3$. Prerequisite: consent of college
An analysis of consumer and firm decision-
making in order to facilitate model building of individual choice processes.
ECON 7011. Seminar in Microeconomics 3-0-3. Prerequisite: consent of college.
Interrelationships among the major aggregated sectors of a national economy taking special cognizance of institutions which exist in the U.S.

ECON 7020. Advanced Macroeconomic

Analysis
3-0-3. Prerequisite: ECON 7010 and consent of college.
Stilege.
Students have an opportunity to pursue in depth some topic or problem in the area of macroeconomics.

ECON 7021. Seminar in Macroeconomics

 3-0-3. Prerequisites: ECON 7011 and consent of collegeStudents have an opportunity to pursue in depth some topic in the area of macroeconomics.

ECON 7100. Econometrics

3-0-3. Prerequisite: consent of college.
Advanced treatment of the specification, estimation, forecasting, and policy evaluation of both static and dynamic managerial models. Techniques, applications, and problems associated with both single equation and simultaneous equation models are included.

ECON 7101. Seminar in Econometrics 3-0-3. Prerequisites: ECON 7100 and consent of college
Empirical economic research
ECON 8401-2-3-4-5-6. Special Topics
1-0-1 through 6-0-6. Prerequisite: consent of college.
Topics of current interest in the field of economics.
ECON 8501-2-3-4. Special Problems
Credit to be arranged. Prerequisite: consent of college.
Provides project work experience in the field of economics.
ECON 9000. Doctoral Thesis

MANAGEMENT

MGT 2000. Accounting I
3-0-3. Prerequisite: sophomore standing. Provides a general understanding of financial accounting systems and an interpretation of financial reports.
MGT 2001. Accounting II
3-0-3 Prerequisite: MGT 2000
Provides a general understanding of cost accounting systems with emphasis on the manufacturing situation.

MGT 2002. Accounting III

3-0-3. Prerequisite: MGT 2001
Provides a general understanding of management applications of accounting output in a decision context.

MGT 3010. Taxation

3-0-3. Prerequisite: MGT 2000
Business income tax requirements and the management planning necessitated by various tax alternatives. Some attention to personal income taxes.

MGT 3020. Accounting Theory and the Analysis and interpretation of Financial Statements 4-0-4. Prerequisite: MGT 2002
Accounting techniques and principles for measuring assets, equities and earnings of manufacturing and financial corporations. Includes revenue recognition, inventory valuation, accounting theory, etc.
MGT 3021. Topics in Managerial Accounting and Control
-0-3. Prerequisites: MGT 2002 and consent of the instructor.
Advanced topics in managerial reporting and analysis, such as divisional performance measurement, capital budgeting under uncertainty, budgeting, control and other issues in internal esource allocation

MGT 3050. Computer-Based Management

Systems
3-0-3. Prerequisite: MSCI 2000
An introduction to concepts used in the design of management systems relying on computers and information technology
MGT 3060. Finance
3-0-3. Prerequisites: ECON 2000, MGT 2001, and MSCI 3100 or an equivalent statistics course.
Introduction to financial analysis, financial planing, and working capital management.

MGT 3061. Finance II

3-0-3. Prerequisite: MGT 3060.
Application of capital budgeting techniques to the firm, including selection from alternative investment opportunities, determining cost of capital, and treatment of uncertainty.

MGT 3070. Management Science Models in

 Finance3-0-3. Prerequisite: MGT 3060.
A study of the analytical techniques in finance including capital budgeting, portfolio theory, and capital market theory.
MGT 3080. Investments
3-0-3. Prerequisite: MGT 3060.
The theory and practice of security analysis and portfolio management as applied to stocks and bonds.

MGT 3090. Commercial Bank Managemen |GT 3320. Management Science Models in 3-0-3. Prerequisite: MGT 3060 or permission llarketing
instructor.
Contemporary problems and practices of me aging banks and related institutions, includim asset and liability management, loan and liquid management, and aspects of regulation.
MGT 3100. Organizational Development 3-0-3.
Analysis of the structural development of the organization. Particular emphasis is giv organization-environment interfaces, effectiv ness, and efficiency. Managing technology a change.
MGT 3150. Management Theory
3-0-3. Prerequisites: MGT 2002 and ECON and 2001.
Provide students with a fundamental man agement theory matrix essential to the unde standing of management, process, and role.
MGT 3161. Management as a Creative Fo 3-0-3.
Describe the manager's role in accomplish the entrepreneurial mission of the enterprise Each student analyzes the reports on an exis organization.
MGT 3260. Business Law
3-0-3.
Development and function of the law, cour organization, procedure and substantive law contracts, business organizations, and agend

MGT 3261. Business Law 3-0-3.
Legal problems encountered in an urban en ronment with a socioeconomic and political atmosphere, specifically in the areas of consumer problems, bankruptcy, and constitutio law.
MGT 3300. Marketing I
3-0-3. Prerequisite: ECON 2000.
Marketing's role in productive process, basic buyer behavior, market segmentation concepts, he management of marketing activities, environmental influences on marketing manageme

MGT 3301. Marketing Management

3-0-3. Prerequisite: MGT 3300 .
Emphasis on marketing management prob ems through the process of analysis, planni and control, case analysis, and readings.

MGT 3310. Marketing Research

3-0-3. Prerequisite: MGT 3300, MSCI 3100.
Research orientation, planning an investiga ion, questionnaires, sampling, interpretation o results, report presentation.
3. Prerequisites: MGT 3300, MSCI 2000 Cl $3100, \mathrm{MSCl} 3400$.
The use of management science models to ve marketing management problems, applicarather than theory is stressed.
TT 3330. Contemporary Issues in Marketing 3. Prerequisite: MGT 3300

Course is designed to encourage students to mine the principles of marketing in light of ntemporary thinking concerning social, ecomic, and technological development.

GT 3700. Analysis of Financial Data $0-4$. Not open to College of Management underraduates.
A survey of general and cost systems mphasis on the use of accounting data. Credit ot given for MGT 3700 and any other underaduate accounting course.
TT 4020. Auditing and Accounting Systems 0.3. Prerequisites: MGT 2001, 3060

Emphasizes both the design of accounting ystems and external and internal auditing and irol procedures.
aT 4022. Problems in Finan
-4. Prerequisite: MGT 3020
Consoidults of, unds statements, earnings per e, resuls operations, mergers and poolhange transactions, and not-for-profit organi

4GT 4024. Seminar in Financial Reporting nd Control
-4. Prerequisites: MGT 2002 and consent of he instructor.
in-depth study of one or two major current sues in accounting, involving controversy and significant possibility of substantial impact on eory and practice.
IGT 4040. Auditing Concepts
$0-4$. Prerequisite: MGT 4022 or consent of o instructor.
Problems in certifying financial statements duding audit objectives, statistical approaches 10 audit scope, and auditing complex computerized data systems.
MGT 4100. Organizational Analysis 3-0-3.
Analysis of internal outcomes of the organiz ig process. The individual-organization interace is studied to understand perception, motiation, group formation, and leadership within the firm.

MGT 4110. The Management of Organized Effort
$3-0-3$. Open only to seniors
Management as a process of developing and controlling situations toward which people act and respond, both individually and as members of groups.
MGT 4115. Contemporary Management Thought
Though $3-0-3$. Pr
college.
This course emphasizes the impact of changing social values on management thought and ingractices. Guest speakers make important conpributions to the cours
MGT 4120. Contemporary Research in Management
$3-0-3$. Prerequisite: either MGT 3100, 4100 or consent of college.
Investigations, analysis, critiques, and reports of current research orientations in management Students learn how management research is done.
MGT 4140. Personnel Management Problems 3-0-3. Prerequisite: MGT 3150 or consent of college.
Analysis of the personnel management process with emphasis placed upon the role and centribution to the firm of the staff function of personnel administration.

MGT 4151. Management of Industrial Research and Development Programs
3-0-3. Normally taken by seniors.
Analysis of managerial considerations involved in conducting industrial basic and applied research programs and their integration with marketing, manufacturing, and finance activities of the firm.
MGT 4160. Management Concepts and Issues in World Business
3-0-3. Normally taken by seniors.
Covers significant aspects of international business, changing patterns of world industry, emergence of common markets, role of U.S. industry overseas.
MGT 4165. Seminar
1-0-1. Junior standing
Lectures and discussions with prominent business, government, labor, and educational leaders. Offered winter quarter only.

MGT 4170. Career Analysis

3-0-3. Seniors only
A course designed to enable students to analyze classified jobs in a company to determine career paths, training provided and counseling for workers.

MGT 4180. Industrial Management Honors Seminar
3-0-3. Last or next to last quarter seniors by faculty invitation

Gives outstanding seniors an opportunity to research, analyze and discuss current management and economic problems.
MGT 4195. Integrated Management Problems 3-0-3. Prerequisites: senior standing and MGT 3150, 3300, a marketing elective, MGT 3061 or 3070 and 4350.
Comprehensive cases are used to integrate knowledge at the policy level of management and to relate managerial decisions to the economic and competitive forces affecting business.

MGT
 rial Relations

Theories of the labor movement, union-management relationship, including the legal setting, ontract negotiations, contract administration and the roles and nature of third parties.

MGT 4201. Contemporary Unionism and Collective Bargaining
3-0-3. Prerequisite: MGT 4200.
A study of union structure, collective bargaining procedures and the analysis of union-management contracts.
MGT 4202. Cases in Labor-Management Relations
3-0-3. Prerequisite: MGT 4200.
A case study of problem areas in unionmanagement relations. The cases used will be actual (NLRB) and labor arbitration decisions. MGT 4250. Nonmarket Environment of the Firm
3-0-3. Open only to seniors.
An examination of the sociocultural factors which must be taken into account in the management decision process and of the forces which lead to their change through time.

MGT 4290. Public Administration 3-0-3.

An examination of the managerial function of federal, state, and local governments with emphasis on the role of their interaction with the private sector.
MGT 4331. Consumer Behavior
3-0-3. Prerequisite: MGT 3300.
Stresses the impact of buyer decisions on the firm's marketing functions. Discusses economic, psychological, sociological, anthropological, and organization impacts on buyer decisions.

MGT 4335. International Marketing

3-0-3. Prerequisite: MGT 3300 .
Emphasis on international comparative analysis, the role of marketing in economic develop-
ment and marketing strategies and policies multinational firms.

MGT 4350. Production Management

 3-0-3. Prerequisites: MGT 3150, MSCI 340The organizational, economic, and physica setting in which production occurs. Methods analyze and improve production processes service operations.
MGT 4801-2-3. Special Topics in Industria
Managemen
3-0-3 each.
Permits groups of students and a professo pursue areas of management not extensivel treated in other courses.

MaT 4811-2-3

1-0-1 through 5-0-5 respectively
Permits a group of students and a profess to pursue areas of management not extens treated in other courses of the college.

MGT 4901-2-3. Individual Research in

 Industrial ManagemenCredit to be arranged.
Designed to permit independent study with faculty member. To register, the student mus obtain the written approval of the associate dean and of the sponsoring professor.
MGT 4990. Georgia Internship Program Credit to be arranged. Prerequisite: consent college.
Broadens the scope of the college curricult by offering students a community-based leam. ing experience which stresses the completio a specific task.

MGT 6000. Managerial Accounting and Cont 3-0-3. Prerequisite: consent of college. A foundation course in measuring and repor ing the financial performance and status of the firm. Emphasizes underlying theoretical conce reporting requirements, and financial analysis in plications of modern financial accounting.
MGT 6001. Analysis and Budgeting for Managerial Contro
$3-0-3$. Prerequisite: MGT 6000 and consent of college.
introduction to cost and managerial accountio Topics include basic cost concepts, costing ss ems, cost-volume-profit analysis and the gener ole of accounting data in planning, control, an ecision making.
MGT 6020. Accounting Theory and the Anal ysis and Interpretation of Financial Statements Accounting tie. MGT 6000.
Accounting techniques and principles of mea acturing and financial and earnings of manu acturing and financial corporations. Includes
renue recognition, inventory valuation, account ng theory, etc.

GT 6021. Topics in Managerial Accounting

 and ControlO-3. Prerequisites: MGT 6001 and consent of ollege.
Advanced topics in managerial reporting and nalysis, such as divisional performance meaurement, capital budgeting under uncertainty, udgeting, control, and other issues in internal esource allocation.
IGT 6022. Financial Reporting
0-4. Prerequisite: MGT 6020.
Consolidations, funds statements, earnings per share, results of operations, mergers and poolings, general price level adjustments, foreign exchange transactions, and not-for-profit organizations.
MGT 6023. Behavioral Aspects of Con The relationship: MGT 6001, 6100 . and control processes in complex organizations and their interaction with organization structure, managerial behavior, information systems, and tnancial performance
MGT 6024. Financial Reporting and Control $0-4$. Prerequisites: MGT 6000 and consent of college.
In-depth study of one or two major current issues in accounting, involving controversy and a significant possibility of substantial impact on heory and practice.
MGT 6025. Socioeconomic Accounting 4-0-4. Prerequisite: MGT 6001
Use and limitations of accounting analysis in defining and measuring the economic costs, benefits, and effectiveness of public projects and not-for-profit organizations.

GT 6040. Auditing Concepts

 $4 \cdot 0-4$. Prerequisite: MGT 6022 or consent of college.Problems in certifying financial statements, including audit objectives, statistical approaches 10 audit scope, and auditing complex computerized data systems.
MGT 6041. Taxation and Decisions 4-0-4. Prerequisites: ECON 6000, 6001 and MGT 6000 or consent of college
A comprehensive examination of the major provisions of the Internal Revenue Code. Em phasis is placed upon the impact of taxes on business decisions.
MGT 6060. Financial Management 3-0-3. Prerequisites: graduate standing and MSCI 6020. Corequisite: MGT 6001. Modern finance emphasizing concepts usefu
the nonfinancial manager. Financial statement analysis, financial projections and forecasting, ime value, cost of capital, capital budgeting, risk and valuation.
MGT 6061. Financial Management II
3-0-3. Prerequisites: MGT 6060, MSCI 6021.
Financial structure, dividend policy, financial instruments, debt maturity structure, introduction to portfolio theory, asset pricing, market efficiency, capital markets, investment banking, banking, financial institutions, and working capital.

MGT 6062. Theory of Financial

-0-3. Prerequisite: MGT 6061 . variety of topics in corporate finance.
MGT 6063. Corporate Cash Management and Banking Relations
3-0-3. Prerequisites: MGT 6061, MSCI 6022. Daily cash management, short-term securities, cash planning, cash forecasting, credit lines, short-term financing, banking relations, collection systems, credit policy, and other aspects of the corporate treasurer's job.
MGT 6064. Financial Planning Systems
3-0-3. Prerequisites: MGT 6063, MSCI 6055.
Computer-based financial statement generaors and budgeting systems, short- and longterm financial models, computer-based capita budgeting systems and a variety of other financial planning models.

MGT 6065. Financial Management
3-0-3. Prerequisite: MGT 6061
Topics of current interest in the field of financial management.
MGT 6080. Investments I
3-0-3. Prerequisite: MGT 6060
The theory and practice of security analysis and portfolio management as applied to stocks and bonds.
MGT 6081. Investments II
3-0-3. Prerequisite: MGT 6080
A continuation of MGT 6080. Includes advanced topics in portfolio theory and detailed study of bonds, options, and futures contracts.
MGT 6090. Commercial Bank Management 3-0-3. Prerequisite: MGT 6060 or permission of instructor.

The analysis of management problems of commercial banks, including the loan, investment, deposit and capital functions and the interrelationships between them.

MGT 6100. Organization Processes
 3-0-3 Prerequisite: consent of cosses

3-0-3 Prerequisite: consent of colege. individual group, and organizational performance.

MGT 6101. Organizational Problems, Theory, and Applications
3-0-3. Prerequisite: consent of college.
Survey of the manager's role in understanding and implementing an organization's human resource policy.
MGT 6102. Methodology in Human Resource Management
3-0-3. Prerequisite: MGT 6101.
The use of statistics and methodology in making data-based decisions about human resources.
MGT 6103. Compensation and Jobs
3-0-3. Prerequisite: MGT 6101.
Concepts and procedures used for compensating managerial and non-managerial personnel.

MGT 6104. Attraction, Selection,

and Development of Human Resources
3-0-3. Prerequisite: MGT 6101.
Advanced study of legal, statistical, and theoretical issues in the development of effective human resource policies.
MGT 6105. Individuals in Organizations
3-0-3. Prerequisite: MGT 6100.
Discussion and application of theories involv ing individual behavior in organizations.
MGT 6106. Group Processes in Organizations 3-0-3. Prerequisite: MGT 6100.
Problems in understanding and managing the performance of work groups.

MGT 6107. Organization Theory
3-0-3. Prerequisite: MGT 6100.
A treatment of factors affecting the design of effective complex organizations.
MGT 6108. Practicum in Personne Administration
3-0-3. Prerequisite: MGT 6101.
Experiences in dealing with and solving various human resource management problems
MGT 6140. Management Systems Analysis 3-0-3.

An analysis of the environmental factors and forces that interact to form systems and their resultant impact upon the practice of management

MGT 6155. Development of Managemen

 Though3-0-3.
A survey of the development of management thought based upon a critical examination of classic works in management literature.

MGT 6160. Management Theory

3-0-3. Prerequisite: consent of college
Provides resources essential to the development of a matrix of management theory at the professional level.

MGT 6175. Entrepreneurial Management 3-0-3. Prerequisite: MGT 6000.
The manager's role in building or restructurin enterprises. Students interact with entreprener in and out of class and write a report on a growing firm.

MGT 6180. Multinational Business

3-0-3. Prerequisite: consent of college Critical examination of business concepts, organizational structures, and control process of the multinational corporation in different cal and economic environments.

MGT 6195. Managerial Policy I

3-0-3. Prerequisites: MGT 6000, 6100, ECO
6000 and two of MGT 6001, 6060, 6300, 630
Economic, competitive, and governmentalfor affecting the formulation of corporate strategy and managerial policies and decision-making

MGT 6196. Managerial Policy II

3-0-3.
An examination of selected strategic issues problems and competitive strategies in particu with field and types of organizations, combi with field projects and guest lectures

3-0-3
An examination of the union-management relationship. Includes analysis of labor agreement, grievance procedures and arbitration an the legal environment of labor relations.

MGT 6260. The Legal Environment

 3-0-3.The role of law in society, legal philosophy and basic legal concepts 3-0-3.
Critical analysis of the marketing functions o an industrial enterprise, organizing and control of marketing programs emphasized.
MGT 6301. Marketing Management II 3-0-3. Prerequisite: MGT 6300.
Advanced course in marketing analysis and strategy formulation. Particular emphasis will be given to application of materials from MGT 6300

MGT 6302. Buyer Behavior

3-0-3. Prerequisite: MGT 6300 .
This course exposes students to behavioral science concepts and approaches of relevance in describing, understanding, and predicting the behavior of consumers.

MGT 6303. Sales and Promotion Managemen 3-0-3. Prerequisites: MGT 6300, MGT 6301. Advertising, personal selling, sales promotion aids, channel (resellers) stimulation, and other communication tools as variables in the overal promotional mix.

IGT 6305. Strategic Market Planning
0.3. Prerequisites: MGT 6300, MGT 6301 integrates marketing planning into the strateic planning process. Focuses on new concepts dechniques which facilitate market analysis and the development of strategic plans.
IGT 6310. Marketing Research and Analysis 0-3. Prerequisite: MGT 6300
Theory and techniques of marketing analysis Id its use in the formulation of policy and strategy.
GT 6315. Marketing Analysis
20-3. Prerequisites: MGT 6300, MGT 6310. This course seeks to impart an understanding the various techniques useful for analyzing interpreting marketing research data.

IGT 6320. Marketing Models

$0-3$. Prerequisites: MGT 6300 and a knowlge of probability and statistics Marketing models utilizing probability and atistics as well as behavioral techniques.
GT 6330. Consumerism and Public Policy ssues in Marketing
0-3 Corequisite: MGT 6300
Recent issues in consumerism, the performance of marketing activity within our society.

MGT 6350. Production and Operations Management I
3-0-3. Prerequisite: MSCI 6020 or equivalent. Corequisite: MSCI 6022 or equivalent.
Processes and management of production of joods and services. Methods to analyze, im-
prove and plan production. Case studies
MGT 6351. Production and Operations Management II
3-0-3. Prerequisite: MGT 6350
Continuation of MGT 6350 with more emphasis on computer models.
MGT 6750. The Changing Economy 3.0-3.

This course examines the long run forces within the economy that support economic growth and rising standards of living. Studies the changes in these sources of growth due to the recent performance of the economy.

MGT 7000. Master's Thesis

MGT 7750. Seminar on Psychology and Management
3-0-3. Prerequisites: PSY 6601 or 6609, MGT 6150 or 6105 and consent of college
Selected management problems involving psychological complexities, individual behavior in an organizational setting. Also listed as PSY 7750.

MGT 8401-2-3-4-5-6. Special Topics
$-0-1$ through 6-0-6 respectively. Prerequisite: consent of college.
Topics of current interest in the field of management.
MGT 8501-2-3-4. Special Problems
Credit to be arranged. Prerequisite: consent of college.
Provides project work experience in the field of management.

MGT 8801-2-3-4. Management Research

Credit to be arranged.
Credit given for the presentation of a satisfactory written report embodying the results of intensive research and study of a management problem. Conferences will be arranged.
MGT 9000. Doctoral Thesis

MANAGEMENT SCIENCE

MSCI 2000. Management Applications of Data Processing
2-3-3.
Provides a technical foundation for the development of computer-based management systems.

SCI 3100. Survey of Statistic

3-0-3. Prerequisite: Math 1711
A survey of discrete probability and statistics with emphasis on economic and business applications. Serves as core requirement for IM degree. Credit cannot be obtained for MSC 3100 and either or both MSCI 3110 and MSCI 3111.

MSCI 3110. Statistics
3-0-3. Prerequisites: MATH 1713, 1711.
Emphasis on continuous probability models and discrete models. Required of economics majors and recommended to those wanting a two course sequence in statistics. Credit canno be obtained for MSCI 3110 and MSCI 3100.
MSCI 3111. Statistics II
3-0-3. Prerequisites: MATH 1713, 1711.
Classical inference and estimation drawing heavily on calculus for such topics as maximum likelihood estimation, evaluation of decision rules etc. Credit cannot be obtained for MSCI 3111 and MSCI 3100

MSCI 3200. Management Science
$3-0-3$. Prerequisite: matrix algebra.
Applications of linear programming to the analysis of managerial problems. Topics include duality, transportation problems and postoptimality analysis.

MSCI 3201. Management Science II
3-0-3. Prerequisite: MATH 3215.
This second course in the methodology and application of management science is concerned with the use of stochastic models in the analysis of managerial and economic decision-making.

MSCI 3300. Decision Analysis in Management 3-0-3. Prerequisite: MATH 1711.

An introduction to decision models for management situations under risk and uncertainty including fundamental economic concepts of a theory of rational choice.
MSCI 3400. Analytical Methods In
Management I
3-0-3. Prerequisite: MATH 1711.
Introduction to linear programming. Emphasis on formulation of problems encountered in professional practice and on interpretation of solutions
MSCI 3401. Analytical Methods in
Management II
3-0-3. Prerequisite: MSCI 3400 or 3200
Additional applications of linear programming to analysis of management decision problems. Topics include alternatives to the simplex algorithm and special applications.

MSCI 3402. Analytical Methods in

 Management III3-0-3. Prerequisite: MSCI 3400 or 3200 .
Introduction to the theory and applications of dynamic, integer, and nonlinear programming in the analysis of management decision problems.
MSCI 3403. Analytical Methods in Management IV
3-0-3. Prerequisite: MSCI 3100 or 3110 Analytical and simulation approaches to the analysis of queueing and inventory systems.

MSCI 4801-2-3. Special Topics in

 Management Science3-0-3 each. Normally taken by seniors
Designed to permit students and a professor to pursue a specialized interest in an area of management science not extensively treated in the offerings of the college.
MSCI 4811-2-3-4-5. Special Topics in Management Science
1-0-1 through 5-0-5 respectively.
Designed to permit students and a professor to pursue a specialized interest in an area of management science not extensively treated in
the offerings of the college. the offerings of the college.
MSCI 4990. Georgia Internship Program Credit to be arranged. Prerequisite: consent of college.

Broadens the scope of the college curriculum by offering students a community-based learn-
ing experience which stresses the completion a specific task
MSCI 4991-2-3. Special Problems
Credit to be arranged.
The special project is designed to provide th student an opportunity to apply his or her full training to the analysis of an applied or theore the written approval of the associate dean an of the sponsoring professor.

MSCI 6010. Analytical Methods in

Management

3-0-3.
Introduction to matrix algebra and calculus. Emphasis on formulating and solving problem in management and economics.

MSCI 6020. Q

Management I
3-0-3. Prerequisite: MSCI 6010 or its equivalent.

This first of three core courses focuses on probability and its uses to structure decision problems.

MSCI 6021. Quantitative Methods for Management II
3-0-3. Prerequisite: MSCI 6020 or its equivalen This second of three core courses includes inferential statistics and decision analysis. Top ics include hypothesis tests, forecasting, regre sion, Bayesian methods, utility theory and simulation.
MSCI 6022. Quantitative Decision Procedures
3-0-3.
This third of three core courses introduces formal analysis of management and economic decision problems through the use of optimizatio methods. Includes linear programming and mixe integer programming
MSCI 6023. Cases and Applications in Management Science
3-0-3. Prerequisites: MSCI 6021, MSCI 6022. Application of management science in varie functional and organizational contexts. Actual cases are analyzed, and the results are com. municated in oral and written reports.
MSCI 6051. Computer Simulation of Management Problems
3-0-3. Prerequisite: MSCI 6021 or equivalent. Techniques of simulating general manageme decisions utilizing information from the areas o marketing, production, finance, and industrial relations.
MSCI 6055. Management Information Systems 2-2-3. Prerequisites: MSCI 6020, 6021 or equivalent.

Introduction to computer-based information ystems technology and its application to suport managerial decisions.

ISCI 6101. Applications of Statistical

 lethods to Management Decision Making $0-3$. Prerequisite: MSCI 6021 or equivalent. Theory and applications of elementary multile regression analysis in a management frame-
USCl 6102. Applications of Regression

Analysis for Management
Analysis for Manage $3 \cdot 0-3$. Prerequisite: MSCI 6101
Multivariate statistical analysis with applicalons in business and economics.
MSCl 6105. General Decision Theory 3-0.3. Prerequisite: MSCI 6020.
Models of nondeterministic decision situations. General finite games in extensive and normal loms, utility indicators, matrix games, mixed extensions, the fundamental theorem, and compuIational techniques.
MSCI 6106. Applications of General Decision Theory in Management and Economics sion Theory in Management and 3 .
Risk games, statistical games, Bayes and min-max strategies, principle of choice problem, nota and data variants. Applications in manoement and economics.

MSCI 6201. Stochastic Optimization
3.0-3. Prerequisite: MATH 4221 or MSCI/MATH 6750 .
Optimization of sequential decision models for production, congestion, inventory, fisheries and oher contexts. Myopic policies, Markov decision processes, and monotone policies.

MSCI 6300. Risk Management

3-0.3. Prerequisites: Probability and statistics at level of MSCI 6020 and MSCI 6021

Scope and methods of risk management. Protecting the firm against losses from pure risks. Loss prevention, risk retention, and optimal insurance coverage are considered

MSCI 6410. Mathematical Programming 3-0-3. Prerequisites: MSCI 6010 and consent of college.
Survey of major results in linear programming, goal programming, and integer programming. Includes cases which illustrate issues of practical implementation.

MSCI 6411. Seminar in Mathematical

Programming

3-0-3. Prerequisite: MSCI 6410.
Student research and/or in-depth study of recent literature on theory and application of mathematical programming in management and economics.

MSCI 6750. Stochastic
 Management Science

3-0-3. Prerequisites: Introductory probability (MATH 4215) and Calculus (MATH 2308).
(MATH 4215) and Calculus (MAn managerial Stochastic process modion, congestion, cash contexts including production, congestion, cash flow, fisheries and passenger reservations. Pro cesses include birth as MATH 6750.

MSCI 8401-2-3-4-5-6. Special Topics

1-0-1 through 6-0-6 respectively. Prerequisite. consent of college.
Topics of current interest in the field of management science.
MSCI 8501-2-3-4. Special Problems
Credit to be arranged. Prerequisite: consent of college.
Provides project work experience in the field of management science.

College of Sciences and Liberal Studies

The College of Sciences and Liberal Studies (COSALS) comprises eight degree granting schools-Applied Biology, Chemistry, Geophysical Sciences (graduate degrees only), Information and Computer Science Mathematics, Physics, Psychology, and Social Sciences (graduate degree only) -and seven non-degree granting depart-ments-English, Modern Languages, Music, Physical Education and Recreation, Army
ROTC, Air Force ROTC, and Navy ROTC.
All Tech undergraduates acquire skills and understanding prerequisite to their majors through COSALS courses in mathe matics, chemistry, and physics. They satisfy breadth requirements in English, modern languages, psychology, and social sciences. Students will also find additional opportunities for career and life skills in music, ROTC, and intramurals.
A detailed description of each degree program in COSALS is located under the appropriate school heading, as are descriptions of the courses offered. COSALS courses, required or recommended by the degree granting programs in engineering, management, and architecture, are listed under the curricula for those degrees. Opportunities for minors or certificates in English, geophysical sciences, modern languages, psychology, and social sciences are available in COSALS
Another opportunity, especially rich at the graduate level, is to take advanced courses in interdisciplinary areas and even to undertake thesis research under the joint direction of faculty members from different departments. Interdisciplinary programs include biochemistry, biophysics, molecular genetics, microbiology, psychobiology, and technology and science policy.
In addition to its degree programs, the

College of Sciences and Liberal Studies fers students in good standing an opportun ty to broaden their areas of expertise or acquire skills or information beyond thei major degree requirements. With approve of their major school and in consultation with a designated advisor or committee in the school or department offering the cerifif cate program, students may develop a 0 herent plan of study tailored to meet thei individual needs and interests. Students whr complete this special program satisfactor ly will receive a certificate of recognition.

CERTIFICATE PROGRAMS

COLLEGE OF SCIENCES AND LIBERA STUDIES
School/
Department
Program
English Technical \& Business
Geophysical
Sciences
Geochemistry Geophysics Engineering Geolog
Modern Languages French
German
Spanish
Linguistics
Psychology

Social Sciences	History Solititical Schy Sociology International Affairs Science, Technology, and Society Urban Studies
"T-4 (Teaching	
Certificate)	
Programs	Biology Chemistry Mathematics Physics

Certificate Programs are available at the 3achelor's Level. "Certified at the high school level.

Department of Air Force Aerospace Studies

Established in 1950
Professor and Head-Colonel Robert W. Bush; Assistant Professors-Captain Jeffrey H. Levine, Captain Jerry M. Lett, Captain Randy L. Reynolds, Captain John E. Julsonnet, Captain Morris H. Susaneck.

General Information

Air Force Reserve Officer Training Corps (AFROTC) program offers two phases. The first two years constitute the General Military Course (G.M.C.) and the last two years, the Professional Officer Course (P.O.C.)

Four-Year Program

Students entering the four-year program enroll in AFROTC courses in the same manner in which they register for other undergraduate courses. A formal application is not required. Students enrolled in the G.M.C. incur no military obligation unless they are on an AFROTC scholarship. Those students desiring to become commissioned officers in the Air Force must compete for entry into the P.O.C. which is normally taken during the last two years of college. Cadets normally attend a fourweek field training session conducted at an Air Force base between their sopho-
more and junior years. Students accepted for the PO.C. become members of the Air Force Reserve and receive a $\$ 100$ per month tax-free subsistence allowance.

Two-Year Program

The two-year program and the last two years of the four-year program are identical in academic content. The basic requirement for entry into this program is that the student must have two academic years remaining in school. This may be at the undergraduate or graduate level, or a combination of the two. Selection of twoyear applicants is predicated upon the same criteria as four-year program cadets. In addition, candidates must successfully complete a six-week field training course at an Air Force base during the summer preceding their enrollment. Applicants enter the P.O.C. upon their return to campus.

AFROTC College Scholarship

Program

AFROTC college scholarships are available to qualified cadets in the two- and four-year programs. Scholarships cover tuition, matriculation, health services, student activities fees, and books. All scholarship cadets also receive a $\$ 100$ per month tax-free subsistence allowance.

Courses of Instruction

AS 1610. Introduction to Today's Air Force 1-1-1.
United States Air Force doctrine, mission, and organization, with an introduction to strategy
AS 1620. Air Force Operational Activities 1-1-1.
United States Air Force strategic and general purpose forces, emphasis on their mission, purpose forces, and weapon systems.

AS 1630. Air Force Support Activities 1-1-1.
A survey of support commands and operating agencies of the United States Air Force.

AS 2610. Air Power, the Eariy Years

 1-1-1.A study of the principles of manned flight and doctrine of air power from the seventeenth century through the 1930s.

AS 2620. Air Power, W.W. II to Korea

 1-1-1.An examination of the development of air power doctrines in W.W.II, the Berlin airlift, and the Korean War.
AS 2630. Air Power, the Later Years 1-1-1.
An examination of the role of air power in contemporary times including the Middle East, Cuba, and Southeast Asia

AS 3410. Air Force Management 3-1-3.
Introduction to Air Force Management, individual and group behavior and communicative skills.
AS 3420. Air Force Leadership 3-1-3.
Analysis of leadership dynamics and principles as they apply to command and management.
-1-3
Fundamentals, functions, and techniques of management. Stresses Air Force approach to management.

AS 4310. Civil-Military Relations 3-1-3.

A study of the environment of current and historical civil military relations and the sociological aspects of the military profession.
AS 4320. U.S. Defense Policy
3-1-3.
An organizational behavior investigation of the formulation and implementation of United States defense policy.

AS 4330. Military Justice

3-1-3.
Functions of the military justice system. Stresses differences and similarities between civil and military law.

School Of Applied Biology

Established in 1960
Director-Thomas G. Tornabene; Professors -Walter L. Bloom, John W. Crenshaw, Edward L. Fincher, Jerry S. Hubbard; Associate Professors-James R. Allen, Gary L. Anderson, Arthur C. Benke, David B.
Dusenbery, E. Lloyd Dunn, Dwight H. Hall, John J. Heise, N.W. Walls, Roger M.

Wartell, Edward K. Yeargers; Adjunct Appointments-Edgar D. Grady, Richaro Lee, Fred K. Parrish, Paul J. Price, J. Robertson.

General Information

Programs of study offered by the School Applied Biology allow students to gain com petence in biotechnology, environmental biology, and biophysics. The Institute, wit its strength in science and technology, provides unique opportunities for trainin and research in the biological sciences. curriculum encourages program enrichme by incorporating course selections from other schools and departments.

The Bachelor of Science degree program consists of a combination of requir ments and electives that ensure the attainment of a broad background in biology w. sufficient flexibility to satisfy a wide spectrum of individual interests and career objectives. The undergraduate curriculum in biology is well suited to prepare students for employment in industrial, academic, and government laboratories; for graduate study; or for medicine, dentistry, or other health profession schools. Optional courses of study are available for the undergradu ate degree providing for specialization in biological field or for bioengineering studies in biology. The minimum number total hours required for a bachelor's degres in applied biology is 201.
The School of Applied Biology offers graduate programs that are flexible to ser the specific needs of the student. Also, the School encourages interdisciplinary programs involving other schools within the Institute

Members of the faculty are actively en gaged in research fields such as aerobiolog biophysics, cell physiology, mammalian physiology, tumor immunology, ecology, microbiology, microbial and population genel ics, and radiation cytogenetics. Areas of strength include biotechnology, biophysics ecology, genetics, microbiology, and physiology

Curriculum

freshman Year

Course	1st Q. 2nd Q. 3 rd Q.		
BIOL 1110-1-2 General Biology I, II, III	3-3-4	3-3-4	3-3-4
CHEM 1111-2, 2113 General Chemistry	4-3-5	4-3-5	3-3-4
ENGL 1001-2-3 Introduction to Literature	3-0-3	3-0-3	3-0-3
MATH 1307-8 Calculus I, II	5-0-5	5-0-5
Electives ${ }^{1}$	X-X-2		

nysical ${ }^{2}$
 Electives ${ }^{2}$

Modern Language
or Social Science
Totals $\frac{3-0-3}{13-6-17} \frac{\ldots}{15-6-17} \frac{\ldots \ldots}{14-6-16}$

Sophomore Year

Course	1st Q.	2nd Q.	3rd Q.
BIOL 3331			
Cell Physiology			

BIOL 3332

Biostatistics

BIOL 3335

General Ecology
MATH 1309

Calculus III

Electives ${ }^{2}$

Humanities

Electives ${ }^{2}$
Social Science

CHEM 3 3311-2-3

CHEM 3381-2

Organic Chemistry

Electives ${ }^{1}$
Physical Education $\frac{.}{17} \frac{X-X-1}{13-9-17} \frac{X-X-1}{12-9-16}$

Junior Year

Course 1st Q. 2nd Q. 3rd Q.

BIOL 3310

General

Microbiology	3-6-5	
BIOL 3334 Genetics		3-3-4
BIOL 4446 Animal Physiology I	3-0-3	
BIOL 4448 Animal Physiology II	3-0-3

Animal Physiology II 3-0-3
BIOL 4440
Plant Physiology 3-0-3
BIOL 4441
Physiology
Laboratory
BIOL 4409
Microbial
Physiology …...... 3-6-5

Physics 2121-2-3
Introductory Physics

Electives ${ }^{2}$
Electives ${ }^{2}$
Modern Language
or Social Science 3-0-3 3-0-3
Electives ${ }^{4}$
13-9-16............. $\frac{X-X-5}{13-12-17}$
Totals
Senior Year
Course 1st Q. 2nd Q. 3rd Q.

BIOL 4411

Industrial
Microbiology 3-0-3

Medical
Bacteriology
BIOL 4408
Microbial Genetics

Courses of Instruction

BIOL 1110. General Biology I
$3-3-4$. It is recommended but not required that General Biology be taken in the sequence 1110 1111, and 1112.
An introduction to general biology at the cellular level with an emphasis on cell structure, meta bolic processes, and genetics.
Text: at the level of Keeton, Biological Science, 3rd ed.
BIOL 1111. General Biology II
$3-3-4$. It is recommended but not required that General Biology be taken in the sequence 1110
1111, and 1112 1111, and 1112
An introduction to general biology at the whole organism level with an emphasis on physiological processes and integration of growth and development

Text: at the level of Keeton, Biological Science, 3 rd ed

BIOL 1112. General Biology III
3-3-4.
An introduction to general biology with an emphasis on evolution, ecology, animal behavior, and the diversity of living organisms.
Text: at the level of Keeton, Biological Science, 3rd ed.
BIOL 1720. Biological Principles for Engineers 4-3-5.
An introduction to biology with an emphasis on ecology and the interactions of human technology and biological systems. The implications of biology to individuals and to human techno-
logical societies will be stressed.
Text: at the level of Clark, Contemporary Biology. 2nd ed.

BIOL 3308. Genetic Engineering

 $3-0-3$. Prerequisite: BIOL 1110 or 1720 or consent of school.An introduction to recombinant DNA technology, emphasizing current uses and potential applications of this biotechnology.
'See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshman physical education requirements for both men and women.
See "Humanities and Social Sciences Requirements" for lists of approved courses
${ }^{3}$ Biochemistry may be substituted for CHEM 3313. ${ }^{\text {There }}$ are thirty-three hours of electives beyond and P.E. Of these, sixteen hours must be earned in courses chosen from a list of courses earned proved by the School of Applied Bios apmaining seventeen hours are free electives.

Text: at the level of Freifelder, Recombina DNA.
BIOL 3310. Introductory Microbiology I 3-6-5. Prerequisite: BIOL 1110, CHEM 331 consent of school.
Basic biology of bacteria, fungi, algae, proi zoa, and viruses, with particular emphasis o bacteriology.
Text: at the level of Brock, Biology of Micro. organisms.
BIOL 3311. Introductory Microbiology II 3-6-5. Prerequisite: BIOL 3310 or consent of school.
Classification and biology of bacteria and
role in soil, water, foods, and air.
Text: at the level of Brock, Biology of Micro organisms.
BIOL 3331. Cell Physiology
3-3-4. Prerequisite: BIOL 1110-1-2 or equivaent.
Structure and functions of cells and their or ganelles, catabolism and energy metabolism, in roductions to photosynthesis and biosynthesis
membrane structure and permeability properties
Text: at the level of Giese, Cell Physiology (5th ed.).
BIOL 3332. Biostatistics
4-3-5. Prerequisite: MATH 1308
An introduction to statistical methods and their use in the preparation and interpretation biological experiments.
Text: at the level of Walpole and Myers, Probability and Statistics for Engineers and
Scientists.

BIOL 3334. Genetics

3-3-4. Prerequisite: BIOL 1110 or consent of school.
The principles of inheritance as described Mendelian and biochemical genetics.
Text: at the level of Gardner and Snustad, Principles of Genetics.
BIOL 3335. General Ecology
3-0-3. Prerequisite: either BIOL 1112 or 1720 consent of school
Introduction to the concepts of ecology; designed for biology majors but appropriate for interested nonmajors. Emphasizes structure an function of natural populations, communities, and ecosystems.
Text: at the level of Odum, Fundamentals o Ecology, third edition.
BIOL 3337. General Ecology Laboratory 0-6-2. Prerequisite: BIOL 3335 or consent of school; may be taken concurrently with or following BIOL 3335.
An introduction to the analytical techniques and physical and chemical methods useful in
dern ecological studies and practical applicaons of these techniques in field studies in ajor ecosystems of the Southeastern United tates.
ext: at the level of Cox, Laboratory Manual General Ecology.

L 3350. Invertebrate Zoology

3-4. Prerequisite: BIOL 1112 or equivalent Phylogeny, functional morphology, and adaptaions of invertebrates, emphasizing broad evolu ionary patterns. Dissection, gross examination, and field observation of major invertebrate phyla Text: at the level of Barnes, Invertebrate Zoology.
81OL 3351. Field Invertebrate Zoology 0.3-1. Prerequisite: BIOL 1112 or equivalen and concurrent enrollment in BIOL 3350. Field investigations of the biology of invertebrates, including trips to the Atlantic and Gulf coasts.
BIOL 3352. Marine Invertebrate Zoology $3.6-5$. Prerequisite: basic courses in general biology or general zoology or consent of school Morphology, distribution, and systematics of marine invertebrates, with emphasis on collec tion and study of living organisms. Offered summer term at the Marine Science Center, Skidaway Island, Georgia.
Text: at the level of Gosner, Guide to the Identification of Intertidal Invertebrates.

BIOL 3360. Human Genetics

3-0-3. Prerequisite: introductory biology or conant of school.
The major concepts and problems of human genetics, designed to lead to a better understanding of how the genetic and environmenta components interact to produce the human organism.
Text: at the level of Rothwell, Human Genetics.

BIOL 3370. Evolutionary Biology

$3-0-3$. Prerequisite: BIOL 3334 or consent of 3-0-3. P
school.
An introduction to the evolution of living oranisms, including the history of evolutionary thought, the history of life from biochemical origin through the paleontological record, with emphasis on genetic mechanisms and the inemphasis on genetic mechand environment.
Text: at the level of Futuyma, Evolutionary Biology.
BIOL 3711. Anatomy and Physiology 3-0-3. Prerequisite: junior standing or consent of school.
Study of human anatomy and fundamental physiological mechanisms. Designed for the ad vanced student in fields interdisciplinary with the life sciences. Noncredit for biology majors.

Text: at the level of Grollman, The Human Body.
BIOL 3801-2-3-4-5. Special Topics
$1-0-1$ to $5-0-5$ respectively.
These courses enable the School of Biology to provide offerings dealing with areas of particular current interest in biological science

BIOL 4405. General Virology

3-0-3. Prerequisite: BIOL 3310 or consent of school.
An integrated view of virology, bringing unity to the diversity of bacterial, mammalian, insect and plant viruses, with special emphasis on biochemical characterization of viruses and their reproduction.
Text: at the level of Luria, Darnell, Baltimore and Campbell, General Virology, 3rd Ed.
BIOL 4406. Medical Bacteriology
$3-6-5$. Prerequisite: BIOL 3310 or consent of school.
Advanced study of bacteria of significance in human disease and of immunity
human disease avel of Burrows, Textbook of
Text: at the level Microbiology.

BIOL 4408. Microbial Genetics

 $3-6-5$. Prerequisite: BIOL 3310 or consent of school.Microbial genetics, with special emphasis on the integration of genetic studies with biochemical and physical analysis of synthesis, structure and function of nucleic acids and proteins. Text: at the level of Hayes, The Genetics of Bacteria and Their Viruses and selected references.
BIOL 4409. Microbial Physiology
3-6-5. Prerequisite: BIOL 3310, CHEM 3511 or consent of school.

Discussions and laboratory investigations on the physiology of growth and metabolic activities of microorganisms.
Text: at the level of Burrows, Textbook of Microbiology, 21st edition, and selected references.

BIOL 4410. Microbial Ecology

3-0-3. Prerequisite: BIOL 3310 or consent of 3-0-3. Pr
school.
Advanced discussions on microorganisms $O C$ cupying key roles in recycling processes, microbia cosystems and microbial evolution.
Text: at the level of Atlas and Bartha, Microbial Ecology: Fundamentals and Applications.

BIOL 4411. Industrial Microbiology

3-0-3. Prerequisite: BIOL 3310.
The biochemistry, genetics, and technologica applications of microorganisms used in commercial processes.
Text: at the level of Peppler and Perlman, Microbial Technology, Vol. I and II.

BIOL 4413. Air and Water Pollution 3-0-3.
An introduction to environmental, social, and economic problems resulting from air and water pollution and from current pollution abatement practices. Emphasis on concerns of engineers and biologists in environmental impact studies.
Text: at the level of Hodges, Environmental Pollution, 2nd ed., and selected references.
BIOL 4415. Introductory Radiation Biology 3-3-4. Prerequisite: consent of school.
A general survey of biological systems and heir responses to various kinds of radiations. Text: at the level of Casarett, Radiation Biology.

BIOL 4416. Industrial Hygiene

3-0-3.
A survey of chemical, physiological, and biological hazards in the occupational environment o include: adverse effects on the body, methods of evaluation, general control measures, and
governmental regulations.
Text: at the level of Olishifski and McElroy, Fundamentals of Industrial Hygiene, 2nd ed. and selected references.
BIOL 4420. Limnology
3-6-5. Prerequisite: BIOL 3335 or consent of school.
Physics, chemistry and ecology of fresh water, aquatic communities and ecosystems. Physical, and streams, including several field the and streams, including several field trips.
Text: at the level of Reid, Ecology of Inland
Waters and Estuaries.

BIOL 4423. Population Biology

$3-0-3$. Prerequisite: BIOL 1112 or consent of school.
Population ecology: dynamics and evolutionary mechanisms including modes of selection and environmental modification of genetic sysems
Text: at the level of Wilson and Bossert, A Primer of Population Biology.
BIOL 4425. Marine Population Biology 2-6-4. Prerequisites: introductory courses in ecology, genetics, calculus and biostatistics, or consent of school
An intensive field experience in theoretical population biology and its relationship to natural marine populations, including sampling techniques, data interpretation, and literature review. To be taught at the Marine Science Center, Skidaway Island, Georgia
Primer of Population Biolson and Bossert, A Primer of Population Biology and Ford and Hazen, Readings in Aquatic Ecology.

BIOL 4426. Estuarine Ecology
3-6-5. Prerequisites: basic courses in biolog physics, chemistry, mathematics.
A multidisciplinary field-oriented course, cor cerned with the geology, physics, chemistry biology of estuaries, and the dynamics of the estuarine ecosystem. To be taught at the Main Science Center, Skidaway Island, Georgia

Text: at the level of McConnaughey Maris Biology.
BIOL 4427. Ichthyology
3-6-5. Prerequisite: one year of general biolog or general zoology and junior standing or con sent of school
Taxonomy, distribution, ecology, and evolutio of fishes with special reference to the marine and freshwater fishes of eastern North Ameria To be taught at the Marine Science Center, Ski away Island, Georgia
BIOL 4437. Fermentation Laboratory
1-9-4. Prerequisite: BIOL 4409, BIOL 4411
Laboratory principles of microbial technology
with fermentations and the modifications of plar and animal products for food, beverages, feed and products of industrial importance.
Text: at the level of Peppler and Perlman, Microbial Technology, Vol I \& II.

BIOL 4440. Plant Physiology

3-0-3. Prerequisite: BIOL 3331, CHEM 3312
Chemical transformations in photosynthesis photophysiology and water relationships, orgai nutrition and effects of hormones on growth an development in plants.
Text: at the level of Leopold and Kriedeman Plant Growth and Development, (2nd ed.).
BIOL 4441. Physiology Laboratory
-6-2. Prerequisite: BIOL 3331 or CHEM 3312
The laboratory emphasizes training in the al principles in plants and animals and tion plication of the methods in experind the plicat
sign.
Text: at the level of Schottelius et al, Physiology Laboratory Manual.

BIOL 4446. General Animal Physiology 3-0-3. Prerequisite: BIOL 3331, CHEM 33120 consent of school.
Vertebrate systems physiology including mus. cles, nerves, circulation, respiration, and body

Text: at the level of Selkurt, Physiology.

IOL 4448. General Animal Physiology if 3-0.3. Prerequisite: BIOL 3331, CHEM 3312 or onsent of school.
The physiology of the gastrointestinal, renal, docrine, and reproductive systems. It is rec mmended that BIOL 4446 be taken prior to

Text: at the level of Selkurt, Physiology.
IOL 4450. Seminar
2.0-2. Normally taken by seniors.

Student and staff presentations of reports on boratory or literature searches.
8IOL 4464. Developmental Genetics 3-0-3. Prerequisite: BIOL 3334 or consent of chool.
Transcriptional translational, and postranslation ontrol of gene expression in cell differentiation, mechanisms of genomic regulation in eukaryotes, nucleocytoplasmic interactions, genetic aspects of morphogenesis.

BIOL 4466. Genetics of Populations .0-3. Prerequisite: BIOL 3334 or consent of Factors determining gene frequency equilibria and changes in populations: selection, mutation genetic drift, inbreeding, heritability and the nature of genetic variation.
Text: at the level of Mettier and Gregg Population Genetics and Evolution.

BIOL 4468. Molecular Genetics

3-3-4. Prerequisites: BIOL 3334 and CHEM 3312 or consent of school
Molecular genetics, with special emphasis on he study of nucleic acid structure and function Text at the level of Watson, Molecular Biology of the Gene.

BIOL 4470. Biophysical Genetics

3-0-3. Prerequisite: BIOL 3334
Current research on the biophysical mechanisms of replication, transcription, and translation

BIOL 4476. Supramolecular Biology

3-0-3. Prerequisites: BIOL 1111, CHEM 3313 and PHYS 2123 or consent of school
Structure, formation, and properties of biological objects at a level of organization between single molecules and cells.

IOL 4478. Physical Biology

4.0-4. Prerequisite: PHYS 2123, CHEM 3312 or consent of school.
Use of physics and biochemistry in explaining structure and function of biological systems at tomic and molecular levels. Approach mathe matical; quantum mechanics introduced as needed.

BIOL 4774. Applications of Microbiology in Sanitary Engineering
3-3-4. Prerequisite: senior standing, fall quarter.
Microbiology in environmental engineering. Reationships of protozoa, algae, bacteria, and viruses to water borne disease, the treatment of wastes and the deterioration of aquatic habitats.
BIOL 4801-2-3-4-5. Special Topics
$1-0-1$ to $5-0-5$ respectively.
$1-0-1$ to $5-0-5$ respectively. These courses enable the School of Biology to provide offerings dealing with areas of particular current interest in biological science.

BIOL 4960-1-2. Special Problems

Credit hours to be arranged. Prerequisite: BIOL 1111.

Special laboratory problems in biology, to be given any quarter with credits (not to exceed six) to be arranged.
BIOL 6608. Advanced Microbial Genetics $3-0-3$. Prerequisite: BIOL 4408 or 4468 or 3-0-3. Prerequisite: BIOL
consent of department.
Genetics of bacteria, plasmids, and viruses Organization and regulation of expression of genetic material, with special emphasis on new techniques such as genetic engineering.
Text: at the level of Stent and Calendar, Molecular Genetics, (2nd Ed.).

BIOL 6609. Advanced Microbial Genetics

Laboratory

$0-6-2$. Prerequisite: BIOL 4408 or consent of department.

Production, isolation, and characterization of mutants. Testing for mutagens.
Text: at the level of Stent and Calendar, Molecular Genetics, (2nd Ed.).
BIOL 6611. Advanced Microbial Physiology 3-0-3. Prerequisite: BIOL 4409 or CHEM 3511 or consent of school.
Advanced studies of selected aspects of the physiology of prokaryotic and eukaryotic microorganisms.
Text: Selected references
BIOL 6619. Ecological Systems
3-0-3. Prerequisite: graduate standing or consent of school.
Fundamentals of ecology with emphasis on the structure and function of ecosystems. Application of ecosystem concepts to environmental mpact analysis and environmental management. Designed primarily for planners and engineers; suitable for biologists.

BIOL 6622. Topics in Ecology
$1-2-2$. Prerequisite: BIOL 6619 or consent of school.
Topics of current interest in environmental science such as systems analysis, indicators of
pollution, environmental impact evaluation and environmental monitoring.
BIOL 6624. Systems Ecology
3-0-3. Prerequisite: BIOL 3335 or equivalent.
The use of systems analysis techniques in ecology. Major emphasis on characterization, analysis and simulation of complex ecosystems Compartment models, energy circuit models, experimental components models, and feedback

BIOL 6625. Communities and Ecosystems 3-0-3. Prerequisite: BIOL 3335 or consent of school.

Theoretical and practical aspects of the description, analysis, classification, and current understanding of the functional processes in major communities and ecosystems of North America

Text: Literature, references and review articles.
BIOL 6626. Physiological Ecology
3-3-4. Prerequisites: BIOL 3335 and either BIOL 4440, 4446, or 4448, or consent of school.
Physiological adaptations of plants and animals to their environments. Measurements and analysis of environmental factors as well as organismal physiological responses to light, temperature, water, and mineral nutrients will be
emphasized
Text: Literature, references and review articles.
BIOL 6635. Air Pollution Biology
3-0-3. Prerequisite: consent of school.
Designed to acquaint engineers and scientists with the biological aspects of air pollution as one factor in the total environment of living animals and plants

BIOL 6645. Photobiology

3-3-4. Prerequisite: graduate standing or consent of school
The interactions of light with biomolecules and the roles of light in the environment, in biology and medicine will be considered. Processes of vision, photomorphology, photosyn-
hesis, and photoperiodism will be included.
Text: at the level of The Science of Photobiology, K. C. Smith, Ed.

BIOL 6646. Mammalian Physiology
3-3-4. Prerequisites: BIOL 4446, 4448, or equivalent or consent of instructor
Physical, biochemical, and biological phenom ena underlying organ functions. Integration of physiological processes and basic techniques o physiologenal analysis

BIOL 6649. Neurobiology

3-0-3. Prerequisites: CHEM 3313, PHYS 2123, BIOL 1111 or consent of school.
A survey of some of the basic mechanisms of neural function and methods used to study
hem, with particular reference to the visu system.
Text: at the level of Kandel and Schwartz Principles of Neural Science.

IOL 6650. Invertebrate Behavior
-0-3. Prerequisite: consent of schoo
A review of the literature on the behavia invertebrates. Emphasis will be placed on the mechanisms of orientation of bacteria, protoz nematodes, and insects.

Text: none; readings will be taken from the primary research literature and recent review articles.
BIOL 6664. Selected Topics in Regulatory Biology
3-0-3. Prerequisites: BIOL 3334, CHEM 351 consent of school
"Second messengers," cyclic AMP-prostaglandin interactions, positive and negative tran scriptional control in prokaryotes, cyclic AMP and catabolite repression, transcriptional regul tion in eukaryotes.

BIOL 6676. Advances in Supramolecular Biology
3-0-3. Prerequisites: BIOL 1111, CHEM 3511 school.
Advanced treatment of the organization and assembly of biological structure at a level of complexity between single molecules and cell (membranes, viruses, ribosomes)

Text: Selected references.
BIOL 6730. Biological Effect of Radiations 3-3-4. Prerequisite: consent of school.
An introduction to the effects of nuclear radia tion upon biological systems for graduate students in the nuclear science and engineering curriculum.

BIOL 7000. Master's Thesis

BIOL 8001. Seminar

2-0-2. Prerequisite: graduate standing Discussion group composed of staff and grad uate students.
BIOL 8013-4-5. Seminar in Microbiology 2-0-2 each. Prerequisite: graduate standing. Recent advances in microbial physiology an microbial , ilogy medical microbilogionogy microbial ecology, medical microbiology, and in munology.
BIOL 8023-4-5. Seminar in Ecology 2-0-2 each. Prerequisite: graduate standing. Topics of current interest and recent advances in the general areas of population growth and imitation, interspecific relationships and the strue ture, productivity and stability of ecosystems.

BIOL 8043-4-5. Seminar In Physiology $2 \cdot 0-2$ each. Prerequisite: graduate standing Current concepts of membrane structure, mo lecular and ionic transport mechanisms, endocrinology, cardiac, nervous and muscular und tion, physiology of development. Student and laculty presentations.
BIOL 8063-4-5. Seminar in Genetics $2 \cdot 0-2$ each. Prerequisite: graduate standing. Topics of current interest in the areas of cytogenetics, developmental genetics, molecula genetics, mutagenesis and the genetics of man and populations. Student and faculty presentations
BIOL 8101-2-3-4-5. Special Topics $1-0-1$ to $5-0-5$, respectively.
These courses enable the School of Biology to provide offerings dealing with areas of particular current interest in biological science
BIOL 8504-5-6. Special Problems Credit to be arranged.

BIOL 9000. Doctoral Thesis

School of Chemistry

Established in 1906

Director and Professor-Robert A. Pierotti Coordinator of Graduate Programs and Professor-Raymond F. Borkman; Coordinator of Undergraduate Programs and Associate Professor-Harold R. Hunt; Regents Professors-Eugene C. Ashby, William H. Eberhardt; Seydel-Woolley ProfessorHerbert O. House; Julius Brown Professor -Erling Grovenstein, Jr.; Professors-E. -Erling Grovenstein, Jr.; Professors-E. M. Burgess, Ronald H. Felton, Richard W. Fink, Sidney L. Gordon, Charles L. Liotta, Sheldon W. May, George A. Miller, Thomas F. Moran, Henry M. Neumann, James C. Powers, Donald J. Royer, James A. Stanfield, Peter E. Sturrock, Nai-Teng Yu; Associate Professors-Richard F. Browner, sociate Professors-Richard F. Browner,
Peter B. Sherry; Assistant ProfessorsPeter B. Sherry; Assistant Professors-
Lawrence A. Bottomley, Patrick G. McDougal

General Information

Included in the school are courses in chemistry required for various engineering and science curricula; for students interested in medical school; for the degree of Bachelor of Science in Chemistry; and for
graduate work leading to the degrees of Master of Science in Chemistry and Doctor of Philosophy in Chemistry.

Undergraduate Program

Students receive the degree Bachelor of Science in Chemistry upon the completion of the following prescribed curriculum of which seventy-three quarter hours are elective work. The significant number of free elective hours in the chemistry curriculum permits one to take necessary concentrat ed elective work to achieve certificate programs in written and oral communications, reign languages, social sciences, and othravailable programs of the Institute. In addition, interdisciplinary minor options in geochemistry and T-4 certification (in association with Georgia State University) are also possible. The wise and judicious use of these free electives also enables the student to achieve considerable knowledge of other disciplines at Georgia Tech such as chemical engineering, physics, mathematics, management, textiles, ceramics, and biology. Too, these electives enable those who are interested in medical and dental schools to meet admission requirements of these schools.

Additional information regarding undergraduate programs is available by writing to the Undergraduate Coordinator, School of Chemistry, Georgia Institute of Technology Atlanta, Georgia 30332.

Freshman Year
Course
1st Q. 2nd Q. 3 rd Q
CHEM 1111-2
General Chemistry 4-3-5 4-3-5
CHEM ${ }^{1} 2114$
Chemical Principles 3-0-3
CHEM ${ }^{1} 2115$
Quantitative Measurements
MATH 1307-8-9
$5-0-5 \quad 5-0-5 \quad 5-0-5$
ENGL 1001-2
Introduction to
Literature
3-0-3
3-0-3
Electives ${ }^{2}$
Foreign Language $\quad 3-0-3 \quad 3-0-3 \quad 3-0-3$

Electives ${ }^{4}$

Physical Education	$0-4-1$	$0-4-1$	$2-2$
Electives 5			
Free	$\frac{2-0-2}{}$	$2-0-2$	$2-0$
Totals	$17-7-19$	$17-7-19$	$16-8-1$

Sophomore Year

Course	1st Q.	2nd Q.	$3 \mathrm{rd} Q$
CHEM 3311-2-3 Organic Chemistry	3-0-3	3-0-3	3-0-3
CHEM 3381-2 Organic Chemistry Laboratory	0-6-2	0-6-2
MATH 2307-8 Calculus IV, V	5-0-5	5-0-5	
PHYS 2121-2-3 Physics	4-3-5	4-3-5	4-3-5
Electives ${ }^{6}$ English			3-0-3
Electives ${ }^{7}$ Free	3-0-3	3-0-3	3-0-3
Totals	15-3-16	-9-18	

Senior Year
Course 1st Q. 2nd Q. 3rd Q
Electives ${ }^{8,9}$
Chemistry $\quad X-X-5 \quad X-X-5 \quad X-X-5$

Electives ${ }^{3}$
Social Science
Electives ${ }^{7}$
Free
Totals
$x-x-8$
${ }^{1}$ These courses are prerequisites for CHEM 338 If CHEM 2113 is taken, it may be used as a prerequisite for CHEM 3381 . Students transterring into Chemistry from other majors who ha completed CHEM 2113 may substitute CHEM 2113 plus two hours of technical electives for CHEM 2114 and CHEM 2115. ${ }^{2}$ The School of Chemistry
foreign language (French, German or that a be taken in the freshman Gear. How, or Russia science is elected in the freshman year, thon scine credit hours of foreign year, then nine credit hours of foreign language must be ${ }^{3}$ See "Infor
mation relative to the Undergraduates" for info mation relative to the Institute requirement of of social science. ${ }^{4}$ of social science.
Physical Education Degrees", Department of Physical Education, for Physical Education re${ }^{5}$ quirements for both men and women.
Turing a student's course of taken at any time six credit hours of basic ROTC. However, if ROTC should be ROTC should be scheduled the first quarter the student is enrolled
courses be of Chemistry recommends that two courses be taken from among these written and $3015,3018,3019,3023$ or 3024 . 2010, 3008, stud, $3018,301 \mathrm{~g}, 3023$, or 3024; however, the in English. in English
The required hours of free electives (forty) allow the student to take additional courses in chemis try beyond those required for the B.S. degree
隹 number of courses in a particular discipline or chemistry. The group of disciplines outside of fied several coherent programs in courses which constitute A student who more of credit from such ane wenty hours or courses outside of such an approved group of proval to substitu chemistry may apply for ap. proval to substiute up to six hours of the credit carned for a portion of the chemistry elective rect required for the information and the ate te academic advisors. In order to minimize cheir free eloblems, students are advised to plan of the sophomore programs during the early part of the sophomore year.

Graduate Programs
The School of Chemistry also offers prorams for both the master's and doctora legrees in the fields of analytical, bioemistry, inorganic, nuclear, organic, and hysical chemistry.
The requirements for the master's deconsist of an accepted program of hirty-three quarter hours of coursework plus an original research thesis on the master's evel. The student and his or her advisory ommittee design the program, which may be argely or totally in chemistry, to suit the reeds and objectives of the individual.
The goal of the doctoral program is greater roticiency and depth in the chemical area with particular emphasis being placed on original, independent, and scholarly research. The only course work demanded is the Institute requirement of a minimum of fifteen earned credit hours in a minor field which may be any field of study chosen by the student in consultation with his advisor The area need not necessarily be beyond the broad area of chemistry. Most students, the broad area of chemistry. Most students, however, do take a number of courses dur-
ing their studies beyond the minor requirements. The numbers of such other courses vary with individuals, the major field inerests, previous background, as well as ong range goals.
Active research fields include: Bio-chemistry-proteolytic enzymes and in-

The required hours of chemistry electives a ow students to specialize in a particular area chemistry by taking advanced undergraduate and/or graduate courses for which they are ualified. The fifteen credit hours in elective hemistry must include at least two lecture aboratory courses selected from the following ist: CHEM 3386, 3492, 4182, 4231, 4582. The remaining nine credit hours of chemistry eleclives may consist of up to four credit hours in special problems (CHEM 4901-2), CHEM 3511, burses numbered $4 \mathrm{XXX}, 6 \mathrm{XXX}$, or other courses approved by the School; however, CHEM 4201 4701 may not be offered as chemistry electives. Alternatively, a portion of these nine credit hours of chemistry electives may be replaced by credis earned in a discipline outside of chemistry, as described in footnote 7.
${ }^{9}$ CHEM 3386 may be substituted for CHEM 3383 and one of the two required senior elective lecture-laboratory courses.
hibitors, neurochemistry, immobolized enzymes, Raman and fluorescence spec troscopy of proteins, spectroscopy and photochemistry of ocular lenses and cataracts, and antitumor agents of natural cataracts, and antitumor agents of natural
and synthetic origin. Inorganic chemistry -synthesis and properties of organometallic and coordination compounds, kinetics and mechanisms of reactions, metal hydrides, models for biologically active metalcontaining compounds, X-ray diffraction, ESR spectroscopy, and magnetic susceptibility. Organic chemistry-multistep synthesis, Organic chemistry-multistep synthesis, physical organic chemistry, heterocyclic
chemistry, natural products, organometallic chemistry, natural products, organometallic
chemistry, crown ethers, electrochemistry, theoretical organic chemistry, carbanions, and phase transfer catalysis. Physical chemistry-molecular and ion beam kinetics, $a b$ initio calculations, electronic spectroscopy, light scattering, Raman spectroscopy, surface phenomena, protein dynamics and photochemistry, bonding theory, EXAFS, NMR spectroscopy, and porphyrin properties. Analytical chemistry electrochemistry, mass spectrometry, atomic absorption, RF plasmas, and porphyrin chemistry. Nuclear chemistry-X-ray fluorescence, radiopharmaceuticals, inner shell ionization, and radioactive isotopes.
Additional information regarding graduate work is available by writing to the Graduate Coordinator, School of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332.

Courses of Instruction

Note: all students are required to wear safety glasses while working in the laboratories. The glasses will be provided at the student's expense.

CHEM 1100. General Chemistry I

4-4-5. Prerequisite: consent of school
This course, covering the fundamental laws and theories of chemistry, is identical to CHEM 1101 and comparable to CHEM 1111. It may be taken, upon approval, by students who may need additional lecture, drill, or laboratory periods in order to complete the regular first periods in order toller work in college chemistry. Credit is not quarter for CHEM 1100 and either CHEM 1101 allowed for CHEM 111 Th and and/or CHEM 111. The course 1112
prerequisite 1
Slowinski Chemical Principles, Fourth Edition.

CHEM 1101-2. General Chemistry I, II
4-3-5 each
Fundamental laws and theories of chemistry for students who do not plan to take advanced chemistry courses.

Text: at the level of Masterton, Slowinski, Chemical Principles.

4-3-5 each.
For students planning to pursue advanced courses in chemistry. In depth studies of chemical principles and the techniques of quantitative analysis necessary for further studies in chemistry.
Text: at the level of Waser, Chem One.
CHEM 2113. Chemical Principles
3-3-4. Prerequisite: CHEM 1112 or CHEM 1102.

Continuation of CHEM 1112 stressing thermodynamics and kinetics and their applications to chemistry. Quantitative experimentation

Text: at the level of Waser, Chem One.
CHEM 2114. Chemical Principles
3-0-3. Prerequisite: CHEM 1112 or 1102
Continuation of CHEM 1112 stressing thermodynamics and kinetics and their application to chemistry. For chemistry majors.

CHEM 2115. Quantitative Measurements 1-6-3. Prerequisite: concurrent with or following CHEM 2114; or CHEM 2113
Experimentation concerned with synthesis, analysis, and data interpretation. For chemistry majors.
CHEM 2901-2-3. Special Problems-Chemistry Credit hours to be arranged. Prerequisite: CHEM 112 and consent of school.
Individualized instruction which will include library, conference, and laboratory experiences
CHEM 3121-2. Advanced Inorganic
Chemistry I, II
3-0-3. Prerequisite: CHEM 3411
A study of the reactions and structures of inorganic compounds and the principles, generalizations, and theories which assist in understanding their behavior.
CHEM 3311-2-3. Organic Chemistry I, II, III 3-0-3 each. Prerequisite: CHEM 2113, 2114, or onsent of school.
Principal classes of organic compounds
aliphatic and aromatic
Text: at the level of Morrison and Boyd,
Organic Chemistry Organic Chemistry, third edition.
CHEM 3381-2. Organic Chemistry
Laboratory I, II
0-6-2 each. Concurrent with or following CHEM $3311-2$ respectively; CHEM 3381 prerequisite to CHEM 3382.

Studies of reactions, preparation and the techniques used in the organic laboratory.
CHEM 3383. Organic Chemistry Laboratory $0-6-2$. Prerequisite: CHEM 3382. Prerequisite orequisite: CHEM 3313
Studies of reactions, preparation and the te nique used in the organic laboratory.
CHEM 3386. Organic Chemistry Laboraton
1-12-5. Prerequisite: CHEM 3382. Prerequisit
or corequisite: CHEM 3313.
Advanced study of organic reactions, prepar tions, separations, instrumentation, and techniques.
CHEM 3411. Physical Chemistry
3-0-3. Prerequisites: CHEM 2113 or 2114 , PH 2122, MATH 2307.
Quantum mechanics and atomic structure, bonding theory, molecular spectroscopy.

Text: at the level of Moore, Physical Chemis

CHEM 3412. Physical Chemistry II

3-0-3. Prerequisites: CHEM 2113 or 2114, PH 2122, MATH 2307.
Chemical thermodynamics, energetics of chem cal reactions, and changes of state Text: at the level of Moore, Physical Chemist

CHEM 3413. Physical Chemistry III

3-0-3. Prerequisite: CHEM 3412.
Electrochemistry, rates of chemical reactions kinetic theory of gases, statistical mechanics. Text: at the level of Moore, Physical Chemistry
CHEM 3481. Physical Chemistry Laboratory $0-6-2$. Prerequisite: concurrent with or following CHEM 3412.
Applications of physical chemistry principles.
CHEM 3482. Physical Chemistry Laboratory 0-6-2. Prerequisite: CHEM 3481, concurrent wi or following CHEM 3413.
Applications of physical chemistry principles.

CHEM 3492. Physical Chemistry

Laboratory III
1-6-3. Prerequisite: CHEM 3482 and concurre with or following CHEM 4401 or consent of school.
Application of electronic spectroscopy to vibra tional, rotational, and electronic properties of simple molecules. Kinetic properties of reacting sys tems emphasizing molecular, dynamic properties

CHEM 3511. Biochemistry

3-0-3. Prerequisite: CHEM 3312.
Introductory course in biochemistry dealing with the chemistry and biochemistry of proteins lipids, carbohydrates, nucleic acids, and other biomolecules.
Text: at the level of Lehninger, A Short Cours in Biochemistry.

CHEM 4182. Synthetic Inorganic Chemistry 1.6-3. Prerequisite: concurrent with or following HEM 3121.
Preparation and characterization of inorganic wompounds, with special emphasis on the ap paratus and techniques employed in modern snnthetic inorganic chemistry.

CHEM 4201.

3.3. Prerequisite: CHEM 2113.

Provides a background to modern analytical chemistry and to instrumental methods of analyis with applications to engineering and other areas. Not open to chemistry majors. Text: at the level of Christian, Analytical Chemistry, third edition
CHEM 4211. Instrumental Analysis I 3.6-5. Concurrent with or following CHEM 3411 Introduction to both theory and practice of modern instrumental methods: polarography, spectroscopy, colorimetry, microscopy, polarimetry dectroanalytical methods.
Text: at the level of Flaschka, Barnard, and Sturrock, Quantitative Analytical Chemistry, volume one.
CHEM 4212. Instrumental Analysis II 3.6-5. Prerequisite: CHEM 4211 or consent of school.
Continuation of Instrumental Analysis I. Text: at the level of Willard, Merrit and Dean, strumental Methods of Analysis.
CHEM 4231. Advanced Instrumental Analysi 1.6-3. Prerequisite: CHEM 4211 or consent of chool.
Advanced analytical techniques and investigaions of newer analytical methods in the practice of analysis.
CHEM 4311-2. Organic Reactions I, 1
0.3 each. Prerequisite: CHEM 3313. Theoretical interpretation of reactivity, reaction mechanisms, and molecular structures of organic compounds.
CHEM 4341. Applied Spectroscopy 3-0-3. Prerequisite: CHEM 3313.
Interpretation of spectroscopic and other common methods of organic analysis and structure determinations.
CHEM 4401. Physical Chemistry 3-0-3. Prerequisites: CHEM 3411, PHYS 2123 nd MATH 2308 or consent of school
Theory of molecular spectroscopy, electron oiffraction, X-ray diffraction, neutron diffraction, and magnetic methods applied to the determinaion of molecular structure.
CHEM 4452. Chemistry of the Solid State 3-0-3. Prerequisite: CHEM 3411 or consent of school.

Applications of the concepts of physical chemistry to the structure of solids and their chemical and physical properties
Text: at the level of Barrow, Physical Chemistry.

CHEM 4511-2-3. Biochemistry I, II, III

3-0-3. Prerequisite: CHEM 3312 or consent of school.

The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

Text: at the level of Lehninger, Biochemistry.

CHEM 4582. Biochemistry Laboratory

1-6-3. Prerequisite: CHEM 3511 or consent of 1-6-3. P
school.

Laboratory techniques in the isolation and characterization of proteins and nucleic acids with special emphasis on modern practices in biochemistry.
CHEM 4701. Chemistry of Nuclear Technology $3-3-4$. For students in nuclear engineering. Principles of inorganic, radiation and radio chemistries, separation methods for actinide elements and fission products and topics related to production and utilization of nuclear energy.
CHEM 4801-2-3. Special Topics-Chemistry 1-0-1 through 3-0-3 respectively. Prerequisite: unior standing or consent of school.
Lecture courses in special topics of current interest in chemistry. Topics will vary from year to year.
CHEM 4901-2-3. Special Problems
Credit to be arranged. Prerequisite: consent of school.
Individualized instruction which will include library, conference and laboratory work.
CHEM 6111-2. Advanced Inorganic Chemistry I, II
3-0-3 each. Prerequisite: consent of school. The theory of bonding and structure of inorganic compounds and the chemistry of the elements
Text: at the level of Cotton, Wilkinson, Advanced Inorganic Chemistry, third edition.
CHEM 6141. Chemical Applications of Group
Theory
$3-0-3$. Prerequisite: CHEM 3112 or consent of school.
An introduction to basic definitions and theorems of group theory and their application to molecular symmetry and quantum mechanics and use in valence bond, molecular orbital and ligand field treatments.
Text: at the level of Cotton, Chemical Applications of Group Theory.

CHEM 6151. Chemical Crystallograph
3-0-3. Prerequisite: consent of school.
Application of X-ray diffraction to the determi
nation of crystal structures including crystal symmetry, reciprocal lattice, intensity of diffrac tion, the phase problem, and refinement of structure parameters.
CHEM 6211-2. Analytical Chemistry I, II
-0-3 each. Prerequisite: consent of school Theoretical principles and uses of modern py colorimetry pods: spectroscopy, microsco py, colorimetry, polarography, polarimetry, and
Toutt at the lowalet

Text: at the level of Flaschka, et al., Quantitative Analytical Chemistry, volume one, and Willard, et al., Instrumental Methods of Analysis.

HEM 6221. Organic Reagents in Analytical

 Chemistry3-0-3. Prerequisite: CHEM 4212
Chelating agents used in the detection and determination of inorganic ions, spot testing methods and extraction procedures employing organic reagents.
CHEM 6230. Electrochemistry
3-0-3. Prerequisite: consent of schoo
A study of electrochemical instrumentation the thermodynamics, structure, adsorption of the electrical double layer and the kinetics of simple and complex electrode processes.

HEm 6231. Electroanalytical Chemistry

 3-0-3. Prerequisite: CHEM 4212 or consent of school.Coulometry, electrolytic separations, polarography, chronopotentiometry, coulometric titration and voltametric methods of equivalence point detection.

Text: at the level of Lingane, Electroanalytica Chemistry.

CHEM 6241. Advanced Analytical Chemistry 3-0-3. Prerequisite: consent of school.
Competing equilibria, including polybasic acids differential precipitation, complex ion formation in competition with these. Complexometric titra tions and homogenous precipitation. Adsorption partition, ion exchange, and gas chromatography
CHEM 6311-2-3. Organic Chemistry I, II, III 3-0-3 each. Prerequisite: CHEM 3313 and consent of school.
A more advanced study of the fundamenta reactions and theories of structure of various classes of organic compound
Reactions,
CHEM 6321-2-3. Reactivity, Mechanism, and Structure in Organic Chemistry I, II, II 3-0-3 each. Prerequisite: consent of school. Theoretical interpretations of reactivity, reaction mechanisms, and molecular structures of organic compounds.

CHEM 6342. Instrumental Methods of Organic Analysis
3-0-3. Prerequisite: CHEM 3313 or consent school
Interpretation of spectroscopic and other co mon methods of organic analysis and struct determinations.

CHEM 6351. Organometallic Chemistry 3-0-3. Prerequisite: consent of school Survey of organometallic chemistry of main group elements, particularly lithium, sodium, yllium, magnesium, zinc, cadmium, mercur, boron, and aluminum, emphasizing structure, bonding, reaction mechanisms, and applicatio
CHEM 6411-2. Molecular Structure and Chemical Principles I, II
3-0-3 each. Prerequisite: consent of school A discussion of molecular structure based upon quantum mechanical principles.

CHEM 6421-2. Chemical Thermodynamics 3-0-3 each. Prerequisites: CHEM 3411-2-3.
Laws of thermodynamics and their chemica applications. Introduction to chemical kinetics and statistical mechanics.

CHEM 6451. Surface Equilibria

3-0-3. Prerequisite: consent of school.
Classical and statistical thermodynamics of surface systems, intermolecular forces at the gas-solid interface, adsorption phenomena an apillarity
CHEM 6511-12. Advanced Enzymology I, II 3-0-3 each. Prerequisite: CHEM 4513 or consent of school.
Structure and chemistry of proteins, enzyme structure and mechanism, enzyme kinetics, enzyme inhibitors and medicinal chemistry.
CHEM 6541. Advanced Biophysical Chemistry 3-0-3. Prerequisites: CHEM 3411 and 3412 or consent of instructor.
Applications of the principles and techniques of physical chemistry in biochemistry with emphasis on the equilibrium and dynamic behavio of macromolecules in solution.
CHEM 6610. Nuclear Chemistry 4-0-4. Prerequisites: CHEM 3413 and MATH 2308
Properties and structure of the atomic nucleus, radioactivity and decay schemes, interaction of radiation with matter, detection and experimental methods, nuclear reactors, radiochemical techniques.
Text: at the level of Evans, The Atomic Nucleus.

CHEM 6612. Nuclear Chemistry
0-3. Prerequisite: CHEM 6610.
A continuation of CHEM 6610

HEM 6621. Fast-neutron Interactions
3.0-3. Prerequisite: CHEM 6612 or consent of chool.
Properties of the neutron. Forces between nucleons. Fast neutron sources. Experimental methods of detection, spectrometry and calibrafon of neutrons and neutron sources

HeM 6622. Nuciear Fission 12 or consent of 3.0-3.

Theory, probability, mass and charge distribuions, fragmentations, low, intermediate, and high nergy processes and photofission processes occurring in nuclear fissions.

CHEM 6623. Elemental Analysis by Nuclea and X-ray Techniques
$3 \cdot 0 \cdot 3$. Prerequisite: consent of school.
Elemental analysis by activation techniques, rompt neutron-capture gamma ray analysis, in elastic scattering analysis, instrumental and radiochemical methods, x-ray emission and fluores cence and miscellaneous nuclear-based techniques.
CHEM 6753. Surface Science Laboratory
3.18-9. Prerequisite: consent of school.

A highly specialized laboratory course using modern analytical and research instrumentation to characterize and study the surface properties of materials.

CHEM 6754. Electrochemistry
3-0-3. Prerequisite: consent of schoo
A study of electrochemical instrumentation, thermodynamics, structure, double layer theory, and kinetics of simple and complex electrode processes. Also taught as CHE 6754

CHEM 7000. Master's Thesis

CHEM 7121. Ligand Field Theory

 $3 \cdot 0-3$. Prerequisite: CHEM 6141.Introduction to theory of electronic structure of transition metal compounds and its application 10 he interpretation of physical and chemical properties of these compound
tral and magnetic properties.
Text: at the level of Royer, Ligand Field Theory: An Introduction.
CHEM 7131. Inorganic Stereochemistry $3-0-3$. Prerequisite: CHEM 3112 or consent of school.
A discussion of the structure of inorganic compounds and relationships between structures, bonding, and properties of these compounds.

CHEM 7141. Mechanisms of Inorganic

 Reactions3.0-3. Prerequisite: CHEM 3112 or consent of school.
Discussion of mechanisms of inorganic reac-
ions based on kinetic and stereochemical studies -the substitution and redox reactions of coordination complexes in solution.
Text: at the level of Basolo and Pearson, Mechanisms of Inorganic Reactions.

CHEM 7421. Statistical Thermodynamics

 3-0-3. Prerequisite: CHEM 6422 or consent of schoolA study of statistical mechanical ensembles, partition functions and their relationship to thermodynamics, lattice statistics, molecular distribution and correlation functions, the theories of liquids and solutions, phase transitions and cluster theory.
CHEM 7431-2. Principles of Quantum
Mechanics I, II
3-0-3. Prerequisite: CHEM 6411 or PHYS 4143 Important concepts of quantum chemistry at the intermediate level including: angular momentum perturbation theory, electronic structure of molecules and radiation matter interaction. Applications will vary from year to year.

CHEM 7451. Chemical Kinetics

3-0-3. Prerequisites: CHEM 6421-2.
Mechanisms of chemical reactions, cross sec tions and rate constants. Elastic, inelastlc and rearrangement channels are discussed using quantum and semiclassical techniques.

CHEM 7611. Nuclear Spectroscopy

2-0-2. Prerequisite: CHEM 6612 or consent of school.

A study of nuclear levels and of energy absorption and emission by nuclei both by radioactive decay and by nuclear reaction and scattering experiments.
Text: at the level of Siegbahn, Alpha-, Betaand Gamma-Spectroscopy, volumes one and two.
CHEM 8111-2. Special Topics in Inorganic Chemistry
-0-3 each. Prerequisite: CHEM 3112.
Topics to be discussed vary from year to year, will include mechanisms of inorganic reactions, Ligand field theory and bonding in inorganic compounds.

CHEM 8211. Special Topics in Analytical

Chemistry

2-3-3. Prerequisite: consent of school.
Discussions of specialized areas of analysis spectrophotometry, polarography, coulometry, chromatography and others. Content of course varies from year to year.
CHEM 8311-2. Special Topics in Organic

Chemistry

3-0-3 each. Prerequisite: consent of school. Topics vary from year to year, will include such subjects as evaluation of synthetic meth
ds and their application to research in organic chemistry.

CHEM 8351-2. Special Topics in Biochemistry 3-0-3 each. Prerequisite: CHEM 4512 or con-
sent of school
Topics vary from year to year, will include such subjects as proteins, enzyme mechanisms, metabolism, and membranes.
CHEM 8411-2. Special Topics in Physical Chemistry
sent of sch. Prerequisite: CHEM 3413 or con-
Topics vary
Topics vary from year to year, will include such subjects as photochemistry, solid state, surface chemistry, and radiation chemistry.
CHEM 8461. Special Topics in Nuclear Chemistry
3-0-3. Prerequisite: CHEM 6612 or consent of school.
Topics vary from year to year, will include nuclear fission, radiochemical techniques, nuclear reactions, inbeam nuclear spectroscopy, and online investigations of nuclei far from stability.
CHEM 8500-1-2. Special Problems-Chemistry Credit to be arranged. Prerequisite: consent of school.

A laboratory course dealing with special problems of current interest in chemistry.
CHEM 9000. Doctoral Thesis

Department of English

Department Head-A. D. Van Nostrand; Professors-Elizabeth Evans, Annibel Jenkins, Samuel C. Ketchin, L. Hugh Moore, Helen H. Naugle, Larry J. Rubin, James D. Young; Associate Professors-Paul Armstrong, Edith H. Blicksilver, James J Bynum, Wister J. Cook, Irving F. Foote, Sarah E. Jackson, Peter J. McGuire, Sara Putzell-Korab, Matthew C. O'Brien, Esta K Seaton, Maxine T. Turner, Robert E, Wood Assistant Professors-May C. Brown, Richard J. Corbin, Kenneth Knoespel, Carol Senf, Robert L. Snyder, Jay P. Telotte.

General Information

The Department of English offers instruction in basic composition (ENGL 1001-2) which is a prerequisite for all other English courses. It provides a series of pro-
grams in which students can complete try
 a non-humanities credit program in tech cal writing and public speaking.

Humanities Certificates and Programs

The Department offers three humanities programs: American Literature, Drama an Film, and Literature and Science. All courses in these programs carry humani ties credit. Certificates are available in American Literature and Drama and Film
American Literature contains two tracks "American Approaches to Poetry, Fiction, and Drama" and "The Southern Literany Tradition." Both groups of courses invest gate how American cultural events, histoi cal movements, and philosophies influenced and were influenced by the national litera ture. Students may also create an individu al track with the help of an advisor from the program.
Drama and Film offers courses on speciic periods, authors, social issues, and techniques in the history of these two related media.
The Literature and Science courses chat lenge the conventional opposition of the so. called "two cultures." Two questions quide each course: What is the structure of un. derstanding in literary and scientific inquiry? Historically considered, what relations have existed between prevailing scientific theories literary forms, and intellectual perspectives hat constitute a society's way of knowing the world?

Technical and Business Communication Certificate Program

These courses teach the principles of effective communication and give practice in ap. plying them in the practical form of briefings speeches, memoranda, technical reports, and other standard forms of business communication. (None of the courses in this program carry humanities credit.)

Advanced Placement

Students with a score of 3 or above on the College Entrance Examination Board Ad-
anced Placement Examination in "Composition and Literature" or "Language and Composition" receive credit for ENGL 001-2. Students with College Board SAT Verbal scores of 650 (or 600 with English Achievement score of 600) may take the Department advanced placement exam during FASET. Those who pass the Departing FASET. Those who pass the Depart-
ment exam and then earn a " B " in ENGL ment exam and then earn a "B" in ENGL 1001-2 as well as for the course taken.

Regents' Examination

This exam measures proficiency in reading and English composition. A passing score is required by the Board of Regents for graduation. The exam is designed, administered, and graded by the Regents taff. Students failing the exam must schedle ENGL 0020 in their following quarter in residence. In addition to ENGL 0020, the Department offers short workshops in
preparation for the exam, consultation with those who have failed, and an appeal sysem for those who fail.

English for International Students

The Department of English offers a humanities credit sophomore sequence in American literature (ENGL 2041-2-3) for students whose native language is not English. Freshman courses in speaking and writing English are offered in the Department of Modern Languages (FL 1031-2-3).

Courses of Instruction

ENGL 0010. Remedial English
2-3-3. (Pass/fail basis only.)
Special attention given to developing the voSpelary and basic skills in reading and writing for students who need additional preparation for college-level English. Lectures, exercises, laboratory. Cannot be counted for credit toward graduation.
ENGL 0020. Writing the Impromptu Essay 3-0.3. (Pass/fail basis only.)
Special attention given to developing basic skills in writing for students who need additional preparation for college-level English. Lectures, exercises. Cannot be counted for credit toward graduation.

ENGL 1001-2. Analysis of Literature and Language I, II
Language 1 , If taken in numerical sequence and are prerequisite to all other English courses
site to all other Engiish courses. termine rhetorical strategies. Intensive writing practice in these strategies, with emphasis on practice in these strategies, with readership in organizing ideas, evidence, and readerecasting paragraph sequences and then on fore
and monitoring paragraph sequences.

ENGL 1003. Analysis of Literature and Language III
3-0-3. Prerequisite: ENGL 1001-2. Not a continuation of ENGL 1001-2.
Analysis of selected literary works, emphasiz ing relationship of content and form, and of audience and style. Practice in written composition about the literature studied. Discussion, exercises, papers.
ENGL 2001-2-3. Survey of the Humanities I, II, III
3-0-3 each. Prerequisites: ENGL 1001-2.
A sequence of courses studying the contribu tion of several Western civilizations from the Greeks to modern times as revealed in literature. Lectures, reports, papers, quizzes.
ENGL 2004. Survey of English Literature 3-0-3. Prerequisites: ENGL 1001-2. May be substituted for ENGL 2003.

A study of English literature since Shakespeare with emphasis on significant figures and their works. Lectures, reports, papers, quizzes.
ENGL 2037-8-9. Acting and Producing the Play I, II, III
$0-3-1$ each. Prerequisite: consent of the department.

Participation in the DramaTech productions of various kinds of plays, including the presentation of one play before an audience.

ENGL 2041

Students
3-0-3 each. Sophomore year. Prerequisite: FL 1031-2-3. To be taken by foreign students in lieu of ENGL 2001-2-3.
An introduction to American literature, with continued training in writing and speaking American English.
ENGL 2101. Introduction to Drama and Film 3-0-3. Prerequisites: ENGL 1001-2.
Investigates shared characteristics and differences between film and drama.
ENGL 2201. Introduction to American

Literature

3-0-3. Prerequisites: ENGL 1001-2.
Maior themes of optimism, guilt and doubt, and nature in the development of American literature.

ENGL 3006. The English Language
3-0-3. Prerequisite: ENGL 1001-2.
Study of the origin of the English language, its relation to other languages and its differentiation and development into modern English and American.
ENGL 3008. Logic and the Use of Language 3-0-3. Prerequisites: ENGL 1001-2.
Study of principles of logic and semantics and their use in increasing effectiveness of oral and written communication. Analysis of fallacies in the mass media.
ENGL 3015. Public Speaking
3-0-3. Prerequisites: ENGL 1001-2. Normally taken by juniors and seniors. Does not carry humanities credit
Instruction in the basic principles of effective public speaking, with emphasis on practice and criticism. The course is conducted as a laboratory.
ENGL 3019. Oral Communication in Science, Business, and Industry
3-0-3. Prerequisite: ENGL 3015. Does not carry humanities credit.
Study of informative oral communication in science, business, and industry. Practice in committee, panel, and technical briefing settings.
Emphasis on use of audio-visual aids.

ENGL 3023. Written Communication in Science, Business, and Industry 3-0-3. Prerequisites: ENGL 1001-2. Normally taken by juniors and seniors. Does not carry humanities credit.
Practice in application of principles of effective written communication to important types of professional writing including reports, letters, memoranda. Case method of instruction and individual projects.
ENGL 3024. Advanced Writing
3-0-3. Prerequisites: ENGL 1001-2, 3023. Does not carry humanities credit
Intensive practice in composition at an ad vanced level in informative, argumentative, and persuasive forms. Discussion of principles and theory of composing. Analysis of appropriate models.
ENGL 3037-8-9. Acting and Producing the Play I, II, III
0-3-1 each. Prerequisite: consent of the department.

See ENGL 2037-8-9
ENGL 3041. Writers in the Age of Galileo 3-0-3. Prerequisites: ENGL 1001-2 Study of works of three of the following: Donne, Bacon, Jonson, Milton, Defoe. Emphasis on their reflection of social, scientific, philosophical attitudes of the age.

ENGL 3042. Writers in the Age of Newton 3-0-3. Prerequisites: ENGL 1001-2
Study of the works of three of the following Swift, Fielding, Thoreau, Wordsworth, Keats. Emphasis on their reflection of social, scientit philosophical attitudes of the age.
ENGL 3043. Writers in the Age of Darwin 3-0-3. Prerequisites: ENGL 1001-2.
Study of works of three of the following:
Carlyle, Melville, Arnold, Tennyson, Twain. E phasis on their reflection of social, scientific, philosophical attitudes of the age.

Einstein

3-0-3. Prerequisites: ENGL 1001-2.
Study of works of three of the following:
James, Yeats, Shaw, Lawrence, Eliot. Emphas on their reflection of social, scientific, philosoph ical attitudes of the age.

ENGL 3051. Chaucer

3-0-3. Prerequisites: ENGL 1001-2.
Introduction to the poetry of Chaucer in Middle English. Major emphasis on the study of The Canterbury Tales.

ENGL 3056. Joyce

3-0-3. Prerequisites: ENGL 1001-2.
A study of the works of James Joyce, with particular emphasis on Joycean techniques of fiction as developed in Ulysses and other selected works.

ENGL 3058. Contemporary Drama

3-0-3. Prerequisites: ENGL 1001-2.
An analytic survey of prominent playwrights and trends in contemporary drama. Lectures, reports, collateral reading, quizzes.
ENGL 3059. Contemporary Fiction
3-0-3. Prerequisites: ENGL 1001-2.
An analytic study of prominent writers and trends in contemporary fiction. Lectures, reports,
collateral reading, quizzes.
ENGL 3061. The Literature of the Bible: The Old Testament
3-0-3. Prerequisites: ENGL 1001-2.
Siudy of selected Old Testament writings, with emphasis on literary quality and intellectual content. Discussion of both in the cultural heritage of the Western world.

ENGL 3062. The Literature of the Bible: The

 New Testament3-0-3. Prerequisites: ENGL 1001-2
Study of selected New Testament writings, with emphasis on literary quality and intellectual content. Discussion of both in the cultural heritage of the Western world.

3072. The Civil War in Literature

0.3. Prerequisites: ENGL 1001-2, 2201.

A study of selected works of literature dealing ine American Civil War, with emphasis on e relations of history and literature.

NGL 3075. Hemingway

0-3. Prerequisites: ENGL 1001-2, 2201. A study of the major novels and selected hort stories of Ernest Hemingway in the context his contemporaries, with emphasis on major emes and narrative techniques.

ENGL 3076. Faulkne

-0-3. Prerequisites: ENGL 1001-2, 2001. A study of selected works of William Faulkner with particular emphasis on major themes and ne nature of his narrative art.
NGL 3081-2-3-4-5-6. Seminars in Literature 3.0.3 each. Prerequisites: ENGL 1001-2. Intensive study of individual writers, movenents, periods or themes in literature, with the murpose of developing knowledge in depth, critival independence, and expository skill.

ENGL 3101. Greek Drama in Homeric Contex 3-0-3. Prerequisites: ENGL 1001-2, 2101. Greek drama in context of mythic sources. The shift from epic to tragic world view and the separation of comic from heroic through study of Homer, Aeschylus, Sophocles, Euripedes, Aristophanes.
ENGL 3131. The Narrative Art of the Film 3-0-3. Prerequisites: ENGL 1001-2, 2101. Introduction to major forms of film narrative and to principles used in analyzing and underslanding cinematic storytelling
ENGL 3151. Shakespeare: Comedy and History
0.3. Prerequisites: ENGL 1001-2, 2101. Focuses on Shakespeare's methods and on the concern comedy and history plays have for society as a whole. Major works of Shakespeare's contemporaries are studied as appropriate
ENGL 3152. Shakespeare: Tragedy and Romance
3-0-3. Prerequisites: ENGL 1001-2, 2101. Focuses on Shakespeare's methods and on the theme of the suffering individual, sacrificed and triumphant. Major works of Shakespeare's contemporaries are studied as appropriate.
ENGL 3161. Science Fiction
3-0-3. Prerequisites: ENGL 1001-2
$3-0-3$. Prerequisites: ENGL 1001-2.
Study of selected works of science fiction with special emphasis on the relationship of with special emphasis to mainstream fiction, science, politics, and history. Seminars, reports, ence, pas.

ENGL 3181. Social Issues in Drama
3-0-3 Prerequisites: ENGL 1001-2, 2101 Brings a concern with theme or issue to bear on a collection of plays chosen for their social context as well as their aesthetic achievement.

ENGL 3201. American Fiction

3-0-3. Prerequisites: ENGL 1001-2, 2201
Focuses on novels that reflect American reactions to materialism and idealism, to individual freedom and social responsibility, and to the continuing struggle for the American Dream.

ENGL 3203. American Drama

ENGL 3203. American Drama
3-0-3. Prerequisites: ENGL 1001-2, 2201.
Treats a wide range of typically American
Treats a wide range of typically American themes and mouts in the wor the moral jor dramatists. Th Puritan repression to the con consequences of Puritan repressiolism flict between materialism and idealism

ENGL 3205. American Poetry
3-0-3. Prerequisites: ENGL 1001-2, 2201.
Treats such themes as the Puritan outlook, American optimism, and the American response to nature as these themes are presented by 19thand 20th-century poets.
ENGL 3221. Major Figures in Nineteenth Century American Literature
3-0-3. Prerequisites: ENGL 1001-2, 2201.
Concentrates on the works of Poe, Emerson Hawthorne, Melville, and other writers in the American Renaissance.
ENGL 3225. The Southern Renaissance 3-0-3. Prerequisites: ENGL 1001-2, 2201. Investigates this major 20th-century literary movement which treated the history of the South in poetry, essays, and novels.

ENGL 3786. The Immigrant Experience
3-0-3. Prerequisites: ENGL 1001-2, HIST 1001 or 1002.
The history and literature of immigrant/ethnic groups such as English, Blacks, Irish, Germans, Asians, Southern and Eastern Europeans, His panics; exploring Old World reasons for emigrating, New World reactions, assimilation, bigotry, restrictive immigration policies, the Second World War relocation camp experience, alienation, the American Dream fulfilled. Lectures and papers. Jointly taught by the Department of English and School of Social Sciences.
ENGL 4042. Studies in Drama
3-0-3. Prerequisites: ENGL 1001-2.
Intensive analysis of selected plays, with emphasis on the artistic excellence and signifi modern scientific and philosophical attitudes.

ENGL 4081. Man and Himself
3-0-3. Prerequisite: ENGL 1001-2.
Intensive study of works of modern literature which treat the theme of man and himself.

ENGL 4082. Man and Society

3-0-3. Prerequisite: ENGL 1001-2.
Intensive study of works of modern literature which treat the theme of man and society.
ENGL 4083. Current Issues
3-0-3. Prerequisite: ENGL 1001-2 Intensive study of works of modern literature which treat selected issues of concern.
ENGL 4132. Studies in Film
3-0-3. Prerequisites: ENGL 1001-2, 2101.
Examines in depth a theoretical issue in film criticism.

ENGL 4755. Sex Roles: Their Development and Cultural Influence
3-0-3. Prerequisites: ENGL 1001-2.
Psychological principles, legal facts and literary explications are integrated in an examination of the roles of men and women from three time perspectives: historical, current, and future. Readings, lectures, discussions, and invited panelists will be utilized. Jointly taught by English, psychology, and social sciences
ENGL 4801-11-21. Special Topics
1-0-1. Prerequisites: consent of the department. Study of special topics of current interest in the humanities.
ENGL 4803-13-23. Special Topics
3-0-3. Prerequisites: ENGL 1001-2.
Study of specilr topics of current interest as reflected in selected literary works.
ENGL 4833. Special Topics in American Literature
3-0-3. Prerequisites: ENGL 1001-2, 2201. Study of special topics of current interest.

ENGL 4843. Special Topics in Southern

Literature
3-0-3. Prerequisites: ENGL 1001-2, 2201. Study of special topics of current interest
ENGL 4901-2-3-4. Special Problems
Credit to be arranged. Prerequisite: consent of the department.
Studies in specialized aspects of literature and language selected on basis of current interest.
ENGL 6023. Seminar in Technical Communication
3-0-3. Prerequisite: graduate standing or conent of department
Series of intensive writing and editing projects echnical information effectively. communicate

School of Geophysical Sciences

Established in 1970

Director and Professor-C. S. Kiang; Pro fessors-George Chimonas, Douglas D. Davis, Franco Einaudi, Gerald W. Grams C. G. Justus, L. Timothy Long, R. G. Roper C. E. Weaver, H. L. Windom; Associate Professors-Kevin C. Beck, William L. Che meides, Anton M. Dainty, Robert P. Lowel E.M. Perdue, Charles O. Pollard, Jr., J. Helmut Reuter, J. M. Wampler; Assistant Professors-R.E. Habermann, Jean-Claude Mareschal; Principal Research Scientists -Fred N. Alyea, Derek M. Cunnold; Senio Research Scientists-John Hall, Edward M Patterson; Research Scientist II-John 0 Bradshaw, Carlos Cardelino, Alessandro Coletti, Lonzy Lewis, Michael O. Rodgers Luther Roland; Adjuncts: Professors-Juliu Chang, Paul Crutzen, Donald Lenschow, Douglas K. Lilly, David W. Menzel, Wolifgang Seiler; Associate Professors-Jackson 0 Blanton, Demetrius Lalas, G. Lafayette Maynard, Ronald G. Prinn, Gordon Wallace Assistant Professors-James L. Harding, Barry Huebert.

General Information

The School of Geophysical Sciences offers graduate study programs for those interested in understanding the earth and mani physical environment. The programs lead to the degrees Master of Science and Doctor of Philosophy. The term geophysical sciences, in the broadest sense, includes both physical and chemical studies of the earth, its waters, and its atmosphere to pro vide basic information for assessing the earth's resources and the evolution of the environment
Persons with a bachelor's degree in geology, meteorology, atmospheric science chemistry, physics, mathematics, biology, or engineering may enter the graduate program. The School tailors individual programs of study to each student's background and interests.
Present areas of specialization include geophysics, geochemistry, mineralogy, sed imentology, environmental geology, atmo-

Theric dynamics, atmospheric physics, atrospheric chemistry, and physical meteorology. Students carry out interdisciplinary tudies in such areas as crystallography (cystal physics), hydrogeology, engineering jeology, nuclear geochemistry, organic pochemistry, environmental studies, and nergy-meteorology relationships.
The School conducts research and study oceanography in cooperation with the staff the Skidaway Institute of Oceanography Savannah, Georgia. Many of the staff nembers from both institutions hold joint poointments. Students desiring to do so nay spend a significant portion of their me at Skidaway.

ndergraduate Program

he geophysical sciences are multidisciinary with a strong dependence on the asic physical sciences, engineering, and athematics; therefore, undergraduate stuents interested in the geophysical scinces should work toward a bachelor's egree in one of these disciplines. An indergraduate enrolled in another Georgia Tech school may develop a substantial background in the geophysical sciences by proper choice of electives within his or her own degree program. For example, the School of Physics recommends a specific set of pper-level courses for physics majors who are interested in geophysics.
A certificate program is available for students who desire formal recognition of heir having taken a systematic series of courses in the geophysical sciences. Certifiates are available for course work in hree areas: geochemistry, geophysics, and engineering geology. Detailed listings of he requirements for these certificates are available in the office of the School of Geophysical Sciences.

Master's Degree Programs

The School tailors programs of study to the background and interests of each student entering the School of Geophysical Sciences. n order to pursue the courses which may be accepted as part of a graduate study program in geophysical sciences, most students will need a background which in-
cludes introductory geology and a minimum of one year of university-level courses in mathematics, chemistry, and physics. Students who enter without this background must take some remedial work without graduate credit.
In order to qualify for the degree Master of Science in Geophysical Sciences, a student must have completed a specific set of undergraduate courses in geophysical sciences and must complete an approved thesis. Students who wish to in clude more course work in a special technical area may pursue a program of study which does not meet all the requirements for the designated master's degree. Such a program of study, approved by the faculty of the school, will lead to the degree Master of Science.
Graduate students in the School of Geophysical Sciences can qualify under the Multidisciplinary Program in Mineral Engineering by electing certain mining and minerals courses (see the section "Multidisciplinary Programs in Engineering" under the description of the College of Engineering in this catalog).

Doctoral Program

Persons with a strong background in the basic sciences and mathematics, who show a capability for high achievement in research in the geophysical sciences, may enter a program of study leading to the doctoral degree. A wide range of individual programs are available, owing to the multidisciplinary nature of the geophysical sciences.

Courses of Instruction

GEOS 1000. Introduction to Earth Science 3-0-3.
A survey of planetary science, atmospheric science, and oceanography giving general insight into the nature of man's environment.

3-0.3. Corequisites: CHEM 1102 or 1112, PHYS 3-0-3.
2121.
Introduction to minerals, rocks and soils. Struc ture and evolution of the earth's surface features, crust, and interior.

GEOS 2102. General Geology Laboratory 0-3-1. Corequisite: GEOS 2100.
Exercises on minerals, rocks, topographic maps, and geologic maps.
GEOS 2300. Survey of Oceanography 3-0-3.
Selected topics from geological, physical, chemical, and biological oceanography, marine technology, marine environment, resources from the sea. Relationships between man and the sea.
GEOS 2750. Physics of the Weather 3-0-3.
An introductory treatment of the application of the basic physical laws to the understanding of weather phenomena. The main weather features will be descriptively developed. Crosslisted as PHYS 2750.
GEOS 3000. Earth Resources
$3-0-3$. Prerequisite: GEOS 2100.
A study of Earth's physical resources-fresh water, land (soils), minerals, and fuels-emphasizing the geologic origin, geographic distribution, and future availability of the resources.
GEOS 3100. History of the Earth
3-3-4. Prerequisites: GEOS 2100, GEOS 2102. Antiquity of Earth. Interacing evolution of biosphere, atmosphere, and lithosphere on the primitive Earth. Phanerozoic history and life. Evolution of living systems. Rise of man.
GEOS 3400. Mineralogy
3-3-4. Prerequisite: GEOS 2102 or consent of department
Crystal bonding and symmetry, crystal structure and crystal chemistry, application to geologically important minerals. Laboratory devoted to crystallography, hand specimen identification,
X-ray diffraction x-ray diffraction.

GEOS 3410. Optical Mineralogy

1-3-2. Prerequisite: GEOS 3400 .
A brief introduction to the use of the polarizing microscope for the identification and study of rocks and minerals.
GEOS 3500. The Earth-Moon System 3-0-3. Prerequisite: PHYS 2123.
Physical interactions of earth, moon, and sun. Structure and evolution of the earth-moon system. Introduction to lunar geology.
GEOS 4100. The Influence of Man's Activities on the Global Environment
3-3-4. Prerequisite: GEOS 2100.
The interacting equilibrium of atmosphere, hydrosphere, biosphere, and lithosphere. The interfering effects of man's activities on the cyclic equilibria on the earth.

GEOS 4150. Petrology of the Sedimentary Rocks
2-3-3. Prerequisite: GEOS 3410
Texture, composition and structure of sediments and sedimentary rocks, sedimentary processes (hydraulics and aqueous geochen try), analysis of sedimentary environments.
GEOS 4200. Structural Geology
3-3-4. Prerequisite: GEOS 2102
Structures produced by rock deformation du ing tectonic and metamorphic activity. Priman structural features. The laboratory will include several field trips.

GEOS 4250. Engineering Geology
3-3-4. Prerequisite: GEOS 2100.
Applications of geological science to proble of civil engineering.
GEOS 4300. Introduction to Physical and Chemical Oceanography
$3-0-3$. Prerequisite: GEOS 2100 or consent of department.
Ocean geometry, physical properties of sea water, water movements and energy fluxes, sediments, marine geochemistry, marine geophysics and tectonics, ocean history.
GEOS 4301. Applied Oceanography 3-6-5. Prerequisites: GEOS 2100 and consent department.
The aspects of physical, chemical, and biole ical sciences which are marine-oriented as applied to specific problems in the ocean and environs. Collection and interpretation of field data stressed, utilizing vessels and equipmen of the Skidaway Institute of Oceanography.

GEOS 4500. Introduction to Geophysics
3-0-3. Prerequisite: GEOS 2100.
General survey of terrestrial geophysics. To ics discussed include the earth's seismicity, internal structure, shape, gravity, magnetic fiel paleomagnetism, heat flow, and global tectonic
GEOS 4550. Applied Geophysics
3-3-4. Prerequisite: GEOS 2100, PHYS 2123. Theory of electrical, magnetic, gravity, seism The laboratory provides exploration methods. The laborary tation and data interpretation.

GEOS 4551. Seismic Reflection Methods in Exploration Geophysics
3-0-3. Prerequisite: MATH 2309 or consent of instructor.
Seismic wave propagation, ray theory, and re fraction data interpretation. Seismic reflection dat acquisition and interpretation techniques. Application of seismic data to the search for oil.

3EOS 4552. Potential Methods in Exploration Geophysics
30.3. Prerequisites: GEOS 2100, MATH 2309, consent of instructor.
Potential theory. The earth's gravitational field. Reduction of gravity data. Modeling gravity anomaes. Magnetic field of the earth and magnetic anomalies. Techniques of electrical methods.
GEOS 4600. Introduction to Geochemistry 3.3-4. Prerequisites: GEOS 2100, CHEM 2113. Distribution and behavior of the chemical ements and natural compounds in the earth is waters, and its atmosphere. Application of chemical principles to geologic processes.

GEOS 4650. Introduction to Atmospheric Sciences
3-0-3, Prerequisites: CHEM 1102, MATH 2309, PHYS 2123, thermodynamics.
Introduction to atmospheric physics, chemistry and dynamics, with emphasis on the interdisciplinary nature of atmosphere science, and man's interaction with the environment.

GEOS 4801. Special Topics

 1.-0-1.GEOS 4802. Special Topics 2.0.2.

GEOS 4803. Special Topics 3.0.3.

GEOS 4804. Special Topics

GEOS 4805. Special Topics 5.0.5.

GEOS 4900. Special Problems
Credit hours to be arranged
GEOS 6049. Geophysics 1-Deformation of

Earh Materials

$-0-3$. Prerequisite: consent of department. Theoretical survey of the elastic and inelastic behavior of the earth's materials and implica lions for tectonics, heat flow, and the earth's interior.
GEOS 6051. Geophysics II-Gravity
3.3-4. Prerequisite: consent of department.

An intense theoretical survey of terrestrial
geophysics. Topics include potential theory, shape of the earth, and physical geodesy.

Paleomagnetism
Q-3. Prerequisite: GEOS 6051 or consent of department.
Topics include magnetohydrodynamics, origin and description of Earth's magnetic field, rock magnetism, remanent magnetism, geophysical evidence for global tectonics and tectonic mechanisms.

GEOS 6100. Clay Mineralogy
3-0-3. Prerequisite: consent of department
The composition and structure of clay minerals, physical and chemical properties, X-ray identification, geologic distribution and significance, origin
GEOS 6110. Advanced Clay Mineralogy 2-3-3. Prerequisite: GEOS 6100.

Clay-water relations; cation exchange; effects of crystal structure and composition on physica and chemical properties, X -ray, electron microscope, and other techniques.
GEOS 6150. Sedimentary Geology
3-3-4. Prerequisite: GEOS 3410.
Composition, texture and structure of sediments and sedimentary rocks, sedimentary processes, diagenesis, environments of deposition, stratigraphy of sedimentary rocks.

GEOS 6160 . Stratigraphy and
Continuation of GEOS 6150 with emphas
sedimentary environments, recent and an cient. Principles of correlation, stratigraphic mapping, and stratigraphic analysis.
GEOS 6180. Geology of Ground Water 3-0-3. Prerequisite: GEOS 2100.
Relates ground water quality and availability
to the geology of specific areas.
GEOS 6210. Global Tectonics
3-0-3. Prerequisite: GEOS 4200
Geological aspects of the new global tectonics.
GEOS 6220. Advanced Structural Geology 3-0-3. Prerequisite: GEOS 4200
GEOS 6250. Advanced Engineering Geology 3-0-3. Prerequisite: GEOS 4200 or consent of instructor.
Application of geosciences to the examination and solution of problems in civil engineering.

GEOS 6300. Principles of Physical

Oceanography

3-0-3. Prerequisite: consent of department.
Temperature, salinity, and density in the oceans. Dynamics of ocean currents. Theory of ocean waves. Selected topics with application to coastal and estuarine circulation.
Text: at the level of Neumann and Pierson,
Principles of Physical Oceanography.

GEOS 6310. Principles of Chemical

 Oceanography3-0-3. Prerequisites: CHEM 3412, GEOS 4300, or consent of department.
Brief overview of the chemistry of sea water and marine sediments. Detailed discussion of selected topics.
GEOS 6400. Igneous Petrology 3-3-4. Prerequisite: GEOS 6425 .

Microscopic study, classification, physical chem istry, and evolution of igneous rocks.
GEOS 6425. Geologic Phase Diagrams 3-0-3. Prerequisites: CHEM 2113, GEOS 4600 or consent of department.
Practical application of available phase dia grams to problems in metamorphic and igneous petrology. Phase rule is used extensively.
GEOS 6450. Metamorphic Petrology
3-3-4. Prerequisite: GEOS 6425.
Study and classification of chemical and physical changes induced in rocks upon metamorphism. Microscopic laboratory study.

GEOS 6510. Analytical Methods in

 Geophysics3-3-4. Prerequisite: GEOS 6051.
Theory and practice in the application of numerical analysis methods to geophysical data Topics include information theory in seismology and harmonic analysis of potential data.

GEOS 6520. Analytical Methods in

Geophysics II
3-3-4. Prerequisite: consent of instructor Hankel transforms and applications, electrical soundings. Propagation of plane waves in nonhomogeneous media, the W.K.B.J. approximation, magneto-telluric soundings. Radiation of a dipole over a layered conducting half space, electromagnetic soundings

GEOS 6550. Observational Seismology
3-3-4. Prerequisite: GEOS 4500.
A study of the nature of earthquake motion and the damage it causes. The laboratory provides exercises in the interpretation of seismograms.
GEOS 6560. Theoretical Seismology 3-3-4. Prerequisites: MATH 4320, 4581, 4582 GEOS 6550
Theory of elastic wave propagation in the earth. Topics include reflection of waves, surface waves, and Cagniard theory of body waves.
GEOS 6600. Aqueous Geochemistry 3-0-3. Prerequisites: CHEM 3412, GEOS 2100 or consent of department.
Reactions of minerals in waters on or near the surface of the Earth
GEOS 6610. Organic Geochemistry
3-0-3. Prerequisite: CHEM 3313 or consent of epartment
Geochemistry of organic substances. Diagenesis of organic matter. Chemical fossils. Chemical volution on the primitive Earth
GEOS 6620. Nuclear Geochemistry
3-0-3. Prerequisites: PHYS 2123, GEOS 3400 Nuclear reactions and radioactive decay in nature. Geochemistry of radionuclides. Age mea-
surements based on radioactive decay. A stable nuclides
GEOS 6625. Stable Isotope Geochemistry 2-0-2. Prerequisites: CHEM 2113, GEOS 34 Variations in isotopic composition of the elt ments owing to isotope effects in natural phy al and chemical processes. Application of ope ratio measurement to geochemistry, hy. drology, oceanography, and paleoclimatology.
GEOS 6750. Introductory Diffraction Stud 2-6-4. Prerequisite: consent of department. Introductory theory and practice of the mo widely applicable X -ray and neutron diffractio echniques. Identification, lattice parameters, ures, line breadth, and crystal orientation Cro isted with PHYS 4266

GEOS 6764. Ocean Acoustics
-0-3. Prerequisites: MATH 4582. Recommended: GEOS 4300, AE 6760.
Propagation of sound waves in the ocean. topics selected from stress-strain relationshi asymptotic ray theory, propagation in shallow and deep water, irregularities of the media an boundaries, sonar arrays. Cross-listed with ME 6764, ESM 6764.
GEOS 6791. Atmospheric Turbulence 3-0-3. Prerequisite: GEOS 4650, fluid dynami introduction to turbulence, turbulent transpo of momentum and heat, sources of turbulence in the atmosphere, the dynamics of turbulenc statistical description, correlation functions an the spectral dynamics of turbulence

GEOS 6792. Air Pollution Meteorology 3-0-3. Prerequisite: GEOS 4650 or concurren Vertical temperature and wind structure, top mospheric dis, natural removal process, air pollution climatology, meteorolical mana of air pollution.

GEOS 6793. Atmospheric Boundary Layer 3-0-3. Prerequisite: GEOS 6811.
Structure and aerodynamics of atmospheric boundary layer, turbulent transport of contami nants in the environment, stratified and disturbed atmospheric boundary layer, free conve tion layer, current problems.
GEOS 6810. Introduction to Geophysical Fluids
3-0-3. Prerequisite: basic undergraduate calcu lus sequence and a course in ordinary differen tial equations.
The course is designed to introduce the student to the basic concepts of geophysical flows. The theory of flows in a rotating spheric their applications in meteorology are described

E0S 6811. Dynamic Meteorology
0-3. Prerequisite: GEOS 6810
Review of the mechanics of motion in the atospheric shell. Fundamental non-dimennal parameters defining geophysical flows. Vorty equation. Synoptic scale motions in the whext of shallow-water theory. Gravity waves, bility criteria, clear air turbulence.

gEOS 6812. Dynamic Meteorology

30-3. Prerequisite: GEOS 6811.
Quasigeostrophic motion in the presence of tratification. General considerations on inability theory, energetics analysis of atmospheric motions. Baroclinic instability. Fronts and fronogenesis. Blocking and barotropic instability.

GEOS 6813. Geophysical Fluid Dynamics

 3-0-3. Prerequisite: GEOS 6812The objective of the course is to provide as riform a presentation as possible of the princiles and pramaristics of the dynamics tmosphere and the ocean. hemistry
30-3. Prerequisite: MATH 2309 or equivalent. Basic chemical principles relating to atmospheric chemistry: electrostatics, atomic structure, chemical bonding, molecular geometry, chemical thermodynamics, chemical reactivity, gas phase kinetics, photochemistry, free radica mechanisms, properties of solutions, homogeeous and heterogeneous kinetics.
GEOS 6821. Atmospheric Chemistry 3.0-3. Prerequisite: GEOS 6820 or advance approval from instructor.
Topical areas covered include: sources and sinks of natural and anthropogenic tropospheri chemical constituents, tropospheric and stratospheric chemical transformations, large scale biogeochemical cycles of the elements carbon, sulfur, and nitrogen, and man's perturbations to the planetary atmospheric system.

GEOS 6830. Introduction to Physica

Meteorology

-0-3. Prerequisites: MA
Fundamental principles of atmospheric physiprocesses. Hydrostatic equilibrium and static stability; physics of clouds, precipitation, and thunderstorms.

GEOS 6831. Physical Meteorology
3-0-3. Prerequisite: GEOS 6830
Radiative transfer in the aimosphere. The atmospheric greenhouse effect and the earth's nergy budget.
GEOS 6915. Synoptic Meteorology
0-3. Prerequisite: GEOS 6811
Terrestrial winds, cyclones and anticyclones,
the general circulation of the atmosphere, air masses and fronts, tropical cyclones-hurricanes, weather analysis and interpretation.
GEOS 6921. Atmospheric Chemistry II
1-3-2. Prerequisite: GEOS 6821 or concurrently This course is designed to introduce the student to modern instrumental techniques used in oblaining basic inorma cal properties of the atmosphere. Special em phasis is placed on advated land lecture methodology. Both laboratory and lecture ma terial will be presented

Atmosphere Aerosols

$3-0-3$. Prerequisites: GEOS 6821 or consent of school.
Chemical and physical properties of natural and anthropogenic atmospheric aerosols. Formation and removal mechanisms involved in arious atmospheric sources, sinks, and transformation processes.
GEOS 6927. Photokinetics and Spectroscopy 3-0-3. Prerequisite: GEOS 6821 or equivalent kinetics courses.
This course will examine the spectroscopy o atomic and molecular species as well as th photodynamics and kinetics resulting from photofragmentation processes.
GEOS 6932. Meteorology for Solar and Wind Energy
$-3-3$. Prerequisite: GEOS 4650 or concurrently. Solar radiation instruments, measurement and alibration techniques. Atmospheric attenuation, effects of clouds and turbidity. Meteorological factors of wind energy system design, performance evaluation and siting

GEOS 6933. Precipitation Processes
3-0-3. Prerequisite: GEOS 6831.
Nucleation and phase changes in the atmosphere, precipitation processes, cloud electrification, artificial modification, application of radar to precipitation.

GEOS 6934. Atmospheric Optics an

Radiation Transfer

$3-0-3$. Prerequisite: GEOS 6830
Quantitative treatment of radiative transfer in the atmosphere; absorption and scattering by atmospheric molecules and particulates; atmospheric visibility and optical effects.

GEOS 6940. Introduction to Climate
3-0-3. Prerequisite: GEOS 6811.
Physical parameters controlling the climate and general circulation. Diagnostic analysis of present climate. The quasi-geostrophic theory of general circulation.

GEOS 6941. Atmospheric Modeling

3-0-3. Prerequisites: GEOS 6821 or consent of Department.
Application of modern numerical methods to the prediction of atmospheric chemical and physical compositions; specific applications using computer models developed by the students are included.
GEOS 7000. Master's Thesis
GEOS 7911. Upper Atmospheric Dynamics 3-0-3. Prerequisite: GEOS 6811.
The dynamics of the neutral atmosphere in
the stratosphere, mesophere, and lower ther-mosphere-prevailing winds, jet streams, waves, tides, and turbulence; winter stratwarms, coupling mechanisms.
GEOS 7999. Preparation for the
Comprehensive Examination
Credit TBA. Audit only.
GEOS 8011-2-3. Seminar
1-0-1 each. Pass/fail or audit only.
A forum for graduate students in geophysical sciences to present and discuss topics related to their research interests.

GEOS 8101-2-3. Special Topics
2-0-2, 2-0-2, 3-0-3.
GEOS 8111. Special Topics 1-0-1.

GEOS 8112. Special Topics 2-0-2.
GEOS 8113. Special Topics 3-0-3.

GEOS 8114. Special Topics 4-0-4.
GEOS 8115. Special Topics 5-0-5.
GEOS 8123. Special Topics 3-0-3.
GEOS 8133. Special Topics 3-0-3.
GEOS 8143. Special Topics 3-0-3.
GEOS 8153. Special Topics
2-3-3.
GEOS 8500-1-2. Special Problems
Credit to be arranged.
GEOS 8999. Preparation for Doctoral Dissertation
Credit TBA. Audit only.
GEOS 9000. Doctoral Thesis

School of Information and Computer Science

Established in 1963

Director and Professor-Raymond E. N ler; Associate Director and Professor-Lua Chiaraviglio; Professors-Laszlo A. Bela Richard A. DeMillo, Philip H. Enslow, Jt James Gough, Jr., Alton P. Jensen, Mon D. Prince (part-time), Jesse H. Poore, 」 (Adjunct), Vladimir Slamecka, Pranas Zuma Associate Professors-Albert N. Badre, Richard J. LeBlanc, Jr., Philip J. Siegman Robert M. Siegmann (part-time); Associ Professor-Librarian-Frances E. Kaiser (A junct); Assistant Professors-Pin-Yee Che John J. Goda, Jr., Marc H. Graham, Nan D. Griffeth, Oliver C. Ibe, K. N. King, Jane L. Kolodner, Martin S. McKendry, Bruce ${ }^{\text {P }}$ Naylor, Jeremy Spinrad, William E. Unde wood, Gopalakrishnan Vijayan; Senior Re search Engineer-John F. Passafiume; B search Scientist II-William A. Baird; Lec turers-Leonora J. Brooks (part-time), Davi R. Forinash (part-time), Daniel H. Forsylh Jr. (part-time), Thomas C. Herndon III (part. time), John R. Mitchell (part-time), Glenn E. Racine (part-time), Stephen R. Ratze (part-time), Win E. Strickland, Jr. (part-ime Charles L. Till, Jr. (part-time).

General Information

The goals of the discipline of information and computer science are to further devel a fundamental science for computing processes, to enhance man's problem-solvi ability by designing novel information processing systems, and to expand the functions of such systems into new areas of society. During the last decade computer have become indispensable in science, en gineering, management, education, and other professions. Many believe that in the near future information processing will be come the nation's largest industry and tha its disciplines will be centrally important to society.

Georgia Tech's School of Information and Computer Science reflects this growth and potential. It was established in 1963 with the sponsorship of the National Science Foundation. Today the school is one
the largest graduate departments of the nsitiute and is among the largest computis science schools in the United States. It thers the bachelor's, master's, and doctoral degrees in information and computer scince for professional and research careers many areas of specialization.
ICS students have access to the school's boratories. The primary facility is the chool's Computer Systems Laboratory, hich houses two PR1ME 550s, three R1ME 400s, three IBM Series/1s, a DEC AX 11/780, an HP 1000/45 Series F, an P 3000/44, a Chromatics CG Series ColComputer, two Three Rivers Perq stems, a Symbolics 3600 LISP machine, d a wide array of special information ocessing devices. Other laboratories in e School are the Graphics Laboratory, thich features an Ikonas RDS-3000 Graphis Processor and Raster Display System, in HP 9845C Color Graphics Computer, a erox 8010 Star Information System, and Evans and Sutherland PS-300 Graphs System; the Microprocessor Laboratory dd the Human Factors Laboratory. Other computing resources available to students the school are the CDC CYBER 170/835, he CDC Cyber 170/855, and an IBM 4341-1 in the Georgia Tech Office of Computing Services.
Details of the academic and research prorams of the school are described in rochures available upon request.

Undergraduate Program

he undergraduate program, established 1972, leads to the designated degree of Bachelor of Science in Information and Computer Science. It provides comprehensive education in information and computer science and is suitable for those interested in multidisciplinary careers. The program provides a basic education leading to two different objectives. The first is the acquisition of marketable knowledge and skills for professional careers in areas such as computer and communication systems design, programming systems and languages, and information systems design. The second is preparation for graduate work in information and computer science.
The undergraduate program requires a otal of 194 credit hours for graduation. The
forty-two hours of electives in the senior year include twenty-seven hours of course work in an area of specialization.

Freshman Year

Course 1st Q. 2nd Q. 3rd Q.

ICS 1000 Information and Society ICS 1001
Computing Facilities 1-0-1
ICS 1400
Introduction to
Algorithms and
Computing
CS 1401
Computer Pro
gramming and
Problem Solving
ENGL 1001/1002/
$1003{ }^{1}$
Analysis of Literature $\quad 3-0-3 \quad 3-0-3 \quad 3-0-3$
HIST 1001 (or 1002) ${ }^{2}$
History of the
tates to
1865 (or from 1865
to the Present) \qquad
MATH 1307/1308/
1309
Calculus I, II, III
5-0-5 $\quad 5-0-5 \quad 5-0-5$
Electives ${ }^{3}$
Laboratory Science
4-3-5 4-3-5
Electives ${ }^{4}$
Physical Education $\frac{0-4-1}{14-7-16} \frac{0-4-1}{15-7-17} \frac{2-0-2}{16-0-16}$
Totals
14-7-16 $\overline{15-7-17} \xlongequal[16-0-16]{ }$
Sophomore Year
Course
1st Q. 2nd Q. 3 rd Q.
ICS 2150
Introduction to
Discrete Structures 3-0-3
ICS 2200
Data Structures
.......... 3-0-3
ICS 2250
Technical Informa-
tion Resources
1-0-1
ICS 2300
File Processing
ICS 2601/2
Computer Organi-
zation and Pro-
gramming I \& II
Calculus IV, V
Calculus IV, V

PHYS 2121
Particle Dynamics
PHYS 2122
Electromagnetism
PHYS 2123
Optics and Modern Physics
POL 1251^{2}
Government of the
United States
Electives
Totals
4-3-5
............ 4-3-5
\qquad

............

$$
3-0-3
$$

Humanities \qquad
Junior Year
Course \qquad 1st Q. 2nd Q. 3rd Q.
ICS 3155
Introduction to
Theory of
Computing I
ICS 3300
Introduction to
Software
Development 3-0-3
ICS 3360
Introduction to
Artificial Intelligence 3-0-3
ICS 3422
Survey of
Programming
Languages 3-0-3
Information Systems 3-0-3
ICS 3602
Computer Organi-
zation and
Programming III 3-3-4

CS 4155

Introduction to
Theory of
Computing II
ECON 2000/2001 ${ }^{2}$
Principles of
Economics I, I

ENGL 3023

Written Communi-
cation in Science,
Business, and
Industry
3-0-3
LING 3004^{1}
Natural Language
Processing

MATH 3215

Problems in
Srobability and
PSY 3303/3304 ${ }^{2}$
General Psychology
A, B

Free

Totals

Senior Year

Course
CS 4651/52/53
Design Project
I, II, III
Electives ${ }^{6}$
ICS Areas of Specialization Electives ${ }^{7}$ Non ICS Area of Specialization

Electives

Electives
Humanities
Electives ${ }^{5}$
Free
Totals
${ }^{1}$ These courses apply toward satisfaction of the eighteen-hour humanities requirement stated ${ }^{2}$ "Information for Undergraduate Students."
${ }^{2}$ These courses apply toward satisfaction of the in "Information for Undergrad requirement stateo ${ }_{3}{ }^{3}$ his CHEM 1101 and May be met by scheduling CHEM and 1112 HIOM 1102, or BIOL 1110, 1111, and 1112. Hours for Biology in excess ${ }^{4} \mathrm{~A}$ maximum us dix for free electives. A maximum of six credit hours of physical education may be applied toward the bachelor degree. Credit hours in excess of four may be ${ }^{5}$ used for free electives.
${ }^{5}$ Free elective courses to be taken any time during the course of study. If basic ROTC is selected to satisfy six of these credit hours, it must be scheduled beginning the first quarter the freshman year. Six hours of basic ROTC and nine hours of advanced ROTC may be used as elective credit toward the bachelor's ${ }^{6}$ degree.
${ }^{6}$ Will include nine hours in each of the two ICS areas of specialization recommended and approved by the School
The non-ICS Area of Specialization must be recommended and approved by the School.

Master's Program

The Master of Science program prepares students for professional careers in technical and managerial positions and for confinued studies at the doctoral level. A student may earn the ICS M.S. degree by either completing fifty quarter hours of approved course work or thirty-three hours of approved course work and a thesis, credited as follows:

Without Thesis

Total Course Credit Hours

> Minimum Credit Hours in ICS

Minimum Credit Hours
(6000/8000 Level)
Minimum Credit Hours (6000/8000 Level) in ICS
With Thesis
Total Credit Hours
Thesis Hours (7000)
Total Course Credit Hours
Minimum Credit Hours in ICS
Minimum Credit Hours
(6000/8000 Level) in ICS
Within the fifty total credit hours, students must include ICS 6155, ICS 6410, ICS 6430, ICS 6450, ICS 6620, and ICS 6750 as part of their approved program of study unless they have previously taken courses that cover this material.
Undergraduate courses required for the ICS B.S. degree may not be used toward the ICS master's degree. In addition, no graduate credit will be given for $3 x x x$ courses or lower level courses.
With the exception of thesis research, students must take all ICS M.S. degree coursework on a "letter-grade" basis. Additional degree requirements as specified by the Institute are listed in the section, "Information for Graduate Students.
Students applying for admission to the master's degree program must have earned a bachelor's degree from an accredited institution, preferably in computer science. Students lacking a strong background in computer science must be prepared to do substantial remedial work in order to qualify for full graduate standing. The M.S. degree program begins in the fall quarter of each academic year.

Doctoral Program

The doctoral program in the School of Information and Computer Science prepares exceptionally qualified individuals for research careers. Graduates receive the degree of Doctor of Philosophy for performance of original research resulting in a significant contribution to the discipline's body of knowledge.
The doctoral program has three phases which normally require a minimum of three years to complete. At the end of the first phase the student must be able to demonstrate basic knowledge of a spectrum of subject areas in computer and information science, as well as a high research potential. The second phase culminates in the formulation of a dissertation research proposal. Research and the dissertation defense complete the program.
Students applying for admission to the doctoral program should offer evidence of exceptional scholastic ability, intellectual creativity, research motivation, and a strong background in computer science. Students lacking such background must be prepared to do substantial remedial work in computer science before attaining full graduate standing.

Research Opportunities

Involvement in the School's active research efforts is an important part of a student's education. These efforts include a broad range of activities in distributed computing environments, such as reliable distributed operating systems, distributed data bases, distributed compilers, computer network design, performance analysis, simulation, and modelling. Other projects are concerned with theoretical computer science; programming languages for Al; software engineering, including sottware testing, system requirements, and design methodology; VLSI algorithm design; computer graphics; computer security; abstract models of computational processes; human factors in the design and operation of computer systems; intelligent systems that plan, infer, learn, and understand natural language; pattern recognition stand naticaral of information theory; empiriapplications of information theory; empirical foundations of information science; na-
tional information systems; and computersupported instruction.

Service to Other Disciplines
Computing competence is an indispensable skill for many professions; consequently, quality education in science, engineering, and management increasingly emphasizes formal instruction in computing. The School of Information and Computer Science offers all Georgia Tech students, regardless of major, elective course sequences in computing designed to provide students with the opportunity to gain competence necessary for their future professions. Undergraduate and graduate students majoring in other departments of the Institute are encouraged to formulate, in consultation with their advisors and ICS faculy, programs of study that include formal training in computing tailored to their educational objectives.
Information and computer science is an appropriate minor field of study for the doctoral students of the Institute

Courses of Instruction

Note: the four-digit course numbering system of the School of Information and Computer Science has several mnemonic features. The first digit indicates the course level ($1 \times x x-4 x x x$ undergraduate, $6 x x x-9 x x x$ graduate). The second digit designates the subject orientation of the course: theory and foundations ($x 1 \times x$), professional milieu ($x 2 x x$), computing applications ($x 3 x x$), computer software ($x 4 x x$), numeric computing and mathematics ($x 5 x x$), computer hardware systems ($x 6 x x$), and service courses ($x 7 x x$) The last three digits in the range $\times 200$ through $\times 699$ are identical with the subject codes of Computing Reviews, thus facilitating the student's access to the current literature related to these courses.

ICS 1000. Information and Society

1-0-1.
The history and future of the information industry. Career paths in information and computer science.
ICS 1001. Computing Facilities 0-3-1.

Introduction to the equipment and facilities of the school and the Office of Computing Services. Emphasis on the effective use of the time-sharing systems
ICS 1400. Introduction to Algorithms and Computing
2-3-3.
First course on problem solving using computers. The concept and notation of algorithms.

Problem analysis, development of algorithm and their implementation in PASCAL

ICS 1401. Computer Programming and

Problem Solving

3-0-3. Prerequisite: ICS 1400
A continuation of the development of the discipline in program design and programmi style using the advanced features of the PASC language. Credit not allowed for both ICS 1401 and ICS 2100.

CS 1700. Digital Computer Organization and Programming
3-0-3.
Algorithmic processes of problem solving properties of algorithms, development of algo rithms for the solution of numerical and nonnumerical problems. The FORTRAN progra ming language. No credit for ICS majors.
ICS 2100. Programming and Problem Solvi Using PASCAL
3-0-3. Prerequisite: ICS 1700 or equivalent.
The programming language PASCAL is int duced. Extensive use is made of programming xamples and assignments to develop effeci programming skill. Credit not allowed for both

CS 2150. Introduction to Discrete Structure -0-3. Prerequisite: MATH 1308
An introduction to concepts fundamental to the analysis of algorithms and their realizations Topics included are induction, recursion, graph machines, Boolean algebras, and combinatoric

CS 2200. Data Structures

3-0-3. Prerequisites: ICS 1401 (or 2100), MATH 1308
Logical data structures and their representa tion. Processes on data structures, with empha is on lists and trees.

CS 2250. Technical Information Resources 1-0-1.
Introduction to the literature and information services of science, engineering, and manage ment. Effective uses of the Georgia Tech libran

ICS 2300. File Processing

3-0-3. Prerequisite: ICS 2200
Introduction to the concepts and techniques for manipulating data on bulk storage devices Term project.

ICS 2601. Computer Organization and

 Programming I3-3-4. Prerequisite: ICS 1401 or 2100
Introduction to computer organization, machin language programming, and assembly systems Assembly language programming techniques.
2602. Computer Organization and rogramming II 3.3-4. P 122.

Intermediate treatment of computer organizaon and machine programming. Input/output rocessing memory and processor structures, and terfacing. Basic computer logic design, gate inimization, cost evaluation, and combinatorial circuits.
CS 3110. Semiotics
-0-3. Prerequisite: LING 3004.
Basic concepts of signs relevant to natura and artificial sign processing systems. The representation relation, classification of signs. Analysis of sign systems.
CS 3140. Introduction to Discrete Systems 3.0-3.

Basic system concepts; modeling; general ynamical processes; state formalism; mathe matical models of linear dynamica system: nalysis and synthesis of linear automata; applications.
CS 3150. Introduction to Mathematical Logic 0-3. Prerequisite: ICS 2150.
Introduction to formal systems for the logical appraisal of inferences, including quantification and identity theory, referential interpretation, first order languages, soundness, and completeness.

CS 3155. Introduction to Theory o

Computing I
-0-3. Prerequisite: ICS 2150.
Study of fundamental concepts in the formal heory of automata emphasizing finite state machines. Turing machines and computational power of machines.
CS 3300. Introduction to Software Development
3-0-3. Prerequisites: ICS 2300, 3602. Introduction to current techniques used in large-scale software development. Topics indude requirements analysis, functional specification, systems design, implementation, testing and maintenance.

ICS 3342. Introduction to Computationa Linguistics
3-0-3. Prerequisites: ICS 2200, LING 3004 Approaches to natural language processing by computer. Concordance construction, syntactic analysis, question-answering systems, mechanical translation, and computer programs for linguistic research.
ICS 3360. Introduction to Artificial

Intelligence

3-0-3. Prerequisite: ICS 3422
Introduction to cognitive modelling, automatic
problem solving, natural language processing, machine perception, and robotics.
ICS 3400. Automatic Data Processing 2-3-3. Prerequisite: ICS 1400 or 1700 or equivalent.
Development of algorithms for the solution of business oriented problems. File structure organization and processing on different types of storage devices. The COBOL programming language.
ICS 3422. Survey of Programming Languages 3-0-3. Prerequisite: ICS 2200.
3-0-3. Prerequisite: ICS 2200 . Study and comparisoniques using a variety of progragming languages such as PASCAL, FORTRAN, PL/1, ALGOL, LISP, SNOBOL, APL and COBOL.

ICS 3500. Information Systems
3-0-3. Prerequisite: ICS 1401 or 1700
Empirical methodology of analysis and design of computer-based information systems, and its relationship with the definition of objectives, planning, analysis design, implementation, and evaluation of such systems. Case studies.

ICS 3510. Computer-Oriented Numerical

Methods

2-3-3. Prerequisites: ICS 1401 or 1700, MATH 2-3-3.
1309.

Introduction to computer oriented numerical methods for error analysis, function evaluation, solution of systems of equations, curve-fitting, interpolation, numerical integration, and differentiation.

ICS 3602. Co

Programming II

3-3-4. Prerequisite: ICS 2602

Basic treatment of computer system software, including operating systems, assemblers, macro processors, compilers, interpreters, linkers, and loaders. Sequential logic, microprocessor design and programming.
CS 4110. Topics in Linguistics
3-0-3. Prerequisite: LING 3004.
Study of selected grammar and semantic models of natural language.
ICS 4117. Introduction to Mathematical Linguistics
3-0-3. Prerequisites: ICS 2150, LING 3004, MATH 3215.
Application of statistical and algebraic approaches to the study of linguistic structures from the viewpoint of their utility to a wide range of problems.
ICS 4120. Introduction to Information Processes I
3-0-3. Prerequisites: ICS 2150, MATH 3215.

Explication of the information concept and its properties. Statistical theory of syntactic comproperties. Statistical theory of syntactic com transmission, channel capacity and efficiency, coding, noisy communication channels.

ICS 4121. Introduction to Information

 Processes II3-0-3. Prerequisites: ICS 2150, MATH 3215.
Computer methods of clustering, identification, systematization, and pattern recognition; empirical data processing, choice of measure ment, feature selection, data reduction, optimality criteria; analysis of algorithms, applications.

ICS 4136. Problem Solving
 3-0-3.

General approaches to problem solving, with emphasis on methods and techniques of formaliz ing intuitive heuristics. Structure of problems and goals, generation of alternatives. Incomplete information.

ICS 4153. Computing Languages
3-0-3. Prerequisites: ICS 3150, 3422
introduction to formal study of syntax, semantics, and logic of programming languages.

ICS 4155. Introduction to Theory of

 Computing II3-0-3. Prerequisites: ICS 2150, 2200
Introduction to the mathematical analysis of computer algorithms, correctness, complexity, asymptotic lower bounds, efficient data structures, and combinatorial algorithms. NP-complete problems

ICS 4240. Project Communication and Management
3-0-3.
Application of communication techniques to the management of information systems projects. Practice in proposal preparation, system documentation, project reporting.

CS 4250. Literature of Science a

Engineering

2-3-3. Prerequisite: ICS 2250
Study of the reference and bibliographic sources of scientific, engineering, and management literature, emphasizing strategies of manual and computer searching. Bibliographic project in student's discipline.

-0-3.

Information and communication in
Information and communcation in science Design of science data banks, document reinformation control at national and internationce evels.

CS 4342. Natural Language Processing 3-0-3. Prerequisite: ICS 3360 .

Methodologies for designing systems that cor $\operatorname{CS} 4560$. Elements of Information Theory prehend natural language. Topics include lexid analysis, parsing, interpretation, and generatio of sentences; semantic representations, organ ation of knowledge and inference mechanis

3-0-3
Methodology for the design and implementa tion of management information systems in industrial, business, and governmental organi tions. Feasibility studies; system developmen implementation, and evaluation. Project management.
ICS 4370. Information Storage and Retrie 3-0-3. Prerequisites: ICS 2602, MATH 3215.
Computer-aided organization and retrieval bibliographic and natural-language information Topics include statistical, syntactic, and logical analysis of information content, evaluation of retrieval effectiveness.

CS 4380. Data Communications

3-0-3. Prerequisite: ICS 3602 .
An introduction to data communications for computers and computer terminals, including communications media, codes, data transmis sion, multiplexing, communications software, tocols, switching, and simple networks.

ICS 4390. Computer Graphics

3-0-3. Prerequisites: ICS 2200, MATH 2307. introduction to computer graphics: hardwar database, and software organization for graph iCs; 2D and 3D transformations; fundamentals vector and raster graphics; programming proje implementing a subset of the above.
ICS 4410. Introduction to Compilers 3-0-3. Prerequisites: ICS 3422, 3602.

Study of the basic techniques of compiler design and implementation with consideration the implementation characteristics of widely used programming languages.

ICS 4430. Introduction to Operating System 3-0-3. Prerequisites: ICS 2100 (or equivalent) 3602.

A qualitative introduction to operating system including multiprogramming concepts, resource allocation and management, other functions performed, and operating system implementation
ICS 4450. Introduction to Data Base Design 3-0-3. Prerequisites: ICS 2300, 3602.
Introduction to logical and physical structures of computer data base systems. Topics include data models, data base theory, query processing usage of relational and network models of data bases

S 4560. Elements of Informa
$0-3$. Prerequisite: MATH 3215.
Mathematical theory of communication with phasis on efficient transmission of informain through noiseless and noisy channels; cod information sources; properties of codes.
4601. Computer Systems Laboratory 1 6-3. Prerequisite: ICS 3602.
Hands-on hardware experiments for ICS majors. Construction and programming of an perating microcomputer
CS 4602. Computer Systems Laboratory II 6-3. Prerequisite: ICS 3602
Intensive hands-on computer laboratory for S majors. Machine-level operations and rogramming. Modular synthesis of software unctions.
CS 4620. Microprogramming
-3-3. Prerequisite: ICS 3602
Introduction to the fundamental concepts and poplications of microprogramming and microrogrammable systems including a study of emulation, microprogramming languages, and nicroprogrammable computers.

ICS 4651. Design Project I

0.3-1. Prerequisite: consent of school

First quarter of an undergraduate thesis sequence consisting of an analytic or empirical nvestigation in an approved area of information and computer science. Proposal preparation.
ICS 4652. Design Project II
Second quarter of undergraduate thesis sequence. System analysis and design.

ICS 4653. Design Project III -12-4. Prerequisite: ICS 4652 Third quarter of undergraduate thesis sequence. system implementation and final project report.
CS 4754. Models of Human Information Processing
-0-3. Prerequisites: PSY 3304, ICS 1700 or quivalent.
General and unified approaches to psychologiand computer modelis on hural sensory ion processes. Emphal processing memory, semantic, and con Also listed as PSY 4754

ICS 4756. Human Factors in Software Development
3.0-3. Prerequisites: ICS 3300, PSY 3304 Examines human factors in the software design and application process from initial re quirement and specification statements to coding, testing, implementation, and maintenance. Also listed as PSY 4756.

CS 4801-2-3-4-5-6. Special Topics Credit hours equal last digit of course number. Prerequisite: consent of school.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 4901-2-3. Special Problems

Credit to be arranged. Prerequisite: consent of school.
Individual investigation of significant areas of information and computer science. Guided study and research.
ICS 6100. Foundations of Information Science
Scientific method; subject of information sci ece sign processes; information and texts; measurement and information measures; laws and theories of information science; applications to information technology.

ICS 6114. Information Measure
3-0-3. Prerequisites: ICS 2150, MATH 3215
Theory of quantitative methods of information measurement. Measure functions, syntactic, semantic, and pragmatic levels of information measurement. Applications in communication sys tems, decision-making, economic realms
ICS 6116. Advanced Topics in Linguistics 3-0-3.
Study of natural language as a semiotic system with emphasis on a model of grammar incorporating the syntactic, semantic, and pragmatic dimensions of semiosis.

ICS 6117. Mathematical Linguistics
3-0-3. Prerequisite: ICS 4117 or consent of school.

Study of the mathematical structure of natura language using statistical and algebraic techniques.
ICS 6130. Philosophy of Mind
3-0-3.
Higher mental processes including learning, concept formation, problem solving and percep tion, considered in relation to artificial intelligence. Linguistic and physiological models of human information processes

3-0-3. Prerequisite: ICS 6130
3-0-3. Prerequisite: Manmunication is analyzed by reference to studies of behavioral decision, conversational systems, and interactive measurement methods.

ICS 6140. Systems Theory I

3-0-3.
Conceptional foundations of general systems theory; systems and the concept of state; systems dynamics; linear systems; controllability,
reachability, and observability; stability, algebraic approaches to realization
ICS 6141. Systems Theory II
3-0-3. Prerequisite: ICS 6140 .
Decomposition of dynamical systems; paralle dynamic processes; hierarchical systems; goal oriented systems; learning systems; stochastic systems and their properties; theory of processes
in networks. in networks.

ICS 6144-5. Information Systems

Design I, II

3-0-3 each. Prerequisite: ICS 3500
Analysis and synthesis of information systems, emphasizing mathematical modeling. Study of selected systems in areas such as data processing, management, command and contro systems.

ICS 6146. Cybernetics

3-0-3.
Roles of various functions in living systems and their actual or potential realization in computers.

ICS 6152. Theory of Automata

3-0-3. Prerequisite: ICS 4155
Study of the significant results concerning finite automata, pushdown automata, linear bounded automata. Turing machines, recognizers of the four Chomsky phrase-structure languages

ICS 6153. Theory of Compiling and

 Translation3-0-3. Prerequisites: ICS 3155 (or 6152), 4410. A survey of theoretical topics related to compiler design and implementation: deterministic parsing, table processing, code generation, syntax-directed compiling, global optimization.
ICS 6155. Analysis of Algorithms
3-0-3. Prerequisite: ICS 4155.
Basic techniques for analyzing and designing efficient algorithms: upper and lower time-space bounds for data structure, sorting and combinatorial problems, algebraic algorithms.

CS 6156. Complexity of Computation

$3-0-3$. Prerequisite: ICS 3150 or 6155.
Advanced techniques for analyzing the timespace complexity of natural computational prob ems; proving the tractability or intractability of problems from algebra, combinatorics, computer science, geometry, and number theory.
ICS 6157. Advanced Theory of Computability 3-0-3. Prerequisite: ICS 4155.
Advanced treatment of the theory of computability. Topics include recursive functions, recursively enumerable sets and relations, degrees of unsolvability, the recursion theorem and computational complexity.

CS 6240. Organization and Management Information Industry

3-0-3.

Organization, operation, and management he information industry. Information economic Software companies. Information brokers. Ven dor relationships. Issues of ethics, privacy, s rity, and auditing
ICS 6342. Knowledge Structures for Machine Intelligence
3-0-3. Prerequisite: ICS 4342.
A study of the knowledge and inferences ne essary for understanding; memory organization representation of episodes; question answering reconstructive memory.
ICS 6347. Computer-Aided Modeling
3-0-3. Prerequisites: MATH 3215, ICS 2602.
Modeling of complex systems especially for digital simulation. Statistical and other metho logical considerations. Simulation versus mati ematical, numerical, and other analysis. Projec in modeling and simulations.
ICS 6360. Artificial Intelligence
3-0-3. Prerequisite: ICS 3360 .
Advanced study of topics from heuristic search automatic theorem proving, semantic information processing, representation theory, and othe current areas.

ICS 6363. Pattern Recognition

3-0-3. Prerequisite: MATH 3215 or equivalent. Basic principles and methods of statistical pattern recognition; decision functions; pattern classifications by distance and likelihood functions; trainable pattern classifiers; feature extraction.
ICS 6370. Information Control Methods 3-0-3.
Study of methods of information control. Including assessment of information needs, data collection and reduction, manual and automatic indexing, abstracting and classification, evalua. tion and performance

ICS 6380. Computer Networks

3-0-3. Prerequisites: ICS 4380, 4430
In depth examination of the design and operation of computer networks covering computer hardware and software functions and design requirements and communication subsystems.
ICS 6410. Computer Language Design 3-0-3. Prerequisite: ICS 3422 or 4410 . Description, structure, and design philosophies of high level programming languages. Design structures, and features for data and control structures, and features for data abstraction an modularity.

CS 6412. Syntax Directed Compilation
0.0.3. Prerequisite: ICS 4410.

Detailed study of compiler implementation Dhniques, including table-driven syntax analyis, translation to intermediate language, opnization, and object code generation.

S 6430. Computer Operating System

 3.0-3. Prerequisites: ICS 2100 (or equivalent) 4430 .A quantitative coverage of operating system unctions emphasizing implementation techniques including sequential and concurrent processes, rocessor and storage management, scheduling and protection.

CS 6431. Design of Computer Operating

 ystems6-3. Prerequisite: ICS 6430
A major systems programming project involving the modification or extension of an existing operating system component and an evaluation of the results
ICS 6435. Computer Systems Evaluation 3-0-3. Prerequisites: MATH 3215, ICS 4430 . Methods of evaluating performance
scale computer systems, with emphasis on performance analysis through simulation, queueing models, and measurement.

CS 6450. Data Base Design

2-3-3. Prerequisites: ICS 4155, 4450
Study of the state-of-the-art of data base
design. Approaches to data base theory and optimization of data base algorithms. Term project.

ICS 6530. Graph Theory

3-0-3. Prerequisite: ICS 2150
Graph structure and algorithms, including trees circuits, planarity, enumeration, combinatorics, network flows, and algorithm complexity, with applications in information and computer science,

ICS 6555. Queueing Theory and

Applications I
3-0-3. Prerequisites: MATH 3215, ICS 4430. Queueing theory and its application in computer performance evaluation, operating systems design, telecommunications, and operations research.
ICS 6556. Queueing Theory and

Applications II

3-0-3. Prerequisite: ICS 6555
Continuation of ICS 6555, emphasizing current research topics. Problems suitable for dissertation research are discussed.

ICS 6600. Advanced Small Scale Computer Systems
1-6-3. Prerequisite: ICS 3602.
The design and application of software and hardware for actual computer systems is intro-
duced through hands-on laboratory experience with hardware modules, micro-computers, and interface sub-systems
ICS 6620. Advanced Computer Organization 3-0-3. Prerequisite: ICS 3602.
Studies of computer system organizations: advanced input output systems, multiprocessors, pipeline processors, other parallel systems

ICS 6750. Human-Computer interface

3-0-3. Prerequisite: consent of school.
Human-computer interface is considered in
terms of user-system compatibility. Concepts in human factors and interface design are covered human factors and in relation to capabilies and limitations of both humans and computers. Also listed as PSY 6750.

ICS 7000. Master's Thesis
Credit to be arranged. Prerequisite: consent of school.
ICS 7115. Philosophy of Language 3-0-3. Prerequisite: ICS 6116 or 6117 or consent of school
Study of selected topics in linguistics arising from philosophic discussion of language. Emphasis on foundations of language.

ICS 7999. Preparation for Doctoral Qualifying Exams
Credit to be arranged. Prerequisite: consent of school.
CS 8111-2-3-4-5-6. Special Topics
Credit hours equal last digit of course number
redit hours equal last digit ool.
Special topics of current interest. Treatment of new developments in various areas of informaion and computer science.

ICS 8501-2-3. Special Problems
Credit to be arranged. Prerequisite: consent of school.
Small-group or individual investigation of ad vanced topics in information and computer sci ence. Guided study and research. Maximum of five credit hours allowed toward the ICS M.S. degree.
ICS 8999. Doctoral Thesis Preparation
Credit to be arranged. Audit only. Prerequisite consent of school.
ICS 9000. Doctoral Thesis
Credit to be arranged. Prerequisite: consent of school.

School of Mathematics

Established in 1952

Director and Regents' Professor-William F. Ames; Assistant Director and Associate Professor-Dar-Veig Ho; Coordinator of Graduate Programs and Professor-Gunter H. Meyer; Coordinator of Undergraduate Programs and Associate Professor-James M. Osborn; Computer Coordinator and Professor-William J. Kammerer; Professors -Michael F. Barnsley, Johan G. Belinfante, George L. Cain, Jr., Bertram M. Drucker (emeritus), Jamie J. Goode, James V. Herod, Les A. Karlovitz, Robert H. Kasriel John D. Neff, Daniel A. Robinson, Michael P. Stallybrass, James W. Walker; Associate Professors-Alfred D. Andrew, Marc Berger, Nathaniel Chafee, Mark J. Christensen, Stephen G. Demko, Richard A. Duke, Donald M. Friedlen, William L. Green, Roger D. Johnson, Robert P. Kertz, John P Line, Kevin T. Phelps, E. Juanita Pitts, Ronald W. Shenk, Alan D. Sloan, William R. Smythe, Jr., Jonathan E. Spingarn, M. Carl Spruill, Ernst Stephan; Assistant Pro-fessors-Stephen B. Boswell, John H. Elton, Jeffrey Geronimo, Evans Harrell, Theodore P. Hill, William J. Layton, Thomas D. Morley (visiting), Karl Robinson (visiting), Kathleen Spear.

General Information

Mathematics forms an integral part of the curricula of most students at Georgia Tech Consequently, the School of Mathematics offers a wide range of courses serving students in the various engineering, science, and management disciplines. In addition, the school offers programs of study leading to the bachelor's, master's, and doctoral degrees in mathematics. Such programs of study serve as preparation for mathematical careers, professional schools, and graduate studies
In addition to basic courses in mathematics, the school offers a variety of specialized courses at the undergraduate and graduate levels, emphasizing areas related to the research activities of the faculty. At present these include mathematical analysis, applied mathematics, differential equations, scientific computing, proba-
bility, statistics, combinatorics, mathematio physics, topology, and algebra
The School of Mathematics has exce lent computer facilities which are used i conjunction with an increasing number 0 courses and programs of study.
A cooperative plan for students who wish to combine practical experience wit academic work is now available for math ematics majors.

Information supplementary to this cata log which may be useful to students planni or considering a program of study in mat ematics is available in the school office.

Undergraduate Program

Reflecting the scientific environment at Geo gia Tech, the bachelor's program in math ematics trains students in the traditional core mathematics curriculum, as well as its applications. The program is sufficient flexible to permit students to concentrate on some area of specialization, thus assuring depth as well as scientific breadth In many areas, including scientific computing, engineering mathematics, industri mathematics and optimization, and mathe matical physics, the concentration is achieve through appropriate choices of electives the junior and senior years. Information re garding the contents as well as professiona and scientific goals of the various concen trations is available in the School.
In addition, the School of Mathematics offers a formal program for a concentratio in Probability/Statistics. This program provides background specialization for profes sional careers in business, industry, and government where statisticians and proba bilists are needed, as well as for graduate study in a variety of fields. The curriculum requirements for this concentration are listed following those of the general program. It should be noted that this concentration retains at its core the courses of the general program. There is also an increasing emphasis on the use of the micro and mini computers for computation, graphics, and simulation throughout the undergraduate mathematics curriculum.
Students may count no more than six hours of course work in physical education toward graduation. Only free electives in
he degree program may be taken on a pass iil basis and no more than twelve hours allowed under this option
In addition to the institutional requireIn addition to the institutional require-
ment of at least a 2.0 grade point average lor the entire academic program, the School of Mathematics requires a 2.0 grade point verage in all mathematics courses at or above the 3000 level which are designated by number in the program
reshman Year
Course
1st Q. 2nd Q. 3rd Q.
MATH 1307-8-9
Calculus I, II, III 5-0-5 5-0-5 5-0-5
ENGL 1001-2-3
iterature
Elective
CHEM 1101-2 or
1111-2
General Chemistry 4-3-5 4-3-5
PHYS 2121
Particle Dynamics
Electives
Free
Free
Elective ${ }^{1}$ Physical Education $\frac{X-X-2}{X-X-18} \frac{X-X-1}{X-X-17} \frac{X-X-1}{X-X-17}$
Totals Totals

Sophomore Year
Course
1st Q. 2nd Q. 3 rd Q.
MATH 2307-8
Calculus IV, V
MATH 3308
DifferentialEquations 5-0-5
Elective
ICS 1700 or EE
1010, Introduction
to Computer
Programming
MATH 3110
Introduction to
Higher Algebra
MATH 3215
Probability and
Statistics
PHYS 2122
Electromagnetism

PHYS 2123
Optics, Modern
Physics
4-3-5
Elective
Humanities/Social
Science/Modern
Language
Elective
Free
3-0-3
Totals
14-6-16 $\frac{15-3-16}{16-0-16}$

Junior and Senior Years

1. MATH $4101,4301,4311,4312,4313$ 4320 .. 23 hours
2. PHYS $3121 \ldots$..................................... hour 3. degree-granting school other than mathematics
3. Mathematics course at or above the 4000
4. Matel, including at least two sequences and subject to the following restrictions. (a) At least 12 hours, including a sequence, shall be chosen from (i) probability, statistics and stochastic processes; (ii) differential equations; (iii) numerical analysis and optimization; tions, (iv) mathematical models. (b) Not all the courses in (a) shall come from the same area. (c) MATH 4391 and 4392 may not be included (c) 21 hours
Humanities and social science courses. The
5. Humanities and sust include either a year sequence in a modern language, or 9 hours of English beyond ENGL 1003 24 hours Free electives
6. Free electives

Total

Junior and Senior Years

for the Concentration
in Probability/Statistics

1. MATH 4101, 4301, 4311, 4312, 4313, 4320

23 hours .5 hours
3. Either MATH $4220,4221,4282,4222$ or 6232 , $4225,4230,4241$ (emphasis in probability); or MATH 4220, 4230, 4241, 4242, 4251, 4245, 4281 or 6261 (emphasis in statistics) 21 hours
4. Electives: Technical electives, in applied probability/statistics courses at least at the upper undergraduate level, outside the School of Mathematics; selected on approval of the School of Mathematics 6 hours
5. Electives: Technical electives, either in (a) an 5. Electives. other applied mathematics area, at 4000 lev el or higher, or in (b) other areas where probability/statistics is applied, such as in modeling data analysis, case studies (upper undergradu-
ate level); selected on approval of the School of Mathematics..................................... 6 hours 6. Humanities/social science courses. The degree program must include either a year sequence in a modern language or 9 hours of English beyond English 1003 18 hours
7. Electives: Free...................................... $\frac{18 \text { hours }}{97 \text { hours }}$

Graduate Programs

The School of Mathematics provides opportunities for study in a wide range of mathematical disciplines. First year graduate sequences include algebra, analysis, differential equations, numerical analysis, probability, statistics, and topology in addition to courses in methods of applied mathematics.

A program of study leading toward a master's degree should include analysis consisting of MATH 6317, 6318, 6320 6580 and the modelling course MATH 6510 In addition, students should take six hours of course work at the 3000 level or higher outside of the School of Mathematics. The program should also include either a thesis (seventeen hours) and seven additional hours of course work at the 4000 level or higher or twenty-four hours of course work at the 4000 level or higher, including nine hours of concentration in some field of mathematics, three hours in numerical analysis, and three hours in probability, statistics, or stochastic processes (unless the student has previously had such training) and a sufficient number of hours at the 6000 level or higher to ensure that the program includes a total of at least thirty-five hours at this level.
Students must maintain an overall grade point average of at least 2.7 and receive a grade of C or better in each mathematics course in the program of study.
Before admission to candidacy for the master's degree, each student must pass an oral comprehensive examination. Most applicants holding the bachelor's degree are urged to enter the master's degree

[^0]program before seeking admission to the doctoral program.
Students with the master's degree or equivalent may apply for the doctoral pro. gram. This program requires seventy-seve hours of course work beyond the undergraduate degree with at least five hours in real, functional, complex analysis, algebra topology, and mathematical modelling. Fif teen of these hours must be taken outside the School of Mathematics in the student minor field of study. Students must maintain an overall grade point average of 2.7 and a grade of C or better in each course of the program of study.
Prior to admission to candidacy for the doctoral degree, each student must pass comprehensive examinations in each of four areas of mathematics selected in pan by the student. Also, doctoral candidates must demonstrate a reading knowledge of two languages chosen from French, Ger man, and Russian, and satisfy the Institute requirements with respect to the dis sertation and final oral examination

Program in Statistics

For information concerning the graduate program in statistics, refer to page 142.

Courses of Instruction

MATH 1307. Calculus I

$5-0-5$. Prerequisite: entrance algebra and trigonometry.
The derivative, derivatives of elementary functions, applications of derivatives. Credit is not allowed for both MATH 1307 and MATH 1712 except in IM degree programs
Text: at the level of Thomas and Finney, Calculus and Analytic Geometry

MATH 1308. Calculus II

5-0-5. Prerequisite: MATH 1307.
Integral calculus, notion of integral, definite and indefinite integrals, techniques of integration, applications, approximate methods, improper integrals. Credit is not allowed for both MATH 1308 and MATH 1713 except in MGT degree programs.
Text: at the level of Thomas and Finney, Calculus and Analytic Geometry.
MATH 1309. Calculus III
5-0-5. Prerequisite: MATH 1308.
Complex numbers; first and second order differential equations, applications in oscillations;
geometry in E^{n}; vectors, matrices, systems of near algebraic equations.
Text: at the level of Thomas and Finney, Calculus and Analytic Geometry.

IATH 1317-8-9. Honors Calculus I, II, III

 5.0-5 each.The topics covered parallel those of MATH 307-8-9, with a treatment somewhat more liensive and rigorous. Credit is and the corboth an honors calculus course and
responding regular calculus course.

MATH 1710. College Algebra and Trigonometry $5-0-5$. Prerequisite: entrance algebra. No credit loward graduation for engineering, science, or architecture degrees.
The function concept, exponential, logarithmic and trigonometric functions, theory of equations including trigonometric equations.
Text: at the level of Keedy and Bittinger, Algebra and Trigonometry.
MATH 1711. Mathematics for Management I 5-0-5. Prerequisite: entrance algebra
Linear equations and straight lines, matrices, linear programming, sets and counting, probability and statistics.
Text: at the level of Goldstein, Lay, and Schneider, Modern Mathematics and Its Applications.
MATH 1712. Mathematics for Management I MATH 1712. Mathematics for
5.0-5. Prerequisite: MATH 1711.
Difference equations and the mathematics of finance functions, the derivative, applications of the derivative techniques of differentiation. Credit is not allowed for both MATH 1712 and 1307 is not allow in MGT degree programs.
Text: at the level of Goldstein, Lay, and Schneider, Modern Mathematics and Its Applications.
MATH 1713. Mathematics for Management III 5-0-5. Prerequisite: MATH 1712 or 1307. The exponential and natural logarithm functions with applications to exponential growth and decay and compound interest, integration, functions of several variables including partial derivatives, maxima and minima of functions of several variables, Lagrange multipliers and constrained optimization. Credit is not allowed for both MATH 1713 and MATH 1308 except in MGT degree programs.
Text: at the level of Goldstein, Lay, and Schneider, Modern Mathematics and its Applications.
MATH 2012. Boolean Algebra and Applications 3-0-3. Prerequisite: MATH 1307 or 1711. Introduction to discrete algebraic structures such as partial orders, lattices, and Boolean algebras, including the algebra of sets and propositional logic with applications to circuits

Text: at the level of Mendelson, Boolean Algebra and Switching Circuits.

MATH 2307. Caiculus iV

5-0-5. Prerequisite: MATH 1309.
Linear algebra, linear independence, bases, eigenvalues and eigenvectors, partial derivatives, differentiable functions, gradient, maximum and minimum problems.
Text: at the level of Crossman, Calculus Part Two.
MATH 2308. Calculus V
5-0-5. Prerequisite: MATH 2307
Multiple integration, line and surface integrals, integral theorems and applications; infinite series, Taylor's theorem.
Text: at the level of Thomas and Finney Calculus and Analytic Geometry.
MATH 2309. Differential Equations
5-0-5. Prerequisite: MATH 2308
Linear differential equations and applications in the engineering and the natural sciences, in the engineering and the natural sciences, systems of simple nonlinear equations. Credit is at allow for both MATH 2309 and 3308 or not
3709
Text: at the level of Ross, Introduction to Ordinary Differential Equations.

MATH 2317-8. Honors Calculus IV, V
5-0-5 each.
A continuation of MATH 1317, 1318, 1319. The coverage parallels that of MATH 2307-8.

MATH 3012. Applied Combinatorics

3-0-3. Prerequisite: MATH 1308 or 1712
Elementary combinatorial techniques used in discrete problem solving. Topics include basic counting methods, graph and network models, related algoriths Text: at the level of Berman and Fryer, Introduction to Combinatorics.
MATH 3110. Introduction to Higher Aigebra 3-0-3. Prerequisite: MATH 2307 or 1713. Vector spaces, matrices, systems of linear equations, linear transformations and matrices, change of basis, characteristic roots and vectors, quadratic forms and diagonalization.
Text: at the level of O'Nan, Linear Algebra
MATH 3215. Problems in Probability and Statistics
5-0-5. Prerequisite: MATH 2308 or 1713.
Problem-oriented introduction to probability with applications (see MATH 4215), including models and problems in statistical inferences. Credit is not allowed for both MATH 3215 and 4215.

Text: at the level of Meyer, Introductory Prob ability and Statistical Applications.

ATH 3308. Differential Equations

5-0-5. Prerequisite: MATH 2308
Differential equations with linear algebra, ma trix treatment of linear systems, characteristic roots, exponential matrix function, series meth-
od stressing equations of Bessel and Legendre Text: at the level of Rabenstein, Elementary
Differential Equations with Linear Algebra.

MATH 3640. Introduction to Scientific

Computing
3-0-3. Prerequisites: MATH 2307, and knowledge of computer programming
Solution of problems in economics, science, and technology employing algorithms for linear and nonlinear equations, integration and ordinary differential equatons. Student use of computers emphasized.

MATH 3709. Mathematics for System

Engineering

3-0-3. Prerequisite: MATH 2308
Techniques for solving linear differential equa tions (and systems) with constant coefficients, e.g. with Laplace transform. Credit is not al-

Text: at the leve and 2309 or 3308.
Text: at the level of Bronson, Differential Equations.
MATH 3710. Introduction to Statistics 5-0-5. Prerequisite: MATH 1308 or 1712
Basic concepts and tools of statistical analysis as used in data analysis and inference in the behavioral, life, managerial, and physical sciences. Text: at the level of Walpole, Introduction to Statistics.
MATH 3716. Statistics for Managemen Science
5-0-5. Prerequisites: MATH 2307 and MATH 3215.

Unified approach to statistical inferences through decision methods, and to regression and experimental design through least squares. Topics are introduced with discipline-oriented problems.
Text: at the level of Walpole, Introduction to Statistics.

MATH 4038. Mathematical Logic

3-0-3. Prerequisite: MATH 2308 or 1713.
The propositional and predicate calculi, developed as formal systems of symbol manipulation, with attention to the related decision probems, recursive functions and automata
Text: at the level of Stoll, Introduction to Set Theory and Logic.

MATH 4101. Introduction to Abstract

Algebra I
3-2-4. Prerequisite: MATH 2308
An introduction to basic algebraic systems
with emphasis on groups, rings and fields.
Text: at the level of Herstein, Topics in Algebra.

MATH 4102. Introduction to Abstrac

Algebra II

3-0-3. Prerequisite: MATH 4101.
A continuation of MATH 4101 with emphasis on modules, polynormal rings and linear associative algebras.
Text: at the level of Herstein, Topics in Algebr

MATH 4140. Theory of Groups

3-0-3. Prerequisite: MATH 4101.
Basic topics from group theory including som
representation theory
Text: at the level of Rotman, The Theory of Groups, an Introduction

MATH 4215. Introduction to Probability 3-0-3. Prerequisite: MATH 2308 or 1713. introduction to probability theory with applica tions, discrete and nondiscrete distributions, mo ments, laws of large numbers, central limit heorem with applications. Credit is not allowed
or both MATH 4215 and 3215.
Text: at the level of Meyer, Introductory Prob ability and Statistical Applications.

MATH 4220. Elementary Discrete-Time

 Stochastic Processes0-3. Prerequisite: MATH 3215 or MATH 4215
Development of random walk, waiting-time processes, and other stochastic processes through tion include counting techniques, recurrence relations and
elations, and generating functions
Probability Theory Feller, W., An Introduction

MATH 4221. Probability with Applications 3-0-3. Prerequisite: MATH 3215 or 4215.

Introduction to discrete-time Markov chains
with applications.
Text: at the level of Hoel, Port and Stone, Introductions to Stochastic Processes
MATH 4222. Probability with Applications II 3-0-3. Prerequisite: MATH 4221. Prerequisite or corequisite: MATH 3110.
Introduction to continuous-time Markov chains,
with with applications.
Text: at the level of Karlin, A First Course in
Stochastic Process. Stochastic Process.

MATH 4225. Computer Usage in Probability 3-0-3. Prerequisites: MATH 3215 or MATH 4215 and ICS 1700
Study of probability distributions, limit laws, and applications through the use of digital computer. Probability (Monte Carlo) methods applied to deterministic problems.

MATH 4230. Analysis of Probability

Distributions

3-0-3. Prerequisites: MATH 2308 and MATH 3215 or equivalent.

Theory and methods in probability are deeloped. Important distributions, transform methods, multivariate distributions, and limit theorems are introduced.

WATH 4241. Mathematical Statistics I

3.0-3. Prerequisite: MATH 2308 and either 3215 or 4215.
Unified approach to statistical estimation and lesting of hypotheses, including introduction to Bayesian methods. Exact and asymptotic samling distributions. Applications.
Text: at the level of Hoel, Port and Stone, Introduction to Statistical Theory.
MATH 4242. Mathematical Statistics II
3-0-3. Prerequisite: MATH 4241.
Unified approach to regression analysis, anal vsis of variance and experimental design, making use of linear algebra, and generalized ining use of Applications.
Text: at the level of Graybill, Theory and Apolication of the Linear Model.
MATH 4245. Computer Usage in Statistics 3-0.3. Prerequisites: MATH 4241 and ICS 1700 of equivalent.
Mathematical description of statistical models and the use of statistical computer routines, especially SPSS. Statistical packages in data analysis, including data description, t-tests and one way ANOVA, plots and histograms, frequency tables, regression, ANOVA, ANACOVA, and non-parametric procedures.
Text: Appropriate statistical package manuals.
MATH 4251. Nonparametric Statistics
3.0-3. Prerequisite: MATH 4241.

Goodness-of-fit tests, rank tests, tests of Gociation, location tests, scale tests, asymptotic theory including use of Pitman efficiency. text: at the level of J. D. Gibbons, NonTexi: at ine level

MATH 4280. Elements of Information Theory 3-0-3. Prerequisite: MATH 3215 or 4215. A mathematical approach to information theon, primarily through probability in finite sample spaces. Coding theorem for discrete memoryless channels. Decision schemes. Shannon's theorem. Text: at the level of Ash, Information Theory.

MATH 4281. Elementary Decision Theory

3-0-3. Prerequisite: MATH 4241.
Mathematical approach to decision theory. Bayesian and minimax strategies in response to statistical uncertainty. Application to mathematical statistics.
Text: at the level of Ferguson, Mathematical Statistics: A Decision Theoretic Approach.

MATH 4282
3-0-3. Prerequisite: MATH 3215 or 4215

Second-order stochastic processes, especially stationary and weakly stationary processes.
Gaussian processes. Spectral analysis.
Text: at the level of Yaglom, Theory of
Stationary Random Functions.
MATH 4283. Introduction to Game Theory 3-0-3. Prerequisite: one of MATH 2010, 3110 4580 or consent of school
Introduction to game theory with emphasis on zero-sum two person games, economic applications, connections with linear programming and decision functions

Text: at the level of Dresher, Games of Strategy.
MATH 4301. Finite-dimensional Vector Spaces 3-2-4. Prerequisite: MATH 2308
A study of finite-dimensional vector spaces treating linear transformations, algebra of operators, inner product spaces and normed linear spaces
Text: at the level of Stoll, Wong, Linear Algebra.
MATH 4302. Applications of Finite-Dimensional Vector Spaces
e0-3 Prerequisite: MATH 4301
Applications of MATH 4301 with topics selectAppm the areas of convex sets, positive matrices, quadratic forms, linear differential equations, and generalized inverses.

MATH 4308. Ordinary Differential Equations 4-0-4. Prerequisites: MATH 2309 or 3308, MATH 3110 and either 4311 or 4391.
Systems of differential equations, linear systems and phase space analysis, existence theory, stability of linear systems, Liapunov theorems, stability of automatic control systems.
Text: at the level of Brauer and Nohel, Qualitative Theory of Ordinary Differential Equations.
MATH 4311. Introduction to Analysis I 3-2-4. Prerequisite: MATH 2309 or 3308 or equivalent.
Real numbers, order completeness, normed vector spaces and notions of completeness and compactness, functions and continuity, sequences and series.
Text: at the level of Bartle, The Elements of Real Analysis.
MATH 4312. Introduction to Analysis II 3-2-4. Prerequisite: MATH 4311.
Limits of functions, differentiation of functions of one variable, Reimann-Stieltjes integral, improper integrals, absolute and conditional convergence, integrals of sequences and series.
Text: at the level of Bartle, The Elements of Real Analysis.

MATH 4313. Introduction to Analysis III
3-2-4. Prerequisite: MATH 4312.
Differentiation in R^{p}, local inverse function theorem, implicit function theorem, extremum problems and Lagrange multipliers, integration in R^{p}, change of variables in multiple integrals. Text: at the level of Bartle, The Elements of Real Analysis.
MATH 4320. Complex Analysis
3-0-3. Prerequisite: MATH 2309 or 3308
Topics for complex function theory, including
contour integration and conformal mapping.
Text: at the level of Churchill, Complex
Variables with Applications.

MATH 4347. Introduction to Partial Differentia

 Equations I3-0-3. Prerequisite: MATH 2309 or 3308
Method of characteristics for 1st and 2nd order partial differential equations. Classification of 2nd order equations. Applications.
Text: at the level of Williams, Partial Differential Equations.
MATH 4348. Introduction to Partial Differential Equations II
3-0-3. Prerequisite: MATH 2309 or 3308
Solutions of boundary value problems for par-
tial differential equations by Green's functions. Representative solutions for potential and diffusion equations. Applications.
MATH 4391. Topics in Advanced Calculus I 3-0-3. Prerequisite: MATH 2308.
Partial differentiation, applications of partial differentiation, infinite series, improper integrals, uniform convergence
Text: at the level of Taylor and Mann, Advanced Calculus.

MATH 4392. Topics in Advanced Calculus II 3-0-3. Prerequisite: MATH 4391
Continuation of MATH 4391. Main topic is integration and applications. Also, Riemann, Stieltjes, multiple, line and surface integrals, and the gamma function
Text: at the level of Taylor and Mann, Advanced Calculus.
MATH 4431. Introductory Topology
3-0-3. Prerequisite: MATH 4311 or consent of chool
This course provides background for use of opological methods in analysis. Metric spaces Continuous transformation. Topological spaces
Text: at the level of Kasriel, Undergraduate
Topology. Topology.
MATH 4432. Introduction to Algebraic Topology $3-0-3$. Prerequisites: MATH 4431 and 4101 or 4301.

Introduction to algebraic methods in topology Includes homotopy, the fundamental group, cov-
ring spaces, simplicial complexes. Applicatios
to fixed point theory and graph theory.
Text: at the level of Singer and Thorpe
Elementary Topology and Geometry.

MATH 4441. Differential Geometry

3-0-3. Prerequisite: MATH 2308
The theory of curves and surfaces, includin the first and second fundamental forms of a
surface and topics related to them
Text: at the level of O'Neil, Elementary
Differential Geometry.
MATH 4580. Linear Programming
3-0-3. Prerequisite or corequisite: MATH 2308 A study of the linear programming problem tivity analysis with applications duality, and sens tivity analysis with applications to matrix games
integer programming, and networks.
Text: at the level of Chvatal, Linear Progran
ming.
MATH 4581. Advanced Engineering Mathematics
3-0-3. Prerequisite: MATH 2309 or 3308. The Laplace transform and its properties, applications to physical systems involving the solution of ordinary and partial differential equa tions.

Text: at the level of Churchill, Operational Mathematics.

MATH 4582. Advanced Engineering Mathematics
3-0-3. Prerequisite: MATH 2309 or 3308 Fourier series, boundary value problems for partial differential equations, applications of
Legendre polynomials and Bessel functions.
Text: at the level of Powers, Boundary Value

Problems.

MATH 4583. Vector Analysis
3-0-3. Prerequisite: MATH 2308
Vector calculus. Line, surface and volume integrals. Gradient, divergence, curl. Theorems of Green, Gauss, and Stokes. Curvilinear coordinate systems. Introduction to tensors.
Text: at the level of Davis, Snider, Introduction to Vector Analysis.

MATH 4584. Mathematical Methods in Continuum Mechanics
3-0-3. Prerequisite: MATH 2308.
An elementary tensorial treatment of various geometric and mechanical concepts needed in the study of hydrodynamics, elasticity, and plas ticity.
Text: at the level of Prager, Introduction to Mechanics of Continua.
MATH 4591. Introduction to Mathematica Optimization
-0-3. Prerequisite: MATH 2308
Introduction to various linear and nonlinear
timization problems in finite-dimensional spaces Mathematical properties of the objective functio will be examined and appropriate algorithms seveloped.
Text: at the level of Cooper and Steinberg, introduction to Methods of Optimization.
WATH 4640. Scientific Computing 30-3. Prerequisites: MATH
Topics include finding zeros of functions, di-
tot and iterative methods for solving linear
lys of equations, polynomial interpolation and numerical integration including Romberg and adaptive methods.

MATH 4641. Scientific Computing II

3-0-3. Prerequisite: MATH 4640 or consent of school.
Topics covered include solution of ordinary differential equations, non-linear systems of equations, eigenvalue problems, least squares and spline approximations.

UATH 4790. Intensive Review of the

 Elementary Calculus0-6-9. Audit basis only. Prerequisites: consent school and student's advisor
Refresher course for beginning graduate stuents with calculus background who have been way from academic work for considerable time. Review of calculus through sophomore level.

MATH 4800. Special Topics

3-0-3. Prerequisite: consent of school This course enables the School of Mathematics to comply with requests for courses in special topics. Given upon sufficient demand.

MATH 4805. Special Topics

 5-0-5.MATH 4999. Reading or Research
1 to 3 credits. Prerequisite: junior standing or above, consent of school.
Pass/fail basis only. Not more than seven hours can be counted toward bachelor's degree At most three hours can be counted as mathematics elective

MATH 6012. Combinatorial Methods

3-0-3. Prerequisite: graduate standing or consen of school.
Introduction to fundamental methods in graph theory, enumeration, and designs including the use of recurrence relations, generating functions, trees, circuits, matchings, and graph colorings.
MATH 6121. Modern Abstract Algebra I MATH. Prerequisites: MATH 4101, 4301. An introduction to algebraic systems with An introduction to algebr
Text: at the level of Lang, Algebra

MATH 6122. Modern Abstract Algebra II
3-0-3. Prerequisite: MATH 6121
Rings, ideals and related concepts, field theory nique factorization
Text: at the level of Lang, Algebra

MATH 6123. Modern Abstract Algebra III

3-0-3. Prerequisite: MATH 6122 .
Concept of the total matrix algebra. Introduction to linear associative algebras.
Text: at the level of Lang, Algebra

MATH 6232. Probabilistic Methods in

Sequential Decision Theory
3-0-3. Prerequisite: MATH 4221 or the equivalent. Development of results in sequential decision theory through probabilistic concepts and reasoning. Emphasis on application of Markov chain and martingale theories.

MATH 6241-2-3. Probability I, II, II 3-0-3 each. Prerequisite: MATH 6317 or equiva lent.

This sequence develops the probability basis requisite in modern statistical theories and stochastic processes. It includes a selection of topics from measure and integration theory, distribution functions, convergence concepts, Fourier integrals and central limit theory, conditional distributions and dependence and random analysis.
MATH 6261. Mathematical Statistics
3-0-3. Prerequisite: MATH 4241
Detailed non-measure-theoretic treatment of minimum variance unbiased estimation and hypothesis testing, including UMP, UMP unbiased best invariant and locally best tests.
Text: at the level of Ferguson, Mathematical Statistics.
MATH 6307-8-9. Ordinary Differential Equations I, II, III

This sequence develops the qualitative theory
or systems of ordinary differential equations.
initial-value problems for systems and nth order Initial-value problens inequalities. Stability of inear and perturbed linear systems, Liapunov functions, Boundary-value problems. Periodic solutions and behavior near periodic orbits. Oscillation and comparison theorems. Asymptotic behavior.

MATH 6315. Real Analysis II
3-0-3. Prerequisite: MATH 6317
Such topics as structure of the real numbers, axiom of choice, Zorn's Lemma. Hamel basis, Baire category theorem, Stone-Weierstrass theorem, and the Daniell integral.
MATH 6317. Analysis
4-0-4. Prerequisite: MATH 4313 or consent of school.

Lebesgue measure, measurable functions, Lebesgue integration, convergence theorems for integrable functions, signed measures, Hahn decomposition theorem, absolute continuity and differentiation, Radon-Nikodym theorem, Fubini's theorem.

MATH 6318. Analysis II

3-0-3. Prerequisite: MATH 6317 or consent of school.
L_{p}-spaces, metric spaces, normed linear spaces, linear operators, Hahn-Banach theoem, open mapping theorem, strong and weak convergence.
MATH 6320. Complex Analysis
5-0-5. Prerequisites: MATH 4311, 4312, 4313,
320.

Analytic functions, harmonic functions, conormal mapping, Cauchy's theorem, Cauchy's series, argument princip, maximum principle, power series, argument principle, residue theory, con our integration, analytic continuation, applications

6325. Complex Analysis

Analytic continuation, product and partial fraction representation of meromorphic functions, Mittag-Leffler theorem, conformal mapping, Schwarz-Christoffel transformations, application to Dirichlet's Problem, normal families, Riemann mapping theorem.
MATH 6335. Functional Analysis II
3-0-3. Prerequisite: MATH 6318.
Elements of nonlinear functional analysis, fixed point theorems; locally convex linear topologica spaces, Krein Milman theorem, spectral decom position theorems, Banach algebras.
MATH 6341. Partial Differential Equations I 3-0-3. Prerequisites: MATH 4311, 4312, 4313 , 4582.

Classification of partial differential equations, canonical forms, well posed problems, wave equation in R^{n}, Huygen's principle, potential equation, heat equation, strong maximum principles, fundamental solutions.

MATH 6342. Partial Differential Equations II 3-0-3. Prerequisite: MATH 6341
Existence theory for elliptic equations, single and double layer potentials, Schwarz alternating procedure, subharmonic functions, weak solutions in a Sobolev space, regularity of weak solutions.
MATH 6343. Partial Differential Equations III 3-0-3. Prerequisite: MATH 6342.
Finite dimensional approximation of weak solutions, existence theory for evolution equations, semigroups, fundamental solutions, regularity of solutions, nonlinear evolution equations.

MATH 6431-2-3. General Topology I, II, II 3-0-3 each. Prerequisite: MATH 4431 or co sent of schoo
Bases and subbases, filters, nets and convergence, continuous functions, separation axi oms, connectedness, separability, compactnes sup and weak topologies, products and quotients, compactifications and other embedding: molrizations function category, uniform spaces
metrization, function spaces, topological groups
Text: at the level of Wilansky, Topology for Analysis.
MATH 6441-2-3. Algebraic Topology I, II, III 3-0-3. Prerequisites: MATH 4431, 4101 and 430 or consent of school.
Introduction to homological algebra, Cech singular homology and cohomology theories. Applications to fixed points of maps, spheres, invariance of domain etc homotopy the fundamental group covering spaces. Introduction o sheaf theory, category theory, spectral
\qquad
Text: at the level of Spanier, Algebraic Topology.

MATH 6510. Deterministic Models from the Physical Sciences and Technology
-0-5. Prerequisites: PHYS 3121, MATH 4582. Electrical, mechanical, thermal systems lead. ing to difference equations. Lumped parameter ectrical, mechanical systems leading to ordinary differential equations. Distributed-parameter systems leading to partial differential equations.
MATH 6511. Mathematical Methods of Applied Science I
5-0-5. Prerequisites: MATH 2309 or 3308 and 3110 or consent of school
The first of three courses providing quick access to mathematical techniques important in cience and engineering. Complex variables, near algebra, linear differential, and diference quations. Credit not allowed toward graduate degrees in mathematics

MATH 6512. Mathem

 Applied Science II-0-5. Prerequisite: MATH 6511
A continuation of MATH 6511. Partial differen. fial equations, special functions, operational meth. ods, integral transforms. Credit not allowed oward graduate degrees in mathematics.

MATH 6513. Mathematical Methods of Applied Science III
$5-0-5$. Prerequisite: MATH 6512 or consent of hool.
Approximatemethods, nonlinear problems, variational techniques. Credit not allowed toward graduate degrees in mathematics.

MATH 6580. Introduction to Hilbert Spaces 3.-3.3. Prerequisite: MATH 4301 or consent of school.
Vector spaces, function spaces, inner prodvcts, projections, least squares, Fourier series, inlegral and differential operators, self-adjoint operators, compact operators, eigenvalues, eigen-functions, contraction mappings.
ATH 6581. Calculus of Variations
3-0-3. Prerequisite: MATH 2309 or 3308 or consent of school.
Constrained and unconstrained problems inplving single and multiple integrals and added rms. Natural boundary conditions. Transitivity. Broken extremals. Hamilton's principle

MATH 6582. Integral Transforms
3.0-3. Prerequisites: MATH 4582, and 4320, or consent of school.
Classical Fourier, Laplace, and Mellin transform theory with applications to boundary-value problems. Special attention to the judicious choice of transform. Successive use of transforms

MATH 6583. Integral Equations

3.0-3. Prerequisite: MATH 2309 or 3308 or onsent of school
Linear integral equations and their relation to differential equations. Hilbert-Schmidt theory. Eigenvalues. Applications.

MATH 6584. Special Functions of Higher

Mathematics

3-0-3. Prerequisites: MATH 4320, 4582, or con sent of school.
The gamma function, Bessel functions, spher arfunctions, orthogonal polynomials, and oth technology.
ATH 6586. Tensor Analysis
3-0-3. Prerequisites: MATH 3110 and 4583, or onsent of school.
Tensor algebra, covariant differentiation, Cartesian tensors, curvilinear coordinates, introducon to differential forms
Text: at the level of Sokolnikoff, Tensor Analysis.

ATH 6587. Field Theory with Applications

 $3-0-3$. Prerequisites: MATH 4582, 4583, or conent of school.Solution of field equations of mathematical physics by separation of variables in spherical, indrical, and other curvilinear coordinates with attention to advantageous choice of coordinates.

MATH 6640. Applied Computational Methods

 or Partial Differential EquationsJ-0-3. Prerequisite: Knowledge of computer programming, familiarity with partial differential equations and elements of scientific computation. Algorithms using the finite differences and inite elements for the numerical solution of
steady and transient problems of engineering and science. Student computer use emphasized

MATH 6643. Numerical Linear Algebra
3-0-3. Prerequisite: MATH 4301 or consent of school.

Numerical solutions of linear equations; leas squares problems, the singular value decompo sition and generalized inverse; methods for determining eigenvalues including the QR al gorithm.
MATH 6644. Numerical Solution of Nonlinear Equations
3-0-3. Prerequisite: MATH 4311, or consent of school.
Analysis of iterative methods for nonlinear finite and infinite dimensional equations, fixed point equations, Newton's method, gradient related methods, update methods, continuation methods.
MATH 6645. Numerical Approximation Theory 3-0-3. Prerequisite: MATH 4311 or consent of school.
Theoretical and computational aspects of polynominal, rational and spline approximation, cluding Chebyshev and least squares approx mation, linear methods of approximation, B splines, mesh selection.

MATH 6646. Numerical Methods for Ordinary

 Differential Equations3-0-3. Prerequisite: MATH 4311 or consent of school.
Single and multi-step methods for initial value problems, error and stability analysis, implicit methods for stiff problems, shooting methods for boundary value problems.

MATH 6647. Theory of Numer

 Partial Differential Equations3-0-3. Prerequisites: MATH 4313, MATH 4347 MATH 4301.
Finite difference and finite element approximations for elliptic and parabolic boundary value problems, error analysis for projection methods, characteristic methods for hyperbolic systems, stability analysis.

MATH 6750. Stochastic Models in
Management Science
3-0-3. Prerequisites: MATH 4215 and MATH 2308 Stochastic process models for managerial contexts including production, congestion, cash flow, fisheries and passenger reservations. Processes include birth and death, renewal and Markov. Also listed as MSCI 6750.

MATH 7000. Master's Thesis

MATH 7121-2-3. Advanced Topics in Algebra I, II, III
3-0-3 each. Prerequisites: MATH 6121, 6122, 6123 or consent of school.

Courses directed toward research in algebra. Areas of current research interests include homological algebra, finite groups, semi-groups, loop theory.
MATH 7241-2-3. Studies in Advanced
Probability and Statistics I, II, III
3-0-3 each. Prerequisites: MATH 6241, 6242, 6243 or consent of school.
Courses organized around recent broad advances in probability and statistics basic to research in these fields, content of courses varying from year to year. Typical courses would varying from year to year. Typical courses would limit laws of probability, statistical decision theory, theories of estimation and hypothesis testing, ry, th.

MATH 7307-8-9. Advanced Problems in Ordinary Differential Equations I, II, III 3-0-3 each. Prerequisite: MATH 6307, 6308, 6309 or consent of school.
Courses directed toward research in differential equations, the content varying from year to year. Representative topics include singular boundary-value problems, asymptotic solutions of differential equations, differential equations containing a large parameter, Poincare-Liapounov stability theory and differential equations in the large.
MATH 7311-2-3. Advanced Topics in Real Analysis I, II, III
3-0-3 each. Prerequisite: MATH 6317 or consent of school.
Courses directed toward research in real analysis and related areas, the topics varying from year to year. Topics will be selected from areas as Hilbert space theory, theory of distributions, abstract harmonic analysis, ergodic theory, Denjoy and Perron integrals.

MATH 7321-2-3. Advanced Problems in Complex Variables I, II, II
3-0-3 each. Prerequisite: MATH 6320 or consent of school.
Courses directed toward research in complex variables. Representative topics include topics from functions of several complex variables, conformal mapping.
MATH 7431-2-3. Advanced Topics in Topology , II, III
3-0-3 each. Prerequisite: consent of school. The course content will vary from year to year. Topics selected from topological groups, algebraic, topology, mapping theory, topologica analysis, dimension theory, fixed point theory.

MATH 7501-2-3. Methods of Applied

Mathematics I, II, III

3-0-3 each. Prerequisite: consent of school. Topics in a particular year may include some
or all of variational techniques, asymptotic met ods, differential operators of mathematical phy ics. Fourier transforms, nonlinear and singular integral equations.

MATH 7999. P

Examinations
Credit to be arranged. Prerequisite consent advisor. Audit only.

MATH 8101-11-21-31-41-51. Special Topics 1-0-1. Prerequisite: consent of school

These courses enable the School of Mathe matics to comply with requests for courses in selected topics.
MATH 8102-12-22-32-42-52. Special Topics 2-0-2.

MATH 8103-13-23-33-43-53. Special Topics 3-0-3.
MATH 8104-14-24-34-44-54. Special Topics 4-0-4.

MATH 8105-15-25-35-45-55. Special Topics 5-0-5.
MATH 8501-8599. Special Problems
Credit to be arranged. Prerequisite: consent of advisor.
MATH 9000. Doctoral Thesis

Department of Military Science

Established in 1917
Professor and Head-Colonel Richard D. Scharf; Assistant Professors-Majors Lesie T. Smith, Barringer F. Wingard; Captains Alan J. Watson, John S. White, Richard G. Holcombe.

General Information

The purpose of the Army ROTC curriculum is to acquaint students with the Army its role in our society, and the basic fundamentals of leadership and management. Concurrently, the overall program is designed to aid students in developing thos abilities and attitudes which will make them academically successful and to develop well-educated junior officers for the Active Army, the Army National Guard, and the Army Reserve.

The curriculum is divided into two courses: a Basic Course open to all freshmen and sophomores and an Advanced Course for qualified juniors, seniors, and graduate students. The student who is undecided about pursuing a commission has the option of participating in the Basic Course without incurring a military obligation. Successful completion of the Basic Course (or commensurate training), a minimum 2.0 grade point average, and the appropriate medical and physical qualifications are prerequisites for enrollment in the Advanced Course. Successful completion of both courses and award of a bachelor's degree constitute the normal progression to gaining a commission as a Second Lieutenant. Courses are available to both men and women.
The overall Army ROTC curriculum prepares students to become effective leaders and managers in a variety of responsible and challenging commissioned officer fields thus facilitating early middle management career development and progression. A description of the course requirements and associated programs is covered in the following paragraphs.

The Basic Course Curriculum

The basic program consists of a six-quarter block of instruction taken during the treshman and sophomore years. Successful completion of all six quarters satisfies the Military Science requirements for progression to the Advanced Course. These courses provide a foundation in basic military subjects such as customs and traditions, history, leadership, and map reading. They round out a student's academic life, provide a challenge, foster confidence, and facilitate personal growth and development. Courses are offered fall, winter, and spring quarters with two credit hours awarded for each course. Six of the hours earned may be applied as elective credits toward degree requirements at the school. Courses normally meet two hours a week plus a one hour leadership laboratory. Students in the Basic Course do not incur any military obligation unless they are on an ROTC Scholarship. They are issued uniforms and may participate in other ROTC related events and training such as Airborne

School, Air Assault School, and Northern Warfare Training. The Basic Course consists of the following:

Course
Credit Hours
MS 1021
The Army of Today (2-1-2) 2
MS 1022
Army Operational Systems (2-1-2) 2
MS 1023
Basic Map Reading and Military Techniques
(2-1-2)
MS 2021
Introduction to Leadership (2-1-2)........................ 2
MS 2012
Analysis of Command and Leadership
(2-1-2) ...
MS 2023
Military Training of the Individual (2-1-2) 2
Total ... 12^{1}

Optional Basic Camp

Those academically qualified students who are unable to fulfill the requirements of the Basic Program during their freshman and sophomore years may qualify for admission to the Advanced Course by successfully completing basic camp preparatory training. This option is primarily designed to meet the needs of transfer students, those completing the sophomore year and others, including graduate students, who have six quarters remaining at the institute This option provides a two-year program in lieu of the standard four-year curriculum
The basic camp option consists of a six-week training period conducted at an active Army post during the summer months. During 1984, six cycles will be available to meet student needs. Students desiring to exercise this option are required to submit a formal application and pass a general physical.
Students electing the basic camp training program will receive approximately $\$ 600$ in addition to travel expenses to and from the camp. Uniforms, housing, medical care, and meals are furnished by the government during the camp. Interested students should contact the Military Science Department during the spring quarter, but not later than June 1.

The Advanced Course Curriculum
The Advanced Course is designed to develop fully a cadet's leadership and management potential, physical stamina, and self confidence, as well as those personal characteristics desired in an Army Officer. The objective is to produce the highest calibre junior officer fully capable of discharging a wide spectrum of command and management responsibilities in the modern Army and in the business world.
The Advanced Course consists of six quarters of instruction normally taken during the junior and senior years. Successful completion of the six courses fulfills the Military Science academic requirements for award of an officer's commission. Eleven credit hours are earned of which nine may be applied as elective credits toward any degree at the school. Advanced Course students receive a subsistance allowance of $\$ 100$ a month, not to exceed $\$ 1000$ per academic year.
Service veterans, three- or four-year junior ROTC students, junior, or service academy cadets may qualify for direct entry into the Advanced Course. Entry is not automatic, and Department evaluation of previous training and academic achievement will determine appropriate placement level.
Advanced Course students are eligible to participate in the Simultaneous Membership Program with the Army Reserve and National Guard. Students in this program affiliate with an Army unit as an officer trainee, thus affording them the opportunity for enhanced leadership development. Students in this program receive an additional $\$ 90$ per month.
Students enrolled in the Advanced Course are also required to complete a six week Advanced Camp to become eligible for commissioning. Attendance at Advanced Camp normally occurs in the summer between the junior and senior years; however, it may be delayed as in the case of students in the Co-op Program. Students can also participate in additional voluntary training such as Airborne School, Ranger School, Cadet Flight Orientation Program, and Cadet Troop Leader Training. In addition to completing the Military Science academic requirements of both the Basic and

Advanced Courses, the student must com plete at least one undergraduate course from each of three designated fields of study: Written Communications ${ }^{2}$, Human Behavior ${ }^{3}$, and Military History. ${ }^{4}$ Completing one undergraduate course in Manage ment ${ }^{5}$ and National Security Studies ${ }^{6}$ is strongly encouraged; ROTC Scholarship students are also required to take a foreign language course.

Students who successfully complete th Army ROTC curriculum and earn a bachelor's degree can be commissioned Second Lieutenants. Subsequent military service may be on active duty or with the Army Reserve or National Guard. Outstand ing cadets who are selected as Distinguished Military students may gain Regular Army Commissions. The following courses constitute the Advanced Course:

Course
Credit Hours
MS 3011
Advanced Military Navigation (2-1-2) 2 MS 3012
Tactical Decision Making I (2-1-2)

MS 3023

Tactical Decision Making II (2-1-2) 2

MS 4011

The Military Team and the Junior Officer (2-1-2) ...
MS 4012
Military Management and Law (2-1-2) MS 4023
Professional Ethics and the Army Officer (1-1-1)
Total... 11^{8}

A total of six hours of Basic ROTC courses may be applied toward a degree.
${ }^{2}$ Writien Communications: Select any course offered by the institution in the following: English composition, creative writing, business or scientific writing, linguistics, or logic.
Human Behavior: Select any course offered by the institution in the following: psychology, ${ }^{4}$ sociology, anthropology, or ethics.
Military History: Select any course offered by the institution in the following: American militan history, American military affairs, history of war, 19th \& 20th century European history, history of US foreign policy in the 20th century, or armed forces and society.

cholarship Programs

ach year the Army offers a variety of full scholarship programs to those young men and women who have demonstrated outstanding academic scholarship and leadership potential. Four-year scholarships are awarded incoming freshmen through national merit competition. Three-year and twoyear scholarships are available on either a national competitive basis or directly through the professor of Military Science. Scholarships provide full tuition to both resident and out-of-state students, a stipend for textbooks and supplies, and laboratory fees n addition to a $\$ 100$ a month tax-free allowance. Scholarship students will serve either on active duty or in the reserves.

Options

Qualified students entering their junior year of college may request that they be guaraneed a particular branch of the Army; requirements vary.
Students who desire entry into the Army aviation program may apply for Flight Orientation in their junior year.
Those students who wish to obtain a commission as an officer, but do not want lo serve on active duty can request guaranteed reserve forces duty. In this program, students are guaranteed in writing that they will not be placed on active duty and can wfilil their entire commitment in the Army Reserve or National Guard.
The Department of Military Science allows both scholarship and non-scholarship students to participate in the Co-op Program. Co-op students are monitored and advised quarterly so that they meet requirements for commissioning.

Management: Select any course offered such as management science, management, management information systems, decision making, statistics, accounting, or economics.
National Security Studies: Select any course offered such as national defense/strategy, comparative political systems, international relations, American foreign policy, or international economics.
Foreign Language: Select any foreign language offered by the Department of Modern Languages. A total of nine credit hours of Advanced ROTC courses may be applied toward a degree.

Student Advisory Services

Faculty members are available throughout the academic year and during each summer orientation session in the Military Science Department to all students for academic counseling, schedule planning, and career guidance. Students and their parents are encouraged to seek advice on the overall Army ROTC program, scholarship opportunities, and officer career development. Appointments may be made personally or by collect call to (404) 8944760/4761.

Courses of Instruction

MS 1500. Ranger Company (Optional) 1-1-1.
An organization designed to train and prepare the small unit leader with patrolling, military mountaineering, and stream crossing operations in a demanding physical environment (Course is for audit only)

MS 1021. The Army of Today

2-1-2.
United States Army heritage, traditions, missions, and organizations as related to national defense, land warfare, and national objectives; includes the role of the Army officer in today's dynamic environment.
MS 1022. Army Operational Systems 2-1-2.

Continuation of topics introduced in MS 1021 with additional focus on current and future US Army Operational Systems.

MS 1023. Basic Map Reading and Military Techniques
2-1-2.
Basic Map Reading techniques with an introduction to various individual military skills required to perform as a member of a military organization.
MS 2012. Analysis of Command and Leadership
2-1-2.
Analysis and development of fundamental leadership skills required to lead individuals and small units in a military environment; includes use of case studies to develop organizationa and leadership techniques.

MS

Introd
Introduction to fundamental leadership and areas of problem analysis and decision making planning and organizing; delegation and control; and interpersonal communications.

MS 2023. Military Training of the Individual 2-1-2.
Introduction to military training management. Includes evaluating the training status of a unit, developing training objectives and standards, and planning and conducting military training.

MS 3011. Advanced Military Navigation

2-1-2. Prerequisite: Advanced Course standing or Department consent.
Military map reading, land navigation, and terrain analysis. Practical exercises require students to navigate cross country using terrain association and azimuths.
MS 3012. Tactical Decision Making I
2-1-2. Prerequisite: Advanced Course standing or Department consent.
Tactical Decision Making process within small military units. Includes introduction to squad and platoon level tactics with emphasis and troop leading procedures.

MS 3023. Tactical Decision Making II 2-1-2. Prerequisite: Advanced Course standing or Department consent.
Continued study and application of the decision making process at small unit level. Emphasis is placed on planning and executing tactical operations.
MS 4011. Military Team and the Junior Officer $2-1-2$. Prerequisite: Advanced Course standing or Department consent
A study of the broad principles, concepts, and operations of the combined arms team and s supporting elements from all branches of he services. Emphasis is placed on the role of he junior officer in today's Army. Practical exercises all willa student to plan, organize, and conduct military operations and activities in both garrison and field environment

MS 4012. Military Management and Law

 2-1-2. Prerequisite: Advanced Course standing or Department consent.Study of advanced management concepts and current management practices. Emphasis is placed on management of Army logistics, administration, and legal systems.
MS 4023. Professional Ethics and the Army Officer
1-1-1. Prerequisite: Advanced Course standing or Department consent.
The pressures and influence placed by contemporary society on the military officer. Includes the standards of conduct, integrity, and special trust which the military officer must function under.

Department of Modern Languages

Established in 1904

Professor and Head-Louis J. Zahn; Pro fessors James Gough, Jr., George F. Wak er (Adjunct); Associate Professors-J. Carroll Brooks, William W. Johnson, Edmun B. Richmond, Heidi M. Rockwood Assistant Professors - Tatjana Gregory, Maria S. Venable, Roy O. Wyatt; Lecturers-Linda L. Arthur, Jane P. Bean, Janice H. Bos, Paula F. Einaudi, Lynn P. Fedeli, Don A. Fischer, Edith D. Fusillo, Gail Gershon, Maria E. Lewis, Rosamond Lombard, E. Helen McKinney, Odette P. Morphy, Agnes E. Robertson, Bette L. Hartman, Larry J. Schulz, Charles E. Windish.

General Information

The diverse course offerings of the De partment of Modern Languages provide students with opportunities for achieving reasonable fluency in writing, reading, speaking, and understanding several foreign languages including English as a foreign language. Further, they instruct stu dents in the civilizations and literatures of the countries in which those languages ar spoken.
Although the department does not offer a degree or "major," certificates or "minors" are available in French, German, linguistics, and Spanish. To receive a cerl ficate in one of these options, students must take eighteen credit hours, fitteen hours of which must be on the 3000-level or above Students should consult the department to additional details.
Students may take any courses for which they have the prerequisites as spec fied in the catalog descriptions. Counseling and placement examinations are available on request. Usually two years in high school equal one year at Tech. Each course is essentially a unit in itself, but beginning students are encouraged to pur sue at least the elementary three-quarter sequence in order to achieve a minimum level of proficiency. Students must have departmental consent to enroll in 1000-leve courses after the successful completion of
ny 2000,3000 , or 4000 -level course. Stuents who take courses in their native lanpuage must schedule courses no lower in umber than 3001
Co-ops who are beginning a foreign lanvage should limit themselves to French, erman, and Spanish. Since each course in the 2000, 3000, and 4000-level is a nit in itself, they do not have to be en in numerical order
With minor exceptions students can fulfill heir thirty-six-hour humanities and social cience requirements for graduation by takig courses, including linguistics courses, in he Department of Modern Languages tudents should consult the course catalog escriptions and the section of this catalog ntitled "Humanities and Social Science Requirements" on p. 40 in order to determine which courses are classified as humanities and which are classified as social sciences in their respective colleges. With the approval of their major schools stuents may take any courses offered by he Department of Modern Languages on pass/fail basis.
Engineering College students who choose 0 begin the study of a foreign language 1001-2-3) must take in addition at least hree three-hour courses 2000 -level or ligher, if they wish to receive "humanities" credit for the 1000-level courses; otherwise those 1000-level courses will count as elective" credit. Engineering College students should note that the aforementioned provision does not apply to Linguistics; all linguistics courses on the 1000 and 2000 evels carry "humanities" credit both individually and collectively.

College Credit for High School Study

The department will grant nine hours of elective credit in French, German, Italian, Portuguese, and Spanish, or twelve hours in Russian for high school study in a foreign language, provided the student has two o more years of high school credit (or the equivalent) in the language in question and has completed nine quarter hours at the 2000, 3000, or 4000-level with an average grade of "C" of higher. Transfer students must complete at least three of the nine hours at Georgia Tech

The department will not grant credit for high school study in a foreign language to students who speak the language in question as their native language or to students who have taken 1000-level courses or the equivalent at Georgia Tech or at other college-level institutions for which they have received transfer credit.

To have this free elective credit entered on their records, students must request that the appropriate form be submitted by the Department of Modern Languages to the registrar. This elective credit is not applicable toward fulfillment of the thirty-six-hour social sciences and humanities requirements for graduation. No grade is attached to this credit.

Doctoral Degree Language Requirements

See page 54 .

English for Foreign Students

The department also serves the Institute by providing instruction in English as a foreign language, offered through non-credit programs in intensive English for foreign students (elementary, intermediate, and advanced levels) usually under the auspices of the Department of Continuing Education. The prerequisite is two years of high school English or the equivalent. Included in the program are grammar, pronunciation, sentence patterns, vocabulary building, spelling, reading, theme writing, and group and individual practice in the language laboratory. The department offers these intensive courses of twenty-five hours per week during all four quarters. Pursuant to specific requests, the department develops special programs to complement study in engineering and science.
For a descriptive folder write to Dr. Louis J. Zahn, Department of Modern Languages, Georgia Institute of Technology, Atlanta, Georgia 30332.
All non-native speakers of English must fulfill requirements in English for graduation either by taking the same courses required of native speakers, offered by the Department of English, or by taking the special series (FL 1031-2-3) offered by the Department of Modern Languages.

Non-native speakers of English can fulfill the requirements of the Regents' Testing Program on competence in English by: (1) taking the test administered to native speak ers of English; or by (2) passing the official Michigan Test of English Language Proficiency; or by (3) making at least a " C " on the final examination in FL 1033, LING 1001, 1002, or 1003.

Courses of Instruction

Note: (Hum.) = Humanities credit,
(Soc. Sci.) = Social Science credit.
Students in the College of Engineering may include up to nine hours (twelve hours in Russian) of elementary foreign language study for humanities credit, provided nine additional hours are completed on the 2000 or higher levels; otherwise the 1000 level course will count as elective credit. This regulation does not apply to courses in linguistics.
CHIN 1001. Introduction to Mandarin Chinese $3-2-4$. Prerequisite: one year college-level foreign language study or equivalent and consent of departmen
Intensive study of patterns of expression in spoken Chinese
CHIN 1002. Introduction to Mandarin Chinese I
3-2-4. Prerequisite: CHIN 1001 or equivalent. Continuation of CHIN 1001; introduction to Chinese writing system.
CHIN 1003. Introduction to Mandarin Chinese III
3-2-4. Prerequisite: CHIN 1002 or equivalent. Continuation of CHIN 1002; more emphasis on written Chinese
CHIN 4901-2-3-4. Special Problems in Chinese Credit to be arranged.
Provides the special instruction required under special programs.
FL 1011-12-13. Elementary Brazilian-Portuguese I, II, III
3-0-3 each course. Prerequisites: 1011-none; 1012-1011 or equivalent; 1013-1012 or equivalent.
Pronunciation, conversation, reading, composition, grammar. Audio-lingual methodology and materials. (Hum.)
FL 1021-22-23. Elementary Italian I, II, III 3-0-3 each course. Prerequisites: 1021-none 1022-1021 or equivalent; 1023-1022 or equivalent.
Pronunciation, conversation, reading, composition, grammar. Audio-lingual methodology and materials. (Hum.)

FL 1031-2-3. English as a Foreign Languag I, II, III
5-0-5 each. Prerequisite: 1031, none; 1032, 1031 or equivalent; 1033, 1032 or equivalent.
May be taken by non-native speakers of English in lieu of ENGL 1001-2-3. Review of basic skills; 1031 stresses oral-aural skills an writing; 1032, writing, reading, vocabulary; 10 composition, readings on life in the U.S.A Credit: 1031, 5 hours, elective; 1032-3, 5 hours Hum. each.)
FL 2011. Colonial Brazil and the Portugue Empire, 1500-1808
3-0-3. Prerequisite: FL 1013 or equivalent.
Cultural history of Portuguese America fr conquest and settlement to the end of the colonial period. Includes grammar review. Co ducted in Portuguese. (Soc. Sci.)
FL 2012. Development of Independent

Brazil, 1808-1930

3-0-3. Prerequisite: FL 1013 or equivalent.
Cultural history of Brazil from ind through the Empire and the Old Republic. In cludes grammar review. Conducted in Portuguese (Soc. Sci.)

FL 2013. Brazil Since 1930: The Giant Emer 3-0-3. Prerequisite: FL 1013 or equivalent.
Cultural history of contemporary Brazil from the rise of Vargas to the present day. Conducte in Portuguese. (Soc. Sci.)
FL 2021. Cultural History of Florence 1300-1
3-0-3. Prerequisite: FL 1023 or equivalent.
Dante, Boccaccio, and the Medicis. Gramm review. Conducted in Italian. (Soc. Sci.)
FL 2022. Cultural History of Rome 1500-170 3-0-3. Prerequisite: FL 1023 or equivalent.
Emphasis on Michelangelo, Bernini, Borromin Grammar review. Conducted in Italian. (Soc. Sci.)
FL 2023. Cultural History of Italy Since 1848 3-0-3. Prerequisite: FL 1023 or equivalent. Unification, Fascism, resistance, post-war boom, current unrest. Conducted in Italian. (Soc Sci.)
FL 3801-2-3-4. Special Topics in Modern Languages
$3-0-3$. Prerequisite: consent of head of department.

Permits students to do work in languages treated in other courses and/or to engage in special research and/or experimental studies.

FRENCH

FREN 1001. Elementary French I
3-0-3. Prerequisite: none.
Essential principles of French grammar and phonetics, acquisition of vocabulary through sim-
conversational exercises and the reading of imple selections. (Hum.)

REN 1002. Elementary French II

-0-3. Prerequisite: FREN 1001 or equivalent. Continuation of FREN 1001, extension of the survey of French grammar, acquisition of a eneral vocabulary through conversation and eading. (Hum.)

REN 1003. Elementary French III

3.0-3. Prerequisite: FREN 1002 or equivalent. Reading of selected texts, composition, completion of the survey of French grammar. (Hum.)

FREN 2001. Cultural History of France to

ReN
1610
$3.0-3$.
$3-0-3$. Prerequisite: FREN 1003 or equivalent or wo years in high school
Development and evolution of social struc lures of France as reflected in literature, history, and art. Includes a review of grammar. Conducted in French. (Soc. Sci.)
FREN 2002. Cultural History of France from 610-1800
$3-0-3$. Prerequisite: FREN 1003, two yrs. in high shool or equivalent
Development and evolution of social strucres of France from 1610 to 1800, as reflected in literature, history, and art. Continuation of a eview of grammar. Conducted in Fetnch. (Soc. Sci.)
FREN 2003. Cultural History of France Since 1800
-0-3. Prerequisite: FREN 1003, two yrs. in high school or equivalent.
Development and evolution of social strucures of France during the nineteenth and twenleth centuries as reflected in literature, history, and art. Concludes review of grammar. Conducted in French. (Soc. Sci.)
FREN 2021-2-3. Intermediate Conversation I, II, III
1-3-2 each. Prerequisite: FREN 1003, two yrs. high school or equivalent.
A conversational approach to topics of current interest in the humanities in France. (Hum.)
FREN 3001. French Literature from 1800-1850 3-0-3. Prerequisite: FREN 2003 or equivalent. Romanticism, the reappearance of lyric poet$\mathrm{y} y$ the importance of the individual as opposed to classical anonymity. Conducted in French. (Hum.)
FREN 3002. French Literature from 1850-1900 3.0-3. Prerequisite: FREN 2003 or equivalent. Parnassianism and symbolism, developments in poetry, realism, and naturalism, trends in prose, with emphasis on the development of the novel. Conducted in French. (Hum.)

FREN 3003. French Literature Since 1900 3-0-3. Prerequisite: FREN 2003 or equivalent. Exploration of currents in modern prose, poetry, and drama. Conducted in French. (Hum.)

FREN 3004-5-6. Drama Workshop I, II, III

 3-0-3 each. Prerequisite: FREN 2003 or equivalent. (Hum.)FREN 3007-8-9. Survey of Literature I, II, III 3-0-3 each. Prerequisite: FREN 2003 or equivaent. (Hum.)
FREN 3011. France Today
$3-0-3$. Prerequisite: FREN 2003 or equivalent.
Culture, history, and geography of modern
France in lectures and class discussions, short papers on assigned topics; conducted in French. (Soc. Sci.)
FREN 3012. France Today II
3-0-3. Prerequisite: FREN 2003 or equivalent Continuation of FREN 3011. (Soc. Sci.)

FREN 3013. France Today III

3-0-3. Prerequisite: FREN 2003 or equivalent. Continuation of FREN 3012. (Soc. Sci.)
FREN 3021-2-3. Advanced Conversation
I, II, III
1-3-2 each. Prerequisite: 2003, 2023, or three yrs. in high school or equivalent.
A conversational approach to topics of current interest in the social sciences in France. (Soc. Sci.)
FREN 4001. French Stylistics
$3-0-3$. Prerequisite: FREN 3003 or equivalent
Advanced study of syntax and semantics, aimed at development of stylistic sensitivity. Compositions in French. (Hum.)
FREN 4002. Classical French Literature
3-0-3. Prerequisite: FREN 3003 or equivalent. Survey of French classical literature, reading in Malherbe, Descartes, Pascal, La Rochefoucauld, La Fontaine, La Bruyere, Corneille, Moliere, and Racine. Lectures on the Classical Age; term report. Conducted in French. (Hum.)

3-0-3 Prerequisite: FREN 3003 or equivalen
3-0-3. Prerequisite: FREN 3003 or equivaien novel from the late seventeenth century through the twentieth century; term report. Conducted in French. (Hum.)
FREN 4075. Intensive Readings in French I 3-0-3. Prerequisite: junior standing or consent of department.

Primarily for graduate students preparing for the Ph.D. reading knowledge examination. Em phasizes structures pertinent to reading comprehension particularly of scientific literature. Can also serve any students desiring a rapid review of basic French

FREN 4076. Intensive Readings in French II
3-0-3. Prerequisite: FREN 4075
Continuation of FREN 4075.
FREN 4077. Intensive Readings in French III 3-0-3. Prerequisite: FREN 4076.
Continuation of FREN 4076.
FREN 4901-2. Special Problems in French Credit to be arranged
Provides the special instruction required under special programs. (4901, Hum.) (4902, Soc

Sci.)

GERMAN

GER 1001. Elementary German I
3-0-3. Prerequisite: none.
Pronunciation, essential principles of German grammar, rapid acquisition of vocabulary by the reading of simple selections; elementary composition. (Hum.)
GER 1002. Elementary German II
3-0-3. Prerequisite: GER 1001 or equivalent. Continuation of GER 1001. (Hum.)
GER 1003. Elementary German III
3-0-3. Prerequisite: GER 1002 or equivalent. Reading and the acquisition of a large vocabulary; continued study of German grammar, composition. (Hum.)
GER 2001. Introduction to Modern German Culture I
3-0-3. Prerequisite: GER 1003 or equivalent
Selected readings in German on the cultural, historical, and intellectual development of Germistorical, and intellectual development of Ge many. Class

GER 2002. Introduction to Modern German Culture II
3-0-3. Prerequisite: GER 1003 or equivalent Continuation of GER 2001. (Soc. Sci.)
GER 2003. Introduction to Modern German

Culture III

3-0-3. Prerequisite: GER 1003 or equivalent Continuation of GER 2002. (Soc. Sci.).

GER 2051. Issues in Science and
Technology I
3-0-3. Prerequisite: GER 1003 or equivalent. Reading, analysis, and discussion of German texts dealing with past and present issues in the natural and social sciences. (Soc. Sci.)
GER 2052. Issues in Science and
Technology II
3-0-3. Prerequisite: GER 2051 or equivalent. Continuation of GER 2051 (Soc. Sci.)

GER 2053. Issues in Science and
Technology III
3-0-3. Prerequisite: GER 2052 or equivalent. Continuation of GER 2052; addition of indivi ual projects to conform to the students' speci fields of study. (Soc. Sci.)
GER 3001. Introduction to German Literature I
$3-0-3$. Prerequisite: GER 2003 or equivalent. Literary masterpieces in German.
Period: medieval times-1750. (Hum.)

GER 3002. Introduction to German

Literature II

3-0-3. Prerequisite: GER 2003 or equivalent. Literary masterpieces in German. Period: 1750-1840. (Hum.)

GER 3003.

3-0-3. Prerequisite: GER 2003 or equivalent. Literary masterpieces in German. Period: 18 to the present. (Hum.)
GER 3004. German Stylistics
3-0-3. Prerequisite: GER 2003 or equivalent.
Advanced study of syntax and semantics aimed at the development of stylistic sensitid Analysis of representative literary works for practice in composition and conversation. (Hum
GER 3011. Germany Today I
$3-0-3$. Prerequisite: GER 2003 or equivalent. Lectures, papers, and class discussions on German history, urban and rural morphology, post-war social and economic development in East and West Germany. (Soc. Sci.)

GER 3012. Germany Today II
3-0-3. Prerequisite: GER 2003 or equivalent.
Continuation of GER 3011; treatment of add tional topics-German family life, educational system, church and religion, development of th arts, the Hitler era. (Soc. Sci.)
GER 3013. Germany Today III
3-0-3. Prerequsite: GER 2003 or equivalent. Continuation of GER 3011 and 3012; in-dep treatment of contemporary issues. Supplementary instructional media: slides, recordings, jou nals, and panel discussions. (Soc. Sci.)
GER 3031. The German Novelle I
3-0-3. Prerequisite: GER 2003 or equivalent. Period: 1795-1840. Goethe, Kleist, Tieck, Arnin E.T.A. Hoffmann, Eichendorff. Conducted in German. (Hum.)
GER 3032. The German Novelle II
3-0-3. Prerequisite: GER 2003 or equivalent. Period: 1840-1885. Stifter, Keller, Storm, Eb. ner-Eschenback, Meyer. Conducted in German.
(Hum.) (Hum.)

GER 3033. The German Novelle III
3-0-3. Prerequisite: GER 2003 or equivalent. Period: 1885 to the present. Hofmannsthal lann, Kafka, Musil, Wiechert, Borchert, Gaiser, iontek. Conducted in German. (Hum.)

ER 3041. German Radio Drama

 German requisite: GER 2003 or equivalent. German radio drama as a literary genre. (Hum.)GER 3042. German Radio Drama II
3.0-3. Prerequisite: GER 2003 or equivalent. An in-depth study of the works of Gunter Eich. (Hum.)
GER 3043. German Radio Drama III
3.0-3. Prerequisite: GER 2003 or equivalent. $3 \cdot 0-3$. Prerequisite: GER
Study of recorded radio dramas and prepara fion of a selected radio drama for presentation. ton of a
(Hum.)
GER 3051. The German Folksong 3-0-3. Prerequisite: GER 2003 or equivalent. Introduction to the wide range of human experience reflected in the German folksong. Emphasis on the appreciation of musical forms and literary aspects. (Hum.)
GER 4001. German Writers of the Twentieth Century I
Q-3. Prerequisite: GER 2003 or equivalent Period: Naturalism-1920. Conducted in German. (Hum.)
GER 4002. German Writers of the Twentieth Century II
3-0-3. Prerequisite: GER 2003 or equivalent. Period: 1920 to the present. Conducted in German. (Hum.)
GER 4003. Modern German Drama
3.0-3. Prerequisite: GER 2003 or equivalent. A study of the leading German dramatists from the period of Naturalism to the present. lectures; parallel readings, discussions. Con ducted in German. (Hum.)
GER 4023. Selected Readings in German Literature
3-0-3. Prerequisite: GER 2003 or equivalent. Study of selected authors, movements, genres, and forms in German literature. Selections vary from year to year. Parallel readings, reports and papers. (Hum.)
GER 4075. Intensive Readings in German I 3-0-3. Prerequisite: junior standing or consent of department.
Primarily for graduate students preparing for the Ph.D. reading knowledge examination. Em phasizes structures pertinent to reading comprehension particularly of scientific literature.

Can also serve any students desiring a rapid review of basic German.

GER 4076. Intensive Readings in German II 3-0-3. Prerequisite: GER 4075

Continuation of GER 4075.
GER 4077. Intensive Readings in German III 3-0-3. Prerequisite: GER 4076
Continuation of GER 4076

GER 4901-2. Special Problems in German

Credit to be arranged.
Provides the special instruction required under special programs. (4091, Hum.) (4902, Soc Sci.)

ITALIAN

See FL 1021 and 2021.

LINGUISTICS

The 1000-level courses are offered for foreign students who wish to perfect their English.
LING 1001. Fundamentals of English
Linguistics I
-0-3. Prerequisite: none
English pronunciation contrasted with that of various foreign languages; vocabulary building readings in linguistics. (Hum.)

LING 1002. Fundamentals of English
Linguistics II
3-0-3. Prerequisite: none
Theoretical and practical approach to the study of English word and sentence formation using comparative data from different dialects and languages, grammar, punctuation, composition; readings in linguistics. (Hum.)
LING 1003. Fundamentals of English

inguistics III

-0-3. Prerequisite: none
A theoretical and practical approach to English semantic structure and stylistic levels; composition; readings in linguistics. (Hum.)
LING 2001. Introduction to Language I
3-0-3. Prerequisite: none.
Study of the design of natural language with emphasis on the traditional description of its phonological and grammatical systems. (Hum.)
LING 2002. Introduction to Language II 3-0-3. Prerequisite: LING 2001 or consent of department.
Introduction to modern grammatical and semantic theories of language. (Hum.)
LING 2003. Introduction to Language III 3-0-3. Prerequisite: LING 2002 or consent of department.

Survey of the types of linguistic change and development, comparison of generic and genet ic linguistic relationships, linguistic borrowing. (Hum.)
LING 3001. Introduction to Articulatory Phonetics
$3-0-3$. Prerequisite: LING 2003 or consent of department.

Introduction to articulatory and acoustic phonetics, methodology for analyzing sounds in various languages, with emphasis on recording sounds in phonetic script and reproduction of sounds. (Hum.)
LING 3002. Introduction to Structural Linguistics I
3-0-3. Prerequisite: LING 3001 or consent of department.

Methodology for phonological analysis of language, examination of phonological data from hypothetical and natural languages. Collateral readings, problems. (Hum.)

LING 3003. Introduction to Structural Linguistics II
3-0-3. Prerequisite: LING 3002 or consent of department.

Continuation of LING 3002 with emphasis on morphology and syntax, study of the works of Bloomfield, Pike, and Harris. Collateral readings, problems. (Hum.)
LING 3004. Natural Language Processing 3-0-3. Prerequisite: none.
Primarily for ICS students; study of selected topics from grammar and semantics which are important in the understanding and processing of natural language in human and com-
puter contexts. (Hum.)

LING 3005. Black English Linguistics 3-0-3. Prerequisite: LING 2001 or equivalent. Origins and development of American Black English from the 1600s to the present. Includes analysis of its structure and its relationship to African languages and cultures. (Hum.)
LING 4001. History of Linguistics
3-0-3. Prerequisite: prior study of linguistics or onsent of department
Survey of the theoretical developments in linguistic science with major emphasis on the developments of the nineteenth and early twentieth enturies. (Soc. Sci.)
LING 4002. Current Developments in

Linguistics

$3-0-3$. Prerequisite: prior study of linguistics or consent of department.
Live issues in the field and approaches favored by various contemporary schools. (Hum.)

ING 4003 Semantics and Linguistic Struc nUSS 2003. History and Culture of Russia III 3-0-3. Prerequisite: prior study of linguistics of 3 -0.3. Prerequisite: RUSS 1003 or equivalent consent of department
Various approaches to the problem of with meaning in linguistic analysis. (Hum.)

LING 4021. Contrastive Language System 3-0-3. Prerequisite: LING 3001-2-3 or conse of department.
A comparison of the similarities and differAces of selected major languages with En respect to phonology, written representation syntactic, and semantic categories
LING 4075-6-7. Comparative Analysis of Major European Languages I, II, III 3-0-3 each. Prerequisite: LING 3001-2-3 or consent of department.
Emphasis on grammatical and semantical structure and their correspondences, English the control language. LING 4075 treats the n jor Slavic languages. LING 4076 treats the m jor Germanic languages. LING 4077 treats th major Romance languages.
LING 4901-2. Special Problems in Linguist Credit to be arranged.
Provides the special instruction required unc special programs. (4901, Hum.) (4902, Soc Sci.)

PORTUGUESE

See FL 1011 and 2021

RUSSIAN

RUSS 1001. Elementary Russian I 3-2-4. Prerequisite: none.

Pronunciation, essential principles of Russia grammar, acquistion of vocabulary through illu trative readings, intensive familiarization with recorded material (Hum.)
RUSS 1002. Elementary Russian II
3-2-4. Prerequisite: RUSS 1001 or equivalent.
Continuation of RUSS 1001, introduction of additional reading material as progress of class permits. (Hum.)
RUSS 1003. Elementary Russian III
3-2-4. Prerequisite: RUSS 1002 or equivalent. Continuation of RUSS 1002. Emphasis on the reading of simple prose. (Hum.)
RUSS 2001. History and Culture of Russia 3-0-3. Prerequisite: RUSS 1003 or equivalent
Period: Ninth century to eighteenth. Review grammar and oral practice. (Soc. Sci.)
RUSS 2002. History and Culture of Russia ll
-0-3. Prerequisite: RUSS 1003 or equivalent
Period: Eighteenth century to 1917. Review grammar and oral practice. (Soc. Sci.)
$0-3$. Prerequisite: RUSS 1003 or equivalent. Period: 1917 to the present. Review of gram-
mar and oral practice. (Soc. Sci.) SUSS 3001. Period: 1800-1860. Romanticism, he Golden Age of Russian Poetry, Naturalism -0-3. Prerequisite: RUSS 2003 or equivalent. Readings in Russian. (Hum.)
USS 3002. Period: 1860-1900. The Golden ge of Russian Prose, Realism $3 \cdot 0-3$. Prerequisite: RUSS 2003 or equivalent. Readings in Russian. (Hum.)
RUSS 3003. Period: 1900 to the Present. Symjolism, Futurism, Soviet Literature $3-0-3$. Prerequisite: RUSS 2003 or equivalent. Readings in Russian. (Hum.)

RUSS 4075. Intensive Readings in Russian I

 $3 \cdot 0-3$. Prerequisite: at least junior standing or consent of department.Primarily for graduate students preparing for the Ph.D. reading knowledge examination. Emphasizes structures pertinent to reading com prehension particularly of scientific literature. Can also serve any students desiring a rapid review of basic Russian.
RUSS 4076. Intensive Readings in Russian II 3.0-3. Prerequisite: RUSS 4075 3-0-3. Prerequisite: RUSS 4075
Continuation of RUSS 4075.

RUSS 4077. Intensive Readings in Russian III 3-0-3. Prerequisite: RUSS 4076.
Continuation of RUSS 4076.
RUSS 4901-2. Special Problems in Russian Credit to be arranged.
Provides the special instruction required under special programs. (4901, Hum.) (4902, Soc.

SPANISH

SPAN 1001. Elementary Spanish I 3-0-3. Prerequisite: none
The beginning course. Pronunciation, grammar, reading, composition. Conversations with student assistants who are native speakers of Spanish. (Hum.)

SPAN 1002. Elementary Spanish II

 3-0-3. Prerequisite: SPAN 1001 or equivalent. Continuation of SPAN 1001. (Hum.)
SPAN 1003. Elementary Spanish III

 3-0-3. Prerequisite: SPAN 1002 or equivalent. Continuation of SPAN 1002. (Hum.)SPAN 2011. Discovery and Conquest of the New World, 1492-1600
3-0-3. Prerequisite: SPAN 1003 or equivalent. The voyages of discovery and expeditions of
conquest in sixteenth century Spanish America with an introduction to the important Indian civilizations. Includes grammar review. Conducted in Spanish. (Soc. Sci.)

SPAN 2012. Colonial Spanish America and the Wars of Independence, 1600-1900
$3-0-3$. Prerequisite: SPAN 1003 or equivalent. Spanish America from the period of the viceroyalties and Caribbean pirates to the Wars of Independence in the 1800s. Includes grammar review. Conducted in Spanish. (Soc. Sci.)

SPAN 2013. Twentieth Century Spanish

America

3-0-3. Prerequisite: SPAN 1003 or equivalent Twentieth century Spanish America as a fusion of Spanish and native traditions, focusing on selected aspects of contemporary life in the Latin American countries. Conducted in Spanish. (Soc. Sci.)
SPAN 3001. Spanish-American Literature
Before 1895
3-0-3. Prerequisite: SPAN 2013 or equivalent. Conducted in Spanish. (Hum.)

SPAN 3002. Spanish-American Literature

 Since 18953-0-3. Prerequisite: SPAN 2013 or equivalent. Conducted in Spanish. (Hum.)

SPAN 3003. Introduction to Spanish Literature 3-0-3. Prerequisite: SPAN 2013 or equivalent. The cultural heritage of Spain in the Americas as reflected in representative European and Spanish-American literary works. Conducted in Spanish. (Hum.)
SPAN 3004. Cultural History of Mexico
3-0-3. Prerequisite: SPAN 2013 or equivalent.
Readings from representative authors. Vocabulary building, lectures, discussions, conversation, and composition. (Soc. Sci.)
SPAN 3005. Contemporary Latin America
3-0-3. Prerequisite: SPAN 2013 or equivalent. Selected contemporary essays, speeches, and diverse documents reflecting social, economic, and political problems. Conducted in Spanish. (Soc. Sci.)

SPAN 3006. Grammar Review and Composition $3-0-3$. Prerequisite: SPAN 2013 or equivalent. Advanced study of syntax and semantics, aimed at development of styistic sensitivity. Compositions in Spanish. (Hum.)
SPAN 3007. Cultural History of Spain I
3-0-3. Prerequisite: SPAN 2013 or equivalent. History of Spanish civilization from prehistoric times to 1500. Conducted in Spanish. (Soc. Sci.)

SPAN 3008. Cultural History of Spain II 3-0-3. Prerequisite: SPAN 2013 or equivalent. History of Spanish civilization from Charles I to the Spanish American War of 1898. Conducted in Spanish. (Soc. Sci.)
SPAN 3009. Cultural History of Spain III 3-0-3. Prerequisite: SPAN 2013 or equivalent. Contemporary essays, speeches, and diverse documents reflecting social, economic, and political problems of this century. Conducted in Spanish. (Soc. Sci.)
SPAN 3011. The Short Story in Spain 3-0-3. Prerequisite: SPAN 2013 or equivalent. The short story in the literature of Spain from the Middle Ages to the twentieth century. Includes authors such as Cervantes, Valle-Inclan, Cela and Matute. (Hum.)
SPAN 3012. The Latin American Short Story 3-0-3. Prerequisite: SPAN 2013 or equivalent. The short story in Latin America both as a literary genre and as an instrument of social revolutlon. includes authors such as Echeverria, Dario, Lillo, and Borges. (Soc. Sci.)

SPAN 4007. Spanish Historical Linguistics 3-0-3. Prerequisite: SPAN 3006 or equivalent. Emphasis on phonology and morphology treated descriptively and comparatively. Brief survey of the historical development of the Spanish language. Conducted in Spanish. (Soc. Sci.)
SPAN 4008. Libro de buen amor
3-0-3. Prerequisite: SPAN 4007 or equivalent. Detailed historical, linguistic, and literary anal ysis of the Ruiz masterpiece as the vortex of Spanish medieval civilization. Conducted in Spanish. (Soc, Sci.)

SPAN 4009. Don Quijote, Part

3-0-3. Prerequisite: SPAN 3006 or equivalent
Detailed historical study of Cervantes' mas terpiece as the vortex of Spanish literature, the prototype of the modern novel, and the essence of Renaissance and Baroque culture. Conducted in Spanish. (Soc. Sci,)
SPAN 4010. Don Quijote, Part II
3-0-3. Prerequisite: SPAN 3006 or equivalent.
Continuation of SPAN 4009. (Soc. Sci.)
SPAN 4021. Spanish Drama before 1700 3-0-3. Prerequisite: SPAN 3006 or equivalent Emphasis on Lope de Vega and Calderon. Conducted in Spanish. (Hum.)
SPAN 4022. Spanish Drama from 1700-1920 3-0-3. Prerequisite: SPAN 3006 or equivalent Emphasis on Neo-classicism, romanticism, and the Generation of 1898. Conducted in Spanish. (Hum.)

SPAN 4023. Spanish Drama since 1920 3-0-3. Prerequisite: SPAN 3006 or equivale Emphasis on Garcia Lorca and Casona Conducted in Spanish. (Hum.)
SPAN 4024. Spanish Prose before 1700 $3-0-3$. Prerequisite: SPAN 3006 or equivalent Emphasis on the Celestina. Conducted in Spanish. (Hum.)

SPAN 4025. Spanish Prose from 1700-192 3-0-3. Prerequisite: SPAN 3006 or equivalen. Emphasis on precursors and members of Generation of 1898. Conducted in Spanish. (Hum.)
SPAN 4026. Spanish Prose since 1920
3-0-3. Prerequisite: SPAN 3006 or equivalent
Emphasis on Spanish writers since the adve of the Franco regime. Conducted in Spanish. (Hum.)

SPAN 4031. Latin American Novel I
3-0-3. Prerequisite: SPAN 3003 or equivalent
Emphasis on development of Latin American novel of social concern and its relation to the political and social climate. Detailed study of various 19 th century and early 20th century masterpieces. Conducted in Spanish. (Hum.)
SPAN 4032. Latin American Novel II
3-0-3. Prerequisite: SPAN 3003 or equivalent. The Latin American novel since World War II Emphasis on social and literary aspect of novels of the "boom" period. Represented are such authors as Garcia Marquez, Vargas Llosa, Carpentier, and Fuentes. Conducted in Spanish (Hum.)
SPAN 4075. Intensive Readings in Spanish 3-0-3. Prerequisite: junior standing or consent of department.
Primarily for graduate students preparing for the Ph.D. reading knowledge examination. Em. phasizes structures pertinent to reading comprehension particularly of scientific literature. Can also serve any students desiring a rapid review of basic Spanish.
SPAN 4076. Intensive Readings in Spanish 3-0-3. Prerequisite: SPAN 4075.

Continuation of SPAN 4075.
SPAN 4077. Intensive Readings in Spanish III 3-0-3. Prerequisite: SPAN 4076 Continuation of SPAN 4076.

SPAN 4901-2. Special Problems in Spanish Credit to be arranged. Prerequisite: consent of department.
Provides the special instruction required under special programs. (4091, Hum.) (4092, Soc Sci.)

TUDY ABROAD
SA 4091-2-3. University System Study Abroad 0.5 each.

The Study Abroad Program of the University stem of Georgia. Up to fifteen quarter hours credit for summer study abroad. (4091, Hum.) 092-3, Soc. Sci.). Humanities and social science redit granted only once. For information on con int of various courses, contact the Stud broad office at Georgia State University.

Department of Music

Department Head and Director of Choral Activities-Gregory Colson; Director of Bands -Bucky Johnson; Conductor of the Jazz Ensemble-Ronald Mendola.

General Information

Musical activities at Georgia Tech center around three enthusiastic and well-known performing groups: Band, Chorale, and Jazz Ensemble. The Band meets three afternoons a week, the Chorale and Jazz Ensemble meet twice a week, and all three organizations give academic credit. The department plans its activities with awareness of other demands upon Tech students so that a great amount of musical experience is concentrated into a limited time.
The Marching Band is known nationally s a result of its smart formations and dynamic sound in television performances at both bowl and regular season footbal games. Trips for out-of-town games pro vide an extra reward for members. As a change of pace, during the winter and spring quarters the Concert Band studies and performs a broader instrumental repertory with emphasis on basic theory, contrasting musical styles and periods, as well as baton technique of student conductors The Chorale, an eighty-voice singing group which combines the well-known men's glee club with the newer women's chorus undertakes an ambitious series of classical, sacred, and popular-music performances on campus, in the Atlanta area, and in neighboring states on a springbreak tour. They are featured in concerts of sacred masterworks with members of the Atlanta

Symphony and in Pops concerts with combos and the Jazz Ensemble. The thoroughgoing approach to music history, theory, and vocal technique allows Chorale members to earn humanities credit.
The Jazz Ensemble, although new at Georgia Tech, has shown tremendous growth and has established a strong reputation through numerous local appearances. After meeting the prerequisite of a satisfactory audition, members are involved in rehearsals, lectures and discussions, listening sessions, and performances, resulting in a wide background of theory, history, and literature within the jazz idiom.

Courses of Instruction

MUSI 1102-3. Concert Band IA, IB 0-3-1. Prerequisite: consent of director. First course.

MUSI 1111. Marching Band
0-6-2. Prerequisite: consent of director. First course.
MUSI 1201-2-3. Chorale-Mixed Singing Group IA, IB, IC
$0-3-1$. Prerequisite: consent of director. First course.
MUSI 1301-2-3. Jazz Ensemble IA, IB, IC 0-3-1. Prerequisite: consent of director. First course.
MUSI 2102-3. Concert Band IIA, IIB
0-3-1. Prerequisite: consent of director. Second course.
MUSI 2111. Marching Band II
0-6-2. Prerequisite: consent of director. Second course.
MUSI 2201-2-3. Chorale-Mixed Singing Group IIA, IIB, IIC
0-3-1. Prerequisite: consent of director. Second course.
MUSI 2301-2-3. Jazz Ensemble IIA, IIB, IIC 0-3-1. Prerequisite: consent of director. Second course.
MUSI 3102-3. Concert Band IIIA, IIIB
0-3-1. Prerequisite: consent of director. Third course.
MUSI 3111. Marching Band III
$0-6-2$. Prerequisite: consent of director. Third course.
MUSI 3201-2-3. Chorale-Mixed Singing Group IIIA, IIIB, IIIC
0-3-1. Prerequisite: consent of director. Third course.

MUSI 3301-2-3. Jazz Ensemble IIIA, IIIB, IIIC 0-3-1. Prerequisite: consent of director. Third course.
MUSI 3400. Music Theory and History 2-0-2.
A study of basic theory and a broad outline of classical music.
MUSI 3800. Special Topics-Music 1-0-1.

Instrumental ensembles on demand
MUSI 4102-3. Concert Band IVA, IVB $0-3-1$. Prerequisite: consent of director. Fourth course.
MUSI 4111. Marching Band IV
$0-6-2$. Prerequisite: consent of director. Fourth course.

MUSI 4201-2-3. Chorale-Mixed Singing Group IVA, IVB, IVC
$0-3-1$. Prerequisite: consent of director. Fourth course.
MUSI 4301-2-3. Jazz Ensemble IVA, IVB, IVC 0-3-1. Prerequisite: consent of director. Fourth course.

Department of Naval Science

Established in 1926
Commanding Officer and Professor of Na val Science-Captain Peter G. Frederick, USN; Associate Professor-Commander Marion R. Alexander, USN; Assistant Pro-fessors-Major H. Clay Williams, USMC; Lieutenant M.P. Dean, USNR; Lieutenant D. J. Dearolph, USN; Lieutenant Archie Mitchell, USN; Lieutenant Martin Toher, USN; Lieutenant R. A. Hunt, USN.

General Information

The naval officer education program offers students the opportunity to qualify for service as a commissioned officer in the U.S. Navy or U.S. Marine Corps. The program consists of a standardized curriculum designed to complement and assist academic pursuits by imparting knowledge of the naval environment and fostering an understanding of the role of the Navy and Marine Corps in national security. Upon
graduation, the student is commissioned and ordered to active duty involving flying nuclear propulsion, surface warfare, or to the Marine Corps.
Students in the program are enrolled in one of the three categories outlined below The department conducts an orientation period for all new NROTC students durin registration week prior to the fall quarter

Scholarship Students

Scholarship students are appointed midshipman, USNR, after nationwide compe tion. The Navy pays for their tuition, fees, and textbooks for a period not exceeding four years. The government provides uniforms and retainer pay at the rate of $\$ 10$ per month. At the end of one year, students must obligate themselves to complete the prescribed naval science curriculum, to make a cruise of from six to eigh weeks each summer, to accept a commis sion as Ensign, USN, or Second Lieutenan USMC, upon graduation, and to serve on active duty for four years after commissioning unless released earlier by the Nay Department. At the end of this period thei active duty obligation to the Navy or Marine Corps is fulfilled. If they do not desir to remain on active duty in the regular Naw or Marine Corps, they are ordered to inactive duty in the Navy or Marine Corps Reserve

College Program Students

College program students are enrolled under the provision of Public Law 88-647. Students can enter the college program dur: ing the freshman year or, upon qualification, prior to April 1 of the sophomore yea Qualified sophomores attend eight weeks of active duty schooling during the summe before their junior year so they can join their classmates on an equal footing in the junior year naval science classes. Prior to starting the junior year, the college program student must enlist in the U.S. Naval Reserve for a period of six years. The student must agree to serve on active duty for not less than three years after appointment to commissioned rank in the U.S. Naval Reserve or Marine Corps Reserve and to retain that commission until
e sixth anniversary of receipt of original commission.
College program students receive uniorms at government expense and during heir junior and senior years receive reainer pay of $\$ 100$ per month. They must complete the prescribed naval science curriculum, make a cruise of approximately six weeks during the summer after the junior year, and upon graduation accept a commission as Ensign, USNR or Second Lieutenant, USMCR. If they desire, after receiving their reserve commission college program students may apply for a commission in he regular Navy or Marine Corps.
All college program students are under constant consideration for award of a scholarship. The Navy may award a scholarship o sophomore students who attend the eigh weeks of schooling during the summer before their junior year on the basis of superior performance during schooling.

Naval Science Students

Any regularly enrolled undergraduate student may enroll as a naval science student. Those enrolled as naval science students take naval science courses as electives and have no contract with the Navy. They have no assurance of ultimate commissioning nor do they derive any of the financial benefits available to scholarship and college program students.

Selection Procedure

Scholarship students are selected in nationwide competition based on SAT or ACT scores. The NROTC at Georgia Tech has no part in this selection although information about the scholarship program is available.
The professor of naval science may annually nominate several college program students to the Chief of Naval Education and Training for a scholarship. To apply for the college program, a student must be enrolled at Georgia Tech or attending an accredited college or university in the near vicinity and be at least seventeen and not over twenty-one years of age. Applicants are selected to fill the quota based on physical qualifications, interview by naval officers, score on SAT, and high school
record. Applicants for the college program should apply at the Naval Armory during the designated days of freshman orientation week for the fall quarter.

Curriculum

In addition to the required naval science courses, all Navy Option Scholarship Students must take calculus (MATH 1307-9 or MATH 1711-3) and physics (PHYS 2121 or 2141 series). All marine option students must take POL 3203 and POL 3204 or a substitute approved by the proessor of naval science. Any additional requirements are based on whether the stu dent is in a technical or non-technical major, Navy option or Marine option, and scholarship or non-scholarship. Each student must ascertain from the NROTC Department a complete description of program requirements since the above statement is only a general outline.
No more than six hours of credit in basic naval science courses and no more than nine hours of credit in advanced naval science courses will be applied toward a degree.

Courses of Instruction

NS 1001. Naval Organization and Sea Powe 2-1-2
Introduction to structure and principles of naval organization, terminology, customs and uniforms, missions of the Navy as they relate to sea power and maritime affairs.

NS 1002. Naval Ship Systems I

2-1-2.
Discussion of naval ship design and construction Examination of concepts and calculations of ship stability characteristics. Introduction to shipboard damage control.

NS 1003. Naval Ship Systems II

2-1-2. Prerequisite: NS 1002
Shipboard propulsion, electrical, and auxiliary engineering systems are examined. Nuclear propulsion, gas turbines, and other developments in naval engineering are presented.
NS 2012. Seapower and Maritime Affairs 2-1-2.
The broad principles, concepts and elements of the topic with historic and modern applications to the United States and other nations.

NS 2013. Naval Weapons Systems I 2-1-2.
A fundamental working knowledge of weapon system components and their contribution to the overall system is provided. The relationships of systems and subsystems are explored
NS 2014. Naval Weapons Systems II
2-1-2. Prerequisite: NS 2013
Employment and utilization of naval weapons systems are studied. An understanding of the capabilities of weapons systems and their role in the Navy's strategic mission.

NS 3001. Navigation I

3-2-3.
Theory and technique of navigation at sea Areas of emphasis: dead reckoning, piloting rules governing waterborne traffic. Practical applications utilizing nautical charts, tables, and instruments.
NS 3002. Navigation II
3-2-3. Prerequisite: NS 3001 or consent of department.
Determination of position at sea using the marine sextant to observe heavenly bodies, principles applications. Utilization of advanced electronic navigation systems is also introduced

NS 3003. Naval Operations

-2-3. Prerequisite: NS 3002 or consent of department.
Elements and principles of naval operations. command responsibility, tactical doctrine, communication procedures, and relative movement problems introduced. Practical applications include review of basic navigation techniques.

NS 3005-6. Evolution of Warfare I and II

 3-2-3 each.Two-quarter sequence explores forms of war fare practiced by great peoples in history. Seected campaigns are studied, emphasis on impact of leadership, evolution of tactics, weap
onry, principles of war. onry, principles of war
NS 4004-5. Amphibious Warfare I and II 3-2-3.

Two quarter sequence designed to study projection of seapower ashore, emphasis on evolution of amphibious warfare in 20th century Strategic concepts, current doctrine discussed.

NS 4011. Naval Leadership and

Management I
3-1-3.
Survey of the development of managerial thought through functional, behavioral, and situational approaches. Managerial functions, communication, and major theories of leaders and motivation applied to the Navy organization. Accountability of the naval officer for the perfor-
mance of both subordinates and technical systems is emphasized
NS 4012. Naval Leadership and Management II
2-1-2.
Discussion of the administrative duties and responsibilities of the junior naval officer for encludes study of significant fivision discipline Regulations and Military Law and detail in th Regulations and mary Law and detail in the vancement, and service records.

NS 4013. Naval Leadership and

Management III
2-1-2.
Introduction to the Navy Human Resources Management Support System. The junior nava officer's duties and responsibilities for material maintenance and personnel training. Seminars in elements of personal affairs planning, includ ing finance, orders, benefits, travel, and relate topics.
NS 4901-2-3. Special Problems in Naval cience
Credit to be arranged. Prerequisite: submission of a 500 -word statement detailing the expected area of study to the professor of naval science and permission from the professor of naval

cience to enroll.

Selected students pursue creative research specialized areas of naval science under the supervision of a staff officer whose career spe cialty is in that field. Professional papers of publishable quality and depth will be sought. Students have the option of studying for one, two, or three credit hours per quarter and for one, two, or three quarters of the academic yea

Department of Physical Education and Recreation

Established in 1942
Department Head and Professor-James A. Reedy; Associate Professors-Bill D. Beavers, Byron A. Gilbreath; Assistant Pro fessors-Douglas L. Fowikes, David W. Houser, Phillip B. Sparling; Instructor -Patricia Tinklepaugh.

General Information

The Department of Physical Education and Recreation seeks to provide opportunities to develop new skills and gain information
hat will allow the student to lead a health ier and more productive life. Students who have completed their physical education requirement are encouraged to elect addiional courses of interest.
The majority of activity and skills courses e scheduled on two alternate days per reek, meeting two hours per day.

The Physical Education
 Requirement

All students entering Georgia Tech, unless medically disqualified, mustsatisfactorily complete the physical education requirement. The required courses, usually taken during the freshnan year, are (1) PE 1060-Fitness: Theory, Evaluation and Conditioning orPE 1040-Health ducation; (2) an aquatics course selected from E 1010-Swimming, PE 1005-Beginning
Swimming (exclusively for the non-swimmer), PE 2150-Advanced Lifesaving or PE 2160Water Safety Instructor Course; (3) a lifetime sport or activity selected from any of he remaining physical education courses The health information record will determine any medical exemptions from physical education courses. The Student Health service must endorse all certificates of disability from personal physicians before the department will accept them.
Students who are exempt for medical easons from all physical education activity courses must satisfactorily complete PE 1040 (HealthEducation) and one hour free elective to completetheir physical education requirement. Students who are medically exempt from a single 1000-level course including swimming must substitute an additional 1000 level course in its place.
The department will grant credit to transfer students for comparable physical education courses completed at other institutions.
Students who are twenty-five years of age or older upon matriculation to the In stitute have the option of satisfying the physical education requirement for graduaion by completing the regular physical education requirements or by satisfactorily completing PE 1040 and one hour free elective.

Courses of Instruction

Unless medically disqualified, all students will be required to complete three courses in physical education: (1) PE 1060 or PE 1040; (2) an aquatics course selected from PE 1010, PE 1005 (exclusively for nonswimmers), PE 2150 or PE 2160; (3) a lifetime sport or activity selected from any of the remaining physical education courses.

PE 1005. Beginning Swimming

0-4-1
Introduction to swimming fundamentals and safety skills. Open exclusively to nonswimmers.

PE 1010. Swimming

0-4-1.
Each student strives for maximum safety by thoughtful experimentation with simulated water mergencies. Drownproofing evolves as the basic method for survival

PE 1020. Beginning Gymnastics

 0-4-1.Gymnastic movement is used to develop essential elements of fitness including flexibility, coordination, strength, balance, and kinesthetic awareness. Open to both sexes.

PE 1030. Women's Gymnastics

 0-4-1Instruction, demonstration, and practice of basic women's gymnastics skills utilizing the four Olympic women's events. Flexibility and general physical conditioning exercises will be included.

3-0.3.
Guest lecturers from the medical and allied health profession acquaint the student with con temporary personal health concerns including drugs, nutrition, emotional health, and sex education.
PE 1050. Aerobic Conditioning: Running 0-4-1.

Primary emphasis on improvement of en durance and cardiovascular and respiratory system efficiency through an individually tailored program of jogging/running.
PE 1060. Fitness: Theory, Evaluation, and Conditioning
2-2-2.
Basic concepts on which lifetime fitness programs are founded. Role of exercise in health, weight control, and quality of life. Assessment of personal fitness and individualized exercise pro gram for each student. Combination of lectures, laboratory demonstrations, and conditioning activities.

PE 107
Improvement of flexibility, strength, and marily cardiorespiratory endurance through basic dance exercises. Course components also in clude fitness assessment and weight control.

PE 1090. Physical Conditioning: Strength

0-4-1.
Instruction, demonstration, and practice of basic physical conditioning with emphasis on muscular strength. Activities include running, stretching, calisthenics, circuit training and weightlifting
PE 2020. Intermediate and Advanced Gymnastics
$0-4-1$. Prerequisite: PE 1020 or 1030 or prior gymnastics experience
The primary goal will be to develop a sufficient diversity of gymnastic skills beyond the beginning levels so that one may participate on a recreational basis or as an adjunct to a physical fitness program. Instruction in skills in the ten international competitive events for men and women and acrobatics will be included
PE-4-1.
Designed for the beginning player. Introduc tion to fundamentals; ground strokes, basic serve, and volley. Rules and etiquette included

PE 2051. Intermediate Tennis

0-4-1.
Concentration on intermediate skills, stroke refinement, spins, singles and doubles strategy.

PE 2060. Volleybal

0-4-1.
The serve, spiking, passing, team defensive and offensive play will be demonstrated and practiced after which team competition is organized.

PE 2070. Racquetbal

0-4-1.
Scoring, defensive, and offensive strategy along with basic fundamentals of the serve and volley will be demonstrated and practiced. Singles and doubles competition will be organized.
PE 2080. Bowling
0-4-1.
Team and league bowling competition follows an instructional program utilizing both live and fimed demonstration of basic skills and echniques.

PE 2110. Basketball

0-4-1.
The basic fundamentals of the game will be practiced. Team competition will then be organized.

PE 2130. Socce
0-4-1
Organization of teams and competition follo skills practice and demonstration of offensive and defensive strategy. Position assignments, safety and game rules discussed.

PE 21

Instruction, demonstration, and practice of carries, approaches, and releases utilized in res cuing victims.
PE 2160. Water Safety Instructor Course 1-3-2. Prerequisite: current advanced lifesavin certificate and pass swimmer course skills.
Acquisition of motor skills and the mastery o
methods of teaching lifesaving and swimming courses.
PE 2170. Cardiopulmonary Resuscitation and Standard First Aid
0-4-1
Basic CPR and emergency first aid skills de signed to lead student to Red Cross certification.

PE 2180. Weight Control Through Diet and Exercise
0-4-1.
Designed to assist individuals with weight reduction through modification of eating habits and activity patterns. The course promotes immediate and long term weight control.
PE 3801-2-3-4. Special Topics in Exercise Science
Credit hours equal last digit of course number
Prerequisite: consent of instructor.
Current topics in exercise science are presented as demand or interest warrants.

PE 3901-2-3-4. Special Problems in Exercise Science
Credit to be arranged. Prerequisite: consent of laboratory faculty member.
Student projects conducted in the Exercise Science Laboratory under the direction of a faculty exercise physiologist. Exposure to research investigation including laboratory procedures and instrumentation.

School of Physics

Established in 1939

Director and Professor-Edward W. Thomas; Assistant Director for Graduate Programs and Professor-Ronald F. Fox; Assistant Director for Undergraduate Programs and Associate Professor-James M. Tanner; Regents' Professors-Charles H. Braden, Joseph Ford, Harold A. Gersch, Earl W McDaniel, L. David Wyly (Emeritus); Pro-fessors-R. Martin Ahrens, Helmut Biritz, Christopher Bottcher (Adjunct), David Finkelstein, Martin R. Flannery, lan R. Gatland, Don S. Harmer, Uzi Landman, David W. Martin, Elliott W. Montroll (Adjunct), Eugene T. Patronis, Jr., Edwin J. Scheibner, Augustus L. Stanford, James R. Stevenson, Jr, Henry S. Valk, Michael K. Wilkinson (Adjunct), J. Quitman Williams (Emeritus), R. A. Young; Associate Professors-Harry G. Dulaney, David B. Dusenbery, William G. Harter, Donald C. O'Shea, Roger M. Wartell, Richard M. Williamon (Adjunct), William E. Woolf; Assistant Professors -David L. Fuller (Adjunct), David E. Grider, Rajarshi Roy, Peter A. Schulz.

General Information

Physics is primarily a basic science, and fundamental research into the principles of physics continues to occupy the attention of many physicists. But the study of physics has also become increasingly important as a basis for fundamental research in interdisciplinary areas such as biophysics and chemical physics and as an applied science in government and industry. Furthermore, as society becomes more technically orias society becomes more an education in physics may proented, an education in physics may pro-
vide an advantageous pre-professional foundation.
The School of Physics offers basic service courses to freshmen and sophomores, some advanced service courses for students of engineering, science, or mathematics, and advanced work leading to the bachelor's, master's, and doctoral degrees in physics. The school seeks to provide elective freedom in its undergraduate and graduate degree programs in order to enable students with a wide variety of
interests to work out suitable programs of study.

In addition to offering courses in the fundamentals of physics, the school provides numerous specialized courses at the undergraduate and graduate levels, espe cially in areas related to the research interests of the faculty. Current faculty research interests include acoustics, atomic physics, computer science, elementary particles, general relativity, many-body theory, molecular physics, nuclear physics, quantum logic, solid-state physics, statistical mechanics, physics instruction, and interdisciplinary areas in biophysics and materials science. Opportunities exist in these areas, as well as in some other areas by collaboration with faculty members of other departments, for undergraduate and graduate special problems, master's theses, and doctoral dissertations.
Information supplementary to this catalog that may be useful to students in the planning of programs of study is available from the School of Physics. A graduate brochure which further describes the opportunities for graduate study and research is available upon request. Students majoring in physics should consult frequently with their faculty advisors. Any student who does not have an advisor should contact the departmental office.

Undergraduate Programs

The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics. The basis of the former degree program is the traditional preparation of a student for graduate study in physics. The degree program in applied physics may be better suited for entry into industry or government upon graduation, preparation for further professional training (medicine, law, dentistry, or business), or preparation for graduate study in some other discipline. The two degree programs differ in that a few courses intended primarily as preparation for graduate study in physics in the traditional program are replaced by courses oriented toward the applications of physics in the applied phys ics program. Greater flexibility in the choice
of technical electives is available in the applied physics program.
Each of the baccalaureate programs con tains: (a) courses needed to meet general institutional degree requirements, (b) a core of technical courses intended to give a strong background in mathematics and in the physical principles of mechanics, electricity and magnetism, thermodynamics and the quantum theory which governs physical phenomena at the microscopic level of molecules, atoms, and nuclei, (c) technical electives which enable the student to explore areas of his or her choice in greater depth, and (d) free electives, about onefifth of the total hours, which may be employed to schedule additional technical or nontechnical courses.
The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors in order that good use may be made of the elective hours and in order to avoid scheduling difficulties that may arise in later quarters.

Since many students who earn a degree in physics have transferred from another discipline, the department has planned the degree programs to enable most students to transfer into physics with little or no loss of credit.

A total of 190 credit hours and a grade point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Bachelor of Science in Physics Curriculum

Freshman Year ${ }^{7,8,9}$

Course	1 st Q.	2nd Q.	3rd Q.
MATH 1307-8-9 Calculus I, II, III	5-0-5	5-0-5	5-0-5
CHEM 1101-2 ${ }^{1}$ General Chemistry	4-3-5	4-3-5	
PHYS 2121^{2} General Physics			4-3-5
ENGL 1001-2-3 ${ }^{3}$ Analysis of Literature	3-0-3	3-0	

Electives ${ }^{4,5}$ Social Science or Humanities	3-0-3	$3-0-3 \quad 3-0.3$	Bachelor of Science in Applied Physics Curriculum						
Electives ${ }^{6}$									
Physical Education	$\mathrm{x}-\mathrm{x}-1$	$x-x-1 \quad x-x^{-2}$	Freshman Year ${ }^{7,8}$						
Totals	X-X-17	$x-x-17 \quad x-x-18$	Course	$1 s t Q$.	2nd Q.	3 rd Q.			
Sophomore Year ${ }^{9}$			MATH 1307-8-9 Calculus I, II, III	5-0-5	5-0-5	5-0-5			
Course	1st Q.	2nd Q. 3rd Q	CHEM 1101-2 ${ }^{1}$						
MATH 2307-8			General Chemistry	4-3-5	4-3-5				
Calculus IV, V	5-0-5	5-0-5	PHYS $2121{ }^{2}$						
MATH 2309 ${ }^{10}$ Differential			General Physics	4-3-5			
			ENGL 1001-2-3 ${ }^{3}$						
Equations		5-0.5	Analysis of						
PHYS 2122-3			Literature	3-0-3	3-0-3	3-0-3			
General Physics	4-3-5	4-3-5	Electives ${ }^{4}$						
Electives ${ }^{4,5}$ Social Science	-3	3-0-3 3-0.3	Social Science or Humanities	3-0-3	3-0-3	3-0-3			
Electives ${ }^{4,5}$			Electives ${ }^{6}$						
Humanities or			Physical Education	$x-\mathrm{x}-1$	$x-x-1$	$x-x-2$			
Social			Totals	X-X-17	$x-x-17$	$x-x-18$			
Science	3-0-3	3-0-3 3-0.3							
Electives ${ }^{9}$			Sophomore Year						
Totals	15-3-16	15-3-16 11-0-17	Course	1 st Q.	2nd Q.	3 rd Q			
Junior and Senior Years			$\begin{array}{lll}\text { MATH 2307-8 } & \\ \text { Cra }\end{array}$						
Course Credit Hours			MATH 2309 ${ }^{10}$						
PHYS 3121-2-3			Differential						
Classical Mechanics and Electricity and			Equations \qquad \qquad CHEM 2113^{11}						
Magnetism (5-0-5 each)		15							
PHYS 3141			Chemical Principles			3-3-4			
Thermal Physics		5	PHYS 2122-3 General Physics	4-3-5	4-3-5				
PHYS 3143						\ldots.			
Quantum Mechanics		5	EGR 1170 ${ }^{\text {a }}$ Introduction						
Electives									
Physics electives which must include atleast three laboratory courses. These elec-			to Visual Communication			2-3-3			
tives must be approved by the School of				Electives ${ }^{12}$					
Physics and must not include more than six hours below the 3000 level.			Computer Programming				0-0-3		
Electives			Electives ${ }^{4}$						
To bring total hours to 190			Social Science	3-0-3	3-0-3	3-0-3			
Total, junior and senior years 89			Electives ${ }^{4}$ Humanities or						
Footnotes are listed following the program for the Bachelor of Science in Applied Physics.									
			Science	3-0-3	3-0-3	3-0-3			
			Totals	15-3-16	17-6-19	14-3-18			

Junior and Senior Years

Course
PHYS 3121
Mechanics
PHYS 3122
Electromagnetism
PHYS 3143
Quantum Theory
PHYS 3211
Electronics
Electives
Technical electives which must include at least three laboratory courses. These technical electives need not all be in physics but they must be approved by the School of Physics and must not include more than six hours below the 3000 level.
Electives
To bring total hours to 190
Total, junior and senior years
${ }^{1}$ Students contemplating advanced work in chemistry should consider taking CHEM 1111-2 in ieu of CHEM 1101-2.
${ }^{2}$ Some students, e.g. biophysics students or premedical students, will find it advisable to commence upper level chemistry courses during their sophomore year. They should schedule CHEM 2113 in the third quarter of the freshman year and defer the start of the general physics sequence until the sophomore year.
${ }^{3}$ ENGL 1003 may be replaced by another English course, with the approval of the student's academic advisor. Students whose scores on the College Board SAT-Verbal and the English achievement examinations are sufficiently high may, in consultation with the Department of English, replace ENGL 1001 or 1002 by other English courses.
${ }^{4}$ See "Information for Undergraduate Students" for information relative to the thirty-six credit hour requirement in the humanities and the social sciences.
${ }^{5}$ It is recommended that students who contemplate doctoral work in physics include study of the French, German, or Russian languages in their programs.
${ }^{6}$ See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshman physical education requirements.
${ }^{7}$ If ROTC is elected, the first course should be scheduled during the first quarter the student is in attendance. A student may schedule additional hours during the freshman year, or certain

Use of Elective Hours

Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, as a preprofessional program, or to gain a background in other technical or nontechnical disciplines. For assistance to students in planning programs of study with emphasis directed towards a particular objective, the school has formulated suggestions for the use of elective hours. Supplementary material, available from the departmental office or from faculty advisors, includes suggestions relevant to the following areas of study: graduate study in physics, acoustics, applied optics, astro-physics-astronomy, biophysics, computer applications, geophysics, instrumentation measurement, materials science, nuclear science, prebusiness/management, and premedical. A candidate for either baccalaureate degree in physics need not follow any one of these suggested areas of study but may combine features of several programs or devise individual programs of study.
courses may be deferred in order to schedule ROTC. A maximum of fifteen hours of ROTC courses may be counted as free electives toward a degree in physics, of which no more than six hours may be in ROTC courses at the 1000-2000 level.
It is recommended that physics majors elect PHYS 1000 during the freshman year.
${ }^{9} \mathrm{~A}$ course in computer programming is suggested, during the freshman or sophomore years, e.g. ICS 1700, CE 2502, EE 1010, ME 3016 or PHYS 3263.
${ }^{10}$ Students who have demonstrated competence in mathematics should consider taking MATH in mathematics should consi
3308 in lieu of MATH 2309.
3308 in lieu of MATH 2309.
PHYS 3141 or ME 3720 be substituted or CHEM 2113; however, students who expec o take additional chemistry courses should schedule CHEM 2113
${ }^{12}$ This requirement may be met by scheduling one of the following courses: ICS 1700, CE 502 (plus one additional elective hour), EE curse approved by the Sor or ${ }^{13}$ EGGR 1170 may be replaced by Physics. ${ }^{13}$ EGR 1170 may be replaced by another course, with the approval of the student's academic advisor.

Attention is also directed to the possib of using elective hours for special probems (PHYS 3900-1-2 or 4900-1-2) con ducted under the supervision of a facult nember.

Graduate Programs

Master's Programs

The School of Physics offers two master degrees, the Master of Science in Physic and the Master of Science in Applied Physics.
The Master of Science in Physics is traditional physics degree and normally comprises the program that a graduate student executes in the course of study owards a doctorate. Students may fulfill he requirements for the degree by takin fifty hours of course work or by electing master's thesis in lieu of seventeen hours of courses. Although there are no rigid cours requirements for the degree, most student should include PHYS 6121, 6122, 6123, and 6141 and mathematics equivalent to MATH 4347-8-9 or MATH 6511-12-13. Stu dents should also include a research compo nent either through inclusion of Special Problems work or by election of a thesis.
The Master of Science in Applied Phys ics is intended to help prepare an individu al for a career in industrial, independent, o government laboratories. It is a good choic or a terminal master's degree. However the program may serve equally well as preparation for a doctoral program. The program includes a "practicum" of at lea twelve credit hours in an area of applied physics. Examples of available areas include: acoustics, instrumentation, optics physical characterization of materials, an physics instruction. Students should take courses in the principles of physics of im portance in applied physics (e.g., PHYS 4143 PHYS 6121, PHYS 6122, PHYS 4262 mathematics equivalent to MATH 3110 an 4582), and additional courses in support of the practicum

Doctoral Program

The Doctor of Philosophy degree is direct ed toward proficiency in independent schol arly work. The degree program comprises course work in the principles of physics,
ditional specialized courses both in the rea of the doctoral thesis and in one or two other areas, demonstration of reading competence in a foreign language, the passing of a comprehensive examination, and an independent research investigation. Fifteen credit hours must be earned in a minor field, which may be any approved achnical or nontechnical field that the stutent chooses in consultation with his advisor. en graduate level courses are strongly ecommended. Completion of the semina series, PHYS 8001-2-3, and four core ourses, PHYS 6121-2-3 and 6141, is adisable prior to taking the comprehensive xamination. Three depth courses from 121-2-3 or 6142-3 are strongly urged, as ell as three breadth courses from the emaining courses in the catalog. Mathenatics equivalent to MATH 6511-2-3 is recommended for most doctoral candidates. A rade point average of 2.9 in courses aken while a graduate student is required o register for the comprehensive examinaion and is a requisite for the degree The School encourages students to commence participation in the departmental esearch programs early in their graduate areers. The undertaking of a doctoral thesis seserved until the comprehensive examinaon is passed, which may occur during the econd graduate year for a well prepared student.

Courses of Instruction

PHYS
1.0-1.
Guest lectures will describe career opportuniles in physics, the role physicists play in education, government, and industrial laboratories, and programs available to physics majors.

PHYS 1001. Survey of Great Advances

 Modern Physics1.0-1.

A series of lectures, each of which deals with an important area of physics research or appliation; e.g., superconductivity, lasers, nuclear structure and energy, transistors.
PHYS 2001. Physics of Space and Time 3.0-3. Prerequisite: PHYS 2121 or 2111. An introduction to special and general relativity Principle of relativity. Speed of light. Space ontraction. Time dilation. Mass, momentum and energy. Principle of equivalence.

Text: at the level of Finstein, Relativity: the Special and the General Theory.
PHYS 2021. Introduction to Astronomy I 3-0-3.
The nature of behavior of the earth and the other members of the solar system will be examined.

Text: at the level of Abell, Exploration of the Universe.
PHYS 2022. Introduction to Astronomy II 3-0-3. (PHYS 2021 is not a prerequisite for PHYS 2022.)

The nature and behavior of the stars and galaxies will be examined.
Text: at the level of Abell, Exploration of the Universe.

PHYS
$3-0-3$.
A descriptive introduction to the physical prin ciples of the various sources of musical tones, how the sounds are generated, transmitted, and received by the listene
Text: at the level of Rigden, Physics and the Sound of Music.

PHYS 2111-2-3. Elementary College Physics

 I, II, II4-0-4 each. PHYS 2111 should be taken first; PHYS 2112 and 2113 may be taken in either order but it is preferable that 2112 precede 2113. Credit not allowed for both 2111-2-3 and PHYS 2121-2-3 (or 2141-2-3).

This sequence of three courses treats the physical principles of mechanics; heat, wave motion, electricity, and magnetism; light and modern physics, respectively, for students in the less technical curricula. Method of teaching and subject matter are chosen to give an understanding of scientific methods and a background of scientific information needed to comprehend the commercial, cultural, and political significance of scientific progress
Text: at the level of Hooper and Gwynne, Physics and the Physical Perspective.

PHYS 2121. Particle Dynamics

4-3-5. Corequisite: MATH 1309
Introduction to classical mechanics. Topics include kinematics, dynamics, energy, momentum, and rotational motion. Laboratory based on frictionless surfaces and stroboscopic photographic equipment emphasizes data analysis.
Text: at the level of Serway Physi
ext: at the level of Serway, Physics for Scien tists and Engineers-with Modern Physics.

PHYS 2122. Electromagnetism

4-3-5. Prerequisite: PHYS 2121; corequisite: MATH 2307.
Topics include electric field, potential, magnetic field, and electromagnetic induction. Calculus
and vectors are used. The laboratory stresses use of electrical instruments including oscilloscopes.
Text: at the level of Serway, Physics for Scientists and Engineers-with Modern Physics

PHYS 2123. Optics and Modern Physics

4-3-5. Prerequisites: PHYS 2122 and MATH 230
Wave propaisites. PHYS 2122 and MATH 2307. polarization Geometrical optics Particle aspects of electromagnetic radiation and wave aspects of material particles. Bohr model. Laboratory illustrates wave propagation
Text: at the level of Serway, Physics for Scientists and Engineers-with Modern Physics.

HYS 2141-2-3. General Physics I, II, III $5-3-6$ each. Prerequisites: see listings for PHYS 2121-2-3.
This sequence parallels PHYS 2121-2-3 courses from the two sequences may be intermixed. In this sequence some topics will be reated in more depth and some additiona opics will be included. These courses are intended for students with demonstrated compeence in mathematics and who desire a more rigorous foundation in physics.
PHYS 2750. Physics of the Weather 3-0-3.
An introductory treatment of the application of the basic physical laws to the understanding of weather phenomena. The main weather features will be descriptively developed and some elements of weather forecasting are analyzed.
PHYS 2750 is the same as GEOS 2750
PHYS 2750 is the same as GEOS 2750.
Text: at the level of Battan, Fundamentals of Meterology.

PHYS 2801-2-3-4-5. Special Topics

1-0-1 to 5-0-5 respectively.
Courses in special topics of current interest in physics are presented from time to time.
PHYS 2900-1-2. Special Problems Credit to be arranged. Prerequisite: consent of school.
PHYS 3001. Introductory Modern Physics 5-0-5. Prerequisite: PHYS 2123.

Survey of principles and phenomenology of modern physics, including atomic structure, nuclear phenomena, and the interaction of radiations with matter.
Text: at the level of Weidner and Sells,
Elementary Modern Physics.
PHYS 3005. Principles of Energy
3-0-3. Prerequisite: PHYS 2113 or 2123
Applications of principles of mechanics, elec tricity and magnetism, thermodynamics, nuclear physics, and solid state physics to energy conversion processes, with emphasis on contemporary energy sources.

PHYS 3021. Nuclear Astrophysics and Stell Evolution
3-0-3. Prerequisite: PHYS 2123.
Nucleosynthesis and energy generation in stars, stellar models, and stellar evolution. For. mation of elements, supernovae, quasars, neu tron stars, "black-holes," and radio sources. A majors.
Text: at the level of Fowler, Nuclear Astrophysic
PHYS 3121. Classical Mechanics
5-0-5. Prerequisite: PHYS 2123, MATH 2309 concurrent.
Dynamics of particles including oscillations and planetary motion, rotation of rigid bodies, colsions.
Text: Barger and Olsson, Classical Mechanic A Modern Perspective.

PHYS 3122. Classical Electricity

5-0-5. Prerequisite: PHYS 2123, MATH 2309 concurrent.
Electric and magnetic fields, potentials, resistance, indictance and capacitance, polarization, magnetic materials, development of Maxwell's equations.
Text: Cheng, Field and Wave Electromagnetics

PHYS 3123. Classical Magnetism

5-0-5. Prerequisite: PHYS 3122.
Applications of Maxwell's equations, including the propagation of electromagnetic waves; ele trodynamics.
Text: Wangsness, Electromagnetic Fields.

PHYS 3141. Thermal Physics

5-0-5. Prerequisites: PHYS 2123 and MATH 2308.

Thermodynamics and introduction to statistical mechanics. Heat, temperature, entropy. Re versible, irreversible and quasi-static processes. Thermodynamic potentials. Magnetic thermodynamics. Maxwell-Boltzmann distribution. Microcanonical and canonical ensembles.
Text: at the level of Callen, Thermodynamics

PHYS 3143. Quantum Mechanics I

5-0-5. Prerequisites: PHYS 3121 and MATH 2309
Historical approach to wave mechanics. Operator, eigenfunction-eigenvalue problem soluions to Schroedinger's equation, free particle, particle in a box, the square well, harmonic oscillator, rigid rotator and hydrogen atom.
Text: at the level of Eisberg, Fundamentals Modern Physics.
PHYS 3211. Electronics
5-6-7. Prerequisite: PHYS 2123
A.C. circuit theory and basic principles of
amplifiers and other electronic circuits.
Text: at the level of Brophy, Basic Electronics or Scientists.

HYS 3223. Geometrical Optics 3.0-3. Prerequisites: PHYS 2123 and MATH 2308.

Development of optical analysis of lenses and reflectors using matrix theory. Coverage includes image formation, stops, aberrations, photometry, and analysis of typical optical systems.
Text: at the level of Blaker, Geometric Optics

HYS 3224. Optical Instrumen

3-2. Corequisite: PHYS 3223 . Use of optical instrumentation includes spectrometers, interferometers, nodal sides, microscopes, and telescopes.

PHYS 3225. Fourier Optic

300-3. Prerequisites: PHYS 2123 and MATH 2308.

A discussion of physical optics using Fresnel Kirchhoff integral equation. Abbe theory of image formation. Coherence, polarization. Maxwell equations as the basis for physical optics.
Text: at the level of Hect and Zajac, Optics.

PHYS 3226. Advanced Optical Physics

Laboratory

3-2. Corequisite: PHYS 3225
Optional laboratory taken with PHYS 3225 A small number of experiments designed to exmplify the material presented in lecture course

HYS 3230. Photographic Principles
2-3-3. Prerequisite: PHYS 2113 or 2123. Lectures and demonstration (laboratory) period. Relationship of photographic practice and scientific principles: photographic optics, phoscientry perspective control, monochrome and tometry, perspectior images and processing, image quality
Text: at the level of Langford, Basic Photog raphy and Advanced Photography.

PHYS 3241. Elementary Biophysic

 3-0-3. Prerequisite: PHYS 2123.Applications of the principles and technique of the physical sciences to areas of the life sciences.
Text: at the level of Stanford, Foundations of Biophysics.

PHYS 3243. Elementary Biophysics

-0-3. Prerequisite: PHYS 3241

A continuation of topics from Physics 3241.
Physics of viruses, the central nervous system, and biophysical instrumentation
Text: at the level of Stanford, Foundations of Biophysics.

PHYS 3261. Introduction to Elementary Particle Physics
3-0-3. Prerequisite: PHYS 2123.
Phenomenology of elementary particles. Historical introduction, list of particles, quantum
numbers, conservation laws, selection rules, cross sections, decays, strong, electromagnetic, weak interactions: S-matrix, quantum field theory, models.
Text: at the level of Perkins, Introduction to High Energy Physics.

PHYS 3263. Computers in Physics

1-6-3. Prerequisites: ICS 1700 or equivalent, PHYS 2123.
Computer solutions of realistic physics prob ems which use a variety of numerical techniques, including integration, solution of simultaneous algebraic equations, and solution of differential equations.

PHYS 3265. Introduction to Acoustics 3-0-3. Prerequisite: PHYS 2112 or 2122.
An introduction to the art and science of acoustics for students of varied backgrounds and interests. The emphasis is on the basic physical mechanisms which underlie all acoustical phenomena.
Text: at the level of Kinsler, Fundamentals of Acoustics.
PHYS 3751. Laser Physics
3-0-3. Prerequisite: PHYS 2123
Principles of laser operations. Types of lasers. Survey lectures on the application of lasers to various fields. Course intended for both physics and non-physics majors. PHYS 3751 is the same as EE 4751.
Text: at the level of O'Shea, Callen and Rhodes, Introduction to Lasers and Their Application.

PHYS 3801-2-3-4-5. Special Topics
1-0-1 to 5-0-5 respectively
Courses in special topics of current interest in physics are presented from time to time.
PHYS 3900-1-2. Special Problems
Credit to be arranged. Prerequisite: consent of school.

PHYS 4001. Development of Quantum Theory 5-0-5. Prerequisite: PHYS 3143 or equivalent. An exposition of the historical development o quantum theory and an introduction to philosophical problems of quantum theory.
Text: at the level of Jammer, The Conceptual Development of Quantum Mechanics; important original papers.
PHYS 4143. Quantum Mechanics II
5-0-5. Prerequisite: PHYS 3143 or equivalent Introduction to perturbation theory, identical particles, spin and semiclassical radiation theo-
ry. Applications to atomic physics.
Text: at the level of Park, Introduction to Quantum Theory.

PHYS 4146. Special Relativity

5-0-5. Prerequisite: PHYS 3122
Development of Einstein's special relativity Four vector notation. Kinematics and dynamics of a particle. Transformation of electromagnetic fields. Transitions of a system, collisions Succes sive Lorentz transformations. Spin dynamics.

Text: at the level of Sard, Relativistic Mechani

PHYS 4206. Interfacing Laboratory

3-3-4. Prerequisite: PHYS 3211 or equivalent Introduction to the interfacing of computers with scientific apparatus. A computer and a variety of interfacing logic are available for the laboratory.

PHYS 4211. Electronic Instruments for

 Scientific Research2-3-3. Prerequisite: PHYS 3211 or equivalent. An intermediate course in electronic instruments and instrumentation as employed in re search and general laboratory measurements.
Text: at the level of Littauer, Pulse Electronics
PHYS 4216. Interfacing Laboratory II
1-6-3. Prerequisite: PHYS 4206 or consent of school

A continuation of PHYS 4206. Emphasis on individual student design and construction of interfaces for on-line control of experiments.
PHYS 4220. Optical Design
3-3-4. Prerequisite: PHYS 3223 or consent of school.
Principles of optical design, ray tracing and third order aberrations; laboratory stresses optical testing using conventional resolution tests and modulation transfer function.
Text: at the level of Smith, Optical Engineering.
2-6-4. Prerequisite: PHYS 3223 or consent of school

Theory and practice of vacuum deposition of metal and muit-layer thin films and of grinding and polishing optical elements
Text: at the level of Horne, Optical Production Technology
PHYS 4229. Seminar in Contemporary Optics 1-0-1. Prerequisite: consent of school. Recent developments in optics discussed orally and summarized in written reports.

PHYS 4251. Biophysics I

3-0-3. Prerequisites: PHYS 2123, BIOL 2211
Application of thermodynamics and other physical principles to analysis of energy metabolism and membranes
Text: at the level of Van Holde, Physical Biochemistry.
PHYS 4252. Biophysics II
3-0-3. Prerequisites: PHYS 2123, BIOL 2211 or equivalent.

A study of physical principles governing the conformations and interactions of biological mo cules. Emphasis on the properties of nucleic acids and proteins and their interactions.
Text: at the level of Canton and Schimmel Biophysical Chemistry
PHYS 4254. Biophysics-Biochemistry Laboratory
0-6-2. Prerequisite: PHYS 4251 or consent of School.
Selected experiments using biophysical and biochemical methods exemplifying studies on macromolecules and the principles of the tec niques currently used in molecular biophysics and molecular biology. Offered jointly with BIOL 6640
PHYS 4261. Atomic Physics
5-0-5. Prerequisite: PHYS 3143 or
quivalent.
The structure and spectra of ordinary atoms mesic atoms, and positronium. Atomic beams techniques. Double resonance and level-crossi spectroscopy. Optical pumping. Properties of
Text: at the level of Woodgate, Elementary Atomic Structure.
PHYS 4262. Solid State Physics
5-0-5. Prerequisite: PHYS 3143; PHYS 31410 CHEM 2113.
Application of quantum mechanics to molecules and solids. Molecular bonding and spectra of diatomic molecules. Binding forces and bond theory in solids. Applications to solid state devices.
Text: at the level of Ashcrott and Mermin, Solid State Physics.

PHYS 4263. Nuclear Physics
5-0-5. Prerequisite: PHYS 3143.
Basic properties of nuclei, interactions of r a diation with matter, accelerators, radioactivity, nuclear reactions, nuclear models, elementar particles.

Text: at the level of Evans, The Atomic
Nucleus.
PHYS 4264. Plasma Physics
5-0-5. Prerequisite: PHYS 3122.
Basic treatment of the plasma state via the Boltzmann equation, including collisions. Debye shielding length, diffusion, conductivity, oscilla
tions, and propagation of EM waves.
Text: at the level of Holt and Haskell, Foundations of Plasma Dynamics.

PHYS 4321-2. Advanced Laboratory I, II
1-6-3 each. Corequisite: PHYS 3143.
May be scheduled in either order. Experiments of classical and contemporary importance selected from various fields of physics. Experiments frequently deal with topics that have not
been treated in other courses. Students will be expected to acquire an understanding of significance of experiments through independent study.
PHYS 4755. Introductory Diffraction Studies 3.6-5. Prerequisite: senior standing in physics or consent of the school
Introductory theory and practice of x-ray and eutron diffraction techniques, mostly powder, .g. identifcation, lattice parameters, texture,
ine breadth, thermal neutron, and crystal orienlation.
PHYS 4801-2-3-4-5. Special Topics $1-0-1$ to $5-0-5$ respectively.
Courses in special topics of current interest in physics are presented from time to time
PHYS 4900-1-2. Special Problems Credit to be arranged. Prerequisite: consent of school.
PHYS 6005. Computer Facilities for Graduate Research in Physics 1-6-3.
Introduction to the computational aspects of physics research and the characteristics of the computing systems available.
PHYS 6011. Principles of Nuclear Physics 4-0-4.
Radioactive decay and decay processes, interaction of radiation, statistical considerations in interactions, nuclear structure, stability and models, nuclear reactions and cross sections, properties of neutrons
Text: at the level of Friedlander, Kennedy and Miller, Nuclear and Radio Chemistry.
PHYS 6121. Theoretical Mechanics I 5-0-5.
Dynamics of particles and rigid bodies, including developments and applications of Lagrange's, Hamilton's and Euler's equations. Potential theory. Gyroscopic motion. Poisson brackets, Hamilton-Jacobi theory.
Text: at the level of Goldstein, Classical Mechanics.

PHYS 6122. Electrodynamics

5-0-5.
Discussion of Maxwell's equations, scalar and vector potentials, conservation laws, multipole moments and multipole radiation, dispersion. Text: at the level of Jackson, Classical Electrodynamics.
PHYS 6123. Statistical Mechanics I
5-0-5. Corequisite: PHYS 6121.
Physical applications of probability theory. Classical and quantum statistical mechanics with numerous applications: ideal gas, imperfect gas, liquids, and solids.

Text: at the level of Reif, Fundamentals of Statistical and Thermal Physics.

Magnetism
5-0-5.
A study of Maxwell's equations with applications to problems in electrical power systems, communications, signal processing, radiation, and electrical measurements.
PHYS 6141. Quantum Mechanics
5-0-5. Prerequisite: PHYS 4143 or equivalent.
Nonrelativistic quantum mechanics. Representation of dynamical variables as operators or matrices, theory of angular momentum, perturbation theory, selected topics from radiation and scattering theory.
Text: at the level of Merzbacher, Quantum Mechanics.
PHYS 6142. Quantum Mechanics
5-0-5. Prerequisite: PHYS 6141.
Relativistic quantum mechanics, Dirac theory,
the Lorentz group, antiparticles, relativistic Hamiltonians, propagators, Feynman graphs. Text: at the level of Borken and Drell, Relativistic Quantum Mechanics.
PHYS 6143. Quantum Mechanics III
5-0-5. Prerequisite: PHYS 6141.
A problem-solving course that applies princibles of quantum mechanics to atomic, molecular, solid-state, and nuclear physics.
PHYS 6232. Solid State Physics I
5-0-5. Prerequisite: PHYS 4143 or equivalent. Structural, electronic, and vibronic properties of solids; electron gas theory; collective excitations electromagnetic properties; band structure; transport and thermal properties; semiconductors; defects.

PHYS 6233. Physical Crystallography
3-0-3. Prerequisite: PHYS 4755 or equivalent.
Experimental and analytical aspects of X-ray, neutron and electron diffraction crystallography applied to problems such as physical property mechanisms, defects and other topics of current physical interest.
PHYS 6251. Diatomic Molecules
3-0-3. Prerequisite: PHYS 4143 or equivalent Electronic structure, calculation of potential energy curves, absorption parameters, emission parameters, rotational line strengths, vibrationa band strengths, calculation of Franck-Condon factors.
PHYS 6263. An Introduction to Collision Theory 3-0-3. Prerequisite: PHYS 4143 or equivalent. Quantum theory of nonrelativistic elastic and inelastic scattering, rearrangement collisions, central, nonlocal, absorptive interactions, phase
shift analysis, variational methods, semiclassical and impulse approximations, transition probabilities
PHYS 6264. The Theory of Atomic Collisions 3-0-3.
Collisional excitation and ionization involving electrons, atoms, and molecules. Charge-transfer recombination, ion-molecule reactions. Atomic processes in planetary atmospheres in astrophysics and in laboratory plasmas.

PHYS 6267. Atomic Collisions

3-0-3.
A discussion of the techniques by which atomic collisions phenomena are studied, includes scattering of ions and electrons in gases and scattering from solid surfaces.
PHYS 6300. Graduate Laboratory 1-6-3.
Students choose a program of several experiments from those available in varied fields such as nuclear physics, solid state physics, X-ray diffraction, optics and physics instrumentation
PHYS 6310. Experimental Investigations in Physics
Significant experiments from diverse areas of physics are discussed in terms of physical principles involved, critical design parameters, and interpretation of results.

PHYS 7000. Master's Thesis

PHYS 7121. Theoretical Mechanics II
5-0-5. Prerequisite: PHYS 6121
Advanced topics in classical mechanics including Hamilton-Jacobi theory, action-angle variables, and canonical transformation theory. Introduc-
tion to modern theory of dynamical systems.
Text: at the level of Goldstein, Classical Mechanics.

PHYS 7122. Electromagnetic Theory 5-0-5. Prerequisite: PHYS 6122
Discussion of relativistic electrodynamics, radiating systems, multipole expansions, scattering, and diffraction. Exposure to magnetohydrodynamics and plasmas. Use of Lagrangian and
Hamiltonian formulations
Text: at the level of Jackson, Classical Electrodynamics.
PHYS 7123. Statistical Mechanics II
5-0-5. Prerequisite: PHYS 6123.
An advanced course in statistical mechanics including problems of biological significance.

PHYS 7125. Introduction to Relativity
5-0-5. Prerequisites: PHYS 6121, 6122.
Reference frames and transformations, tensor calculus, review of special relativity, electrody-
namics, the principle of equivalence, general elativity and gravitation, cosmologies and blad holes
PHYS 7126. Gravity
5-0-5. Prerequisite: PHYS 7125
Gravitational waves. Experimental tests. Petrov classes. Spinors. Twistors. Simplicial approximations

HYS 7141. Qua

5-0-5. Prerequisite: PHYS 6141
Interacting systems of particles described quantum mechanically using the method of second quantization. Application to Fermi and Bose systems.

PHYS 7143. Group Theory and Quantum Mechanics
5-0-5. Prerequisite: PHYS 6141 or equivalent. Basic principles of group theory and the representation of groups by matrices. Applications will include atomic and molecular structure
PHYS 7147. Quantum Field Theory
5-0-5. Prerequisites: PHYS 6141, 6122
Quantum theory of free fields: scalar, vector, and spinor fields. Conservation laws. S-matrix, Quantum electrodynamics

PHYS 7261. Optical Properties of Solids 3-0-3. Prerequisite: PHYS 6232.

Classical treatment of dielectrics and metals. Fresnel equations and Kramers-Kronig relation. Quantum mechanical treatment of selected topics. Emphasis on experimental determination of optical constants.
PHYS 7263. Nuclear Physics
5-0-5. Prerequisite: PHYS 6141
Use of nuclear models in computation of observable nuclear phenomena, including static and dynamic electromagnetic properties of nuclei.

Condensed Matte

3-0-3. Prerequisite: PHYS 6141.
Time-dependent correlation functions and dynamic structure factors. Coherent and incoherent, elastic and inelastic scattering cross sections. Applications to neutron scattering by photons, magnetic interactions, fluids.
PHYS 7999. Preparation for the Comprehen sive Examination

Audit only.

PHYS 8001-2-3. Graduate Student Seminar 1-0-1.
Intended mainly for beginning graduate students. There are two series of seminars. Representative research programs in the school are described by advanced graduate students, post-
corals, and faculty members. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research.

PHYS 8101-2-3-4-5. Special Topics

 1-0-1 to 5-0-5 respectively.Courses in special topics of current interest in physics are presented from time to time.
PHYS 8501-2-3. Special Problems Credit to be arranged.

PHYS 8511-2-3. Special Problems Credit to be arranged.
PHYS 8521-2-3. Special Problems in Condensed Matter Physics
Credit to be arranged.
Independent investigations, under the supervision of appropriate faculty members, in the area of condensed matter physics.

Credit to be arranged.

Independent investigations, under the supervision of appropriate faculty members, in the area of acoustics.
PHYS 8541-2-3. Special Problems in Applied Optics
Credit to be arranged.
Independent investigations, under the supervision of appropriate faculty members, in the area of applied optics.
PHYS 8551-2-3. Special Problems in Physics Instrumentation
Credit to be arranged
Independent investigations, under the supervision of appropriate faculty members, in the instrumentation associated with experimental research in physics

PHYS 8999. Preparation for Doctoral Dissertation
Audit only. Prerequisite: consent of department. PHYS 9000. Doctoral Thesis

School of Psychology

Established in 1959

Professor and Director-Edward H. Loveland; Regents' Professor Emeritus-Joseph E. Moore; Adjunct Professor-Scarvia Anderson; Professors-E. J. Baker, Lawrence R. James, M. Jackson Marr, Stanley A. Mulaik, M. Carr Payne, Jr., Edward J.

Rinalducci, Anderson D. Smith; Associate Professors-Albert N. Badre, Terry L. Maple, Charles V. Riche, C. Michael York; Assistant Professors-J. Neil Bohannon, Gregory M Corso, Craig M. Zimring; Lecturers-O. Edmund Martin, Barbara J. Winship

General Information

The School of Psychology serves a dual function in the Institute. First, it offers training in the basic and applied aspects of the science of behavior for the student majoring in architecture, engineering, management, and natural sciences. It also offers a program of study leading to the Bachelor of Science in Applied Psychology and the Master of Science and Doctor of Philosophy in Psychology.

The undergraduate curriculum in psychology stresses fundamentals, providing opportunity for broad training in mathematics, the natural sciences, humanities, social sciences, and management. The large num ber of elective courses enables the curriculum to fulfill a wide variety of educational and vocational needs. Graduates have been able to engage successfully in postgraduate study in many fields including business administration, history, industrial management, labor relations, law, medicine, music, psychology, and theology.
The program provides excellent preparation for graduate work in psychology and is especially adaptable to premedical education. Graduates of the program also have been employed successfully in a variety of positions relating to personnel subsystems (including human engineering), personnel esearch, personnel service, systems development, management and the administration of business, engineering, and health programs.

Undergraduate Curriculum

The curriculum is technically oriented and stresses quantitative and experimental approaches to the study of behavior. Approximately 60 percent of the graduates of this curriculum have continued their studies in psychology graduate programs, medical and law schools, as well as in other graduate programs leading to degrees in such widely diverse fields as business, education, history,
labor relations, marketing, music, and religion. Other graduates have been employed upon graduation in a variety of positions including general management, personnel research, personnel services (e.g. personnel training and employment), personnel subsystems (including human factors engineering), engineering psychology research, and systems engineering.
The curriculum lends itself to a special program intended to prepare students to teach behavioral science at the high school level. Through a cooperative arrangement with Georgia State University, interested students may enroll for required education courses at that institution while working toward their bachelor's degree at Georgia Tech. Upon completion of the program, the student will be eligible to apply for a T-4 teaching certificate.

Certificate Program in Psychology
The School of Psychology offers for nonpsychology majors five programs of study leading to certificates in biopsychology, engineering psychology, experimental psychology, industrial/organizational psychology, and social-personality psychology. Each program focuses upon a limited area of psychology which will be of interest and useful to students who wish to investigate the psychological complexities inherent in their major fields, or to those who simply wish to broaden their educations in a systematic manner.

Curriculum

Freshman Year

Course	1st Q. 2nd Q.	3rd Q.	
CHEM 1101-2 General Chemistry	$4-3-5$	$4-3-5$	\ldots
ICS 1700			
Digital Computer Programming	$\ldots . ~$	$2-3-3$	
ENGL 1101-2-3			
Introduction to Literature	$3-0-3$	$3-0-3$	$3-0-3$
MATH 1307-8-9 Calculus I, II, III	$5-0-5$	$5-0-5$	$5-0-5$

Electives ${ }^{1}$
Modern Langua or Social Sciences Electives ${ }^{2}$ Physical Education Electives ${ }^{3}$ Free

Totals

Sophomore Year
Course 1st Q. 2nd Q. 3rd Q.

ENGL 2001-2-3
Survey of the Humanities
MATH 2307
Calculus IV
MATH 2308
Calculus and Linear Algebra

BIOL 2210-1			
General Biology	4-3-5	4-3-5	
PSY 3303-4			
General Psychology	3-0-3	3-0-3
PSY 4401			
Psychology	...		3-0-3
Electives ${ }^{4}$			
Free	3-0-3		6-0.6

Junior Year
Course 1st Q. 2nd Q. 3rd Q.
MATH 3710
Introduction to Statistics
PSY 4403
Introduction to
Psychological
Testing
SY 4405
Seminar in
Organizational
Psychology
PSY 4406
Psychology
Statistics
PSY 4407
Experimental
Experimental
PSY 4410
Social Psychology

HYS 2121-2-3
Physics
Electives
Free
4-3-5 4-3-5 4-3-5
$\frac{3-0-3}{15-16} \frac{3-0-3}{13-14} \frac{6-0-6}{16-9-17}$
$\begin{array}{lll}15-3-16 & 13-6-14 \quad 16-9-17\end{array}$

Senior Year
Course
PSY 4411
Experimental
Psychology II 3-3-4
PSY 4412
Psychology of
learning
PSY 4413^{5}
Applied Experi-
mental Psychology …........ 3-3-4
PSY 4814
Special Problems 0-3-1
PSY 4815
Special Problems 3-3-4
ENGL 3015
Public Speaking 3-0-3
Electives
Free
Totals

Graduate Curricula

Doctoral and master's candidates share a core curriculum of required courses which include three proseminars in general psychology, nine additional course hours in psychology to be prescribed by the student's faculty advisory committee with the approval of the director of the School of Psychology, and eighteen hours to be chosen by the student, with the approval of his or her advisory committee, from among courses in psychology and other fields. The school may grant permission to substitute another course for a required course if the student can pass a written examination Doctoral candidates will complete all requirements for the master's degree which includes writing a thesis and demonstrating a reading proficiency in one foreign language.

The School of Psychology views the master's degree as a significant educational achievement in itself and does not award it routinely for completion of part of the doctoral program. Master's programs prepare the student for continuation of graduate work toward the Ph.D. and/or for employment in business, industry, government, or education. Most students require two calendar years to complete the master's degree, which includes writing a thesis.

The doctoral program provides the student with an opportunity for advanced study in general-experimental, industrialorganizational, or engineering psychology. Each of these curricula consists of additional courses and programs of individual study and research beyond the core curriculum, which contribute to a strong background in general experimental psychology and the student's area of specialization. The doctoral program will ordinarily require four years for students who enter immediately after obtaining the bachelor's degree

Admission to graduate study in psychology with full graduate standing in the School of Psychology requires the equivalent of an undergraduate major in psychology or a related field with courses in general and experimental psychology, psychological statistics, testing and measurement, either industrial psychology or social psychology and two quarters of calculus. Supplementary education in such areas as biology, chemis-
try, physics, engineering, foreign languages, and particularly mathematics is also advised. Students who have considerable undergraduate preparation in one or more of these areas may, with the approval of the School of Psychology, forego some of the required psychology courses. All applicants should submit scores on the Miller Analogies Test and the Graduate Record Examination.
The psychology faculty encourages competent students in subjects other than psychology to apply for admission.

Courses of Instruction

PSY 3300 . Psychology and Contemporary issues in Society
3-0-3.
Contributions of psychology to an appreciation of selected contemporary issues. Topics may
vary from quarter to quarter vary from quarter to quarter.
PSY 3303. General Psychology I 3-0-3.
An intensive coverage of the methods and findings of contemporary psychology. Includes such topics as psychological development, learning, conditioning, and biological bases of behavior.
PSY 3304. General Psychology II 3-0-3. Prerequisite: PSY 3303.
A continuation of PSY 3303. Such topics as individual differences, perception, personality, and social psychology will be discussed.
PSY 4400. Developmental Psychology 3-0-3. Prerequisite: PSY 3303.
A comprehensive study of human behavior and psychological development from infancy through adolescence. Emphasis is placed on empirical and cross-species contributions.

PSY 4401. Industrial Psychology

3-0-3.
A survey of methods and findings in the scientific study of humans at work. Considered are such topics as selection, training, motivation, accidents, and environmental effects.
PSY 4402. Psychology of Adjustment
3-0-3. Prerequisite: PSY 3303
Consideration of characteristics and etiology of typical and atypical human behavior, A principa objective is an increased understanding of self and others.

PSY 4403. Introduction to Psychological Testing
3-0-3. Prerequisite: PSY 3304 or 4401.

Consideration of the theoretical and practic issues in psychological measurement, with p ticular reference to psychological testing.
PSY 4404. Psychology of Advertising 3-0-3. Prerequisites: PSY 3303 or 4401
An analysis of psychological principles and ectiniques which serve as a foundation for effective advertising. The scientific study of co sumer behavior is emphasized

PSY 4405. Seminar in Organizational

 Psychology3-0-3. Prerequisite: PSY 4401 or 4410.
Study of psychological factors in organization functioning, including theoretical and research issues.
PSY 4406. Psychological Statistics 2-3-3. Prerequisite: consent of school. Application of statistical techniques to the design and analysis of psychological studies.

PSY 4407. Experimental Psychology I

 2-3-3. Prerequisite: PSY 3303 .An introduction to psychological measuremer and laboratory techniques used in the experimental study of topics such as sensory processes perception, psychomotor performance and learning.
PSY 4409. Introduction to Engineering Psychology
3-0-3.
Engineering psychology is presented as an integral component in the design and evaluatio of man/machine systems. Applied problems and general methodological questions are examine
PSY 4410. Social Psychology
$3-0-3$. Prerequisites: PSY 3303
Consideration of the behavior of the individual in relation to other individuals and groups.
PSY 4411. Experimental Psychology 3-3-4. Prerequisites: PSY 3304, 4406, 4407 an consent of school.
Consideration of principles and research methods in the areas of learning and motivation with special emphasis on classical and operant conditioning of nonhuman animals.

PSY 4412. Psychology of Learning

 3-3-4. Prerequisites: PSY 3304, 4406, 4407, a consent of school.An empirical and theoretical analysis of human learning, memory and cognitive processes, PSY 4413. Applied Experimental Psychology 3-3-4. Prerequisites: PSY 4406, 4412, and con sent of school.
Consideration of the applications of the meth ods and data of experimental psychology.

SY 4421. Physiological Psychology
0 -3. Prerequisites: PSY 3304, BIOL 2211 Neurophysiological, endocrinological, and biomemical bases of sensory and motor functioning, earning, memory, motivation, and behavior isorders.
SY 4422. Comparative Psychology
$2-3$. Prerequisites: BIOL 2211, PSY 3304 and onsent of school.
Consideration of principles and research methds of animal psychology and ethology. Literare reviews and reports, field trips and laboraory studies.
SY 4423. Introduction to Psycholinguistics 3.-3. Prerequisite: consent of school. A critical examination of current psychological esearch and theory in language development and behavior.
PSY 4424. Introduction to Personality 3-0-3. Prerequisites: PSY 3304 or PSY 4410. Introduction to and survey of major theories of personality.
SY 4425. The Psychology of Aging 3-0-3. Prerequisites: senior or graduate standng. PSY 3303 and 3304 or equivalent.
Current research findings and their theoretical and practical implications will be discussed. Interactions between adult age and a variety of psychological processes will be discussed: perception, memory, learning, cognition, personality psychomotor skill, and psychophysiological processes.
PSY 4426. Behavioral Pharmacology
3-0-3. Prerequisites: BIOL 2211, PSY 3304, and consent of instructor
An introduction to the study of drug-behavior interactions. Among the topics to be treated are the pharmacology of behaviorally active drugs, he influence of drugs on schedule-controlled behavior and stimulus control, the role of drugs as stimuli and the use of drugs for the analysis of behavior.

PSY 4491-2

1.6-3 each. Prerequisites: anthropology, biology or psychology background; demonstrated interest in animal behavior; consent of instructor. This course takes place in Kenya, East Africa tures by the instructor qualified students. Lec will provide the in-class portion of the course. Visits to national parks, game preserves, and lengthy in-field observation will introduce the students to the natural habitats of African animals.

PSY 4750. Social Psychology-Sociology Measurement Seminar
3-0-3. Prerequisite: PSY 4410 or equivalent and consent of school
Problems, implications, and methodologies relating to the measurement of individual and group behavior in social situations. Students will receive supervised project experience. Also taugh as SOC 4750.

PSY 4751. Psychology and Environmental Design I
3-3-4. Prerequisite: consent of school
Introduction to psychological concepts rele vant to environmental design. Survey of select ed methods for assessing man-made environment. Taught jointly by psychology and architec ture faculty. Cross-listed as ARCH 4751

PSY 4752. Psychology and Environmental

 Design II3-3-4. Prerequisites: PSY 4751 and consent of school.
Continuation of PSY 4751 with greater em phasis on independent research and development of design solutions to selected problems Taught jointly by psychology and architecture faculty. Also taught as ARCH 4752.

PSY 4754.

Processing
3-0-3. Prerequisites
P0, or equivalen: PSY 3303,3304 , ICS
General and unified approaches to psychological and computer modeling of human information processes. Emphasis on neural, sensory memory, semantic, and conceptual processing Also listed as ICS 4754.
PSY 4755. Sex Roles: Their Development and Cultural Influence
3-0-3. Prerequisite: consent of school.
Psychological principles, legal facts and literary explications are integrated in an examination of the roles of men and women from three time perspectives: historical, current, and future. Reading, lectures, discussions, and invited panelists. Also listed as ENGL 4755 and Soc. Sci. 4755.

PSY 4756. Human Factors in Software
Development
3-0-3. Prerequisites: ICS 2400 or equivalent; PSY 3304.
Examines human factors in the software de sign and application process from initial requirement and specification statements to coding, testing, implementation, and maintenance. Also taught as ICS 4756.

PSY 4800. Special Topics
1-3-2. Prerequisites: PSY 3304, 4407 and consent of school.

Guided independent study in an area of psychology not represented in departmental course offerings.
PSY 4802-3-4. Special Topics
2-0-2 through 4-0-4 respectively. Prerequisite: consent of school.
Special topics of current interest.

PSY 4814. Special Topics

0-3-1. Prerequisites: PSY 4406, 4411, and consent of school.
The student will, under the direction of a staff member, do semi-independent work in literature review and/or experimental design.

PSY 4815. Special Topics

3-3-4. Prerequisite: consent of school
Students will work, under the direction of the instructor, on projects adding to their development beyond the scope of existing courses.

PSY 4900-1-2-3. Special Problems

Credit to be arranged. Prerequisite: consent of chool.
Students engage in individual and group projects under the direction of a faculty member.
PSY 4953. Special Problems in Psychological Aspects of Environmental Design
Credit to be arranged. Prerequisites: PSY 4751, Supervised individual stud
Supervised individual study of problems relating to the interaction of environmental design and

PSY 6601. Advanced Industrial Psychology 3-0-3. Prerequisite: PSY 4401
A survey of theoretical and pragmatic issues in industrial psychology. Recent developments and experimental findings will be discussed.
PSY 6602. Applied Experimental Psychology 3-0-3. Prerequisite: PSY 3304.
Consideration of the application of the methods and data of experimental psychology to the problems of man and the environment, emphasizing the engineering psychology approach.

PSY 6603. Social Psychology

$3-0-3$. Prerequisites: six hours of psychology and consent of school
A study of principles of social learning, motivation and perception, and of attitudes and beliefs as they relate to behavior of individuals in groups.
PSY 6604. Human Information Processing 3-0-3. Prerequisite: consent of school.
A study of information processing theories and measurement techniques as applied to psychological problems, emphasizing human perceptual, communication, and learning processes.

PSY 6605. Proseminar in General Psychology
$3-0-3$. Prerequisites: graduate standing and con sent of school.

A comprehensive, advanced consideration o general psychology including such topics as conditioning, learning, memory, and cognitive processes.
PSY 6606. Proseminar in General Psycholog)
II
3-0-3. Prerequisites: graduate standing and sent of school.
A comprehensive, advanced consideration general psychology including such topics as psychological development, perception, and phy iological psychology.
PSY 6607. Proseminar in General Psychology III
3-0-3. Prerequisites: PSY 6605, 6606 or equiva. lent and consent of school.
A continuation of PSY 6605 and 6606 invol ing consideration of such topics as personalit individual differences, and social psychology.

PSY 6608. Human Motivation

3-0-3. Prerequisites: graduate standing, PSY 6605 and consent of school.
Examines theoretical and pragmatic issues the description and prediction of motivated be havior. Includes measurement problems, implications, and applications in a range of settings
PSY 6609. Social Psychology of Organization 3-0-3. Prerequisites: PSY 4410 or equivalent and consent of school.
Selected topics from social psychology whic are of particular significance to an understanding of individual behavior in an organizational con text. Supervised readings and discussion.

PSY 6610. Psychoacoustic

3-0-3. Prerequisites: PSY 3304 or equivalent and consent of school.
A comprehensive coverage of physiological and psychological acoustics, including analyses of auditory and extra-auditory response mecha. nisms and evaluation of research and theories in hearing
PSY 6621-2. Foundations of Psychology I, II 3-0-3 each. Prerequisites: graduate standing and consent of school
A sequence involving historical and current points of view in psychology, emphasizing is-
ues important for psychological theory
PSY 6623-4. Design of Psychological
Experiments I, II
2-3-3 each. Prerequisites: graduate standing, MATH 3710, PSY 4406 or equivalent and consent of school.

A two-quarter sequence on the planning and mplementation of research based on linear models, with reference to statistical consideraton in data reduction and analysis.

SY 6625. Experimental Methods in

 Psychology$2-3-3$. Prerequisites: graduate standing, PSY $6605,6606,6623$ or equivalent and consent of school.
Measuring the dependent variable in psychoogical experiments. Discussion is supplemented by practice in designing, conducting, and reportg experiments

SY 6626. Response Evaluation

3-0-3. Prerequisites: graduate standing, PSY 4406 or equivalent and consent of school. Intensive consideration of theoretical and pragmatic problems in the description and evaluation of human responses in such areas as task analysis and performance measurement

PSY 6627. Human Learning

3-0-3. Prerequisites: graduate standing, PSY 3303 or equivalent and consent of school.
A comprehensive consideration of principles, problems, methods, and experimental data in the study of human learning, including discussion of applications of theory and experimental findings

PSY 6629. Psychomotor Skill Learning and

 Performance3-0-3. Prerequisites: PSY 4406, 6605, 6606 or equivalent.
Human capabilities and limitations for learning and performing psychomotor skills are studied. Emphasis is on performance measurement and assessment of skill proficiency, prediction, and control.

PSY 6630. Psychometric Theory 3-0-3. Prerequisites: PSY 4403, 6624 or equivalent.
Preparation of students in statistical theory and techniques relevant to becoming profession ally involved in construction, analysis, and evaluation of psychological and personnel tests. PSY 6631. Personality and Social Development $3-0-3$. Prerequisite: PSY 6607 or equivalent 3-0-3. Prerequisite: PSY 6607 or equivalent. The developmental aspects of personality and attention will be given to empirically derived data, assessment techniques, and theoretical data, assess
explanations.

PSY 6632. Perceptual Developmen 3-0-3. Prerequisite: PSY 6606 or equivalent. Perceptual capabilities and experience are examined as they change across the life span. Special attention will be given to early development (infancy and childhood)

PSY 6680. Multivariate Analysis

5-0-5. Prerequisite: PSY 6624 or equivalen and consent of school.
Introduction to multivariate analysis in psychology with special emphasis on factor analysis.

PSY 6750. Human-Computer Interface

3-0-3. Prerequisite: Permission of the department Human-computer interface is considered in terms of user-system compatibility. Concepts in human factors and interface design are covered in relation to capabilities and limitations of both humans and computers. Also taught as ICS 6750.

PSY 7000. Master's Thesis

PSY 7010. Seminar in Industrial Psychology 3-0-3. Prerequisites: PSY 6601, 6607 and con-3-0-3. Prerequi
sent of school.
Critical and comprehensive examination of current problems in a selected area of industrial psychology. The area to be covered may vary from year to year.

PSY 7011. Seminar in Experimental
Psychology
3-0-3. Prerequisites: PSY 6607, 6625 and consent of school.

Critical examination of current problems in a selected area of general experimental psycholo gy. Area to be discussed may vary each time the course is offered.
PSY 7012. Seminar In Engineering Psychology 3-0-3. Prerequisites: PSY 6602, 6607 and consent of school
Critical examination of current problems in a selected area of engineering psychology. The area to be discussed may vary each time the course is offered.

PSY 7020. Advanced Learning

4-0-4. Prerequisites: graduate standing, PSY 6605 or equivalent and consent of school.
An advanced and systematic examination of
selected topics dealing with the experimental psychology of learning and memory. Theoretical approaches to learning, transfer and retention will be discussed.
PSY 7021. Sensation and Perception 4-0-4. Prerequisites: PSY 6606 or equivalent and consent of school.
An examination of human interpretation of physical stimulation. The student studies in some detail the nature of perceptual processes, including human sensory processes.
PSY 7022. Vision
3-0-3. Prerequisite: PSY 6606 or equivalent An advanced examination of the visual processes and the fundamental role they play in human behavior. Emphasis is placed upon objectively obtained data.

PSY 7023. Operant Conditioning
4-0-4. Prerequisite: PSY 6605 or equivalent. Intensive treatment of methods, data, and problem areas of operant conditioning. Among the topics covered are response differentiation, schedules of reinforcement, and stimulus control

PSY 7024. Primate Behavior

$3-0-3$. Prerequisites: graduate standing and consent of school.
A survey of research relating to primate behavior. A content course in which the major findings and theories of primate behavior will be considered; students will also discuss the meth ods employed in primate research and observe selected species at the Yerkes Primate Research Center and Atlanta Zoological Park

PSY 7050. Professional Problems

2-0-2. Prerequisite: graduate standing and consent of school.
introduces the student to professional problems which he or she may face as a psychologist, including teaching, professional practice, and

PSY 7051. Teaching Practicum

1-3-2. Prerequisite: PSY 7050.
Supervised college teaching for advanced graduate students in psychology. Discussion of teaching techniques, course and curriculum design in psychology, and student evaluation is included in the course. Students will prepare and present lectures on selected topics in psychology courses. Direct observation and televi sion taping will be used as a basis for class discussions.

PSY 7750. Seminar on Psychology and Management
3-0-3. Prerequisites: PSY 6601, 6609, IM 6150,
or 6105 and consent of school
Preparation and discussion of papers on management problems involving psychological complexities. Jointly taught by members of the psychology and industrial management faculties.

PSY 8504. Special Problems in Industria

 PsychologyCredit to be arranged. Prerequisites: PSY 6601, 6 , or 6603.
Students will be expected to plan and execute a research problem involving investigation o some psychological aspect of management

PSY 8505. Special Problems In Experimental Psychology
Credit to be arranged. Prerequisite: consent of chool.
Students conduct research under direction of a faculty member on problems in the general area of experimental psychology.

SY 8506. Special Problems in Engineering Psychology
Credit to be arranged. Prerequisites: PSY 6602 or equivalent and consent of school.
Students conduct research under direction o faculty member on problems in the area of ngineering psychology.
PSY 9000. Doctoral Thesis

School of Social Sciences

 Established in 1948Director-Daniel S. Papp (on leave); Acting Director-Robert C. McMath; Acting Asso ciate Director-Dorothy C. Yancy; Profes-sors-Ronald H. Bayor, Patrick Kelly, Melvin Kranzberg (Callaway Professor of History of Science and Technology), Robert C. McMath, Jr., Daniel S. Papp, Frederick A. Rossini, Jay A. Weinstein; Associate Pro. fessors-James E. Brittain, Stanley R. Carpenter, Daryl E. Chubin, Lawrence Foster, August W. Giebelhaus, John J. Havick, Germaine M. Reed, J. David Roess. ner, Sandra W. Thornton, Dorothy C. Yancy: Assistant Professors-Victoria DurantGonzalez, John N. Hines, Jon J. Johnston John R. Mclntyre, Gregory H. Nobles, David H. Ray.

General Information

The School of Social Sciences offers undergraduate course work in history, philosophy of science and technology, political science, and sociology as well as graduate courses leading to an M.S. in Technology and Science Policy. Through this curriculum, the students gain an understanding of the com. plex issues which confront contemporary society. In addition, by comprehending certain aspects of societal and human relationships, students develop skills which enhance their professional expertise.

Certificate Programs in the Social Sciences

Seven certificate programs enable students to concentrate course work in areas of their particular interest. Each program provides for the systematic acquisition of ideas
apinions that enrich the students' understanding of the social dimensions and cultural roots of their professional majors. To aid students planning graduate studies in law, medicine, or business, the certificate program also strengthens the students' back grounds by allowing them to gain compeence in areas additional to their majors. Four of the seven certificate programs are in the traditional disciplines of history,
philosophy, political science, and sociology. The remaining three programs cut across discipline lines to provide a foundation in international affairs, the interaction of science, technology and society, and urban studies.
Students interested in planning a certificate program in one of these areas should contact the School of Social Sciences for further information. A faculty advisor assists each student in planning a program of study to meet his or her needs and interests. The Social Sciences office can provide detailed information concerning these programs.

U.S. and Georgia History and Constitution Requirements

The state of Georgia requires all students to display a knowledge of U.S. and Georgia constitutions and U.S. and Georgia history. To complete the requirement in U.S. and Georgia constitutions, a student must pass POL 1251 or 3200 , or an examination on the U.S. and Georgia constitutions. To complete the requirements in U.S. and Georgia history, a student must either pass HIST 1001 or 1002 or pass an examination on U.S. and Georgia history.
The School administers examinations for both requirements each quarter (only to first quarter seniors). Students who do not take the exams or who are unsuccessful must then take the appropriate course(s) prior to graduation.

Graduate Program in

Technology and Science Policy
The M.S. program in the rapidly expanding field of technology and science policy trains in one to two years of study, professionals with technical and scientific backgrounds to identify and analyze policy issues emerging
from technological and scientific development in contemporary societies. Graduates may anticipate professional employment by agencies involved in preparing technology assessments and environmental impact statements, formulating corporate responses to governmental policies affecting energy and the environment, evaluating the effects of governmental and corporate policies afecting technological innovation, and dealing with problems of transferring technologies o developing nations.
The program includes an intensive eigh-een-hour multidisciplinary core involving heory and both quantitative and qualitative methodology. It also requires an elective concentration of at least fifteen hours, designed for the individual student's career needs, and a thesis. Where possible, the hesis requirement will place the student in an internship environment similar to anticipated professional employment.
The team-taught core curriculum and the small number of students per faculty member will bring the student into early and intensive contact with faculty members. The program's flexibility in elective and thesis requirements allows the studen an opportunity to arrange a custom de-
signed program.
Students applying for admission to the professional master's degree program must have earned a bachelor's degree from an accredited institution. Students should have a bachelor's degree or strong undergraduate concentration in engineering or science with experience in statistics. However, well prepared students with other majors may also apply

Courses of Instruction

HISTORY

HIST 1001. History of the United States to 1865
3-0-3
A survey of the social, political, and economic history of the United States through the Civil War with emphasis on selected topics. Give exemption from U.S. and Georgia history examination.
HIST 1002. History of the United States from 1865 to the Present
1865
$3-0-3$.
A survey of the social, political, and economic
history of the United States from the Civil War to the present with emphasis on selected topics. Gives exemption from U.S. and Georgia history examination
HIST 1028. Introduction to the History of Science and Technology
3-0-3.
An introductory survey of the development of science and technology from antiquity to the present. Emphasis placed on sociocultural context and scientific and technological revolutions.

HIST 3001. Origins of Modern Times:
Western Civilization, 1500-1789
3-0-3.
An examination of the social, economic, and political currents of early modern Europe. Among he themes covered are social developments and religious conflict, the emergence of a modworld economy, state centralization, and the advent of the scientific revolution.
HIST 3003. Nineteenth Century Europe 3-0-3.
This course traces the development of political ideologies, industrialization, labor activism, modern nation-state building, and imperialism from the French Revolution to W.W.I.
HIST 3004. World Problems Since 1914 3-0-3
Various 20th century European themes to be examined in this course include the crisis of global war, communism, fascism, and the move ment for European integration.
HIST 3012. History of Georgia
3-0-3. Prerequisite: any one of HIST 1001 1002 , or history examination.
The problems which have confronted Georgia are examined in their historical setting. Relationship to the national scene gives perspective to the state's place in the nation.
HIST 3013. United States Colonial History 3-0-3. Prerequisite: any one of HIST 1001, 1002, or history examination.
Settlement and growth of the English colonies in North America with emphasis on the foundation of American political and economic institutions.

HIST 3015. Survey of Sciences In the Sixteenth and Seventeenth Centuries 3-0-3.

An interpretative study of the scientific revolution including the social, economic and cultural context and origins of science in America.
HIST 3016. Survey of Sciences in the Eighteenth and Nineteenth Centuries 3-0-3.

The evolution of science and scientific
institutions in Europe and the United States including rise of industrial research
HIST 3017. History of the Old South to 18 3-0-3. Prerequisite: any one of HIST 1001 1002, or history examination.

A study of social, political, and economic developments in the South from the colonial period through the Civil War

1865

3-0-3. Prerequisite: any one of HIST 1001 1002 , or history examination
An examination of social political, and eco nomic developments from the Reconstruction period to the present

HIST 3020. American Diplomatic History 3-0-3. Prerequisite: any one of HIST 1001, 1002, or history examination
American diplomatic history since the Revo tionary War with emphasis on developments in the twentieth century.
HIST 3022. Afro-American History 3-0-3. Prerequisite: any one of HIST 1001, 002, or history examination
Historical analysis of the black American fro the ancient African beginnings to the present.

HIST 3024. The American Civil War
3-0-3. Prerequisite: any one of HIST 1001, 1002 or history examination.
A survey with major emphasis on the militan history of the war. Individual research is stressed
HIST 3025. American Economic History 3-0-3. Prerequisite: any one of HIST 1001,
1002, or history examination
Special attention given to the rise of techno gy, our industrial system, the westward move ment, development of our banking system, and government regulation of industry
HIST 3026. History of American Business 3-0-3.
Focuses on the development of business institutions from the colonial period up to the present. Themes stressed include the role of the entrepreneur, the emergence of "big business," the evolution of new business structure overnment-business relations, and business and society.
HIST 3027. History of Energy
3-0-3. Prerequisite: HIST 1001 or 1002 The historical development of major energy sources, history of alternative energy technologies, and evolution of public policy in energy-related areas.

3028. United States Social and inteliectu-

 a HistoryNo-3. Prerequisite: any one of HIST 1001 1002 , or history examination.
Studies in the social and intellectual traditions of the United States with emphasis on the more ecent period. Assigned readings.
HIST 3030. Technology and Economic Change 3.0-3.

Growth of technology in the modern world in ts relationship to economic and social change

HIST 3040. Recent Latin American History 3-0-3.
An examination of the roots of contemporary Latin American issues such as underdevelopment and modernization; nationalism and interregiona integration; and social structures and institulions. Consists of a general overview and case studies.
HIST 3047-8-9. Technology in Western Civilization I, II, II
3-0-3 each.
The development of technology from the be ginnings of man to the present, with emphas upon interrelations between technology and society.
HIST 3786. The Immigrant Experience 30-3. Prerequisite: ENGL 1001-2 The history and literature of immigrant/ thnic groups such as English, Blacks, Irish, Germans, Asians, Southern and Eastern Europeans, Hispanics; exploring Old World reasons tor emigrating, New World reactions, assimilation, beotry restrictive immigration policies, the Second World War relocation camp experience, dienation, the American Dream fulfilled. Lectures and papers. Jointly taught by English Departmen and School of Social Sciences

HIST 4008. History of Technology in the

 United States3.0-3. Prerequisite: any one of HIST 1001 002, or history examination
A study of technology in America from the colonial period to the present including industria and engineering history.
HIST 4016. History of Electrical Sciences and Technology
3-0-3.
The origins and evolution of electrical science, technology, and engineering. Emphasis placed on impact of major innovations in power, communications, and electronics.

HIST 4025. The United States Since 1917 3.0-3. Prerequisite: any one of HIST 1001, 1002, or history examination.
Social, political, economic, and diplomatic his
ory of the United States in the middle of the twentieth century is examined as to causes results, and movements

HIST 4050. Twentieth Century Black History 3-0-3. Prerequisite: any one of HIST 1001 1002, or history examination.
The inequities and achievements of the period are dealt with through an analysis of selected topics.
HIST 4075. The City in American History 3-0-3. Prerequisite: any one of HIST 1001, 1002, or history examination.
Selected topics concerning the social, economic, and political history of American cities with emphasis on the role of technology in urban development. HIST

HIST 4925-6-7-8-9. Special Problems In History Credit to be arranged.

PHILOSOPHY OF SCIENCE
AND TECHNOLOGY
PST 1126. Introduction to Philosophical Analysi
An introduction to the nature of philosophy through critical study of selected works. The relation of philosophy to science, religion, and society will be emphasized.
PST 1127. Science, Technology, and Human Values
3-0-3.
An examination of the ways engineering tech nology shapes and is shaped by societal values. Also considers the appropriate and intermediate technology movements.
PST 3102. History of Ancient Philosophy 3-0-3.

A study of the development of philosophy from the early preSocratics' scientific writings to Christian thought. The works of Plato and Aris totle stressed.
PST 3103. History of Modern Philosophy 3-0-3
The development of Western thought from Bacon to Kant, with emphasis on the philosoph c dimensions of the rise of modern science.
PST 3104. Contemporary Philosophy
3-0-3.
A study of the diverse movements in philosophy from Hegel to Russell with emphasis on the philosophic response to the development of modern scientific inquiry.

PST
Critical examination of ethical theories, con sideration of theoretical problems of ethics, nature and presuppositions of ethical judgments, justification and ethical standards.

PST 3107. Comparative Religions
3-0-3.
Introduction to the development of the most important concepts in modern religious systems. Emphasis will be placed on the contributions of philsophical analysis and theological debate.
PST 3113. Symbolic Logic
3-0-3.
An introduction to the symbolic analysis of logical argument. Includes propositional calcu lus, truth-tables, truth-trees and methods of deduction.

PST 4106. Philosophy of the Behavioral and Social Sciences
3-0-3. Prerequisite: senior standing or consen of the department.
Examination of philosophical views of social science, structural aspects of social science, relationship between natural and social science and other selected philosophical problems.
PST 4107. Philosophy of Technology 3-0-3. Prerequisite: PST 1126 or 1127 or consent of instructor.
A critical analysis of the methods, values, and underlying philosophy of technology. Examines theories of social change and the role played by technology.

PST 4110. Theories of Knowledge

3-0-3. Prerequisite: PST 1126 or 1127 or consent of instructor.
Critical examination of perception, verification, a priori and a posteriori knowledge, meaning and criteria of truth, presuppositions and cognitive significance of scientific and philosophical propositions.

PST 4115. Philosophy of Science

 3-0-3. Prerequisite: PST 1126 or 1127 or consent finctor.Examination of selected problems such as causality, inductions, scientific explanation, de velopment of scientific knowledge, social and philosophical import of scientific theories.
PST 4120. Semantics
3-0-3. Normally taken by seniors.
The relations of formal logic and natural languages, sense and reference, semantical paradoxes, semantic criteria of truth

PST 4757. Technology Assessmen
3-0-3. Prerequisite: junior standing.
Systematic efforts to anticipate impacts on
society that may occur when a technology I introduced, extended, or modified. Considers concepts, organization and uses of various s ific assessment methods.
PST 4875-6-7. Special Topics In the Philosophy of Science and Technology 3-0-3. Topics to be selected.

PST 4944-5-6-7-8. Selected Problems in th History of Science
Credit to be arranged.
PST 4949. Special Problems
Credit to be arranged.
PST 8549. Special Problems
Credit to be arranged.

POLITICAL SCIENCE

POL 1251. Government of the United Sta 3-0-3
Study of structure and function of governments of United States and Georgia. Gives exemption from United States and Georgia Co stitution examination.
POL 1253. Comparative Political Systems 3-0-3.

Examination of current empirical political fram works and conceptual vocabularies for purpos of developing common approach in analysis o individual political systems.

POL 2270. Introduction to Analysis of Political Behavior
3-0-3. Prerequisite: POL 1251 or consent of department.

Introduction to political analysis; behavioral and post-behavioral perspectives. Explores bas concepts employed in selected theoretical approaches.
POL 2271. American Political Thought 3-0-3. Prerequisite: POL 1251 or consent of the department

Examination and analysis of fundamental po litical ideas which have shaped the American political system.

POL 3200. American Constitutional Problem 3-0-3.
Study of structure and function of United States and Georgia government, taught largel through medium of constitutional law. Gives exemption from United States and Georgia stitution examination.
POL 3203. National Defense Policy
3-0-3. Prerequisite: POL 1251 or consent of the department.
Analysis of recent and current U.S. defense policy, including an examination of defense decision-making.
3204. United States Military Policies -3. Prerequisite: POL 1251 or consent of the epartment.
Examination of the armed forces' relationship osociety with particular emphasis on the delopment of the military-industrial complex.

OL 3205. American Foreign Policy
3-3. Prerequisite: POL 1251 or consent of the partment.
Study of formulation and implementation of f. foreign policy, stressing economic, political d strategic factors.
POL 3210. National Legislative Processes 3.-3.3. Prerequisite: POL 2270 or consent of the lepartment.
Empirical and systematic analysis of national egislative branch with attention to relationships mong executive branch, interest groups, and congress.
POL 3211. The American Presidency
-0-3. Prerequisite: POL 1251, 2270 or consen the department
Source, nature, and use of presidential power, he roles of the President. Recent historical examples emphasized.
OL 3215. Public Opinion
$0-3$. Prerequisite: POL 1251 or consent of the epartment.
Public opinion polling techniques, including sampling, questionnaire construction, and inte pretation. Analysis of actual opinion data colected on a national basis.
POL 3216. American Political Parties 3-0-3. Prerequisite: POL 1251 or consent of the lepartment.
Study of political party developments and eir role in the electoral process.
OL 3217. State and Local Governmen $0-3$. Prerequisite: POL 1251 or consent of the epartment
Analysis of structure and function of state
county, and municipal government.
POL 3220. Urban Government and Political roblems
$0-3$ Prerequisite: POL 1251 or consent of the epartment.
An examination of political institutions and rocesses in the urban setting, including metropolitan government, and intergovernmental elations.

POL 3221. Urban Political Problems
$3 \cdot 0-3$. Prerequisite: POL 1251 or consent of the epartment.
A consideration of urban political behavior, Acluding brokerage politics, politics in suburbia, and community power structures.

POL 3222. Urban Public Policy
3-0-3. Prerequisite: POL 3220, 3221 or consen of the department
An empirical and systematic analysis of selected urban public policy areas, including such policy areas as education, housing, and crime control.
POL 3250. Public Administration and Public Policy
3-0-3. Prerequisite: POL 1251 or consent of the department.
Study of decision-making and organization theory, bureaucratic policymaking, intergovernmental relations, taxing and spending policy.
POL 3265. Latin American Governments and Politics
O-3. esses in Latin American countries.

POL 3266. The Developing Nation

3-0-3.
A study of selected underdeveloped nations including economic and political development.
POL 3270. Western European Governments and Politics
3-0-3.
Comparative analysis of governmental and political processes in the nations of Western Europe.

POL 3275. Foundations of National Power and international Relations
3-0-3. Prerequisite: POL 1251 or consent of the department.
Study of U.S. power position in world affairs.

POL 3280. Communist Political Systems

 3-0-3.An analysis of governmental and politica processes in the communist governments. 3-0-3.
A study of formulation and conduct of Soviet foreign policy. Consideration of ideological, geo-political influences, development of relations with Western world and the Third World.
POL 4200. Political Theory I
3-0-3.
A study of ancient, medieval, renaissance, and reformation political philosophy
POL 4201. Political Theory II 3-0-3.
3-0-3.
The development of political philosophy from the seventeenth century age of reason through the nineteenth century age of ideology.

POL 4202. Political Theory II

 3-0-3.An analysis of contemporary political philosophy, emphasizing radical ideologies.
POL 4205. Mass Communications and the Political Process

3-0-3. Prerequisite: POL 1251.

Examination of communications policies, the political process that shapes these policies, and the role of the mass media in the political process.
POL 4210. Science, Technology, and Public Policy
3-0-3. Prerequisite: POL 1251 or consent of the department.

Examination of relationship between science and government including the effect of each area on the other in decision-making processes
POL 4211. Science, Technology and World Politics
3-0-3.
An analysis of impact of science-technology on the international system: role of science and technology in foreign policy process.
POL 4250. Policy Analysis and Evaluation 3-0-3.
Study of the policy advisor in and out of government, social indicators and social ac counting, evaluation of public policy, evaluation research techniques.
POL 4755. Sex Roles: Their Development and Cultural Influence
3-0-3.
Psychological principles, legal facts, and literary explications are integrated in an examination of the roles of men and women from three time perspectives: historical, current, and future. Also listed as ENGL 4755 and PSY 4755.
POL 4875-6-7. Special Topics In Political Science

POL 4950, 4953-4-5-6. Special Problems in Political Science
Credit to be arranged.
POL 4951. Georgia Internship Program
Credit to be arranged (15 hours maximum).
Work-study program assigning student to project in state or local government. Student prepares research paper under jurisdiction of faculty member.

POL 4952. Legislative Intern Program

Credit to be arranged.
Service learning program combining an academic study of the legislative process with internship at Georgia Legislature in winter quarter. Interns selected competitively each year.

POL 6255. Governmental Aspects of Planni 3-0-3
Analysis and study of problems and solution in the field of city planning
POL 6951. Governor's Intern Program Credit to be arranged
Directed reading and research for students o work as interns in departments of state govem ment.

POL 6952. Legislative Intern Program Credit to be arranged.
Service learning program combining an acaemic study of the legislative process with internship at Georgia Legislature in winter quad ter. Interns selected competitively each year.

POL 8574. Special Problems in Political

Scienc

Credit to be arranged.
Topics to be selected.

SOCIOLOGY

SOC 1376. Introduction to the Principles of Sociology
3-0-3.
study of basic social relations, including social structure and functions, analysis of soci processes, the foundations of personality, and analysis of social organization.

SOC 1377. Social Institutions
3-0-3
An analysis of the structure and functions social institutions, including familial, education religious, economic, and political. A study of institutional change and social disorganization
SOC 1378. Social Problems In a Changing Society
3-0-3.
Some major social problems of modern soc ety including crime, poverty, pollution, war, ra ism, and urban unrest

3-0-3.
Factors affecting population problems, popula tion growth, fertility mortality migration, distrib tion, and composition.

SOC 3306. Urbanization

3-0-3. Prerequisite: SOC 1376
Growth of metropolitan communities, differentiation of functions, urban complexity, ecologia areas, the city as a way of life, measures and trends in the process of urbanization.
SOC 3308. Statistics for Planning
3-0-3.
Statistical principles for analysis of economic social, and population data, sampling, measure of central tendencies, normal curve, testing of findings, correlation and arriving at conclusions.

SOC 3330. Ethnic Minorities In American Society
3.0-3. Pr
3.0-3. Prerequisite: SOC 1376

The principles of intergroup relations as they relate to the various racial and cultural groups in American society.
SOC 3334. Social Stratification and Mobility 3-0-3. Prerequisite: SOC 1376 or consent of he department.
Process of stratification, including the criteria ior and characteristics of stratification. Implications of stratification for the functioning of society.
SOC 3335. Social Problems of Industry $3-0-3$. Prerequisite: SOC 1376 or consent of the department.
A study of the nature of human relations in arge-scale organizations, significance of auhority, roles, communication, status and group norms in the work situation.
SOC 3338. Individual and Society 3-0-3. Prerequisite: SOC 1376 or consent of the department
A study of the nature of interpersonal rela tions in small groups and in large social setings, a consideration of the problem of alienations and anomie.

SOC 3339. Urban Sociology

3-0-3. Prerequisite: SOC 1376
Introduces student to basic concepts of sociology as applied to urban phenomena, nature of urbanism, and consequences for social relations and human personality.
SOC 3340. Urban Ecology and Demography 3-0-3. Prerequisite: SOC 1376.
Involves application of ecological perspective to the study of urban phenomena, human spa tial distribution theories of city location and patterns of city growth.
SOC 3501. Sociology of Science $3-0-3$. Prerequisite: SOC 1376 or SOC 1377 or consent of instructor.
Introduction to Science and Technology as a social and cultural phenomenon. Topics include: the cultural contexts of the roles played by scientists and engineers in contemporary society and the institutional tensions between science and government.

SOC 3875-6-7. Special Topics In Anthropology 3-0-3.
SOC 4306. Technology and Society
$3-0-3$. Normally taken by seniors or graduate 3-0-3. No
students.
Analysis of social conditions which promote or retard technological activity. Particular emphasis on the social role of the scientific and engineering professions in that development.

SOC 4308. Seminar In Contemporary Urban Sociology
3-0-3. Prerequisites: SOC 1376 and consent o the department

Extensive and critical review of literature in the field in order to keep students abreast of the field in order to keep students abreast of
latest thinking concerning urban phenomena and problems. SOC
$3-0-3$ 3-0-3.
Principal focus on Third World countries as planning in development and thus affected by activity. Discussion of development issues at both the national and family levels.
SOC 4312. Seminar In Comparative Urban Development
3-0-3. Prerequisite: SOC 1376 and consent of he department.
Entails cross-national comparison of cities and urban regions, appropriate models for understanding cities and urban regions, and strategies for handling problems.
SOC 4750. Social Psychology-Sociology Measurement Seminar
3-0-3. Prerequisite: PSY 4410 or equivalent and consent of the department
Problems, implications, and applications rela Problems, implications, and applicalions roup behavior in social situations. Students will receive supervised project experience.

SOC 4756. Technological Forecasting

 3-0-3.Emphasizes forecasting future trends and specific developments in areas of technology. Develops methodologies for identifying future functional capabilities and needs. Case histories in technological forecasting are utilized.
SOC 4875-6-7. Special Topics in Sociology 3-0-3. Topics to be selected.

SOC 4999. Special Problems In Sociology Credit to be arranged.

TECHNOLOGY AND SCIENCE POLICY

TASP 6001. Technology, Science, and Society 3-0-3.
An intensive survey of the key issues in the relationship between technology and society. Technology and science are analyzed as knowledge systems and social institutions through an examination of major theoretical perspectives and cases.

TASP

The major techniques and analytical approaches to the policy-making process at various levels of government and in the private sector.

TASP 6003. Selected Socio-Technical Policy Issues
3-0-3.
A comprehensive study of current sociotechnical policy issues with emphasis on the writing of reports simulating those typically encountered in the field.
TASP 6011. Logic of Inquiry
3-0-3
The first course in the methodology core sequence familiarizes the student with basic conceptual issues and techniques, and prepares one to design and evaluate research programs
TASP 6012. Research Design and Data Analysis I
3-0-3. Prerequisites: TASP 6001 and ISYE 6739.

Focuses on communication of specific strateg and techniques for designing policy-relevant projects, data gathering, and statistical analysi TASP 6013. Data Analysis II and Forecasting 3-0-3. Prerequisite: TASP 6012.
A continuation of data analysis, considering the general linear model and topics in multiva ate analysis. Emphasis on the techniques of social forecasting.
TASP 7000. Master's Thesis
A thesis meeting the Institute's requirements. Required.
TASP 8121-2-3-4-5. Special Topics 1-0-1 through 5-0-5 respectively.
TASP 8545-6-7-8-9. Special Problems Credit to be arranged.

Rules and Regulations

STUDENT RULES AND REGULATIONS

The Committee of Student Rules and Regulations: John Archea, chairman, Richard Duke, Marilu McCarty, Matthew O'Brien, Carr Payne, William Sayle, three students and James Dull (Ex-Officio).
Originally approved by the faculty May 24, 1949. Revised printings: 1952, 1957 1960, 1965, 1968, 1971, 1973. Revised annually since 1973.

Index

I. Purpose
II. Responsibility for Notices and Change of Address
III. Attendance
IV. Grades and Scholastic Average
V. Scholastic Regulations
A. Classification of students
B. Eligibility for class rings
C. Scholastic standing
D. Change of majo
E. Exceptions
VI. Deficiencies
A. General
B. Removal of deficiencies
VII. Withdrawal From School
VIII. Readmission
IX. Scheduling
A. General
B. Academic load
C. Auditing of courses
X. Pass-Fail System
XI. Joint Enrollment at Georgia State University
XII. Examination
A. General
B. Examinations for advanced standing
C. Final examinations for degree candidates
D. Regulations covering final examinations
XIII. Undergraduate Degrees
A. General
B. Requirements for a degree

Craduation with academic distinction
D. Second undergraduate degree
XIV. Graduate Degrees
XV. Physical Education
XVI. Student Motor Vehicles
XVII. Medical Regulations
XVIII. Extracurricular Activities
XIX. Student Conduct Code
A. General
B. Academic misconduct
C. Nonacademic misconduct
XX. Regents' Statement on Disruptive Behavior
XXI. Disciplinary Administration
XXII. Exceptions

I. Purpose

These regulations are intended to set forth the requirements of the faculty to the end that a large student body may live and work together harmoniously with a minimum of friction and misunderstanding. Each student is expected to be a law-abiding citizen and to obey the laws of the City of Atlanta, Fulton County, the State of Georgia, and the United States.
II. Responsibility for Notices and Change of Address

A. Notices

All students will be required to have a box in the post office of the Georgia Institute of Technology which will be their official address, and they are expected to check this box each school day. Students are also expected to be aware of the contents of the general notices which appear in the Technique.
B. Change of Address

Students are responsible for reporting changes of residential address, within one week's time, to the Office of the Registrar.
C. Unclaimed Mail

Students are responsible for returning to the front window of the Post Office all mail in their post office boxes that is unclaimed after three days.

III. Attendance

A. General

1. Each quarter a course listing is published showing the time period for each class. Classes begin five minutes after the published starting time.
2. If an instructor should be late in meeting the class, the students shall wait twenty minutes after the published starting time. If the instructor has not arrived by that time, the students may leave unless specifically notified to await the

instructor's arrival.
 B. Class Attendance

1. There are no formal Institutional regulations regarding class attendance at the Georgia Institute of Technology. The resources of the Institute are provided for the intellectual growth and development of the students who attend. A schedule of courses is provided for the student and faculty to facilitate an orderly arrangement of the program of instruction. The fact that classes are scheduled is evidence that attendance is important; students should, therefore maintain regular attendance if they are to attain maximum success in the pursuit of their studies 2. All students are responsible for understanding of each instructor's policy regard ing absences; all students are expected to attend announced quizzes laboratory periods, and final examinations. Although it is recognize that occasionally it may be necessary for students to be absent from scheduled classes or laboratories for personal reasons, students are responsible for all material covered in their absences, and they are responsible for the academic consequences of their absences. Work missed may be made up if the reasons for absences are acceptable to the instructors. 3. Students who are absent because of participation in approved Institute activities (such as field trips and athletic events) will be permitted to make up the work missed during their absences. Approval of such activities will be granted by the Student Academic and Financial Affairs Committee of the Academic Senate and state ments of the approved absences may be obtained from the Office of the Registrar. from the Office of the Registrar.

V. Grades and Scholastic Averag

A. Grades

1. The letter grades for completed courses used in the calculation of scholastic average ar the following:

A-excellent (four quality points);
B-good (three quality points);
C-satisfactory (two quality points);
D-passing (one quality point);
-failure, must be repeated if in a required course (no quality points)
2. The following grades will be used in the cases indicated and will not be included in the calculation of scholastic average:
S-passing of a course taken under pass-fal or completion of a course in which no letter grade may be assigned;
U-failure of a course taken under pass-fail or unsatisfactory performance in a course for which no letter grade may be assigned
V-assigned when the course has been audited; no credit given; implies no academic achievement on the part of the student and cannot serve as the basis for credit by examination at any future date.
. The following grades will be used in the cases indicated:
-incomplete. Assigned when a student is incomplete in some part of the course for reasons deemed satisfactory by the instructor, or is absent from the final exam ination for reasons deemed satisfactory by the instructor. If the student's record is so poor as to preclude his/her passing, or U. (Note: registering and repeating a course in which an "" grade has been assigned will not remove the outstand "I", -out before
out before the end of the fifth week. This symbol indicates that a student was perdrawals without penalty will not be permted after the fifth week except in permit hardship as determined by the registrar Ordinarily, students who withdraw from school and receive all grades of W will not be permitted to reenroll the next suc ceeding quarter Final grades are re
the Final grades are reported to the registrar at . If a final couch term.
. If a final course grade is believed to be in arror, the student should contact the professor grade will be made after the end of the student's next quarter in residence.

Scholastic Average

scholastic average is calculated as the ratio ${ }^{i}$ the total number of quality points earned to e total number of quarter credit hours in which final letter grade has been assigned.

Scholastic Regulations

Classification of Sudents

Undergraduate students with the exception of n-degree seeking students shall be classified he end of each quarter by the Office of lagistrar on the bas for which they have credit in uarter cred hours credit in cordance with the for leshman $\quad 0-45$ credit hours Sophomore \quad 91-90 credit hours Junior
Senior 137-136 credit hour
students who have completed all requirements for a particular classification as defined by their major department may petition for reclassification rough their major department
Students scheduled for twelve credit hours or ore are classified as full-time students.
Eligibility for Class Rings
student may purchase a class ring anytime atter receiving credit for 106 quarter credit hours.
Scholastic Standing
The minimum satisfactory scholastic average 1.7 for freshmen, 1.9 for sophomores, 2.0 for niors and seniors, and 2,7 for graduate students. Good academic standing
a. Students not on academic probation are in ood academic standing
b. Undergraduate students in good academic tanding may schedule up to twenty-three credit hours with the approval of their school.
c. Graduate students in good academic standng may schedule up to eighteen credit hours with he approval of their school.
3. Academic warning
a. A student who has an overall scholastic average below the minimum satisfactory scholarship requirement, or whose scholastic average lor work taken during any quarter is below this equirement, shall be placed on academic warning b. An undergraduate student on academic warning shall be limited to a maximum schedule load of sixteen credit hours.
4. Academic probation
a. A student on academic warning whose scholastic average is below the minimum satislactory scholarship requirement for any quarter shall be placed on the academic probation. Also see 6.b and 6.c opposite
b. An undergraduate student on academic b. An undergraduate student on academic probation shall be lim
fourteen credit hours.
5. Dean's List

The Institute encourages excellence in scholarship and gives official recognition to undergradship and gives official recognition to undergradlishing the Dean's List at the end of each academic quarter. The Dean's List includes al undergraduates who have, during the preceding quarter, made an academic average of 3.0 or higher, carried a load of at least twelve hours of course work on a credit basis, and are not on academic warning or probation or subject to any disciplinary action.
disciplinary action.
6. Dismissal for unsatisfactory scholarship a. The Institute may drop from the rolls at any a. The Institute may drop from the rolls at any
time a student whose record in scholarship is time a student
unsatisfactory.
b. An undergraduate student whose scholastic average for any quarter is 1.0 or below may be referred to the Undergraduate Curriculum Commite, which may place the student on acadent's provious record student's previous record, if such action is deemed advisable.
c. A graduate student whose scholastic average for any quarter is 2.0 or below may be placed on academic probation or drop, regardess of the student's previous record.
d. A student on academic probation whose cholastic average for the quarter of probation is below the minimum satisfactory scholarship requ below the minimum satisfactory scholarship is below the mall be dropped for unsatisfactory requirenent shall be dropped from rolls scholarship and dropped from the rolls.
e. The record of a student on acadernic
probatactory but whose quarter average is unsa satisfactory but whose quarter average is unsa isfactory may be reviewed by the Undergraduate Cus ander Co dropee, as may be continued on academ be dropped or may be continued on academic probation.
7. Academic review

A student who normally would be dropped from the rolls for academic deficiencies but appears from the record not to have completed the quarter may be placed on academic review. This is a temporary standing which makes the student ineligible for registin explanation is given within a reas the standing is changed to drop
8. The scholastic standing regulations given above for graduate students do preclude a school from having more rigorous requirements
9. Part-time students.
a. These regulations do not necessarily apply to students scheduling less than twelve credit hours. b. The scholastic standing of these students may be determined by either the Undergraduate Curriculum Committee or the Graduate Committee, as appropriate, with the decision based on individual merit in each case.
D. Change of Major*

1. Undergraduate students, by filing the required form, will be permitted one unrestricted transfer between majors (including undecided) until they have accumulated credit for ninety hours. After ninety hours or upon subsequent request for transfer, the transfer will be permitted at the discretion of the school which the student is seeking to enter.
2. Graduate students, by filing the required form, may transfer with the concurrence of the schools involved and the Graduate Dean. E. Exceptions

Exceptions to these scholastic regulations may be made by the Undergraduate Curriculum Committee or the Graduate Committee, as appropriate, whenever a consideration of the students complete record indicates that the application of a specific regulation will result in injustice.

VI. Deficiencies

A. General

1. A student who has received a grade of " l ", F, or U in a course has a deficiency in the course.
. A student whose final grade is " F " or " U has a failure in that course. He must repeat and pass the course in class before credit will be allowed. (See B.4)

B. Removal of Deficiencies

1. An incomplete in a course must be removed and the grade change reported to the registrar not later than the end of the student's next quarter of residence.
2. The grade of "I" will not be counted in the computation of the student's point average at he end of the quarter in which the grade is eceived, nor in any quarter immediately following in which the student is not enrolled. If the "I" is not removed and the change of grade reported by the end of the student's next quarter in esidence, the grade of will be changed to an ' F ' on the student's permanent record and will count thereafter as an " F ' in the computation of point average. (Note: registering and

[^1]repeating a course in which an "I" grade has previously been assigned will not remove the outstanding " " grade.)
3. A student who has a failure in a required course must schedule that course the next tim it is offered while the student is in residence. 4. A degree candidate who has a single cours deficiency for graduation will be permitted one reexamination not later than seventy-two hours before commencement exercises and thereatte one examination per annum until the deficienc is removed, with the dates of the annual perioc beginning thirty calendar days after the commencement exercises. This reexamination mu be authorized by the registrar before being scheduled. The examination will be graded " or "U" and grade so recorded. The previously assigned "F" or " U " will remain a part of the record
5. A degree candidate who has otherwise com pleted all requirements for graduation and who has an incomplete in laboratory work taken during his final quarter in residence may remo the incomplete at the convenience of the department of instruction concerned

VII. Withdrawal From School

A. General

1. A student eighteen years of age or older may withdraw from school upon the submission a formal resignation during the first five weeks of the quarter
2. A student under eighteen years of age mus include written permission from parents or guardian along with a formal resignation in ord to withdraw from school before the official close of a quarter.
3. The proper forms for withdrawal are available from the Office of the Registrar. Students who withdraw without proper notification will receive grades of " F ", " U ", or "for the courses in which they were registered that quarter. 4. Permission and/or formal resignation are no required when a student has completed an official school quarter and does not register for the succeeding quarter.
4. See Section IV.A. 3 for further information on withdrawal.
B. Readmission

See Section VIII for the regulations concerning readmission.

VIII. Readmission

A. Genera

1. A student who for any reason has remained out of school one or more quarters excluding the summer quarter must apply for readmission This application, with all pertinent supporting information (except possibly another college tran
tipt-see 2 below), must be submitted to the hegistrar before the deadline for the quarter for which readmission is requested, as listed below:

all-August 1

Spring-March 1 inter-December 1 Summer-June 1

Applications received after these deadnes will not be accepted
Students who have attended other coleges should plan their readmission so as 0 allow ample time for official transcripts rom those colleges to be sent to the Georgia Institute of Technology. If official lanscripts have not been received prior to he last day of registration, the studen seeking readmission will not be allowed to complete registration
Readmission

1. A student who has been dropped once for unsatisfactory scholarship will ordinarily not be eadmitted. A student who seeks an exception this rule must have been out of the Institute or at least one quarter of the academic year and have had a conference with the major school concerning the readmission prior to the appropriate date listed in VIII.A. 1 above. Because the summer quarter is not included in the academic year, students who are dropped at the end of the spring quarter will not be eligible for readmission until the beginning of the following winter quarter.
2. A student who is dropped a second time for unsatisfactory scholarship will not be readmitted 10 the Institute.
Transfer Credit
Course work pursued at another institution after dismissal from Georgia Tech for unsatisfaclory scholarship may be considered as evidence or readmission.
3. If readmitted, a student will not necessarily be given transfer credit for work taken at another institution after dismissal from Georgia Tech.
4. In no case will credit be allowed (except by examination) for courses completed at another institution that have previously been failed at Georgia Tech.

X. Scheduling

A. General

. Each student is strongly advised each quarter to schedule all prerequisite courses possible and should schedule all back courses before scheduling any advanced courses.

2 In dropping courses from their schedule, students must retain back courses in preference to advanced courses, unless permission to do otherwise is obtained from their school director 3. The scheduling of back courses is the responsibility of the students, and they will be held accountable therefor
4. Subject to approval by a faculty advisor, a course may be taken more than once for academic credit All grades will count in determining the scholastic average, but the course will be counted only once for credit toward a degree.
5. See Sec. X for Institute rules for courses taken on a pass/fail basis.
B. Academic Load

1. The normal load scheduled by an undergraduate student in good standing should not exceed twenty-one credit hours. However, in ex ceptional cases, a total of twenty-three credit hours may be scheduled with the approval of the school.
2. Maximum credit hour loads are given in Sec V.C.2, C.3, and C.4. Any hours above these limits must have prior approval of the Undergraduate Curriculum Committee or the Graduat Committee, as appropriate.
3. Graduate students must maintain a minimum of three credit hours each quarter of enrollment

C. Auditing of Courses

1. Auditing of courses will be permitted to regularly enrolled students who have obtained the approval of their advisor and the departments concerned. Such courses count at full value in computing the student's load
2. The grade for auditing is " V " (visitor), and this grade will have no effect on the student's grade point average.
3. No acadmic credit is granted for audit participation in a course.
4. Students are not permitted to change to and from an auditing status except through the regular procedures for schedule change or withdrawal.

X. Pass/Fail System

A. General

1. At the option of the student's major school credit toward a bachelor's degree may be alcredit toward a bachelor's degree may be ail system and completed with a grade of "pass." The major school must approve all pass/fai ourses included in the final program of study and students should become aware of school requirements.
2. In graduate program, thesis research hours will be evaluated on a pass/fail basis.
3. Pass/fail enrollment in any course may be restricted by the school or department offering the course.
4. Students who are permitted to register under the pass/fail system will be so designated on the official class rolls; the grades recorded will be " S " for pass, or " U " for failure. These grades will not be included in the calculation of the grade point average and cannot be changed to a grade which will count in the average. 6. Withdrawals from courses taken on a pass fail basis will follow the same rules which govern withdrawals from courses included in the scholastic average
B. Credit hours permitted
5. The maximum number of pass/fail hours permitted in an undergraduate program of study depends upon the number of credit hours that will be completed at Georgia Tech, as follows: Hours Included

Hours allowed
in program of study
50 to 89 credit hours
on pass/fail basis 0 to 134 credit hours \qquad .3 credit hours 135 to 179 credit hours 6 credit hours 180 or more credit hours.................. 12 credit hours 2. For a second undergraduate degree, these limitations apply to the credit hours approved for the program of study for that second degree 3. A master's degree program of study may clude up to six course credit hours on a pass/fail basis.

XI. Joint Enrollment at Georgia State University

A. General

1. With the approval of the student's major school, a student may schedule courses at Georgia State University if such courses are not available at Georgia Tech.
2. All registration activities are performed at Georgia Tech.
3. Withdrawals from Georgia State University courses will be performed at Georgia Tech based on usual withdrawal regulations and procedures, with the exception that there will be no refund of fees.
4. Further information is available from the Office of the Registrar.
B. Eligibility
5. Joint enrollment is available only to degreeseeking juniors, seniors, and graduate students 2. To participate in joint enrollment, a student must be in good academic standing during the during the quarter of joint enrollment

XII. Examinations

A. General

1. All reexaminations, examinations for advanced standing, and special examinations must be authorized by the registrar before being scheduld 2. If the instructor considers it necessary during an examination, students may be required to present their student identification card to the instructor or an authorized representative.
B. Examinations for advanced standing 1. Students who offer satisfactory evidence tha they are qualified to do so may receive credit fo a course by examination. Such an examination is called an examination for advanced standing 2. Examinations for advanced standing require the recommendation of the department of instruction in which the course is offered, paymen of the appropriate fee and authorization by the registrar.
2. Examinations for advanced standing will or dinarily be offered during the week of final examinations.
3. A student will not be allowed to take an examination for advanced standing in a given course more than twice.
4. An examination for advanced standing will be reported with an " S " or " U " grade. Neither grade will be included in the calculation of the scholastic average
C. Final examinations for degree candidates A degree candidate will be exempted from examinations during final examination week in he quarter of graduation.
D. Regulations covering final
examinations
A student reporting to a final examination room more than fifteen minutes after the scheduled starting time shall not be allowed to take the examination unless a satisfactory explanation presented to the instructor conducting the examination.

XIII. Undergraduate Degrees

A. General

1. To be considered for admission to candidac for a degree, a student must have passed the Regents' Test and must make a formal petition for the degree during the quarter preceding the inal quarter in residence. A petition for degree will not be accepted until the Regents' Test has been passed.
2. Students desiring to withdraw their name from the rolls of degree candidates must formally withdraw the petition for degree before the end of the eighth week of the quarter,
3. A degree program may include a maximum six hours or basic ROTC and a maximum of nine hours of advanced ROTC.

The diploma of a candidate for a degree shall bear the date of the commencement at hich the degree is awarded.
No student may be considered a candidate or a degree unless the final fifty credit hours rquired for the degree are earned in residence Georgia Tech.
Work which was completed more than ten ears prior to commencement must be validated y special examinations before it can be counted ward a degree

Requirements for a degre

To be a candidate for a degree, undergradue students must have passed all courses quired for the degree, must have a scholastic verage for their entire academic program of at ast 2.0, and must have done creditable work their departmental courses so as to merit the menation for the degree by the director and faculty of their school.
Students, with the approval of their school or specialization, may satisfy the requirements for an undergraduate degree by meeting all of the equirements listed in any one of the catalogs in effect during the period of their enroliment in the stiute. A catalog is of eficulation is prior to the students date of mariourter shown in e ending date of the spricg quar is pherned he calendar printed in the cataloginations.
Constitution and history examded March
a. The Georgia law as amended Narch 4, 1953, requires that before graduation all lents pass examinats and courses in Unied States and Geor Constitution well as United Slates and Georgiatitut for the b. Courses wha Corgia Constitution and United Slates and Gere listed in this catalog in istory examinations are lised Social Sciences the section for the Deparm. Regents' testing program
All students completing requirements for bac calaureate degrees are required by the University System of Georgia to pass an examination designed to measure proficiency in reading and English composit. It mam be passed before as the Regents' Test. It must be passed before a petition for graduation will be accepted. Students should obtain further information from the egistrar
5. Physical education requirement.
a. Unless medically disqualified, all students are required to complete the swimming course PE 1010 before graduation.
b. See Sec. XV for a complete description of the physical education requirements at Georgia Tech.
C. Graduation with academic
distinction

1. For graduation with highest honor the minimum scholastic average shall be 3.6. For graduation with high honor the minimum scholastic average shall be 3.4. For graduation with honor the minimum scholastic average shall be 3.2 . 2. A student must have earned at least 100 credit hours at Georgia Tech to graduate with highest honor, with high honor, or with honor. D. Second undergraduate degree
2. A student enrolled for a second undergraduate degree shall be classified an undergraduate student.
3. To be a candidate for a second undergraduate degree, a student must have the recommendation of the director of the school concerned and the approval of the Undergraduate Curriculum Committee.
4. To obtain a second undergraduate degree, a student must complete all major required courses for the degree and earn credit for a total of at least fifty credit hours in excess of the requirement for any previous degrees earned.
5. All regulations in Sections XIII A, B, and C apply to students completing second degrees.

XIV. Graduate Degrees

A complete description of Institute requirements for the master's and doctor's degrees is given in this catalog in the section entitled "Information for Graduate Students." Also see Section XIII.A. 2 for a regulation concerning withdrawal of a petition for degree.

XV. Physical Education

A. General

1. All students entering Georgia Tech as freshmen are required to complete satisfactorily four credit hours in physical education courses. (For a complete description of the physical education requirements at Georgia Tech, refer to the Department of Physical Education and Recreation listed under the College of Sciences and Liberal Studies in the "Curricula and Courses of nstruction" section of this catalog.)
2. Transfer students will be granted credit for comparable physical education courses comleted at other institutions.
3. Students who are twenty-five years of age or older upon matriculation to the Institute have the option of satisfying the physical education re quirement for graduation by completing the regular physical education requirements or by completing PE 1040 and one hour of free electives.
B. Medical Exemptions
4. The Health Information Record on file with the Director of Health will be used to determine any medical exemptions from physical education courses. All certificates of disability from peronal physicians must be endorsed by the Student Health Services before they will be accepted by the Department of Physical Educaon and Recreation
5. Students who are medically exempt from a single 1000 -level course including swimming must substitute another 1000-level activity course in its place, if possible
6. Students who are medically exempt from all physical education activity courses will be required to complete PE 1040 and one hour of free electives to satisfy their physical education requirement.

XVI. Student Motor Vehicles

Students desiring to operate motor vehicles on campus are subject to all rules set forth by the Georgia Tech motor vehicle regulations.

XVII. Medical Regulations

A. General

1. No student with a contagious disease may stay in a dormitory or fraternity house or attend class. Any illness with fever should be considered a contagious disease until checked by a physician. Every student is held individually responsible for reporting such illness immediately to the infirmary.
2. A current Health Information Record and a consent-for-treatment form must be on file with the Director of Health.
B. Infirmary Regulations

Students must conform to infirmary regulations, as posted in the infirmary, while confined as patients in the infirmary.

XVIII. Extracurricular Activities

A. Participation

1. In order to be eligible for participation in extracurricular activities, a student must satisfy the following requirements:
a. be enrolled in a degree program;
b. maintain a schedule with at least six credit hours on a credit basis, or be a student in the Cooperative Division on work quarter;
c. not be on academic or disciplinary probation 2. Participation also requires satisfaction of any additional requirements established by the Student Activities Committee of the Academic Senate.
B. Scheduling of events
2. During the first week of each quarter, a schedule of public performances to be sponsore by each student organization must be submitte to the Dean of Students for approval by the Student Academic and Financial Affairs Commit lee of the Academic Senate.
3. All student organizations must make written application to, and receive permission from, the Dean of Students to hold a social function. The request must be submitted at least one week before the date of the activity, and the permission must be received before making any agree ments in connection with the function.
4. In each quarter, the weekend before final examinations is closed to student sponsored extracurricular events.

C. Student organizations

Requirements and standards for chartering a student organization are established by the Student Activities Committee of the Academic Senate and are available from the Dean of tudents.
D. Fraternity and Sorority regulations

1. To be eligible for initiation, a student must be a full-time student not on academic or disciplinary probation.
2. The initiation of any individual must be regisered with and approved by the Dean of Students prior to the initiation.
3. The individual must meet all Georgia Tech I.F.C. requirements concerning initiation 4. All fraternities and sororities are subject to he rules established by the Georgia Tech I.F.C. . Intercollegiate athletic regulations 1. To be eligible for intercollegiate athletic competition, a student must be enrolled in a degree program, carrying a workload of at least welve credit hours, and not on academic or discilinary probation. In addition, he or she must e making satisfactory progress towards a degree and meet any further requirements of the NCAA or other governing organization; see the athletic director for details.
4. No student may be excused from regularly scheduled classes for athletic practice.
5. No student may participate in more than two sports in intercollegiate competition in any school year, except by permission of the Dean of Students. Being manager or assistant manager is counted as participation within the meaning of this rule.

XIX. Student Conduct Code

General

student enrolling In the Georgia Institute of echnology assumes an obligation to conduct inself or herself in a manner compatible with Ition. Actions considered inimicable to the Instite and subject to discipline fall into the catepries of academic and nonacademic misconduct 3. Academic misconduct
cademic misconduct is any act which does or ould improperly distort student grades or other udent academic records. Such acts include need not be limited to the following
Possessing, using, or exchanging improperly quired written or verbal information in the eparation of any essay, laboratory report, exmination, or other assignment included in an cademic course;
Substitution for, or unauthorized collaboration with, a student in the commission of academic equirements
3. Submission of material which is wholly or substantially identical to that created or published by another person or persons, without adequate credit notations indicating the authorship
(plagiarism);
False claims of performance for work which has been submitted by the claimant;
5. Alteration or insertion of any academic grade or rating so as to obtain unearned academic redit;
Deliberate falsification of a written or verbal statement of a fact to a member of the faculty 0 as to obtain unearned academic credit;
Forgery, alteration, or misuse of any Institute document relating to the academic status of the student.
Nonacademic misconduc
Nonacademic misconduct includes the following secifically prohibited acts whenever, unless otherwise stated, such acts occur on Institute owned or controlled property or Institute related premises:
Alcohol abuse, including
a. Conspicuous or flagrant possession of aloholic beverage
b. Intoxication made manifest by boisterousness, owdiness, obscene or indecent conduct or appearance, or vulgar, profane, lewd, or unbecoming language;
c. Disorderly conduct associated with the use of alcoholic beverages.
2. Pushing, unjustifiably striking or physically assaulting, or otherwise intentionally threatening or endangering the person of any he faculty, administration, staff, or student body or any visitor to the campus.
3. Disorderly conduct, including:
a. Breach of the peace or obstruction or disruption of teaching, research, administration, disciplinary procedure, or other Institute activities, including its public service functions or other authorized activities
b. Refusal to vacate a building, street, sidewalk, driveway, or other facility when directed to do so by any properly idenified instiute faculty administration or staff personnel while these persons are acting in the performance of thei duties;
c. Lewd, indecent or obscene conduct or expression;
d. Failure to comply with instructions or directions of any properly identified faculty, administration, or staff personnel while these person are acting in the performance of their duties. 4. Drug abuse, including the use or possession (without valid medical or dental prescriptions), manufacture, furnishing, sale, or any distribution of any narcotic or dangerous drug controlled by law; this provision is not intended to regulate alcoholic beverages, which are covered in Section 1 above.
5. Unauthorized use of college facilities including
a. Unauthorized entry into any Institute build ing, office, or other facility or remaining in any building after normal closing hours;
b. Unauthorized use of any Institute telephone facility or of any other Institute facilities;
c. Possessing, using, making, or causing to be made any key for any Institute facility without proper authorization;
d. Unauthorized use of another student or faculty member's password to gain access to the computer or computer output. This includes but is not limited to any knowing and willing use of fradulent means to process computer programs and access computer files.
6. Furnishing false information to any Institute official, or offering false statement in any Institute disciplinary hearing.
7. Forgery, alteration, or misuse of any Institute document, record, or identification.
8. Any hazing action which tends to cause or allow physical or mental suffering in connection with rites or ceremonies of induction, initiation, or orientation into Institute life or into the life of any Institute group or organization.
. Safety violations, including
a. Intentional false reporting of a fire or that any explosive device has been placed on Instiute property;
b. Tampering with fire-fighting equipment, safety devices, or other emergency or safety equipment;
c. Setting an unauthorized fire
d. Possession of unauthorized fireworks, fire arms, ammunition, or dangerous weapons or materials;
e. Unauthorized sale, possession, furnishing or use of any incendiary device or bomb; facilities or smoking tobacco, in any form, in signs, or where smoking has been prohibited by any faculty member or other official.
10. Theft and/or unauthorized possession of Institute property or property of a member of the Institute community or campus visitor.
11. Malicious or unauthorized damage or destruction to Institute property or property belonging to any member of the Institute community or campus visitor.
12. Violation of rules governing residence in Institute owned or controlled property such as dormitories, family housing, fraternities, and organization housing.
13. Playing of games of skill or chance for money or other items of value.
14. Failure to remit, return, or submit finan cial obligations, property or records of the institute, within the time prescribed by the Institute.
15. Knowingly acting in concert with any other person to perform an unlawful act or to violate an Institute regulation or policy.
16. Violations of the Georgia Tech Motor Vehicle Regulations.
17. Violation of the Regents' Statement on Disruptive Behavior, the full text of which is given in Section XX.
18. Repeated violations of the published rules and regulations of the Institute, which cumulatively indicate an unwillingness or inability to conform to the Institute standards for student life.
19. Violation of the conduct code, wherever it may occur, violation of the laws of any city county, state, or the United States, where the violation creates a clear and present danger of material interference with the normal or orderly processes of the Institute or its requirements of appropriate discipline.

XX. Regents' Statement on
 Disruptive Behavior

The following is the policy of the Board of Regents regarding disruptive behavior in any institution ouniversity system. The rights, esponsibilities and prohibitions contained in this regulations. The Board
The Board of Regents of the University Sysfully freedom of expression by ully freedom of expression by each member of
he academic community and to preserve and protect the rights and freedom of its faculty members and students to engage in debate discussion, peaceful and nondisruptive protest, nd dissent. The following statement relates specifically to the problem described below. It does not change or in any way infringe upon the board's existing policies and practices in support of freedom of expression and action. Rath r, it is considered necessary to combat the ultimate effect of irresponsible disruptive and bstructive actions by students and faculty which end to destroy academic freedom and the istitutional structures through which it operates
In recent years a new and serious problem as appeared on many college and university campuses in the nation. Some students, faculty members and others have on occasion engage demonstrations, sit-ins, and other activities hat have clearly and deliberately interfered with - regular and orderly operation of the instiueen the physical occupation of a building campus area for a protracted period of timer the use or display of verbal or written obsce or nvolving indecent or disorderly conduct
These actions have gone beyd all
ore recognized bounds of meyting for herosion persuasion, or even protest in that: (1) acquipscence to or even protest in that: (1) is the condition for dispersal and (2) sonable and written directions (2) the reaofficials to disperse have been ignored Such activities thus have become clearly red. Such as an action of force oper learly recognizable as an action of force, operating outside al that of intellectual on the campus, including are at the very heart of The Board of Regents is cation.
this new prob regents is deeply concerned by this rulings Georgia, under all applicable court higher eduction in thite tradtion of is ultimately responsible for Sales, the board tion of the several institutions of the univerasystem and the preservations of the university dom in these institutions. The Bacademic freewill not divest itself of this Board cannot and
will not divest itself of this responsibility. Of equal or even greater importance, such action ore as has been described above This essence is essence of higher education. this essence is found in the unnampered free dom to study, investigate, write, speak, and freedom, which reat issue of lie. This freedom, which reaches its full flowering on college and jury system or the decracy, comparable to the ury system or the electoral process.

For these reasons and in order to respond irectly and specifically to this new problem, the oard of Regents stipulates that any student, culty member, administrator, or employee, act g individually or in concert with others, who learly obstructs, disrupts, or attempts to obstruct or disrupt any teaching, research, adminis rative, disciplinary, public service activity, or any ther activity authorized to be discharged or held on any campus of the Uniscrity System Georgia is considered by we boand to have committed an act or gross irresponsibily and shall be subject to disciplinary procedures, possibly resulting in dismissal or termination of employment.
The Board reaffirms its belief that all segments of the academic community are under a strong obligation and have a mutual responsibility to protect the campus community from disorderly, disruptive, or obstructive actions which interfere with academic pursuits of teaching, learning, and other campus activities
The Board of Regents understands that this policy is consistent with resolutions adopted by the American Association of University Professors in April, 1968, by the Association of Ameri can Colleges in January, 1968, and by the executive committee of the Association for Higher Education in March, 1968, condemning actions taken to disrupt the operations of institutions o higher education.

XXI. Disciplinary Administration

A. Disciplinary procedures

1. All acts of misconduct (excepting violations of motor vehicle regulations) on the part of students shall be reported to the Dean of Students, who is designated the principal administrator to enforce Institute disciplinary measures as they pertain to student academic or non academic misconduct
2. The Dean of Students shall investigate alleged acts of student misconduct. If the investigation indicates that further action is necessary, the Dean of Students shall notify the accused in writing. This written notification shall contain a statement of the nature of the alleged or suspected misconduct, and slate the sections of the conduct code the student is alleged to have violated.
3. The Dean of Students or the dean's authorized representative will normally confer with the accused student, and at this conference the student may admit or deny the alleged violation, the student may waive further hearing and appeals(s) in writing and request that the Dean of Students take appropriate action, or may request a hearing as specified in 4,5 , or 6 below.
4. Cases of academic misconduct will normally be referred to the Student Honor Commitee, which shall hear and try cases involving aca demic misconduct on the part of any student 5. Cases of serious nonacademic misconduct which may result in suspension or expulsion will normally be referred to the Graduate Judiciary or Undergraduate Judiciary Cabinet, which shall hear and ty these cases. This does not preclude possible legal actions by appropriate law ludercement agencies in those cases of nonenemic misconduct in violation of federal, state or local law.
If the case
. ension or expulsion, the Dean of Students xcept that the dean shall at the request of the excepled or for good cause, may refer any case af nonacademic misconduct to the Graduate Judiciary or Undergraduate Judiciary Cabinet 7 Students accused of an act of academic misconduct or nonacademic misconduct are enmisconduct or nonacademicents or quardian of he charges. Parents or guardian will, if requested, be granted a conference with the Dean of Students prior to the hearing.
. An accused student will continue to attend . An accus required Institute functions until the hearing is held and a decision is rendered Exceptions to this will be made when the Exceptions to $h i$ present danger of materially interfering with the presente's normal porations or the requirements instule's nom operation of appropriate itudents may impose such cases the Dean of Students may impose temporary protective ming the hearing; such protective mea sion, pending hearing, such protective m sure, if applied, will be wino avoidable prejudice to the student.
B. Student Honor Committee
B. Student Honor Commitee Committee shall consist of four members of the corps of instruction of four members of the elected from the Academic Senast junior stand undergraduate students with at easil and one ing elected by the Student by the Graduate Student Senate. Student members must have good academic standing and must not be on disciplinary probation. The chairman shall be elected annually by the committee from among the annually by the committee from The secretary sha Academic appointed by the chairman.
2 The committee shall hear and try all case referred to it involving alleged dishonesty in retered to i thors on the part of students. The acadenio in the case shall be transmitted to the decise or the case shansible for recording it, for ofe, the tericially and for implementing notifying the student officially and for implementing the action.
5. In its distributed minutes and in the annua report of its activities and findings, the committee shall preserve the anonymity of individuals by generalizing the issues involved and the actions taken
C. Student judiciary
6. The Graduate Judiciary shall consist of a graduate student chairman and six graduate student justices. The graduate student justices and chairman shall be currently enrolled, fulltime graduate students in good academic standing and not on disciplinary probation. They are appointed by the graduate student body president and approved by the Graduate Student Senate. The Graduate Judiciary shall normally hear all cases of graduate student nonacademic misconduct in which there is the possibility of suspension or expulsion of the accused student. 2. The Undergraduate Judiciary Cabinet shal consist of an undergraduate student chairman and ten undergraduate student justices. The undergraduate student justices and chairman will be currently enroiled, full-time, undergraduate students in good academic standing and not on disciplinary probation. They are appointed by the student body president and approved by the Student Council. The Undergraduate Judiciary Cabinet shall normally hear all cases of undergraduate student nonacademic misconduct in which there is a possibility of suspension or expulsion of the accused student. D. Procedural rights of the accused Students accused of an act of misconduct and summoned to a hearing before the Student Honor Commitee, Graduate Judiciary or Un
dergraduate Judiciary Cabinet have the right to. 1. Be accompanied by an advisor of their choice;
7. Remain silent with no inference of guilt drawn herefrom
8. Question the complainant
9. Present evidence in their behalf;
10. Call pertinent witnesses in their behalf;
11. Cross-examine witnesses;
12. In Undergraduate Judiciary Cabinet hearings he accused may challenge and unseat as many as four student justices (the chairman cannot be struck; a quorum of six student justices and the chairman must remain);
13. Appeal.
E. Hearing procedures

The chairman of the appropriate hearing body shall set the date, time, and place of the hearing, shall notify the members of the hearing body, and summon all principals in the case (defendants and witnesses)
2. The chairman of the appropriate hearing body shall notify the accused student in writid at least three days in advance of the scheduld hearing. The written notification should, if reasonably possible, be hand-delivered; if no easonably possible, notification should be by registered mail to the student's local addres. The written notification should specify
a. The date, time, and place for the hearing
b. A statement of the nature of the alleged suspected misconduct with which the student accused, with sufficient particularity to ensure opportunity to prepare for the hearing
c. Names of witnesses scheduled to appear 3. Decisions of the hearing body shall be by majority vote. A quorum for the Student Honor Committee shall consist of five members, thre faculty members, and two students. A quorum for the Undergraduate Judiciary Cabinet shall consist of the chairman and six justices. A quorum for the Graduate Judiciary shall co of the chairman and four justices
4. Members of the hearing body shall disquality themselves if their personal involvement in the hearing is of such a nature as to prejudice the case.
5. The hearings of the Student Honor Committee, Graduate Judiciary, and Undergraduate Judiciary Cabinet shall ordinarily be closed except for the accused, the accused's advisor, and those directly involved; exceptions may be made at the discretion of the chairman. The hearing body may exclude any person who may be reasonably expected to interfere materially w the hearing or who does interfere materially with the hearing. Hearing body deliberations are closed to all but the hearing body members. 6 . The hearing body shall make a tape recording and/or summary transcription of the proceedings.
7. The hearing body shall provide a brief written summary of each case with recommendations for appropriate disciplinary action to the Dean of Students and to the student involved.
8. The Dean of Students will review the case and recommendations and implement
disciplinary action.
F. Disciplinary measures

For violations of Institute rules and regulations or for acts of student misconduct, academic or nonacademic, the following disciplinary measures may be taken. This list is not exhaustive and may be modified to meet particular circumstances in any case.
. Expulision-permanent severance of the student's relationship with the Institute;

Disciplinary suspension-temporary severance the student's relationship with the Institute for specific period of time, though not less than ne quarter;
student expelled or suspended shall leave the lampus and not visit the campus during the eriod of suspension or expulsion, except when official school business. To violate this stipu ation would affect adversely the student's chances or readmission.
Reprimand-an oral and/or written statement if disapproval issued to the student;
Restriction-exclusion from participation in Rcial activities and loss of identification card ivileges;
Disciplinary probation-notice to the student hat any further major disciplinary violation may sult in suspension or expulsion; may include elling of restrictions and/or issuing a reprinano standing and may not participate in extracurricular activities.
6. Fines;

Restitu
Restitution-reimbursement for damage to or nisappropriation of property; this may take the frm of appropriate service or other compensation 3. Forced withdrawal-withdrawal from the academic course within which the offense occurred without credit for the course,
. Change in grade-grade change for the course nhich the offense occurred

G. Appeal procedures

If accused students or accusers are dissatis fied with the action taken by the Dean of Students, they may appeal the case in writing to the president of Georgia Tech within five days after the action about which there is a complaint. Such appeal shall recite all reasons for dissatisfaction with the previous decision
2. The president, within five days, shall refer the appeal to the Student Grievance and Appeal Committee. This committee shall review all facts and circumstances connected with the case and shall within five days make its findings and report thereon to the president. After consideration of the committee's report, the president
shall within five days make a decision which shall be final so far as the Institute is concerned 3. The Student Grievance and Appeal Commit tee shall consist of three members of the corp of instruction elected from the Academic Senat and two students with at least junior slanding elected jointly by the Student Council and Graduate Senate. The chairman shall be elected annually by the committee from among the elected Academic Senate members. The secre tary shall be appointed by the chairman.
4. The Board of Regents of the University System of Georgia is the final appellate author ty for all cases involving students who have been suspended or expelled. Should aggrieved persons be dissatisfied with the decision of president, they may apply to the Board of Regents, without prejudice to their position, for a eview of the decision. The application for review shall be submitted in wring to the execuive secretary of the board within a period of went days following the decision of the president This application for review shall state the decision complained of and the redress desired. A review of the board is not a matter of right, but is within the sound discretion of he board. If the application for review is granted, the board, or committee of the board, shall investigate the matter thoroughly and render its decision thereon within sixty days from the filing date of the application for review or from the date of any hearing which may be held thereon. The deci sion of the board shall be final and binding fo all purposes.

XXII. Exceptions

Where appeals are not otherwise specified, exceptions to these regulations may be made exceptions to these regulations may be made by appropriake faculy commendation of the to by the student and recont Blanket excepstudent's school or deparment. Blanket excep tions which have the efect of amencer regulations shall be referred to the Academic Senate for approval.

Administration, Faculty, and Staff

ADMINISTRATION

Board of Regents

The Georgia Institute of Technology is one of the educational institutions constituting the University System of Georgia. The university system is governed by a fifteen member Board of Regents, the members of which are appointed to seven-year terms by the governor of Georgia. The members of the Board of Regents are listed below.

John Henry Anderson, Jr., Hawkinsville \qquad State-at-Large	
Marie W. Dodd, Roswell.......State-at-Large	
Jesse Hill, Jr., Atlanta...........State-at-Large	
Joseph D. Greene,	
Thomson	e
*Dr. John E. Skandalakis,	
Arthur M. Gignilliat, Jr.,	
Savannah	First District
William T. Divine, Jr.,	
AlbanySecond District	
Dr. John H. Robinson III,	
Americus	Third District
Jackie M. Ward,	
Atlanta	Fourth District
Elridge W. McMillan,	
Atlanta	ifth District
Edgar L. Rhodes,	
Bremen	Sixth Distric
Lloyd L. Summer, Jr.,	
Rome............................. Seventh District	
Thomas H. Frier, Douglas ...Eighth District	
**Sidney O. Smith,	
GainesvilleNinth District	
Julius F. Bishop, Athens.........Tenth District	

[^2]
Chancellor of the

University System and the

Administrative Staff

Chancellor Vernon D. Crawford is the chie administrative officer of the university sysem and the chief executive officer of the Board of Regents. Members of his adminis trative staff are the following:
H. Dean Propst, executive vice-chancellor

Henry G. Neal, executive secretary
William Ray Cleere, vice chancellor Academic Affairs
Frank C. Dunham, vice-chancellor, Facilities
Howard Jordan, Jr., vice-chancellor, Services
Shealy E. McCoy, vice-chancellor, Fiscal Affairs
Thomas F. McDonald, vice-chancellor, Student Services
Harry B. O'Rear, vice-chancellor, Health Affairs
Haskin R. Pounds, vice-chancellor, Planning

THE UNIVERSITY SYSTEM OF GEORGIA

since 1932, all state-operated institutions of higher education in Georgia, including he Georgia Institute of Technology, have sought to accomplish their goals of instrucion, public service, and research through heir affiliation with the University System of Georgia. Governed by the fifteen-member constitutional Board of Regents under the administration of the Chancellor, the four universities, fourteen senior colleges, and fifteen junior colleges which comprise the System retain a high degree of autonomy while cooperating with member institutions within the structure of Board policy. In addition to the formulation and administration of policy, the Board of Regents is responsible for requesting appropriations trom the Georgia legislature and for allocating these funds to member institutions. To provide students in Georgia with quality instruction leading to a variety of degrees, the Board of Regents establishes minimum academic standards, granting to each member institution the prerogative of establishing higher standards. In addition, the Board has instituted a core curriculum for freshmen and sophomores whose educational goal is a degree beyond the associate level, in order to facilitate the transfer of credit within the University System. This curriculum requires ninety quarter hours in general studies-humanities, social sciences, mathematics, and natural sciences-and thirty in the student's chosen major area. Besides providing a foundation for sound instruction, the Board encour ages public service and continuing education programs including lectures, conferences, short courses, advisory services,
extension courses, and teacher education consortiums. The Board also encourages research related to the educational objectives of the institutions and originating in societal need.
Appointed by the Governor and confirmed by the Georgia Senate, the mem bers of the Board of Regents-five from the state at large and one from each of the state's ten Congressional Districts-serve for seven-year terms; the Chancellor, who is not a member of the Board, is chief executive and administrative officer for the Board and the University System. Each institution has as its executive head a president whose election is recommended by the Chancellor and approved by the Board.

Member Institutions

h-On-Campus Student Housing Facilities; Degrees Awarded: A-Associate; B-Bachelor's; -Juris Doctor; M-Master's; S-Specialist in Education; D-Doctor's; CD-Doctor's, offered in with degree awarded by the System university, with degree awarded by the University

Universities

Athens 30602
University of Georgia-h; B,J,M,S,D
Georgia Institute of Technology-h; B,M,D
Atlanta 30303
Georgia State University-A,B,M,J,S,D
Augusta 30912
Medical College of Georgia-h; A,B,M,D

Senior Colleges

Albany 31705
Albany State College-h; B,M
Americus 31709
Georgia Southwestern College-h; A,B,M,S
Augusta 30910
Augusta College-A,B,M,S
Carrollton 30118
West Georgia College-h; A,B,M,S
Columbus 31993
Columbus College-A,B,M,S
Dahlonega 30597
North Georgia College-h; A,B,M
Fort Valley 31030
Fort Valley State College-h; A,B,M
Marietta 30061
Kennesaw College-A,B
Marietta 30060
Southern Technical Institute-h; A,B
Milledgeville 31061
Georgia College-h; A,B,M,S
Savannah 31406
Armstrong State College-A,B,M
Savannah 31404
Savannah State College-h; A,B,M
Statesboro 30460
Georgia Southern College-h; A,B,M,S,cD
Valdosta 31698
Valdosta State College-h; A,B,M,S,cD

Junior Colleges
Albany 31707
Albany Junior College-A
Atlanta 30310
Atlanta Junior College-A
Bainbridge 31717
Bainbridge Junior College-A
Barnesville 30204
Gordon Junior College -h;
Brunswick 31523
Brunswick Junior Collog
Cochran 31014
Middle Georgia College h; A
Dalton 30720
Dalton Junio
Douglas Junior College-A
South Georg
South Georgia College-h; A
Gainesvilie 30503
Gainesville Junior College-A
Macon Junio
Macon Junior College-A
Clayton Jun
Clayton Junior College-A
Floyd 30163
Floyd Junior College-A
wainsboro 30401
Emanuel County Junior College-A
ifton 31793
Abraham Baldwin Agri. College-h; A
Waycross Junior College-A
University System of Georgia
244 Washington Street, S.W.
Atlanta, Georgia 30334

INSTITUTIONAL
 ADMINISTRATION

As of January 2, 1984

President

Joseph Mayo Pettit, Ph.D., president James R. Stevenson, Ph.D., executive assistant to the president
Walter L. Bloom, M.D., consultant to the president, Special Projects
John H. Gibson, M.B.A., assistant to the president, Employee Relations/Affirma tive Action
Janice Gosdin-Sangster, B.S., assistant to the president

Academic Affairs

Henry C. Bourne, Jr., Sc.D., vice-president, Academic Affairs
E. Jo Baker, Ph.D., associate vice-president, Academic Affairs
Walter O. Carlson, Ph.D., associate vicepresident for Graduate Studies and Research
William J. Gamble, Jr., Ph.D., director, Office of Minority Educational Development William J. Lnenicka, Ph.D., associate vicepresident, Academic Affairs, Education Extension
Jesse Poore, Ph.D., associate vice-
president, Academic Affairs, Information Technology

Advanced Technology
 Development Center

J. L. Birchfield, M.S., director
H. Wayne Hodges, B.A., associate director

Business and Finance

Richard Fuller, Jr., Ph.D., vice-
president, Business and Finance
Clyde D. Robbins, Ph.D., associate vicepresident, Facilities
Jon Gearhart, B.S., associate vice-president, Finance
C. Evan Crosby, B.S., associate vice-president, Budgets
Howard J. Fretwell, B.B.A., director,
Personnel
James L. Priest, M.B.A., director, Physical Plant
H. T. Marshall, A.B., LL.B., C.P.A., director Internal Auditing
Jack Vickery, M.P.A., director, Campus Police
G. Les Petherick, B.S., director, Environmental Safety Services
Roger E. Wehrle, B.S., director, Auxiliary Enterprises

College of Architecture

William L. Fash, M.Arch., dean
John A. Kelly, M.Arch., associate dean
Arthur F. Beckum, Jr., M.F.A., assistant dean

College of Engineering

William M. Sangster, Ph.D., dean
W. Denney Freeston, Ph.D., associate dean
Carolyn C. Cannon, M.S., director of special programs
Madelyne B. Watson, assistant to the dean

College of Management

Gerald J. Day, D.B.A., acting dean
Andrew J. Cooper III, Ph.D., assistant dean/administration
Marilu McCarty, Ph.D., assistant dean/student affairs

College of Sciences

 and Liberal StudiesLes A. Karlovitz, Ph.D., dean
Joseph F. Jackson, M.S., assistant to the dean

Contract Administration

J. W. Dees, P.E., M.S., director
F. H. Huff, B.B.A., acting associate director
D. S. Hasty, M.S., manager, Program Administration Division
M. P. Stombler, Ph.D., manager, Program Initiation Division
O. H. Rodgers, B.S., manager, Printing and Photographic Center
J. W. Wilson, B.A., J.D., manager, Legal Services Division

Cooperative Division

William H. Hitch, B.M.E., director
Thomas M. Akins, M.B.A., associate director
Anni I. Hubbell, B.A., assistant director Robert W. James, B.S., assistant director Harold B. Simmons, M.B.A., assistant director

Dean of Students

James E. Dull, M.Ed., dean of students
Edwin P. Kohler, M.Ed., associate dean of students
Carole E. Moore, Ph.D., assistant dean, women's activities
W. Miller Templeton, M.S., assistant dean and international student advisor
Barry D. Birckhead, M.A., assistant dean, fraternity advisor
J. Nicholas Gordon, M.D., director, Student Health Service
James A. Strickland, Ed.D., director Student Counseling and Career Planning Center
Gary J. Schwarzmueller, M.S., director, Housing
Roger E. Wehrle, B.S., director, Student Center
M. Jo Ivey, M.R.E., director, New Student/Parent Programs

Department of Continuing

 EducationClifford R. Bragdon, Ph.D., director George H. Adams, M.A., associate director Neal R. Yawn, assistant director

Department of Industrial

Education

H. Ben Roberson, Ph.D., director Bobby R. Cline, B.B.A., assistant director

Engineering Experiment Station
Donald J. Grace, Ph.D., director
Gerald J. Carey, M.S., associate director
H. G. Dean, B.S., associate director

James C. Wiltse, Jr., Ph.D., associate
director
Rudolph L. Yobs, M.S., associate director

Georgia Tech Athletic

Association

Homer C. Rice, Ph.D. athletic director an assistant to the president
John O'Neill, B.S., senior associate athleti director/business manager
Jack Thompson, associate athletic directo Norman Arey, B.A., assistant athletic director James K. Luck, B.S., assistant athletic director
Larry Travis, B.S., assistant athletic directo
Bernadette McGlade, B.A., coordinator,
Women's Athletics, and head coach,
Women's Basketball

Georgia Tech Research Institute

Joseph M. Pettit, Ph.D., president
Thomas E. Stelson, D.Sc., vice-president for Research
William H. Borchert, M.S., vice-president and general manager

Graduate Studies and Research

Walter O. Carlson, Ph.D., P.E., associate vice-president
James J. Bynum, Ph.D., dean, Graduate Studies

Information Technology

S. P. Lenoir, Jr., M.S., acting director Computing Services
R. H. Childs, M.S., associate director, Computing Services
Gary G. Watson, M.S., director, Information Systems and Applications Jerry W. Head, B.B.A., associate director, Information Systems and Applications Jerry W. Segers, B.S., director, Telecommunications and Networking

Institute Relations
 and Development

Warren Heemann, M.A., vice-president Cecil R. Phillips, M.S., associate vicepresident
John P. Culver, M.A., assistant vice-president
Dell B. Sikes, B.S., assistant vice-president
Robert H. Rice, B.S., executive director, Georgia Tech Alumni Association

John B. Carter, B.S.I.M., director, Marketing, Georgia Tech Alumni Association John C. Dunn, B.A., director, Alumni Publications, Georgia Tech Alumni Association harles E. Gearing, Ph.D., director, Corporate Liaison Program
charles E. Harmon, A.B., director, News Bureau
Catherine C. Inabnit, M.S., director, Constituency Research
Robert N. Leitch, J.D., director, Planned Giving
Mary Kay Murphy, Ph.D., director,
Foundation Relations
James B. Osborne, Ed.D., director, Corporate Relations and Placement
Barbara B. Rose, B.A., director, Development Paul M. Smith, J., M.S., director, Records and Information Systems, Georgia Tech Alumni Association
Mary E. Stoffregen, M.P.A., director, Accounting and Administration Thomas L. Vitale, B.F.A., director, Publications

Interdisciplinary Programs

Frederick A. Rossini, Ph.D., associate director, Interdisciplinary Programs and director, Technology Policy and Assessment Center
J.M. Spurlock, Ph.D., director, Bioengineering Center
T. G. Tornabene, Ph.D., director, Biotechnology Center
S. Atluri, Sc.D., director, Computational Mechanics Center
B. Kahn, Ph.D., director, Environmental Resources Center
R. B. Gray, Ph.D., director, Center of Excellence in Rotary Wing Aircraft Technology
S. D. Antolovich, Ph.D., director, Fracture \& Fatigue Research Laboratory
Eric Clayfield, Ph.D., director, Georgia
Mining \& Mineral Resources Institute
Mining \& Mineral Resources institute
M. E. Thomas, Ph.D., acting director, Health
Systems Research Center
J.A. White, Ph.D., director, Material Handling Research Center
J. W. Hooper, Ph.D., director,

Microelectronics Research Center
R. A. Karam, Ph.D., interim director, Nuclear Research Center (including Center for Engineering in Cancer Therapy)
M. W. Carter, Ph.D., director, Center for Radiological Protection
R. J. L. Martin, M.I.D., director, Center for Rehabilitation Technology
J. Pettigrew, Ph.D., director, Center for Research in Writing
R. L. Yobs, M.S., director, Georgia Productivity Center

Libraries

E. Graham Roberts, Ph.D., director Helen R. Citron, Ph.D., associate director

Minority Educational Development

William J. Gamble, Jr., Ph.D., director

Planning

Clyde D. Robbins, Ph.D., vice-president, planning/associate vice president,
Business and Finance
David O. Savini, B. Arch, director, Campus Planning
Paul vander Horst, B.L.A., campus landscape architect
Thomas R. Kirby, M.B.A., facilities planner
J. Bradley Satterfield, Jr., B. Arch, campus architect
Cynthia M. Hanson, M.B.A., campus planning coordinator

Registrar

Frank E. Roper, M.S.I.E., registrar
William F. Leslie, M.S., associate registrar James L. Garner, M.S.I.M., director,
Registration and Records
Jerry L. Hitt, M.Ed., director, Admissions William T. Lee, B.S., director, Financial Aid

Research

Thomas E. Stelson, D.Sc., vice-president, Research
Albert P. Sheppard, Ph.D., associate vice-president, Research
Jack M. Spurlock, Ph.D., associate vicepresident, Research
R. M. Boyd, B.S., director, Radiological Safety
A. Ray Moore, B.S., director, Research Communications
James A. Camp., M.B.A., assistant to the vice-president

Full-Time Academic Faculty and Administrators as of October 15, 1983

After each name the highest earned degree and its source is listed. The academic rank is followed by the individual's major assignment. Professional registration is indicated with the state(s) of registration as
follows: P.E. = Professional Engineer,
L.S. $=$ Land Surveyor, R.A. $=$ Registered

Architect, L.A. = Landscape Architect,
P.G. $=$ Professional Geologist.

Agaram S. Abhiraman, Ph.D. North Carolina State University-Raleigh Textile Engineering
Philip Adler, Jr., Ph.D.
Professor, Management
Pradeep K. Agrawal, Ph.D.
University of Delaware
Assistant Professor,
Chemical Engineering
R. Martin Ahrens, Ph.D Washington University Professor, Physics
James M. Akridge, M.S.
University of Maryland Associate Pro
Associate Professor, Architecture
Faiz A. Al-Khayyal, Ph.D. George Washington University Visiting Assistant Professo
Industrial and Systems Engineering
Marion R. Alexander, M.
Marion R. Alexander, M.S.
Naval Postgraduate Schoo
Associate Professor,
Naval Science
Cecil O. Alford, Ph.D.
Mississippi State University
Professor, Electrical Engineering
Douglas C. Allen, M.L.A.
Harvard University
L.A. (Kentucky

James R. Allen, Ph.D.
University of California
Associate Professor Associate Professor,
Applied Biology
Fred C. Allvine, D.B.A University of Indiana Professor, Man
William F A nagement
William F. Ames, M.S.
Director and Regents'
Professor, Mathematics

Jane C. Ammons, Ph.D. Georgia Institute of Technology Assistant Professor, Industrial
Gary L. Anderson, Ph.D. Indiana University at Associate Profe Applied Biology
Alfred D. Andrew, Ph.D.
Stanford University
Associate Professor, Mathematics
Stephen Antolovich, Ph.D. University of CaliforniaBerkeley
Professor, Chemical Engineering
Mustafa M. Aral, Ph.D
Georgia Institute of Technology Associate Professor,

John C. Archea, B.S. Arch
Assiversity of Cincinnati
Paul B. Armstrong, Ph.D
Stanford University Associate Professor, English
E. C. Ashby, Ph.D.

Regents' Professor Chame
Reg Professor, Chemistry
Satyanadham Atluri, Sc.D.
Massachusetts Institute of Massachusetts Institute of Regents' Profess
Civil Engineering
Robert C. Bachus, Ph.D Stanford University Assistant Professor, Civil Engineering
Carl Backman, Ph.D. Cornell University
Assistant Professor
Assistant Professor,
Albert N. Badre, P
University of Michigan Associate Professor, Information and Computer Science

Stanley C. Bailey, Ph.D. Stanford University Associate Prof Associate Professor,
Aerospace Engineering
E. Jo Baker, Ph.D Emory University
Associate Vice President for Academic Affairs and Professo Psychology
Alan H. Balfour, M.F.A
Alan H. Balfour, M.F.A. Professor and Director of Architecture program, Architecture
Jerry Banks, Ph.D.
Oklahoma State University Associate Professor, Industria
and Systems Engineering
E. Kent Baretid Engineering
E. Kent Barefield, Ph.D. Professor Chemistry
Richard D. Barstry
Richard D. Barksdale, Ph.D. P.E. (Ga., Fla., S.C., N.C., Ala.,

Tenn.)
Professor, Civil Engineering
Michael F. Barnsley, Ph.D. Michael F. Barnsley, Ph.D.
University of Wisconsin Professor, Mathematics
Thomas P. Barnwell III, Ph.D. Massachusetts Institute of Professor, Electrical Engineering
John J. Bartholdi III, Ph.D
University of Florida Assistant and Systems Engor, Industrial
and Systems Engineering
Glenn R. Bateman, Jr., Ph.D.
Princeton University
Associate Professor,
Nuclear Engineering and Health Physics
Ronald H. Bayor, Ph.D. Ronald H. Bayor, Ph.D.
University of Pennsyivania Professor, Social Sciences

Mokhtar Sadek Bazaraa, Ph.D Georgia Institute of Technology Systems Engineering
Bill D. Beavers, M.S
Bill D. Beavers, M.S.
Florida State University Associate Professor, Physical Education and Recreation
Kevin C. Beck, Ph.D. Harvard University Associate Professor, Geophysical Sciences Arthur Franklin Beckum, Jr., M.F.A. Princeton University Professor and Assistant Dean, Architecture
Johan G. F. Belinfante, Ph.D. Princeton University Hofessor, Mathematic
Arthur C. Benke, Ph.D.
University of Georgia
University of Georgia
Associate Professor Applied Biology
Charles C. Benton, M.Arch. Massachusetts Institute of Technology
Assistant Profe
Assistant Professor, Architecture
James F. Benzel, Ph.D
P.E. (Alabama)

Professor, Ceramic Engineering
Marc A. Berger, Ph.D.
Carnegie-Mellon University Associate Professor, Mathematics Donald G. Berghaus, Ph.D.
Case Western Reserve
University
P.E.(New York, Georgia)

Associate Professor, Engineering
Sciand
Michael C. Bernard,
Purdue University
Purdue University
Associate Professor, Engineering
Science and Mechanics
John T. Berry, Ph.D
John T. Berry, Ph.D.
University of Birmingham England
Professor
Mechanical Engineering
J. Aaron Bertrand, Jr., Ph.D.

Tulane University
Professor, Chemistry
H.J. Biritz, Ph.D.

University of Vienna, Austria
Professor, Physics
W. Carl Biven, Ph.D. St. Louis University
Professor, Management
William Z. Black, Ph.D.
Purdue University
P.E. (Georgia)

Mechanical Engineering

Edith H. Blicksilver, M.A
Smith College
Associate Professor, English
John Neil Bohannon, Ph.D. State University of New York
Wayne J. Book, Ph.D.
Wayne J. Book, Ph.D.
Massachusetts Institute of Technology
P.E. (Georgia)

Associate Professor,
Mechanical Engineering
Raymond F. Borkman, Ph.D
University of California, Riverside
rofessor, Chemistry
Steven B. Boswell, Ph.D.
Rice University
Rice University
Assistant Professor, Mathematics
Winston C. Boteler, M.S.M.E.
Georgia Institute of Technology
Professor, Textile Engineering
Lawrence A. Bottomley, Ph.D.
University of Houston
Assistant Professor, Chemistry
Joseph A.M. Boulet, M.S.
Instructor, Mechanical Engineering
Henry C. Bourne, Jr., Ph.D. Massachusetts Institute of Technology
Vice President for Academic Affairs and Professor,
Electrical Engineering
Charles H. Braden, Ph.D.
Washington University
Regents' Professor, Physics
Clifford R. Bragdon, Ph.D.
University of Pennsylvania Director, Continuing Education and
Professor, Architecture Professor, Architecture
John A. Brighton, Ph.D.
Purdue University
Professor and Director,
Mechanical Engineering
Mitchell A. Bring, M.Arch
Mitchell A. Bring, M.Arch.
University of California-Berkeley Assistant Professor, Architecture
James E. Brittain, Ph.D.
CaseWesternReserve University Associate Professor, Social Sciences
Gregory N. Brooks, Ph.D.
Stanford University
Assistant Professor,
Mechanical Engineering
J. Carroll Brooks, Ph.D.

Florida State University Modern Languages
May C. Brown, Ph.D.
Assistant Professor English

Richard F. Browner, Ph.D.
University of London
Associate Professor, Chemistry
John A. Buck, Ph.D.
University of California-Berkeley Assistant Professor,
Electrical Engineering
Edward M. Burgess, Ph.D. Massachusetts Institute of Technology
Aubrey M. Bush, Sc.D. Massachusetts Institute of Technology
Professor, Electrical Engineering
Robert W. Bush, M.S.
Florida State University Florida State Univer
Colonel U.S.A.F.
Professor and Head Professor and Head
Air Force ROTC
James J. Bynum, Jr., Ph.D. Emory University Dean of Graduate Studies and Associate Professor, English
George L. Cain, Jr., Ph.D Georgia Institute of Technology
Professor, Mathematics
Leslie G. Callahan, Jr., Ph.D.
University of Pennsylvania Professor, Industrial and
Systems Engineering
William R. Callen, Jr., Ph.D Stanford University
P.E.(Georgia)

Associatel Engineering
John L. Carden, Jr., Ph.D. Georgia Institute of Technology Visiting Associate Professor, Nuclear Engineering and Health Physics
Robert L. Carlson, Ph.D Ohio State University
Professor, Aerospace Engineering
Roger W. Carlson, Ph.D Massachusetts Institute of Technology Professor, Nuclear Engineering Whar O Carson Walter O. Carlson, Ph.D.
University of Minnesota Associate Vice President for Graduate Studies and Research,
Professor, Professor,
Mechanical Engineering
Robert W. Carney, Ph.D
Cornell University
Professor, Management
Stanley R. Carpenter, Ph.D.
Boston University
Associate Professor,
Social Sciences

Wallace W. Carr, Ph.D Georgia Institute of Technology P.E.(Georgia and Virginia) Textile Engineering
John S. Carson II, Ph.D.
Ussistanst Professor onsin, Madison
Systems Engineering
Melvin W. Carter Ph D
Melvin W. Carter, Ph.D.
University of Florida
Professor, Nuclear Engineering
and Health Physics
Walter C. Carter, Ph.D.
Princeton University Professor, Textile Engineering
Austin Bert Caseman, Sc.D Massachusetts Institute of Technology
P.E.(Georgia
athan Engineering
Nathaniel Chafee, Ph.D Assown University
William L. Chameides, Ph.D. Yale University Geophysical Science
Alan T. Chapman, Ph.D
Ohio State University
Ceramic Engineering Hyland Y. L. Chen, Ph.D.
University of California, San Diego
Associate Professor, Engineering Science and Mechanics
Pin-Yee Chen, Ph.D.
University of Illinois, Urbana Assistan Poressor, Information and Computer Science
Edward S. K. Chian, Sc.D Massachusetts Institute of Professor, Civi Lucio Chiaraviglio, Ph.D
Emory University Professor and Associate Director, Information and Computer Science
George Chimonas, Ph.D Professor, Geophysical Sciences Mark J. Christensen, Ph.D. Associate Professor, Mathematics Kong Chu, Ph.D. Professor, Management
Daryl E. Chubin, Ph.D. Loyola University Associate Professo Social Sciences

Helen R. Citron, Ph.D.
Georgia State University
Professor and Associate Director. Library
Joseph D. Clement, Ph.D. University of Wisconsin Professor, Nuclear Engineering
and Health Physics
Mark A. Clements, Sc.D. Massachusetts Institute of Technology
Assistant Profe
Assistant Professor,
Joe K. Cochran, Jr., Ph.D Ohsociate Professor Ceramic Engineering
Gene T. Colwell, Ph.D. University of Tennessee P.E. (Georgia)

Professor and Associate Director,
Mechanical Engineering
Eugene E. Comiskey, Ph.D
Michigan State University
Fuller E. Fuller E. Callaway Professor, Management
Neill W. Connah, M.F.A Associate Protessor
sor, Architecture
Arnall T. Connell, M.C.P Georgia Institute of Technology
Prolessor, Architecture
Alvin Connelly, Ph.D. P.E. (Georgia)

Professor, Electrical Engineering
Fred L. Cook, Ph.D.
Georgia Institute of Technology Associate Professor, Textile Engineering
Wister J. Cook, Ph.D
Auburn University
Associate Professor, English
Andrew Jackson Cooper III, Ph.D. Princeton University
Associate Professor and Associate Professor and
Assistant Dean, Management
Richard J. Corbin, Ph.D.
Tulane University
Assistant Professor, English
Gregory M. Corso, Ph.D
Assistant Professor University
Assistant Professor, Psychology
Donald O. Covault, Ph.D.
P.E. (Georgia)

Professor, Civil Engineering
James I. Craig, Ph.D.
Stanford University
Professor, Aerospace Engineering
Robert M. Craig, Ph.D Associate Professor, Architecture

John W. Crenshaw, Jr, Ph.D University of Florida
Richard Daenhat, M Arch.
and M.C.P. University of Pennsylvania R.A. (Texas)

Associate Professor, Architecture
Anton M. Dainty, Ph.D.
Dalhousie University
Geophysical Science
Geophysical Science
Charles R. Darracott III, M.A
Wake Forest University
andructor, Physical Education
and Recreation
Shirley H. Darracott, M.A. Lecturer, Physical Education and Recreation
Kent R. Davey, Ph.D. Massachusetts Institute of Technology Assistant Professor,
Electrical Engineering Electrical Engineering
James N. Davidson, Ph.D.
University of Michigan University of Michigan P.E. (Georgia)

Associate Professor, Nuclear
Engineering and Health Physics
Douglas D. Davis, Ph.D
Professor, Geophysical Sciences
Monte V. Davis, Ph.D
P.E. Aregon State University

Professor, Nuclear Engineering and Health Physics
Gerald J. Day, D.B.A.
Indiana University
Associate Professor and Acting Dean, Management
Miles P. Dean, B.A.
Vanderbilt University Assistant Professor,
Naval Science

Science
Douglas James Dearolph, B.S University of South Carolina
Assistant Prof Assistant Professor.
Thomas N. Debo, Ph.D. Georgia Institute of Technology Professor, Architecture
Atif S. Debs, Ph.D.
Technology
Professor, Electrical Engineering
Richard A. DeMillo, Ph.D.
Georgia Institute of Technology
Professor, Information and
Computer Science
Stephen G. Demko, Ph.D
Kent State University
Associate Professor, Mathematics
rateen V. Desai, Ph.D
Tulane University
Mechanical Engineering
Stuart J. Deutsch, Ph.D.
University of Wisconsin Professor, Industrial and Systems Engineering
inda Dicarlo, B.S.
Georgia State University Lecturer, Physical Education and Recreation
Stephen L. Dickerson, Sc.D. Massachusetts Institute of Technology James B. Dodd, M.S.L.S. University of illino John F. Dorsey, Ph.D. Michigan State University Electrical Engineering
Elizabeth M. Dowling, Ph.D. University of Pennsylvania
Assistant Professor, Architecture
Garvin T. Dreger, B.S. Arch.
Garvin T. Dreger, B.S. Arch.
Georgia Institute of Technology Acting Director, Building Acting
Construction Program and Associate Professor, Architecture
Frances K. Drew, M.Ln
Emory University
Librarian-Associate Professor
Arnold L. Ducoffe, Ph.D. University of Michigan P.E.(Georgia) Professor and Director
Aerospace Engineering
Aerospace Engineering
Richard A. Duke, Ph.D.
Associate Professor, Mathematics
Harry G. Dulaney, Jr., Ph.D. Georgia Institute of Technology
Ernest L. Dunn, Ph.D.
University of California at Los Angeles Associate Professo Applied Biology
Victoria Durant-Gonzalez, Ph.D. University of Calirornia-Berkele Assistant Professor, Social Science
Pandeli Durbetaki, Ph.D.
Michigan State University
Professor, Mechanical Engineering
Dale A. Durfee, M.Arch.
University of Illinois
R.A.(Georgia)

Professor, Architecture
David B. Dusenbery, Ph.D.
University of Chicago
Associate Professor
Associate Profess

William H. Eberhardt, Ph.D. California Institute of Technology
Regents' Professor, Chemistry
Thomas L. Eddy, Ph.D.
University of Minnesota Associate Professor,
Mechanical Engineering
Geoffrey G. Eichholz, Ph.D. University of Leeds Regents' Professor,
Nuclear Engineering and Health Physics
Thomas M. Eidson, Ph.D University of Michigan Mechanical Engineering
Franco Einaudi Ph D.
Franco Einaudi, Ph.D Professor, Geophysical Sciences
John Elton, Ph.D
Visiting Assistant Professor Mathematics
Leroy Z. Emkin, Ph.D Massachusetts Institute of Technology
P.E. (Georgia)

Mildred G. Emmons, M.A Emory University
n-Associate Professor
Philip H. Enslow, Jr, Ph.D.
Stanford University
Professor, Information and
William R. Ernst, Ph.D.
University of Delawar Associate Professor,
Augustine 0. Esogbue, Ph.D
Augustine 0. Esogbue, Ph.D. Professor, Industrial and Systems Engineering
Frederick Espy, B.S.
Georgia Institute of Technology Assistant Profess

Elizabeth Evans, Ph.D. University of North Carolina, Chapel Hill
obert B. Evans, Ph.D Dartmouth College Assistanical Engine
echanical Engineering
William L. Fash, M.Arch. Oklahoma State University College of Architecture Robert K. Feeney, Ph.D.
Georgia Institute of Technology P.E. (Georgia)

Professor, Electrical Engineering

Ronald H. Felton, Ph.D. Harvard University Professor, Chemistry
Willard R. Fey, S.M. Massachusetts Institute of Technology Associate Professor,
Systems Engineering
Daniel C. Fielder, Ph.D.
Georgia Institute of Technology
Protessor Electrical Engineering
Edward L. Fincher, Ph.D
University of Georgia
Professor, Applied Biology
Richard W. Fink, Ph.D. Professor, Chemistry
Professor, Chemistry
David Finkelstein, Ph.D. Massachusetts institute of Technology
Professor, Physics
J. Edmund Fitzgerald, D.Sc.
J. Edmund Fitzgerald, D.SC.
National University of Ireland
P.E. (Utah, North Dakota)

Protessor and Director,
Civil Engineering
Martin R. Flannery Ph.D.
University of Belfast
Professor, Physics
Irving F. Foote, M.A. University of Connecticut Associate Professor, English
Joseph Ford, Ph.D.
Johns Hopkins University
Regents' Professor, Physics
Larry J. Forney, Ph.D.
Harvard University Associate Professor,
Chemical Engineering
Chemical Engineering
Lawrence Foster, Ph.D.
University of Chicago
University of Chicago
Social Sciences
Ronald F. Fox, Ph.D.
Rockereller University Director, Physics
Peter G. Frederick, M.S George Washington University Professor and Head,
Naval Science
W. Denney Freeston, Jr., Ph.D. Princeton University Professor and Associate Dean
College of Engineering
Donald M. Friedlen, M.S
Illinois Institute of Technology
Associate Professor, Mathematics
Richard Fuller, Ph.D
University of Santo Thomas Finance

David E. Fyfte, Ph.D. Northwestern University PE. (Illinois)
Engineering Engineering
lan R. Gatland, Ph.D.
Professor, Physics
Thomas K. Gaylord, Ph.D. Rice University
Professor, Electrical Engineering
Charles E. Gearing, Ph.D
Purdue University
rofessor, Managemen
Jeffrey Geronimo, Ph.D
Assistant Profeessor, Mathematics
Harold A. Gersch, Ph. D. Johns Hopkins University
Regents' Professor Physics
Monojit Ghosal, Ph D
Bihar University In
Assistant Professor, Management
Ronald T. Gibbs, Ph.D.
University of ilininois
Assistant Protessor
Assistant Professor,
Mechanical Engineering
Don P. Giddens, Ph.D.
Georgia Institute of Technology Aegospace Engineering
August W. Giebelhaus, Jr., Ph.D. University of Delaware Associate Profess
Social Sciences
Social Sciences
Byron Gilbreath, M.Ed. East Texas State University Associate Professor, Physical
Education and Recreation Jerry H. Ginsberg, E.Sc.D. Professor, Mechanical Engineering
John J. Goda, Jr., M.S. Assistant Professorsachusetts and Computer Science
Marc P. Goetschalckx, Ph.D. Georgia Institute of Technology Assistant Professor, Industrial and Systems Engineering
James L. Gole, Ph.D.
Rice University
Professor, Physics
Frank B. Golley, M.P.D North Carolina State University Assistant Professor, Architecture
Jamie J. Gocde, Ph.D. University of North Carolina
Professor Mathemtics Professor, Mathematica
Barry Goodno, Ph.D.
Stanford University P.E. (Georgianiversity P.E. (Georgia)
Associate Professor,

Civil Engineering

Sidney L. Gordon, Ph.D. Columbia University
Charles W. Gorton Ph D. Purdue University P.E.(Georgia)

Professor, Chemical Engineering
James Gough, Jr, Ph.D.
Harvard University
Professor, Information and
Computer Science
Computer Science
John C. Gould, M.R.P. University of North Carolina
Professor, Architecture
T. Govindaraj, Ph.D.

University of llinois
sssi, Sprofessor, Industrial
and Systems Engineering
Donald J. Grace, Ph.D.
Stanford University
Director,
Engineering Experiment Station
Marc. H. Graham, Ph.D Assistant Professor, Information and Computer Science
Gerald W. Grams, Ph.D. Massachusetts Institute of Technology

Robin B. Gray, Ph.D.
Princeton University
Regents' Professor and Associate
Robert E. Green, D.B.A
Indiana University
William L Grear Ph
William L. Green, Ph.D.
University of Pennsylvania
Associate Professor, Mathematics
Rufus R. Greene, B.Arch.
R.A. (Georroia) Associate Prof
or, Architecture
Tatjana Gregory, M.A.
Pedagogical Institute, USSR
Assistant Pron ${ }^{\text {Assistant }}$ Modrotessor
Helen E. Grenga, Ph.D. University of Virginia Professor, Chemical Engineering
David E. Grider, Ph.D. Iowa State University
Assistant Professor Physi Assistant Professor, Physics
Nancy D. Griffeth, Ph.D. Assistarst Professor, Information and Computer Science
Erling Grovenstein, Jr., Ph.D.
Massachusetts Institute of Massachusetts Institute of Julius Brown

Ray E. Habermann, Ph.D University of Colorado Assistant Professor, Geophysical Sciences
Abraham H. Haddad, Ph.D. Princeton Univarsity, Professor, Electrical Engineering
Achintya Haldar Ph.D. University of illinois Assistant Professor,
Civil Engineering
Ruth C. Hale, M.S.L.S. Librarian-Associate Professor
Dwight H. Hall, Ph.D.
Purdue University Associate Professo
Applied Biolog
Daniel W. Halpin, Ph.D. University of Illinois Proressor, Civil Engineering
Roger A. Hambridge, Ph.D.
University of California at Los Angersity of
Assistant Professor, English
John M. Hammer, Ph.D.
Assistant Professor Industrial
and Systems Engineering
Joseph L. Hammond, Jr, Ph.D Joseph L. Hammond, Jr., Ph.D.
Georgia Institute of TTchnology Professor, Electrical Engineering
Sathyanaraya V. Hanagud, Ph.D. Stanford University Pressor, Aerospace Engineering
Don S. Harmer, Ph.D
University of California at Los Angeles Professor, Nuclear Engineering
and Health Physics and Health Physics
John J. Harper, M.S
Georgia Institute of Technology PE. (Georgia)
Evans M. Harrell III, Ph.D Assinistantont Professors. Mathematics
William G. Harter, Ph.D
University of California, Invin
or, Physics
James G. Harliey, Ph.D
Georgia Institute of Technology
Associate Professor
Mechanical Engineering
John J. Havick, Ph.D.
John J. Havick, Ph.D.
University of lowa
Associate Professor,
Social Sciences
Monson H. Hayes III, Ph.D. Technology Assistant Professor
Assistant Professor,
Electrical Engineering
onald J. Healy, Ph.D
Purdue University Purdue University
Assistant Professor, Electrical Engineering
Warren Heemann, M.A University of North Carolina, Chapel Hill
Vice President for Institute
Relations and Development Relations and Development Russell G. Heikes, Ph.D. Texas Tech University Associate Professor, Industrial and Systems Engineering
John J. Heise, Ph.D. John J. Heise, Ph.D.
Washington University Associate Professor, Applied Biology
James V. Herod, Ph.D. University of North Carolina Professor, Mathematics David M. Herold, Ph Yale University
Associate Professor, Management David R. Hertling, Ph.D. University of llinois Associate Professor, Electrical Engineering
Theodore P. Hill, Ph.D. University of California-Berkeley Assistant Professor, Mathematics
John N. Hines, Ph.D.
Emory University
Assistant Professor,
Social Sciences
Georgia Institute of Technology P.E. (Georgia, Tennessee) Professor and Associate Director Industrial and Systems
Engineering
Dar-Veig Ho, Ph.D
Associate Professor and Assistant Director, Mathematics
Robert F. Hochman, Ph.D. Professor, Chemical Engineering
Richard G. Holcombe, B.S.
United States Military Academy
Assistant Professor, Army ROTC John W. Hooper, Ph.D
Georgia Institute of Technology Regents' Professor, Electrical Engineering
Wilfred H. Horton, M.S Stanford University Professor, Aerospace Engineering Herbert O. House, Ph.D. University of Illinois Seydel-Woolley Professor, Chemistry

David W. Houser, M.Ed.
Georgia Southern Colleg Assistant Professor, Physical Education and Recreation
Jeffery S. Hsieh, Ph.D. Syracuse University Associate Professor, Chemical Engineering Jerry S. Hubbard, Ph.D. University of Texas, Austin Professor, Applied Biology
James E. Hubbart, M.S. Case Institute of Technology
Professor, Aerospace Engineering
Professor, Aerospace Engin
Gene K. Huddleston, Ph.D.
Georgia Institute of Technology Associate Protessor,
Rufus R. Hughes II, B.Arch
Rufus R. Hughes II, B.Arch.
Georgia Institute of Technology R.A.(Ga., Ala., Va., S.C., Miss., Ark.)
Professor, Architecture
Harold R. Hunt, Jr., Ph.D. University of Chicago
Associate Professor, Chemistry
Robert A. Hunt, B.S. Georgia Institute of Technology Assistant Professor, Naval Science
John E. Husted, Ph.D. Florida State University P.G. (Georgia)

Professor, Chemical Engineering
Oliver lbe, Sc.D.
Massachusetts Institute of Technology
Assistant Professor, Informatio and Computer Science
Eric R. Immel, Ph.D.
University of California at
Professor, Mathematics
Sarah E. Jackson, Ph.D. Sarah E. Jackson,
Emory University Associate Professor, English
Jechiel I. Jagoda, Ph.D. University of London Assistant Professor, Aerospace Engineering
Lawrence R. James, Ph.D. University of Utah Professor, Psychology
John J. Jarvis, Ph.D. Johns Hopkins University P.E. (Georgia)

Professor, Industrial and
Systems Engineering
Annibel Jenkins, Ph.D University of North Carolina
Chapel Hill Professor, English
Alton P. Jensen, B.M.E.
Alton P. Jensen, B.M.E.
Georgia Institute of Technology Professor, Information and Computer Science

Robert G. Jeroslow, Ph.D. Cornell University
Professor, Managemen

Sheldon M. Jeter, Ph.D Georgia Institute of Technology Assistant Professor,
ecil G. Johnson, M.S.I.E Georgia Institute of Technology P.E. (Alabama)

Engineoring Engineering
Harold L. Johnson, Ph.D.
Georgia Institute of Technology P.E.(Georgia)

Associate Professor,
Lynwood A. Johnson, Ph.D. Georgia Institute of Technology P.E.(Georgia)

Professor, Industrial and
Systems Engineering
Roger D. Johnson, Jr., Ph.D. University of Virginia
Associate Professor, Mathematics
William W. Johnson, Ph.D.
University of Kentucky Associate Professor,
Modern Languages
Jon J. Johnston, M.S. Assistant Professor, Social Sciences William A. Johnston, Ph.D. University
Assistant Professor, Engineering
Science and Mechanics
A. David Jones, M.Arch. University of California Berkeley
Assistant Professor, Architecture
James V. Jordan, Ph.D. University of North Carolina sor, Managemen Edward B. Joy, Ph.D. Georgia Institute of Technology

John E. Julsonnet, M.S.
Texas Technological University Assistant Professor
C. Gerald Justus, Ph.D

Georgia Institute of Technology
John R. Kaatz, Ph.D.
Associate Professor, Management
Prasanna V. Kadaba, Ph.D.
Illinois Institute of Technology
Associate Professor,
Mechanical Engineering

Bernd Kahn, Ph.D. Massachusetts Institute of Technology
Protessor, Nuclear Engineering and Environ Physics and Director Lawrence F. Kahn Ph D. University of Michigan P.E.(Cal., Mich., Ga.) Associate Profess

Frances E. Kaiser, M Librarian-Associty Librarian-Associate Professor
John M. Kallfelz, Dr.Ing.
University of Karlsruhe University of Karlsruhe Germany
Professor, Nuclear Engineering
and Health Physics
William J. Kammerer, Ph.D. Professor, Mathematics
Roozbeh Kangari, Ph D.
Roozbeh Kangari, Ph.D. Assistant Professor, Civil Engineering Ratib A. Karam, Ph.D. University of Florida Professor, Nuclear Engineering and Health Physics
Les A. Karlovitz, Ph.D. Carnegie Institute of Technology Dean, College of Sciences and Liberal Studies and Professor,

Dennis F. Karney, Ph.D Assistant Professor, Managemen
Robert H. Kasriel, Ph.D
University of Virginia
E. Larry Keating, Ph.D. Associate Professor, Architecture
John A. Kelly, M.Arch.
University of illinois
Professor and Associate Dean
Architecture
Patrick Kelly, Ph.D.
Professor, Social Sciences
Robert P. Kertz, Ph.D. Northwestern University Associate Professor, Mathematics
Samuel C. Ketchin, Ph.D.
Emory University
S. Peter Kezios, Ph.D Illinois Institute of Technology P.E.(Illinois)
rofessor
Mechanical Engineering

Boris M. Khudenko, Ph.D Russian Academy of Science Associate Professor,
Chia Szu Kiang, Ph.D.
Georgia Institute of Technology Geophysical Sciences,
Geophysical Sciences
Byung R. Kim, Ph.D. Assistant Professor
Civil Engineering
K.N. King, Ph.D

University of California
Assistant Professor, Information
and Computer Science
Wilton W. King, Ph.D
VErginia Polytechnic Institute P.E. (Georgia)

Professor and Associate Director,
Engineering Engineering Science and

Jean Kirkland
Jean Kirkland, M.Ln
Emory University
Librarian-Associate Professor
Jackie Kleiner, Doctor of
Jackie Kleiner, Doctor of
Juridical Science
New York Law School
Associate Professor, Management
Kenneth J. Knoespel, Ph.D. University of Chicago
Assistant Professor. English
Peter Knoetgen, B.S.
United States Naval Academy Assistant Professor, Naval Science
Arthur J. Koblasz, Ph.D.
California Institute of Technology
Assistant Professor, Engineering
Science and Mechanics
Larry D. Koffman, Ph.D.
California Institute of California Institute of Technology
Assistant roressor,
Mechanical Engineering
Janet L. Kolodner, Ph.D.
Yale University
Assistant Professor, Information
and Computer Science
Melvin Kranzberg, Ph.D. Harvard University
Callaway Professor, Social Science
Richard K. Kunz. Ph D
Georgia Institute of Technology
Assistant Professor, Engineering
Science and Mechanics
James S. Lai, Ph.D.
Brown University P.E.(Georgia)

Uzi Landman, D.Sc
Technion-Israel Institute of Technology

Lewis F. Lanter, M.S.Arch
Columbia University R.A. (Georgia)
Associate Profes

Alan V. Larson, Ph.D
University of Illinoi
Professor,
Mechanical Engineering
William J. Layton, Ph.D. University of Tennessee
William M. Leach, Jr., Ph.D.
Georgia Institute of Technology
Electrical Engineering
Charles R. Leacy, M.A.
Emory University
ibrarian-Associate Professor
Richard J. LeBlanc, Jr., Ph.D
University of Wisconsin
Associate Professor Informa
and Computer Science
Sai Hyun Lee, Ph.D.
University of Missour
Civil Engineering
Spyros G. Lekoudis, Ph.D Virginia Polytechnic Institute Associate Professor,
Aerospace Engineering
David C. Leonard, Ph.D. University of Maryland
Assistant Professor, English
Jerry M. Lett, M.B.A.
University of Michigan Assistant Professor,
Air Force ROTC

Jeffrey H. Levine, M.B.A University of North Dakota Assistant Professor,
Air Force ROTC
Ferdinand K. Levy, Ph.D. Carnegie-Mellon University Professor, Managemen
Frank L. Lewis, Ph.D. Georgia Institute of Technolog Electrical Engineering
Robert C. Liden, Ph.D.
University of Cincinnat Assistant Professor, Management
John Paul Line, M.S.
John Paul Line, M.S.
University of Michigan University of Michigan
Associate Professor, Mathematic Charles L. Liotta, Ph.D. University of Maryland Professor, Chemistry
Malcolm G. Little, Jr., M.C.P Malcolm G. Little, Jr., M.C.P
Massachusetts Institute of Technology Professor, Architecture

Nilliam J. Lnenicka, Ph.D. Georgia Institute of Technology PE.(Georgia, Kansas) Associate Vice President for Academic Affairs/Education Extension and Professor,
Engineering Science and Mechanics
eland T. Long, Ph.D.
eland T. Long, Ph.D.
Oregon State University Professor, Geophysical Sciences
Edward H. Loveland, Ph.D. University of Tennessee
Professor and Director, Psychol Robert P. Lowell, Ph.D. Oregon State University Associate Professor, Geophysical Sciences
John L. Lundberg, Ph.D. University of California Callaway Professor,
Textile Engineering
Pascal Malassigne, M.I.D Syracuse University
Associate Professor, Architecture
Naresh K. Malhotra, Ph.D. State University of New York,
ssociate Professor, Management erry L. Maple, Ph.D. University of California, Davis Associate Professor, Psychology
Miroslav Marek, Ph.D.
Georgia Institute of Technology Associate Professor,
Chemical Engineering
Jean C. Mareschal, Ph.D Texas A\&M
Assistant Professor,
Geophysical Sciences
M. Jackson Marr, Ph.D. University of North Carolina Professor, Psychology
Andrew W. Marris, D.Sc.
University of London
Regents' Professor, Engineering
Science and Mechanic
Charles S. Martin, Ph.D. Georgia Institute of Technology Professor, Civil Engineering
David W. Martin, Ph.D. University of Michigan
Ricerar J Mar
Richard J. L. Martin, M.A. Los Angeles Professor, Architecture
Michael J. Matteson, Dr. Ing. Technical University of Clausthal Professor, Chemical Engineering
Sheldon W. May, Ph.D. University of Chicago

Paul G. Mayer, Ph.D.
Cornell University
P.E.(Georgia)

Regents' Professor,
Stephen R. McConnel, Ph.D
Carnegie-Mellon University
Electrical Engineering
E. W. McDaniel, Ph.D.
U. McDaniel, Ph.D. University of Michigan
Regents' Professor, Physics
Patrick G. McDougal, Ph.D
Patrick G. McDougal, Ph.D.
University of Wisconsin, Madison
Assistant Professor, Chemistry
David L. McDowell, Ph.D
University of Illinois, Urbana
Assistant Professor,
Mechanical Engineering
David J. McGill, Ph.D.
University of Kansas P.E.(Georgia)

Professor, Engineering Science and Mechanics
Leon F. McGinnis, Ph.D. North Carolina Stat
University, Raleigh Associate Professor, Industrial and Systems Engineering
Peter J. McGuire, Ph.D
Peter J. McGuire, Associate Professor, English John R. McIntyre, Ph.D. Assistant Professor, Social Sciences
Martin S. McKendry, Ph.D. University of Illinois, Urbana Assistant Professor, Information and Computer Science
Howard M. McMahon, Ph.D. California Institute of Technology P.E. (Georgia)

Robert C. McMath, Jr., Ph.D. University of North Carolina Chapel Hill
Social Sciences Sciences
Athanasios P. Meliopoulos, Ph.D Georgia Institute of Technology Electrical Engineering
Russell M. Mersereau, D.Sc. Massachusetts Institute of Technology
Professor, Electrical Engineering
Gunter H. Meyer, Ph.D.
University of Marylan
Professor, Mathematics
Melinda L. Millard, M.A.
University of Florida
Essistant Professor, Physical
Education and Recreation

George A. Miller, Ph.D. University of Michigan Professor, Chemistr
Posey E. Miller, B.S.
University of Louisville Assistant Science
Raymond E. Miller, Ph.D University of Illinois, Professor and Director, Information and Computer Science
Tom W. Miller, D.B.A Indiana University Assistant Professor, Managemen
Archie Mitchell, Jr., B.S. Ohio State University Assistant Professor
Naval Science
M. F. Moad, Ph.D.

Georgia Institute of Technology Associate Professor,
M. Gamal Moharam, Ph. D University of British Columbia Assistant Professor,
Douglas C. Montgomery, Ph.D.
Virginia Polytechnic Institute Engineering
Willis E. Moody, Jr., Ph.D.
Willis E. Moody, Jr., Ph.D.
North Carolina State University P.E.(Georgia)

Professor, Ceramic Engineering
L. Hugh Moore, Jr., Ph.D. Emory University Professor, English
Mack A. Moore, Ph.D. University of Wisconsin Professor, Management
Thomas F. Moran, Ph.D. University of Notre Dame Professor, Chemistry
Thomas Morley, Ph.D. Carnegie-Mellon University Visiting Assistant Professor, Mathematics
James W. Mount, M.Arch. University of Pennsylvania
Associate Professor, Architecture
Pieter Muije, Ph.D.
Washington State University P.E.(Netherlands) Associate Professor,
Chemical Engineering
Stanley A. Mulaik, Ph.D
Stanley A. Mulaik, Ph
University of Utah
Professor Psychology University of Utah
Professor, Psychology
Charles W. Mulford, Jr., Ph.D Florida State University
Assistant Professor, Managemen

Karl M. Murphy, Ph.D.
Harvard University
Professor, English
John D. Muzzy, Ph.D.
Rensselaer Polytechnic Institute
, Chemical Engineering
Allan S. Myerson, Ph.D.
University of Virginia Associate Professor Chemical Engineering
Justin A. Myrick, Ph.D
Justin A. Myrick, Ph.D.
Associate Professor, Industrial and Systems Engineering
David C. Nachman, Ph.D.
Northwestern University Northwestern University
Associate Professor, Management
Dennis H. Nagao, A.M. University of Illinois instructor, Management
Helen H. Naugle, Ph.D.
University of Alabama University of Alabama
Professor, English
Bruce F. Naylor, Ph.D. University of Texas, Dalla Assistant Professor, Information and Computer Science
John D. Neff, Ph.D. University of Florida

Menry M. Neumann, Ph.D.
University of California Professor, Chemistry
Robert J. Nichols, M.Arch Harvard University Professor, Architect, Ga.)
ochisa Nishiocu
Toshihisa Nishioka, Ph.D. University of Tokyo Visiting Assistant Engofessor,
Gregory Nobles, Ph.D.
Gregory Nobles, Ph.D. Assistant Professor, Social Sciences
John D. Norgard, Ph.D.
John D. Norgard, Ph.D.
California Institute of Technology
P.E. (Georgia)

Professor, Electrical Engineering
Matthew C. O'Brien, Ph.D.
University of Maryland
Associate Professor, English
Roderick F. O'Connor, Ph.D.
Vanderbilt University
. Howard Olson, Ph.D University of Manchester P.E. (Georgia)

Associate Professor,
Textile Engineering
James M. Osborn, Ph.D
University of Michigan
Associate Professor, Mathematics

Donald C. O'Shea, Ph.D. Johns Hopkins University Associar Professor, Physics
Billy D. Palmertree, M.S.
Troy State University Troy State University Assistant Professo
Air Force ROTC
Thomas E. Papageorge, M.S. Georgia Institute of Technology John G. Papastavridis, Ph.D. John G. Papastavridis, Ph.D. Purdue University Science and Mechanics
Daniel S. Papp, Ph.D.
University of Miami Professor and Director (on leave) Social Sciences
Demetrius T. Paris, Ph.D. Georgia Institute of Technology Professor and Director
Electrical Engineering
R. Gary Parker, Ph.D Kansas State University Assond Systoms Er, Industria

Charles K. Parsons, Ph.D. University of Illinois Assistant Professor, Management Leonard J. Parsons, Ph.D. Professor Miversity
Peter S. Parsonson, Ph. North Carolina State University P.E.(Georgia)

Ury Passy, Ph.D.
Visiting Professor, Industrial and Systems Engineering
Kishore Pasumarty, Ph.D.
Kishore Pasumarty, Ph.D.
Columbia University Assistant Professor, Management
Eugene T. Patronis, Jr., Ph.D. Georgia Institute of Technology Professor, Physics
Elliott A. Pavlos, M.C.P University of Pennsylvania Professor, Architecture
C. Lee Payne, B.S. University of Cincinnati
Associate Professor and Associate Professor and Director of Industrial Design,
Architecture Architecture
M. Carr Payne, Jr., Ph.D Princeton University
Professor, Psychology John B. Peatman, Ph.D Case Western Reserve University Professor, Electrical Engineering

Joseph L. Pentecost, Ph.D.
P.E. (Georsity of Illinois
.E.(Georgia, Virginia)
Professor and Director,
Edward M. Perdue, Ph.
Edward M. Perdue, Ph.D.
Georgia Institute of Technology Georgia Institute of
Associate Professor, Geophysical Sciences
Joseph M. Pettit, Ph.D. Joseph M. Pettit, Ph.D.
Stanford University
Pat President and Professor
Electrical Engineering
Kevin T. Phelps, Ph.D. Auburn University Associate Professor, Mathematics
Allan D. Pierce, Ph.D. Massachusetts Institute of Technology

Regents' Professor

G. Alvin Pierce, Ph.D. Ohio State University Professor,
Robert A. Pierotti, Ph.D University of Washington Professor and Director, Chemistry
E. Juanita Pitts, M.A. Associate Professor, Mathematics
Loren K. Platzman, Ph.D. Massachusetts Institute of Assistant Professor, Industrial and Systems Engineering
Gary W. Poehlein, Ph.D. Purdue University P.E. (Georgia)

Professor and Directo
Chemical Engineering
Frederick G. Pohland, Ph.D. P.E. (Georgia)

Professor, Civil Engineering
C.O. Pollard, Jr., Ph.D.
C.O. Pollard, Jr., Ph.D. Associate Professor, Geophysical Sciences
Jesse H. Poore, Jr., Ph.D. Georgia Institute of Technology Associate Vice President for Academic Affairs/Information Technology and Professor, Information and Computer'Science
Alan L. Porter, Ph.D.
University of California at
Los Angeles Associate Prof
and Systrofessor, Industrial
John W. Poston
John W. Poston, Ph.D. Associate Professor, Nuclear Engineering and Health Physics

James C. Powers, Ph.D. Massachusetts Institute of Technology
dward W. Price, B.S
University of California at Los Angeles
Aressor, Aerospace Engineering
Sliezer Prisman, D.Sc.
Israel Institute of Technology Assistant Professor, Management
Hans B. Puttgen, Ph.D.
University of Florida Electrical Engineering
Sara M. Putzell-Korab, Ph.D. Emory University Associate Professor, English
Srinivas R. G. Rao, Ph.D Purdue University Assistant Professor,
Civil Engineering Civil Engineering
Hugh D. Ratifif, Ph.D.
Johns Hopkins University P.E.(Fla.)

Professor, Industrial and Systems Engineering
Milton E. Raville, Ph.D.
University of Wisconsin
Professor and Director.
Engineering Science and
Mechanics
Dale C. Ray, Ph.D.
University of Michigan
Professor and Assistant Director Electrical Engineering
David H. Ray, Ph.D.
Stanford University
Stanford University
Assistant Professor, Social Sciences
Germaine M. Reed, Ph.D. Louisiana State University Associate Profess
James A. Reedy, Ed.
George Peabody College
Education and Recreation
Lawrence W. Rehfield, Ph.D. Stanford University Professor, Aerospace Engineering
Robert P. Reno, Ph.D. Michigan State University
Assistant Professor, English
George M. Rentzepis, Ph.D.
George M. Rentzepis, Phi.D.
Rensselaer Polytechnic Institute Professor, Engineering Science and Mechanics
J. H. Reuter, Ph.D. University of Wurzburg
Associate Professor,

Randy L. Reynolds, M.B.A.
University of Missouri Assistant Professor
Air Force ROTC
William T. Rhodes, Ph Stanford University
Professor, Electrical Engineering
Charles V. Riche, Ph.D. University of Washington
Associate Professor, Psychology
Edmun B. Richmond Ed
Edmun B. Richmond, En Associate Professor, Modern Languages
Edward J. Rinalducci, Ph.D. University of Rochester Professor, Psychology H. Randal Roark, M.Arch and M.C.P.
University of Pennsylvania R.A. (Georgia, Alabama) Associate Professor, Architecture
Clyde D. Robbins, Ph.D. Georgia State University Vice President for Planning and
Assistant Professor, Architecture
Edward Graham Roberts, Ph.D.
versity of Virginia
Philip J. W. Roberts, Ph.D. California Institute of Technology Civil Engineering
Ronnie S. Roberts, Ph.D.
University of Tennessee Associate Professor, Associatal Engineering
Daniel A. Robinson, Ph.D. University of Wisconsin Pofessor, Mathematics Karl H. Robinson, Ph.D.
University of the West Indies Visiting Assistant Professor, Mathematics
Quentin L. Robnett, Ph.D. University of llinois P.E. (Georgia, Illinois)
Professor, Civil Engineering

Heidi M. Rockwood, Ph.D. University of Florida Modern Languages G. P. Rodrigue, Ph.D Regents' Professor Electrical Engineering
J. David Roessner, Ph.D Case Western Reserve University Associate Professor, Social Sciences
Nelson K. Rogers, M.S Georgia Institute of Technology Associate Professor and Associate Director, Industrial and Systems Engineering

Peter Rogers, Ph.D Brown University
Assistant Professor Mechanical Engineering
Frank E. Roper, Jr., M.S.I.E. Georgia Institute of Technology Industrial and Systems Engineering
Robert G. Roper, Ph.D. University of Adelaide South Australia
Professor, Geophysical Sciences
Catherine B. Ross, Ph.D. Cornell University
Assistant Professor, Architecture
Frederick A. Rossini, Ph.D. University of California-Berkeley Associate Director, Interdisciplinary Programs and

- Rosh Ro

Shahrokh Rouhani, Ph.D. Harvard University
Civil Engineering
William B. Rouse, Ph D
William B. Rouse, Ph.D.
Massachusetts Institute of Technology
Professor, Industrial and
Systems Engineering
Rajarshi Roy, Ph.D. University of Rochester Assistant Professor, Physics
Donald Jack Royer, Ph.D.
University of Kansas
Professor, Chemistry
Larry J. Rubin, Ph.D.
Emory University
Professor, English
Professor, English
Roger F. Rupnow, M.S.
University of Wisconsin
University of Wisconsin
Professor, Architecture
William H. Russell, M.S
University of Illinois
Assistant Professor, Architecture
Robert J. Samuels, Ph.D.
Professor, Chemical Engineering
Paul H. Sanders, Ph.D.

| C.E. (Georgie Institute of Technology |
| :--- | P.E. (Georgia)

director Civil Ensor and Assistan
ilion, Ivil Engineering
William M. Sangster, Ph.D
State University of lowa
Professor and Dean,
College of Engineering
Peter G. Sassone, Ph.D.
Purdue University
Associate Professor, Managemen
F. Michael Saunders, Ph.D.

University of Illinois
Associate Professor
Civil Engineering

David S. Sawicki, Ph.D
Cornell University
Plantessor and Director of City
Plang, Architecture
Willia
William E. Sayle II, Ph.D. P.E. (Georgia. Washington) Professor, Electrical Engineering
Ronald W. Schater, Ph.D. Massachusetts institute of
McCarty Audichron Regents' Professor, Electrical Engineering
William A. Schaffer, Ph.D.
Duke University
Professor, Management
Richard D. Scharr, M.S.
Stanford University
Lt. Colonel, U.S. Army
Professor and Head, Army ROTC
Edwin J. Scheibner, Ph.D.
Ilinois Institute of Technology
, Physics
Jay H. Schlag, Ph.D.
Georgia Institute of Technology
Alfred Schneider, Ph.D.
Polytechnic Institute of New York
roresssor, Nuclear Engineering
and Health Physics
an Health Physics
Arnold Schneider, Ph.D.
Ohio State University
Onio State University
Assistant Professor, Management
F. Joseph Schork, Ph.D. University of Wisconsin Assistant Professor,
Peter A. Schulz, Ph.D.
Peter A. Schulz, Ph.D.
University of California-Berkeley
Assistant Professor, Physics
Esta K. Seaton, Ph.D.
Associate Prot Minnesota Associate Professor, English
Robert T. Segrest, Jr., M.C.P.
and M.Arch.
R.A. (Georgia)

Carol A. Senf, Ph.D
State University of New York at Butfalo
Assistant Professor, English
Richard F. Serfozo, Ph.D
Northwestern University
Professor, Industrial and Systems
Engimeering
Gunter P. Sharp, Ph.D
P.E. (Georgia Institutute of Technology

Associate Professor, Industrial
and Systems Enginearig
and Systems Engineering

Samuel V. Shelton, Ph.D. Georgia Institute of Technology P.E. (Georgia) Mechanical Engineering
Ronald W. Shenk, Ph.D University of Colorad ssociate Professor Mathematics
Albert P. Sheppard, Jr., Ph.D. Duke University
P.E. (Georgia) Associate Vice

Professor, Electrical Engineering
Peter B. Sherry, Ph.D.
Associate Professor, Chemistry
C. Marakada Shetty, Ph.D

Northwestern University
Professor, Industrial and Systems Engineering
Robert W. Shreeves, Ph.D.
University of Illinois
Associate Professor, Engineering
Shilip J. Siegmann, Ph.D.
Ohio State University
Associate Professor, Information
and Computer Science
George J. Simitses, Ph.D. Stanford University
Professsor, Engineering Science and Mechanics
Peter A. Skelland, Ph.D. Ueter A. Skelland, Ph.D. England
Professor, Chemical Engineering
Vladimir Slamecka, D.L.S.
Columbia University Professor, Information and Computer Science
Alan D. Sloan, Ph.D. Cornell University Associate Professor, Mathematics
Myron B. Slovin, Ph.D. Princeton University
Associate Professor, Management
Harold E. Smalley, Ph.D University of Pittsburgh P.E.(Georgia)

Industrial and Systems Engineering
Albert H. Smith, M.F.A.
Tulane University
Assistant Professor, Architecture
Anderson D. Smith, Ph.D.
Professor, Psychology
Cloyd Virgil Smith, Jr., Sc.D. Technology institute
Associate Professor, Aerospace Engineering

Glenn S. Smith, Ph.D. Harvard University Associate Professor
Electrical Engineering
Leslie T. Smith, M.B.A. Auburn University Assistant Professor, Army ROTC William R. Smythe, Jr., Ph.D. Duke University Associate Professor, Mathematics
Robert L. Snyder, Ph.D Northwestern University
Assistant Professor, English
atinew J. Sobel, Ph.D. Stanford University Professor, Management Jude T. Sommerfeld, Ph.D. University of Michigan P.E.(Georgia)

Protessor, Chemical Engineering
George F. Sowers, M.S Harvard University
P.E. (Va., S.C., Ga.) Regents' Professor, Civil Engineering
Phillip B. Sparling, D.Ed University of Georgia Assistant Professor, Physical Education and Recreation
Kathleen A. Spear, M.S Carnegie-Mellon University Instructor, Mathematics
Jonathan E. Spingarn, Ph.D. University of Washington
Associate Professor, Mathematic Associate Professor, Mathematics
Jeremy Spinrad, Ph.D Princeton University
Assistant Professor, Information and Computer Science
Marcus C. Spruill, Ph.D Associate University
Associate Professor Mathematics
Weston M. Stacey, Jr., Ph.D. Massachusetts Institute o Technology
Engineering and Health Physics
Michael P. Stallybrass, Ph.D.
Michael P. Stallybrass,
Glasgow University,
Professor, Mathematics
James A. Stanfield, Ph.D.
University of Tennessee
Professor, Chemistry
Augustus L. Stanford, Jr., Ph.D.
Georgia Institute of Technology
Professor, Physics
Paul G. Steffes, Ph.D.
Stanford University
Assistant Professor,
Electrical Engineering
Jay M. Stein, Ph.D.
University of Michigan Associate Professor, Architecture
homas E. Stelson, D.Sc. Carnegie-Mellon University
P.E.(Ca., Ohio, Pa., W.Va.) Vice President for Research and Professor, Civil Engineering
Ernst P. Stephan, Ph.D. University of Darmstadt, West Germany
Associate Professor, Mathematics Associate Proressor, Mathen R. Stevenson, Ph.D. University of Missouri and Professor, Physics
Bernell K. Stone, Ph.D. Bernell K. Stone, Ph.D.
Massachusetts Institute of Technology Mills B. Lane Professor of Banking and Finance, Management
Warren C. Strahle, Ph.D. Princeton University Regents' Professor, Aerospace Engineering
Terry S. Sturm, Ph.D
University of lowa Assistant Profess
Peter E. Sturrock, Ph.D Ohio State University
Kendall Su Ph D.
Kendall L. Su, Ph.D.
Georgia Institute of Technology Regengia Institute Electrical Engineering
Morris H. Susaneck, M.B.A. Southern Illinois University Assistant Professor
Air Force ROTC
Marie E. Sushka, Ph.D. Georgetown University
Associate Professor, Managemen
James J. Swain, Ph.D.
Purdue University
Assistant Professor, Industrial and Systems Engineering
James M. Tanner, Ph.D
Georgia Institute of Technology
Associate Professor and Assistant
Director, Physics
Fred A. Tarpley, Jr., Ph.D
Tulane University
Professor, Management
Richard D. Teach, Ph.D.
Purdue University
Associate Professor, Management
D. W. Tedder, Ph.D.

University of Wisconsin, Madison Chemical Engineering
Amyn Teja, Ph.D.
Imperial College, London Chemical Engineering

Jay P. Telotte, Ph.D.
University of Florida
Assistant Professor, Englis
Joan Templer, B.A
Natal University
Associate Professor, Architecture
John A. Templer, Ph.D.
Columbia University
R.A.(Great Britain, S. Afric
R.A.(Great Britain, S. Africa) Regents Prosessor Architecture
Doctorate Program, Architectur
Edward W. Thomas, Ph.D.
University College, London
Michael E. Thomas, Ph.D.
P.E. (Florida)

Professor and Director, Industrial and Systems Engineering
Sandra W. Thornton, Ph.D.
Georgetown University
Associate Professor,
Social Sciences
Gerald J. Thuesen, Ph
Stanford University
Stanford University
Engineering
Wayne C. Tincher, Ph.D
Vanderbilt University
Professor,
Mary Patricia Tinkelpaugh, M.Ed. Georgia State University Instructor, Physical Education and Recreation
Benson Tongue, Ph.D. Princeton University Mechanical Engineering
Calvin W. Tooles, M.S. Iowa State University P.E. (Virginia)

Associate Professo
Civil Engineering
Thomas G. Tornabene, Ph.D.
University of Houston Professor and Died Biology
Craig A. Tovey, Ph.D
Assistant Professor, Industrial and Systems Engineering
Albin F. Turbak, Ph.D.
Georgia Institute of Technology
Professor and Director,
Textile Engineering
Maxine T. Turner, Ph.D Auburn University Associate Professor, English
Charles E.S. Ueng, Ph.D. Kansas State University
Professor, Engineering Science Professor, Engineering Science
and Mechanics

Ervin E. Underwood, Sc.D. Massachusetts Institute of Technology
Professor, Chemical Engineering
William E. Underwood, Ph.D
University of Maryland
Assistant Professor, Information
P Upur Science
John P. Uyemura, Ph.D.
University of California-Berkeley University of Californ
Associate Professor, Associate Professor,
Henry S. Valk, Ph.D.
Henry S. Valk, Ph.D.
Washington University, St. Louis Professor, Physics
A. D. Van Nostrand, Ph.D Harvard University
Professor and Head, English
Donald L. Vawter, Ph.D.

University of California,

San Diego
Assistant Professor, Engineering
Science and Mechanics
Diana Velez, Ph.D. Princeton University
Visiting Assistant Professor, Visiting Assistan

Maria S. Venable, M.A Emory University Modern Languages
Erik I. Verriest, Ph.D. Stanford University
Assistant Professor, Assistrant Proical Engineering
Gopalakrishnan Vijayan, Ph.D Assistant Professor, Information and Computer Science
Raymond P. Vito, Ph.D
Raymond P. Vito, Phiversity
Associate Professor, Engineering
Assoience and Mechanics
Harrison M. Wadsworth, Jr., Ph.D. Case Western Reserve University
P.E.(Ohio) Industrial and Systems Engineering
Barbara J. Walker, M.L.S
Librarian-Assistant Professor
James W. Walker, Ph.D.
James W. Walker, Ph.D.
University of North Carolin
Professor, Mathematics
Ralph A. Walkling, D.B.A Assistant Professor, Management
John M. Wallace, Jr., M.S.
John M. Wallace, Jr., M.S.
Georgia Institute of Technology
Associate Professor, Electrical Engineering

Helen S. Walzer, M.S University State Teachers Lollege, Genesco, New York
J.M. Wampler, Ph.D. Columbia University Geophysical Sciences
James Ting-Shun Wang, Ph.D. Purdue University Professor, Engineering Science
and Mechanics
Henderson C. Ward, Ph.D.
Georgia Institute of Technolog
Professor, Chemical Engineering
Roger M. Wartell, Ph.D. Associate Professor, Physic
Alan J. Watson, B.S. University of Mia Assistant Professor, Army ROTC
Charles E. Weaver, Ph.D Pennsylvania State University
Professor, Geophysical Sciences
Roger P. Webb, Ph.D Georgia Institute of Technology P.E.(Georgia)

Georgia Power Professor and
Associate Director, Electrical
Engineering
Jay A. Weinstein, Ph.D
Professor, Social Sciences
Gideon Weiss, Ph.D.
Visitivg Associate Prof Industrial and Systems Engineering
Gerald A. Wempner, Ph.D University of Illinois Mechanics
William J. Wepfer, Ph.D. University of Wisconsin Assistant Professor,

Rod Whatley, M.Arch. and M.L.A Harvard University
Associate Professor, Architecture
Earl M. Wheby, M.S.I.M. Georgia Institute of Technology
John A. White, Jr., Ph.D.
Ohio State University
Professor Ind
Engineering
Engeering
John S. White, B.A.
Assistant Professor,
Army ROTC

Mark G. White, Ph.D. Rice University Associate Professor, Chemical Engineering
Thomas M. White, Jr., Ph.D. Georgia Institute of Technology Professor and Assistant Director
Electrical Engineering
Kenneth M. Will, Ph.D.
University of Texas, Austin
Associate Professor, Asivil Engineering
Fred E. Williams, Ph.D Assocue University Associate Professor, Management H. Clay Williams, B.S. Assistant Professor, Naval Sciegy
Wendell M. Williams, Ph.D Ohio State University P.E.(Ohio)

Assistant Professor
Mechanical Engineering
Marilyn L. Williamson, M.Ln Emory University
t Professo
Jean D. Wineman, Arch.D University of Michigan Associate Professor, Architecture Ward O. Winer, Ph.D. University of Michigan P.E. (Georgia)
Professor, Mec

Protessor, Mechanical Engineering
Barringer F. Wingard, Jr., B.A. Assistant Professor, Army ROTC
Jack Winnick, Ph.D.
Professor Chomical
解
Robert Edward Wood, Ph.D Associate Professor. English
W.E. Woolf, M.A.

Associate Professor, Physics
Paul H. Wright, Ph.D. Georgia Institute of Technology Professor, Civil Engineering
James C. Wu, Ph.D. Professor, Aerospace Engineering
Roy O. Wyatt, Jr., M.A. University of Alabama Assistant Professor,
Modern Languages

Dorothy C. Yancy, Ph.D Atlanta University Associate Professor and Acting Social Science
Edward K. Yeargers, Ph.D
Michigan State University Associate Professor,
Applied Biology
Applied Biology
Wan-Lee Yin, Ph.D
Brown University
Brown University
Associate Professor, Engineering
Paul J. Yoder, Ph.D. California Institute of Technology Assistant Professor,
Mechanical Engineering
Ajit P. Yoganathan, Ph.D Ajit P. Yoganathan, Ph.D. Associate Professor, Chemical Engineering
C. Michael York, Ph.D. Associate Professor, Psychology
Donovan B. Young, Ph.D. University of Texas, Austin P.E. (Georgia)

Sysociate Professor, Industrial and
Systems Engineering
James D. Young, Ph.D. Professor, English
R. A. Young, Ph.D. Polytechnic Institute of Brooklyn Professor, Physics
Nai-Teng Yu, Ph.D.
Massachusetts Institute of Massachusetts
Professor, Chemistry
Mark S. Zachmann, M.S
Mark S. Zachmann, M.S. Instructor, Management
Louis J. Zahn, Ph.D.
University of North Carolina Professor and Head,
Modern Languages
Modern Languages
Leon H. Zalkow, Ph.D Georgia Institute of Technology
Professor, Chemistry Professor, Chemistry
Craig M. Zimring, Ph.D. University of Massachusetts
Assistant Professor, Architecture
Ben T. Zinn, Ph.D.
Princeton University
Regents' Professor,
Aerospace Engineering
Pranas Zunde, Ph.D.
Georgia Institute of Technology Computer Science and

Index

Academic advising 38
Academic calendar 30 cademic offerings 8 cademic regulations 3 a creditation 8
mission of freshmen dmmission, graduate undergraduate 36 Advanced placement 37 Advanced Technology Development Center 10
Aerospace engineering 79 iir Force aerospace studies 205 Alumni Association 27 Applied biology 20
Architecture 61
Athletic Association 27
ioengineering Center 15 Biotechnology Center 15 uilding construction 63
Center for Radiological Protection 17 Center for Rehabilitation Technology Center for Research in Writing 17 Ceramic engineering 87
Certificate programs, sciences and
liberal studies 204
Chemical engineering 92
Chemistry 213
City planning 67
Civil engineering 105
Computational Mechanics Center 15 Computing facilities 9
Constitution and history
examinations 40
Continuing education 11
Cooperative plan, undergraduate 33 Counseling center 20

Degrees and programs of study,
graduate 46
Degrees, undergraduate 33
Doctoral degree 53
Doctoral degrer, dissertation 55 Dock programs 47
Economics 188
Electrical engineering 117
Engineering Experiment Station 10 Engineering graphics 10
Engineering scien
mechanics 131

English 220

English for foreign students 255 Environmental Resources Center 15 Examination and grade reports 39
Financial aid, undergraduate 45 Financial assistance, graduate 57

Financial information,
undergraduate 42
Fracture and Fatigue Research Laboratory 15
Fraternities 20
Freshman engineering electives
Geophysical sciences 224
Georgia Mining and Mineral Resources Institute 16
Georgia Productivity Center 16
Georgia Tech Foundation 27
Georgia Tech Research Institute 27
Grading system Record
Handicapped information 26 Health information 22 Health physics program 156 Health Systems Research Center Honors program 37 Housing office 20 Humanities and social sciences requirements 40
Industrial and systems
engineering 140
engineering 140
Industrial design 6
Industrial education 11
Infirmary 21
Information and computer science 230
Interdisciplinary programs 14 Interdisciplinary program, International stu
International students,
admission of 37
International students, TOEFL 50
Joint enrollment for high
school students 36
Library 9
Management 186
Management science 190
Master's degree 51
Master's programs 4
Master's thesis 53
Material Handling Research Center 1
Mathematics 240
Mechanical engineering 153
Medals and prizes,
undergraduate 45
Metallurgy program
Research Cent
Military science 250
Minority Educational Development 21
Modern languages 254
Multidisciplinary programs in
engineering 78

Music 263
Naval science 264
Nuclear engineering 156
Oak Ridge Associated
Universities 14

Pass/fail 38
Physical education and recreation 266
hysical education credit 40 Physics 269
Policies and regulations,
Policies and reg
Preprofessional programs 35 Psychology 279
Readmission, graduate 50 Readmission, undergraduate 38 Refund of fees 43
Regents' Testing Program 40 Residence, definition of 43 ROTC 34
ROTC credit 40
Rules and regulations, student 295
Scholastic average 39
econd undergraduate degree 39 kidaway Institute of Oceanography 14 Social sciences 286 Sororities 20
Special programs, graduate 47 Special programs, undergraduate 33 Special academic services Standing, types of graduate 49 Statistics program 142 Student Center 22
Student government 22 Student life 18
tudent publications and radio 20
Technology and science policy 287 Technology Po
Center 17
Test of English as a Foreign
Language 50
Textile engineering 175
Transfer credit 39
Transfer students, admission of 39
Veterans program, graduate 58
Veterans program,
undergraduate 37
Women's programs 20
Work loads, graduate 48

[^0]: See "Curricula and Courses of Instruction," Department of Physical Education and Recreation, for freshman physical education requirements for both men and women.

[^1]: At present, certain schools have been approved for a waiver from these regulations. Please see each school concerning current policy.

[^2]: Chairman
 *Vice-Chairman

