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SUMMARY 

 

New remote sensing and gridded reanalysis data products from sources including the 

NASA Soil Moisture Active Passive (SMAP) Mission, Global Precipitation Measurement 

(GPM) Mission, North American Land Data Assimilation System (NLDAS), Parameter-

elevation Relationships on Independent Slopes Model (PRISM), and others provide 

unprecedented fine resolution characterization of near-surface atmospheric variables (e.g. 

air temperature, precipitation, downwelling solar radiation, etc.) and surface-to-root-zone 

hydrologic variables (e.g. soil moisture, hydraulic conductivity, soil composition, etc.) with 

national to global coverage. When integrated with state-of-the-science process models, 

these novel data products have the potential to provide useful information for applications 

in agriculture management, drought assessment, irrigation planning, and hydrological (e.g. 

streamflow) assessments. This study investigates the value of integrating these new multi-

sensor gridded data products for hindcasting and prediction of regional-scale crop yield, 

irrigation demand, monitoring of agricultural drought, and hydrological flows.  

 

 



1 

 

CHAPTER 1 

 

INTRODUCTION 

 

New multi-sensor data products such as those from sources including the NASA Soil 

Moisture Active Passive (SMAP) Mission, Global Precipitation Measurement (GPM) 

Mission, North American Land Data Assimilation System (NLDAS), Parameter-elevation 

Relationships on Independent Slopes Model (PRISM), and others provide useful 

information with national to global coverage and with potentially valuable applications in 

agriculture management, drought monitoring, irrigation planning, and streamflow 

modeling.  

Gridded data plays an increasingly important role in the development of crop yield and 

crop water-stress models used to predict and monitor the physical availability of food, the 

critical “supply-side” dimension of food security. Such data and models may also guide 

regional water resources management as more accurate modelling and forecasting of water 

demand for crop production would lead to a more efficient allocation of limited water 

supplies. Careful monitoring and provision of water resources for agricultural use is critical 

as agriculture demands a large fraction of total water use in the United States and the world. 

In 2005, irrigation in the United States consumed 128 billion gallons per day, accounting 

for 37 percent of all freshwater withdrawals and 62 percent of all freshwater withdrawals 

excluding thermoelectric withdrawals (Kenny et al. 2009). The Water Resources chapter 

of the 2014 National Climate Assessment (Georgakakos et al. 2014) indicates that under 
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the A2 emissions scenario (which assumes continued global emissions of greenhouse 

gases), U.S. water demand will increase by 34 percent over the year 2005 to 2060 period, 

and increase to 82 percent over 2005 levels by year 2090. As consumptive water use is 

currently and projected to be by far dominated by agricultural irrigation (81 percent of 

consumptive water use is consumed by agriculture), new multi-sensor gridded data 

products, coupled with models that can accurate estimate irrigation demand, would play a 

vital role in planning for future risks and addressing vulnerabilities in water supplies. 

Also According to the 2014 National Climate Assessment annual precipitation and 

river-flow increases are now being observed in the midwestern and northwestern United 

States. Nationally, intense precipitation events have increased and are also projected to 

increase in all regions. Flooding may intensify nationally, even in regions where total 

precipitation is expected to decline. These findings highlight the importance of modeling 

streamflow-runoff phenomena in order to understand, monitor, and predict hydrological 

flows. As mentioned previously with regard to modeling agricultural yield and irrigation 

demand, modern gridded data products, especially remote sensing of precipitation, may be 

uniquely leveraged to improve streamflow models. 

This study explores how new multi-sensor gridded data products can shed light on the 

hydrologic processes and variables that are vital to crop growth and development, thereby 

improving regional scale assessments of crop yield, agricultural drought, and irrigation. 

Likewise, this study tests how these data products can be used to monitor hydrologic 

processes such as streamflow. Benefits derived from this research may not only assist water 

resources managers and related stake-holders who strive to efficiently and equitably 

allocate limited water resources, but also provide guidance on what kinds of improvements 
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to data products and models may be necessary for more accurate agricultural and 

hydrological assessments. 

1.1 Objectives and Scope 

This study explores how new multi-sensor gridded data products can shed light on the 

hydrologic processes and variables that are vital to crop growth and development, thereby 

improving regional scale assessments of crop yield, agricultural drought, and irrigation. 

Likewise, this study tests how these data products can be used to monitor hydrologic 

processes such as streamflow. The science question to be answered by this research is: 

Can prediction of crop yield, assessment of irrigation demand, and monitoring of 

agricultural drought and hydrological flows be improved by integrating multiple gridded 

data sets with agricultural and hydrological models? 

The research objectives as scope are as follows: 

• To provide a quality/accuracy assessment of new remote sensing data products 

of surface soil moisture (i.e. from the SMAP mission) and their impacts on crop 

yield prediction. 

• To provide a quality/accuracy assessment of new remote sensing data products 

of daily precipitation (i.e. from the GPM mission) and their impacts on crop 

yield prediction, irrigation planning, and streamflow modeling. 

• Development of an operational framework to incorporate multi-sensor gridded 

data products for hindcasting and prediction applications in crop yield modeling, 

drought monitoring, irrigation planning, and streamflow modeling. 

• To provide recommendations for improvements in multi-sensor gridded data 

products necessary for more accurate agricultural and hydrologic modeling. 
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Benefits derived from this research may not only assist water resources managers and 

related stake-holders who strive to efficiently and equitably allocate limited water 

resources, but also provide guidance on what kinds of improvements to data products and 

models may be necessary for more accurate agricultural and hydrological assessments. 

1.2 Thesis Organization 

This dissertation comprises six chapters and is organized as follows: 

Chapter 2 reviews previous studies on incorporating remote sensing and reanalysis data 

into agricultural and hydrological models, as well as providing a description of the new 

multi-sensor gridded data products and models used in this research. 

Chapter 3 investigates the accuracy of remote sensing daily precipitation retrievals in 

comparison to gauge-based gridded precipitation estimates over the continental United 

States (CONUS).  Remote sensing data of soil moisture is explored as a tool to improve 

accuracy of the remote sensing precipitation retrievals. Finally, the sensitivity of crop 

model performance to spatial averaging of gridded meteorological and soil input data is 

assessed. 

Chapter 4 explores multiple case studies in which multi-sensor gridded data products are 

incorporated into crop and streamflow models for hindcasting and near-real-time 

monitoring of crop yield, irrigation demand, drought, and hydrological flows. 

Chapter 5 explores multiple case studies in which multi-sensor gridded estimates of soil 

moisture and precipitation are used for near-future (seasonal) forecasting of crop yield and 

irrigation demand via a historical analog approach. Additionally, finely downscaled and 
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biased-corrected global circulation model (GCM) outputs are integrated with other 

agriculture-relevant data products into a crop model to assess long-term climate change 

impacts on localized crop production and irrigation demand. 

Chapter 6 summarizes the dissertation and provides recommendations to guide the future 

development of gridded data products for agricultural and hydrologic modeling. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Crop yield and irrigation demand models and data assimilation 

Crop models were born out of a necessity to test hypotheses related to crop production 

under various scenarios without resorting exclusively to costly, time-consuming field 

experiments. Agriculture scientists dating back to 19th century proposed the “law of the 

minimum”, stating that plant development would be impeded by environmental “limiting 

factors” (El-Sharkawy 2011). In early singular scale crop models, crop production was 

estimated based on empirical relationships between depth of applied water and crop yield 

per unit area (Hexem and Heady 1978; Brumbelow and Georgakakos 2007). With the 

development of biophysical sciences and computational technology, physiologically-based 

crop models could overcome some of the limitations of these empiricisms. The first 

comprehensive physiological crop model was formulated based on the dynamics of the 

growth of specific crop tissues and the influence of environmental factors on 

photosynthesis and various forms of crop stress (Brumbelow 2001). Combined with 

relevant field data, it was feasible to calibrate such models to local crop genetic 

characteristics and soil-water-atmospheric environmental conditions. However, field data 

for calibration of crop models can be a prohibitively expensive, time consuming endeavor, 

and minimum data requirements for the operation of dynamic biophysical crop model can 

often times be unavailable at appropriate spatial and temporal resolutions, especially in 

data scarce regions of the developing world. 
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Table 2-1 lists the minimum data sets for operation of a popular field scale cropping 

systems model used in this study, the Decision Support System for Agrotechnology 

Transfer – Cropping Systems Model (DSSAT-CSM) (Jones et al. 2003). Table 2-2 lists 

and describes the major modules and sub-modules of the program. Early crop models were 

developed for single plot or field scale studies in agrotechnology transfer, but modelling 

focus has since been expanded to address regional-scale simulation of different crops, 

management practices, climate change impacts, and food security risks (Ewert et al. 2014) 

at spatiotemporal resolutions that are in-line with recent gridded multi-sensor data 

products.  

  



8 

Table 2-1: Minimum data sets for operation of DSSAT-CSM, from (Jones et al. 2003) 
Category Minimum Required Data 
Site Latitude and longitude, elevation; average annual temperature; 

average annual amplitude in temperature; slope and aspect; 
major obstruction to the sun (e.g. nearby mountain); drainage 
(type, spacing and depth); surface stones (coverage and size) 

Weather Daily global solar radiation; maximum and minimum air 
temperatures; precipitation 

Soil Classification using the local system and (to family level) the 
USDA-NRCS taxonomic system; Basic profile characteristics 
by soil layer: 
in-situ water release curve characteristics (saturated drained 
upper limit, lower limit); bulk density, organic carbon; pH; root 
growth factor; drainage coefficient 

Initial Conditions Previous crop, root, and nodule amounts; numbers and 
effectiveness of rhizobia (nodulating crop); Water, ammonium 
and nitrate by soil layer 

Management Cultivar name and type; planting date, depth and method; row 
spacing and direction; plant population; irrigation and water 
management, dates, methods and amounts or depths; fertilizer 
(inorganic) and inoculant applications; residue (organic 
fertilizer) applications (material, depth of incorporation, amount 
and nutrient concentrations); Tillage; Environment (aerial) 
adjustments; Harvest schedule 
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Table 2-2: Description of DSSAT-CSM modules and sub-modules, from (Jones et al. 
2003) 

Modules Sub modules Behavior 
Main program 
(DSSAT–CSM) 

 Controls time loops, determines which modules to call based 
on user input switches, controls print timing for all modules. 

Land unit  Provides a single interface between cropping system 
behavior and applications that control the use of the 
cropping system. It serves as a collection point for all 
components that interact on a homogenous area of land. 

Weather  Reads or generates daily weather parameters used by the 
model. Adjusts daily values if required, and computes hourly 
values. 

Soil Soil dynamics Computes soil structure characteristics by layer. This module 
currently reads values from a file, but future versions can 
modify soil properties in response to tillage, etc. 

Soil temperature 
module 

Computes soil temperature by layer. 

Soil water module Computes soil water processes including snow accumulation 
and melt, runoff, infiltration, saturated flow and water table 
depth. Volumetric soil water content is updated daily for all 
soil layers. Tipping bucket approach is used. 

Soil nitrogen and 
carbon module 

Computes soil nitrogen and carbon processes, including 
organic and inorganic fertilizer and residue placement, 
decomposition rates, nutrient fluxes between various pools 
and soil layers. Soil nitrate and ammonium concentrations 
are updated on a daily basis for each layer. 

SPAM  Resolves competition for resources in soil–plant–
atmosphere system. Current version computes partitioning 
of energy and resolves energy balance processes for soil 
evaporation, transpiration, and root water extraction. 

CROPGRO Crop 
Template module 

 Computes crop growth processes including phenology, 
photosynthesis, plant nitrogen and carbon demand, growth 
partitioning, and pest and disease damage for crops modeled 
using the CROPGRO model Crop Template (soybean, peanut, 
dry bean, chickpea, cowpea, faba bean, tomato, Macuna, 
Brachiaria, Bahiagrass). 

Individual plant 
growth modules 

CERES-Maize; CERES-
Wheat; CERES-Rice; 
SubStor-Potato; Other 
plant models 

Modules that simulate growth and yield for individual 
species. Each is a separate module that simulates phenology, 
daily growth and partitioning, plant nitrogen and carbon 
demands, senescence of plant material, etc. 

Management 
operations module 

Planting Determines planting date based on read-in value or 
simulated using an input planting window and soil, weather 
conditions. 

Harvesting Determines harvest date, based on maturity, read-in value or 
on a harvesting window along with soil, weather conditions. 

Irrigation Determines daily irrigation, based on read-in values or 
automatic applications based on monitoring of dates, crop 
growth stage, soil water depletion, and/or modeled potential 
evapotranspiration. 

Fertilizer Determines fertilizer additions, based on read-in values or 
automatic conditions. 

Residue Application of residues and other organic material (plant, 
animal) as read-in values or simulated in crop rotations. 
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Improving agricultural models by incorporating remote-sensing and reanalysis data as 

model input has become a growing field of study. The advantage of such data products are 

that they may allow for the quantification of critical state variables of a crop at a given time 

instant; this information can then be used to force, recalibrate, or update modeled crop 

states (Maas 1988). Furthermore, remote-sensing data can provide relatively accurate 

information on critical variables (such as of rainfall, temperature, soil moisture, etc.) for 

large regions with relatively high spatial and temporal resolutions. The availability of this 

information makes possible the application of field-scale crop models at regional scales, 

and also allows for the models to be useful in ungauged locales (e.g. such as in many places 

in the developing world). Maas (1988) explored four techniques for incorporating 

remotely-sensed data into in a uniform white-maize monoculture at a USDA Research 

Farm in the state of Texas. Direct input of remotely-sensed data was the simplest method 

of data assimilation; however, the method required frequent observations not available at 

the time of the study. Moulin et al. (1998) addressed challenges in incorporating coarse 

resolution remote-sensing data to estimate regional crop yields using a similar approach. 

Delécolle et al. (1992) also explored remotely-sensed data assimilation techniques in 

relation to different categories of crop models. Mo et al. (2005) used remotely-sensed 

retrievals of Leaf Area Index (LAI) with a process-based soil-vegetation-atmosphere 

transfer (SVAT) model to predict crop yield, water consumption, and water use efficiency 

for a sub-region of the North China Plain. Ines et al. (2013) utilized an Ensemble Kalman 

Filter to assimilate remotely-sensed AMSR-E soil moisture and MODIS Leaf Area Index 

(LAI) data products into DSSAT-CSM to model year 2003 – 2009 maize yields in Story 

County, Iowa. Data assimilation improved the correlation between modeled and observed 
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crop yield from 0.47 (no data assimilation) to 0.65 (with combined assimilation of soil 

moisture and LAI data). Nearing et al. (2012) investigated using the Ensemble Kalman 

Filter and a Sequential Importance Resampling Filter (SIRF) through an observing system 

simulation experiment for assimilating surface soil moisture and LAI. The study 

highlighted the importance of having more than just remote sensing surface soil moisture 

data for improving agricultural yield estimates, as crop state is understandably more 

connected to root zone soil moisture state than just surface soil water condition alone. This 

finding provides an opening for remote sensing soil moisture to be used in tandem with  

precipitation data to improve agricultural modeling. Incorporating remote-sensing data into 

crop system models such as DSSAT-CSM has the potential to improve the accuracy of 

crop yield simulations related to regional irrigation forecasting and water resources 

management. 

2.2 Sacramento Soil Moisture Accounting Model for Streamflow prediction 

Moradkhani and Sorooshian (2008) conducted an introductory review of the history of 

rainfall-runoff modeling. In it, the authors mention the variety of rainfall-runoff models 

including deterministic, stochastic, physically-based, empirical (e.g. “black box”), lumped 

models, and distributed models. Owing to its relatively simple conceptualization and 

development, the lumped modeling approach characterizes a river basin as a single unit 

and disregards spatial variability. In such models, the main focus is to relate forcing data 

(i.e. precipitation input) to streamflow without having to resolve the finest details of the 

spatial processes, patterns, and characteristics that govern streamflow generation. One such 

lumped model that found widespread use by the US National Weather Service (NWS) for 

flood forecasting is the Sacramento Soil Moisture Accounting Modeling (SAC-SMA) 
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(Burnash et al. 1973; Burnash 1995). SAC-SMA divides relatively large watersheds into 

lower and upper subsurface zones and defines the distribution and transport of two types 

of water components within these zones: tension water (moisture transported by way of 

evapotranspiration and diffusion) and free water (driven by gravity). By way of about 13 

parameters (with values determined by manual analysis of historical streamflow and 

precipitation records or by automated optimization approaches), SAC-SMA converts input 

of daily precipitation and potential evapotranspiration to streamflow. The computed 

streamflow consists of five basic forms including direct runoff from impervious areas; 

surface runoff due to precipitation occurring at a faster rate than percolation and interflow 

when upper zone moisture storage reservoirs are full; interflow resulting from lateral 

drainage of a temporary free water storage; supplemental base flow; and primary base flow 

(Burnash 1995). For scenarios in which precipitation data includes snowfall, then the 

snowfall data needs to converted to liquid water available for streamflow generation by 

way of a snowpack/snowmelt model. One such snowmelt discharge model also adopted by 

the NWS is the SNOW-17 model (Anderson 1973) which only requires input of daily 

precipitation and air temperature. Figure 2-1 illustrates the main processes, runoff 

components, and moisture reservoirs included in SAC-SMA, and Table 2-3 lists the 

parameters of the model. In this research, the open-source Hydromad software package 

(Andrews et al. 2011; Andrews 2013), which includes a SAC-SMA module as well as data-

fitting optimization tools for estimating SAC-SMA input parameters, is utilized for 

estimating streamflow and for quantiying the impact of using both gridded meteorological 

forcing data (i.e. GRIDMET) and remote sensing precipitation data (i.e. GPM IMERG and 

JAXA GSMaP products) on model performance. 
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Figure 2-1: Schematic of runoff components and moisture reservoirs of the 
Sacramento Soil Moisture Accounting Model (SAC-SMA), from (World Bank 2016). 
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Table 2-3: Parameters of the Sacramento Soil Moisture Accounting Model (SAC-SMA) 
in the Hydromad modeling package, from (Andrews 2013). 
SAC-SMA 
Parameter 

Description 

UZTWM Upper zone tension water maximum capacity (mm). 
UZFWM Upper zone free water maximum capacity (mm). 
UZK Lateral drainage rate of upper zone free water expressed as a 

fraction of contents per day. 
PCTIM The fraction of the catchment which produces impervious runoff 

during low flow conditions. 
ADIMP The additional fraction of the catchment which exhibits 

impervious characteristics when the catchment's tension water 
requirements are met. 

ZPERC Maximum percolation (from upper zone free water into the lower 
zone) rate coefficient. 

REXP An exponent determining the rate of change of the percolation 
rate with changing lower zone water contents. 

LZTWM Lower zone tension water maximum capacity (mm). 
LZFSM Lower zone supplemental free water maximum capacity (mm). 
LZFPM Lower zone primary free water maximum capacity (mm). 
LZSK Lateral drainage rate of lower zone supplemental free water 

expressed as a fraction of contents per day. 
LZPK Lateral drainage rate of lower zone primary free water expressed 

as a fraction of contents per day. 
PFREE Direct percolation fraction from upper to lower zone free water 

(the percentage of percolated water which is available to the 
lower zone free water aquifers before all lower zone tension 
water deficiencies are satisfied). 

 

2.3 NASA SMAP L3 Enhanced (surface soil moisture) 

The launch of NASA Soil Moisture Active Passive (SMAP) satellite on 31 January 2015 

offers an opportunity to improve the observed soil moisture record with high spatial and 

temporal resolution data products with global coverage. SMAP data has the potential to 

reduce the uncertainty in food-security essential estimates of crop yield, water-stress, and 

irrigation demand when incorporated in agricultural models, and can also serve as vital 

input for parameterizations of soil water infiltration and crop transpiration. The Level 3 

Enhanced SMAP data product (SMAP_L3_SMPE) provides 36 km (posted to a 9km grid) 
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and 2-3 daily top 5 cm layer soil moisture  (Entekhabi et al. 2010b). The mission requires 

the product’s unbiased root-mean-squared-error (ubRMSE), the RMSE between satellite 

retrieved and upscaled in-situ soil moisture estimates after the temporal mean has been 

removed from both data streams (Entekhabi et al. 2010a), not exceed 0.04 cm3 cm-3 

(Entekhabi et al. 2014). Chan et al. (2018) investigated the performance of the SMAP 

enhanced passive surface soil moisture data product over a collection of core validation 

sites with distinct climates. Table 2-4 summarizes the performance metrics at various 

cropland sites. In general the SMAP data is well-correlated with in-situ data; however, the 

combined impact of the ubRMSE and bias may drive soil moisture estimates to deviate 

from in-situ estimates by over 0.1 cm3/cm3 which may adversely impact crop yield and 

irrigation demand simulations if this data is incorporated into a cropping systems model. 

 

Table 2-4: Performance metrics of SMAP Passive Enhanced Surface Soil Moisture data 
product at various cropland in-situ core validation sites (CVS) over the April 2015 to 
October 2016 period, from (Chan et al. 2018). 

Cropland 
CVS Name 

Location Climate ubRMSE 
(m3/m3) 

Bias 
(m3/m3) 

RMSE 
(m3/m3) 

Correlation 

South Fork Iowa, USA Cold 0.054 − 0.062 0.082 0.646 
Little River Georgia, USA Temperate 0.028 0.087 0.092 0.887 
Kenaston Canada Cold 0.022 − 0.040 0.046 0.854 
Monte Buey Argentina Arid 0.051 − 0.020 0.055 0.840 
REMEDHUS Spain Temperate 0.042 − 0.007 0.042 0.872 
Twente Netherlands Temperate 0.056 0.013 0.057 0.885 
Yanco Australia Arid 0.043 0.020 0.048 0.964 

 

2.4 NASA GPM IMERG Precipitation 

The NASA Global Precipitation Measurement (GPM) mission with its core satellite 

launched on 27 February 2014 combines the measurements from a constellation of 

satellites to provide precipitation measurements with global coverage (between the Arctic 
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and Antarctic Circles) at sub-daily  temporal resolutions (NASA 2012). The Late release  

Level 3 data product from the GPM’s Integrated Multi-Satellite Retrievals (IMERG) 

provides gridded rainfall intensity data at 0.1° spatial and half-hourly resolution with 18 

hour latency (NASA 2015). The availability of the GPM rainfall observations together with 

the SMAP soil moisture data and hydrologic and agricultural models allows continuous 

and more accurate assessment of soil moisture state from surface to root zone at global 

scale. These data are expected to significantly reduce the uncertainty in the forecast of crop 

production and drought monitoring not only over the United States but also for the data 

scarce (ungauged) regions in the developing world. 

 

2.5 JAXA GSMaP and GSMaP-Gauge Precipitation 

The Global Satellite Mapping of Precipitation (GSMaP) Project is a research project 

started in 2002 sponsored by the Core Research for Evolutional Science and Technology 

(CREST) of the Japan Science and Technology Corporation (JST) and promoted by the 

Japan Aerospace Exploration Agency (JAXA) Precipitation Measuring Mission (PMM) 

Science Team (Okamoto et al. 2005; JAXA/EORC 2018). GSMaP’s objective is to produce 

high precision, high resolution global maps of precipitation using satellite data. The finest 

resolution data available from GSMaP is 0.1° spatial and hourly resolution. The latest 

versions of GSMaP data incorporates rain rate retrievals from the GPM mission. In this 

research, two daily aggregated precipitation products from GSMaP are utilized, the first: 

GSMaP-Standard product, which integrates passive microwave radiometer data with 

infrared radiometer data into a Kalman filter to produce fine resolution precipitation maps, 

while the GSMaP-Gauge product calibrates the Standard product with global rain gauge 
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analysis (CPC Unified Gauge-Based Analysis of Global Daily Precipitation) supplied by 

United States’ National Oceanic and Atmospheric Administration (NOAA) (JAXA/EORC 

2017). Tian et al. (2009) evaluated the performance of GSMaP precipitation estimates over 

the contiguous United States and found that GSMaP does well in capturing spatial patterns 

of precipitation, particularly in the summer, with better performance over the eastern 

United States than the western region. Summertime overestimates were attributed to 

overestimation of strong precipitation events. It is important to note however that this 

analysis was completed before retrievals from the GPM mission were available. Before 

incorporating daily GSMaP data into agricultural and streamflow models, it is of interest 

to re-evaluate the performance of this data (both GSMaP-Standard and GSMaP-Gauge) 

over the contiguous United States. 

 

2.6 GRIDMET Surface Meteorological Data 

GRIDMET is a recently developed, publicly available data set of high spatial resolution 

(~4 km) gridded daily surface meteorlogical data covering the contiguous United States 

from 1979 to present (Abatzoglou 2011). GRIDMET combines the fine resolution spatial 

attributes of gridded climate data from Parameter Regression on Independent Slopes Model 

(PRISM) (Daly et al. 1994) with the fine temporal resolution of NLDAS-2 (Mitchell et al. 

2004) reanalysis data. Primary and derived climate variables in this data set include daily 

maximum and minimum air temperature, precipitation, downwelling surface shortwave-

radiation, reference evapotranspiration, 10-day Palmer Drought Severity Index, mean 

vapor pressure deficit, and other variables. Behnke et al. (2016) evaluated the performance 

of multiple gridded temperature and precipitation data products, including GRIDMET, 



18 

over the contiguous United States. They found that at the national level, GRIDMET’s (as 

well as other data sets’) temperature data was highly correlated (greater than 0.9) and 

shared nearly identical temporal variability with weather station records. However for 

precipitation evaluated at the national scale, the correlation was considerably weaker 

(between 0.5 and 0.6) with annual wet biases in the Great Basin, Northern Rockies, and 

Pacific Northwest regions, and mean annual absolute errors of greater than 3 mm in the 

Southeast and Deep South regions. GRIDMET data has been incorporated in cropping 

systems models (e.g. (Karimi et al. 2018)) and streamflow models (e.g. (Ficklin et al. 2016) 

). Despite some discrepancies in precipitation data, GRIDMET, due to its derivation from 

products strongly linked to a wide range of monitoring networks, arguably represents one 

of the finest resolution data products with low latency mimicking “ground truth”. It is of 

interest in this study to assess the performance of remote sensing data products of 

precipitation (i.e. GPM and GSMaP products)  in relation to the GRIDMET data set. 

2.7 Daymet Surface Meteorological Data 

Similar to GRIDMET, Daymet is a data set providing fine resolution gridded model 

estimates of daily weather variables for North America based on daily meteorological 

observations (Thornton et al. 1997; Thornton and Running 1999; Thornton et al. 2000; 

Thornton et al. 2014). The spatial resolution is 1 km x 1 km with temporal coverage 

beginning from 1980, but unlike GRIDMET which includes up to near present-day 

estimates, the most recent Daymet data is from the previous calendar year. Daily variables 

available from this data set include daylight length (seconds), daily precipitation (converted 

to water-eqivalent), incident shortwave radiation, and maximum and minimum air 

temperature (2 meters above surface). Daymet is archived and distributed through the Oak 
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Ridge National Laboratory Distributed Active Archive Center for Biogeochemical 

Dynamics (ORNL DAAC), and is supported by NASA Earth Science Data and Information 

System (ESDIS) and the Terrestrial Ecosystem Program. Because of its fine spatial 

resolution (1 km x 1 km), Daymet data lends itself to a useful analysis of how the spatial 

coarsening of daily meteorological inputs impacts crop yield and irrigation estimates from 

cropping systems models such as DSSAT-CSM which were original developed for point-

scale (e.g. single farm field scale) modeling. For example, how much do crop model 

predictions change when daily meteorlogical input data is coarsened (by spatial averaging 

of 1 km pixels) from 1 km resolution to 30 km resolution? What is the coarsest spatial 

resolution of meteorological input data that is acceptable for crop modeling applications? 

This study explores these questions by way of this data set. 

2.8 HarvestChoice Global high-resolution soil profile database (HC-GHRSPD) 

The HarvestChoice Global high-resolution soil profile database for crop modeling 

applications (hereafter referred to as HC-GHRSPD) is a relatively new (released in 2015) 

data set providing estimates of soil composition, hydraulic properties, and other soil 

properties that are critical inputs to cropping systems models, particularly DSSAT-CSM 

(Han et al. 2015). HC-GHRSPD provides DSSAT-CSM compatible surface-to-root-zone 

soil profiles at the 5 arc-minute (~10km) spatial resolution with global coverage (with a 

global crop mask applied). Table 2-1 lists the parameters provided by the data set with their 

associated units. 
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Table 2-5: Soil profile parameters provided by the HC-GHRSPD data set, from (Han et 
al. 2015). 

Variable name Definition 
SCOM Color, moist, Munsell hue 
SALB Albedo, fraction   
SLU1 Evaporation limit, mm    
SLDR Drainage rate, fraction day-1   
SLRO Runoff curve no. (Soil Conservation Service)   
SLNF Mineralization factor, 0 to 1 scale 
SLPF Photosynthesis factor, 0 to 1 scale 

SMHB pH in buffer determination method, code 
SMPX Phosphorus determination code   
SMKE Potassium determination method, code   
SLLL lower limit, or wilting point, cm3 cm-3 
SDUL drained upper limit, or field capacity, cm3 cm-3 
SSAT Upper limit, saturated, cm3 cm-3 
SRGF Root growth factor, soil only, 0.0 to 1.0 
SSKS Sat. hydraulic conductivity, cm h-1    
SBDM Bulk density, g cm-3 
SLOC Organic carbon, % 
SLCL Clay (<0.002 mm), %   
SLSI Silt (0.05 to 0.002 mm), %   
SLNI Total nitrogen, %    

SLHW pH in water   
SCEC Cation exchange capacity, cmol kg-1   

 

2.9 USDA NASS Cropscape – Cropland Data Layer 

The USDA National Agricultural Statistics Service (USDA-NASS) Cropland Data 

Layer (Han et al. 2012; USDA NASS 2015), referred to as Cropscape, contains crop and 

other land cover classifications derived from remote sensing of the continguous United 

States and has been publicly accessible through a web service based application since year 

2011. With regard to data relevant to agricultural decision support, the Cropscape data 

product, produced yearly, provides geo-referenced, high accuracy thematic maps of crop 

acreages by crop type (e.g. Corn, Cotton, Soybeans, Potatoes, Grassland/Pasture, etc.) at 

spatial resolution as fine as 30 meters. Data sources used to develop the product include 

satellite imagery from the Advanced Wide Field Sensor (AWiFS), Landsat, USDA Farm 
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Service Agency (USDA-FSA), USDA National Agricultural Statistics Service (USDA-

NASS) June Agricultural Survey data, and the US Geological Survey (USGS) National 

Land Cover Datasets (NLCD) (Han et al. 2012). A sample thematic map is presented in 

Figure 2-2. The Cropscape data product has found many applications such as agricultural 

land cover monitoring, crop acreage and yield estimation, disaster assessment, bioenergy 

crop inventory, carbon accounting, among other studies (West et al. 2010; Han et al. 2012; 

Kutz et al. 2012; Green et al. 2018).  

 

Figure 2-2: Year 2009 Cropscape Map with major land cover categories, from (Han et 
al. 2012) 

 

One innovative use of this data product to be explored in this research includes 

estimation of regional-scale crop irrigation volumes. While there are data products that 

provide local (e.g. U.S. county-level) insight on what percentage of a specific crop type’s 
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acreage are irrigated, the actual irrigation amount or irrigation volume, in many cases is 

neither reported nor monitored (sometimes due to privacy concerns). Gridded Cropscape 

data can be integrated with local information on irrigated acreage to more precisely 

determine how much land area of a given crop is either irrigated or rainfed. From there 

crop systems models, such as DSSAT-CSM, driven by high resolution gridded 

meteorological data (e.g. GRIDMET) and soil information (e.g. HC-GHRSPD) can be 

leveraged to determine crop specific irrigation volumes. The results of such an 

investigation could prove invaluable to drought monitoring, food security studies, and 

guide irrigation withdrawal planning and permiting.  

 

2.10  LOCA Downscaled CMIP5 Climate Projections  

The Coupled Model Intercomparison Project phase 5 (CMIP5) recently released 

downscaled climate projections based on the relatively new Localized Constructed 

Analogs (LOCA) method (Pierce et al. 2014). Constructed Analog methods spatially 

downscale GCM output by searching for a set of observed days, from a spatially coarsened 

observational data set, that are most similar to the coarse grid GCM data. Then the fine-

resolution observations from the analog days are combined to create the final spatially 

downscaled field (Hidalgo et al. 2008; Bracken 2016). LOCA improves on commonly used 

constructed analog approaches by selecting analog days based on an analysis within a 

synoptic-scale (approximately 1000 km) region instead of the entire downscaling domain; 

and by selecting a single analog day from a set of 30 candidates based on local 

(approximately 100 km about the point being downscaled) matching between the 

downscaled model and fine observational grid instead of using a weighted average of 



23 

candidate analog days (Bracken 2016). While the LOCA downscaling method requires 

more computational power than previous methods, performance tests showed LOCA 

downscaled variable fields (maximum and minimum air temperature and precipitation) 

provide better estimates of extreme days, more realistically preserve spatial coherence of 

the downscaled variables, and avoid the problem of producing light-precipition artifacts 

(Pierce et al. 2014). Furthermore, the novel bias-correction procedure adopted for this data 

set is an improvement over conventional methods with regard to preserving the GCMs’ 

climate change signal as well as the frequency-dependent variance of climate variables 

(Pierce et al. 2015). It is also important to note that the LOCA procedure also involves 

treatment for future climate anomalies (in precipitation and temperature) that are outside 

the bounds of historical observations (Pierce et al. 2014). LOCA-CMIP5 downscaled 

estimates of maximum and minimum air temperature and precipitation for two CO2 

emission path scenarios (RCP 4.5 and RCP 8.5) from 32 different GCM models are 

publicly available at https://gdo-dcp.ucllnl.org/. The coverage is the continental U.S. from 

year 1950 – 2099 and the resolution is 1/16th degree (~6 km x 6 km grid cells) at the daily 

time step. With its aforementioned spatial, temporal, and statistical features, the LOCA-

CMIP5 product is uniquely suited for use with agricultural models. Review of recent 

literature showed that this modern data set has yet to be incorporated into a crop systems 

model for assessment of local climate change impacts on agricultural production and 

irrigation demand. 

  

https://gdo-dcp.ucllnl.org/
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CHAPTER 3 

 

ERROR ANALYSIS OF REMOTE SENSING PRECIPITATION AND  

AGRI-HYDROLOGICAL MODEL SENSITIVITIES TO  

GRIDDED INPUT DATA 

 

3.1 Comparison of Near Real Time NASA GPM IMERG and JAXA GSMaP 

products over the continental US 

As mentioned in Chapter 2, recent remote sensing precipitation missions such as NASA 

GPM and JAXA GSMaP provide a unique opportunity to monitor precipitation, a vital 

input to agricultural and streamflow models, in near real time. However, before these data 

are incorporated into hydrological models it is important to understand how accurate (or 

inaccurate) these data are. In this study, low-latency (e.g. available to the public within 

three days or less from the satellite retrieval time) gridded retrievals of daily rainfall from 

NASA GPM IMERG (Version 5, Level 3, Late Release), JAXA GSMaP (Version 7), and 

JAXA GSMaP-Gauge (Version 7) are compared to the GRIDMET rainfall product over 

the years 2015-2016 for various regions of the continental United States. While the 

GRIDMET product is a reanalysis estimate of precipitation, precipitation estimates from 

this product are driven by a wide range of “ground-truth” monitoring networks.  

Figure 3-1 presents a map of the nine climate regions of the continental United States 

used for assessing the quality of the remote sensing precipitation data products. These nine 

regions were identified as being climatically consistent by the U.S. National Centers for 
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Environmental Information (NCEI) and useful for understanding current climate anomalies 

(Karl and Koss 1984). 

 

Figure 3-1: Nine climate regions for assessment of remote sensing precipitation 
products over the continental United States. From (NCDC 2017). 

 
3.1.1   Annual Assessments 

Figure 3-2 and Figure 3-3 illustrate the performance of the remote sensing precipitation 

data products in estimating annual accumulated precipitation over the continental U.S. 

during years 2015 and 2016 respectively. In 2015, The GRIDMET product estimated the 

annual precipitation as 878 mm while the remote sensing retrievals were 1017 mm, 1246 

mm, and 877 mm for GPM IMERG, GSMaP-Standard, and GSMaP-Gauge respectively. 

In 2016, The GRIDMET product estimated the annual precipitation as 823 mm. All of the 

remote sensing products had higher estimates of 901 mm, 1321 mm, and 831 mm for GPM 

IMERG, GSMaP-Standard, and GSMaP-Gauge respectively. The discrepancy between the 

GSMaP-Standard and the GSMaP-Gauge product (in both years) highlights the impact and 
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importance of the rain-gauge correction for ensuring the accuracy of remote sensing 

precipitation retrievals. 

Figure 3-4 and Figure 3-5 highlight how the performance of the remote sensing 

precipitation retrievals vary by climate region. For all climate regions of the continental 

U.S., the JAXA GSMaP-Standard product greatly overestimates precipitation in 

comparison to the rain-gauge derived GRIDMET data product. The rain-gauge correction 

introduced in the GSMaP-Gauge product is essential for producing more accurate 

retrievals. The GPM IMERG product typically overestimates precipitation (relative to 

GRIDMET), except for West in year 2015 and West and Northwest climate regions in year 

2016 where the GPM IMERG product appears to have a considerable dry bias. The best 

performance of the GPM IMERG product is in the Southeast, Southwest, and West North 

Central for both years as the deviation (usually overestimation) from the GRIDMET 

product is less than 100 mm. In year 2015, the West and Northwest regions are also in good 

agreement with GRIDMET, and in year 2016, the South region agrees well with 

GRIDMET. 
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Figure 3-2: Assessment of year 2015 cumulative precipitation from GPM IMERG, 
GSMaP-Standard, and GSMaP-Gauge data products. 

 



28 

 

Figure 3-3: Assessment of year 2016 cumulative precipitation from GPM IMERG, 
GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-4: Assessment of year 2015 regional cumulative precipitation from GPM 
IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-5: Assessment of year 2016 regional cumulative precipitation from GPM 
IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 

 

3.1.2   Seasonal Assessments 

 
Figure 3-6 and Figure 3-7 present the cumulative precipitation for each season of years 

2015 and 2016 for GRIDMET, GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data 

products. As with the annual assessment, GSMaP-Standard greatly overestimates 

precipitation in spring, summer, and fall, but the overestimation appears to be remedied in 

the GSMaP-Gauge product. GPM IMERG also typically overestimates in all seasons.  
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Figure 3-6: Seasonal assessment of year 2015 cumulative precipitation from GPM 

IMERG, GSMaP-Standard, and GSMaP-Gauge data products for the Continental US 
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Figure 3-7: Seasonal assessment of year 2016 cumulative precipitation from GPM 

IMERG, GSMaP-Standard, and GSMaP-Gauge data products for the Continental US 
 

Figure 3-8 and Figure 3-9 present the regional cumulative precipitation for the winter 

seasons of years 2015 and 2016 for GRIDMET, GPM IMERG, GSMaP-Standard, and 

GSMaP-Gauge data products. The GPM IMERG product consistently overestimates winter 

precipitation in the Northwest, Northeast, and Central regions and underestimates in the 

Southwest. The GSMaP-Standard estimates are generally either lesser or comparable to the 

GRIDMET reference except for the South and Southeast for which there is substantial 

overestimation, and the inconsistency with GRIDMET appears to be removed with the 

incorporation of rain gauge data in the GSMaP-Gauge product. 

As shown in Figure 3-10 and Figure 3-11, the GPM IMERG product underestimates 

spring precipitation in the Northwest, West, and Southwest climate regions, while 
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overestimating in the Central and East North Central regions. GSMaP-Standard 

overestimates in most regions, and this is rectified by the GSMaP-Gauge data set. 

Figure 3-12 and Figure 3-13 show that the GPM IMERG summer cumulative 

precipitation is comparable to the GRIDMET reference except for the the West and 

Southwest regions for which there is overestimation, in contrast to the underestimation 

during the winter and spring seasons. GSMaP-Standard is conspicuous by its large 

overestimation for most regions, which similar to the previous assessments, is rectified in 

the GSMaP-Gauge data set.  

Figure 3-14 and Figure 3-15 show that the GPM IMERG fall cumulative precipitation 

is comparable to the GRIDMET reference, but there is a dry bias in the GPM IMERG 

product in the Northwest and West. GSMaP-Standard overestimates in the majority of 

regions while GSMaP-Gauge agrees well with the GRIDMET reference. 
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Figure 3-8: Assessment of year 2015 regional winter cumulative precipitation from 
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-9: Assessment of year 2016 regional winter cumulative precipitation from 
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-10: Assessment of year 2015 regional spring cumulative precipitation from 
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-11: Assessment of year 2016 regional spring cumulative precipitation from 
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-12: Assessment of year 2015 regional summer cumulative precipitation from 
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 

 



39 

   

   

   

Figure 3-13: Assessment of year 2016 regional summer cumulative precipitation from 
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-14: Assessment of year 2015 regional fall cumulative precipitation from GPM 
IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 
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Figure 3-15: Assessment of year 2016 regional fall cumulative precipitation from GPM 
IMERG, GSMaP-Standard, and GSMaP-Gauge data products. 

 

 
 

3.1.3   Assessment of Empirical Probability Density Functions of Daily 

Precipitation and Summary Statistics 

To assess how remote sensing retrievals of precipitation fare with regard to extreme, 

typical, and dry events, Figure 3-16 presents the empirical probability density function 

(PDF) and cumulative probabilities (CDF) for daily rainfall from the GRIDMET, GPM 

IMERG, GSMaP-Standard and GSMaP-Gauge data products for the continental United 

States. The results indicate that daily precipitation events between 0 and 5 mm occur more 

frequently in the monitoring-network driven GRIDMET data product, than in all the remote 

sensing derived products. GSMaP-Gauge follows the GRIDMET closely, while the 
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GSMaP-Standard has a clear wet bias for non-extreme daily precipitation events. The CDF 

suggests that the GPM IMERG product may overestimate extreme precipitation events.  

  

Figure 3-16: Empirical probability (PDF) and cumulative density functions (CDF) for 
daily precipitation over the 2015-2016 period for the continental United States 

 

Figure 3-17 presents the seasonal empirical probability density functions and 

cumulative probabilities for daily precipitation. Results confirm the great wet bias in the 

GSMaP-Standard product. GSMaP standard also overestimates extreme precipitation 

events relative to the other data products in all seasons except for the winter season in 

which the GPM IMERG product overestimates precipitation by a greater amount than 

GSMaP-Standard. The GPM IMERG product appears to agree best with the GRIDMET 

data product for all types of daily precipitation during the summer and fall, while the 

GSMaP-Gauge product agrees well with GRIDMET in all seasons. 
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Figure 3-17: Seasonal empirical probability density functions and cumulative 
probabilities for daily precipitation over the 2015-2016 period for the continental United 
States. 
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Figure 3-18 and  Figure 3-19 present the empirical probability density functions and 

cumulative probabilities for daily precipitation over the 2015-2016 period for the nine U.S. 

climate regions. Features that stand out from the probability densities are the for 

precipitation events between 0 and 5 mm, GPM IMERG and GSMaP-Standard generally 

overestimate precipitation with respect to the GRIDMET reference, except for GPM 

IMERG in the Northwest and West regions. The regional cumulative probabilities also 

confirm that GSMaP-Standard generally overestimates all types of precipitation (dry, 

typical, intense) in all climate regions, while the GPM IMERG product appears to greatly 

overestimate intense precipitation events in the East North Central, Central, South, and 

Southeast. 

 

   

   

   

Figure 3-18: Empirical probability density functions for daily precipitation over the 
2015-2016 period for nine climate regions of the continental United States. 
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Figure 3-19: Cumulative probabilities for daily precipitation over the 2015-2016 period 
for nine climate regions of the continental United States. 

 

Table 3-1 summarizes the statistical performance of the remote sensing retrievals of 

daily precipitation over the 2015-2016 period in comparison to the GRIDMET reference. 

As expected from the previous assessments in this study, GSMaP-Standard has the lowest 

correlation, greatest root-mean-squared-error (RMSE), and greatest mean absolute error 

(MAE) compared to the GPM IMERG and the GSMaP-Gauge product for all climate 
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regions as well as the entire continental US. The GPM IMERG product is more highly 

correlated with the GRIDMET reference than the other remote sensing retrievals, with 

correlations greater than 80 percent for most of the climate regions, suggesting that GPM 

IMERG captures the occurrence of rain days well (even if there is over/underestimation of 

the event itself). The RMSE results, which are sensitive to extreme precipitation events, 

highlight the GPM IMERG biases during extreme events as explored in the previous 

sections of this assessment.  

Table 3-1: Summary performance statistics for remote sensing retrievals of daily 
precipitation over the 2015-2016 period. 

 Mean Daily Precipitation 
(mm) 

GRIDMET Correlation GRIDMET RMSE 
(mm) 

GRIDMET MAE 
(mm) 

Region Name GRIDMET GPM 
IMERG 

GSMaP- 
Standard 

GSMaP- 
Gauge 

GPM 
IMERG 

GSMaP- 
Standard 

GSMaP- 
Gauge GPM IMERG GSMaP- 

Standard 
GSMaP- 
Gauge 

GPM 
IMERG 

GSMaP- 
Standard 

GSMaP- 
Gauge 

Continental 
USA 2.33 2.62 3.51 2.34 0.83 0.73 0.80 1.10 2.04 0.90 0.62 1.51 0.61 

Northwest 2.43 2.28 2.63 2.33 0.85 0.72 0.84 2.28 3.26 1.96 1.18 1.64 1.05 

West North 
Central 1.47 1.66 2.93 1.54 0.89 0.66 0.74 1.00 3.68 1.39 0.62 1.87 0.84 

Northeast 2.82 3.25 3.18 2.78 0.73 0.60 0.66 3.75 4.65 3.60 1.80 2.37 1.88 

West 1.23 0.95 1.56 1.18 0.85 0.72 0.82 1.36 2.09 1.45 0.68 1.03 0.64 

East North 
Central 2.46 3.26 3.71 2.53 0.80 0.60 0.67 3.39 5.03 2.88 1.59 2.52 1.67 

Central 3.29 4.31 4.92 3.29 0.77 0.68 0.74 4.73 5.39 3.06 2.08 2.95 1.81 

Southwest 1.14 1.18 1.85 1.15 0.79 0.66 0.80 0.95 2.21 0.92 0.59 1.06 0.52 

South 3.05 3.54 5.20 3.12 0.91 0.73 0.81 2.20 5.52 2.64 1.20 2.99 1.51 

Southeast 3.69 3.81 5.02 3.65 0.77 0.68 0.72 3.62 5.45 3.67 1.61 2.82 1.87 

              

 Difference in comparison to 
GRIDMET reference    Metric Performance      

Highlight 
Legend  > +10% (Wet Bias)    Best      

  < -10% (Dry Bias)    Worst      
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3.2 Bias assessment of remote sensing precipitation and surface soil moisture with 

respect to in-situ measurements 

As presented in Chapter 2, Chan et al. (2018) listed biases in SMAP L3 Enhanced 

surface soil moisture products during the April 2015 to October 2016 time period as 

assessed at SMAP core validation sites. Expanding on this assessment, the following 

exercise quantifies bias in remote sensing (i.e. GPM IMERG, GSMaP-Standard, and 

GSMaP-Gauge) and reanalysis (i.e. GRIDMET) retrievals of daily precipitation with 

respect to a single rain-gauge in the vicinity of select SMAP core validation sites. Table 

3-2 lists select SMAP core validation sites along with a neighboring rain gauge from the 

Global Historical Climatology Network (GHCN) data source made publicly available by 

the NOAA National Climatic Data Center (NCDC) (Menne et al. 2012). For each GHCN 

site, the daily precipitation time series from the GRIDMET, NASA GPM IMERG (Version 

5 Late Release), JAXA GSMaP-Standard (Version 7), and JAXA GSMaP-Gauge (Version 

7) data products spanning April 1, 2015 to October 31, 2016 are retrieved from a 0.1° by 

0.1° bounding box centered at the GHCN gauge location. 
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Table 3-2: Locations of select SMAP core validation sites and neighboring GHCN rain 
gauges 

SMAP Core Validation Sites GHCN Rain-Gauge Sites 

Site Name Latitude, 
Longitude Site Name Latitude, 

Longitude 

Distance from 
SMAP CVS 

(km) 
South Fork, Iowa 

USA 42.42, -93.41 Iowa Falls, Iowa 
USA 42.52, -93.25 17 

Little River, Georgia 
USA 31.67, -83.60 Fitzgerald, 

Georgia USA 31.77, -83.26 34 

Fort Cobb, Oklahoma 
USA 35.38, -98.64 Colony, 

Oklahoma USA 35.35, -98.67 4 

Kenaston, Canada 51.47, -106.48 Loreburn, 
Canada 51.25, -106.54 25 

Monte Buey, 
Argentina -32.91, -62.51 Marcos Juarez, 

Argentina -32.68, -62.16 41 

REMEDHUS, Spain 41.29, -5.46 
Salamanca 
Aeropuerto, 

Spain 
40.96, -5.50 37 

Twente, Netherlands 52.26, 6.77 Hengelo, 
Netherlands 52.27, 6.77 1 

Yanco, Australia -34.86, 146.16 
Coleambally 

Irrigation, 
Australia 

-34.80, 145.89 26 

 

Table 3-3 presents the biases in the remote sensing and reanalysis precipitation retrievals 

along with the biases in SMAP L3 Enhanced surface soil moisture retrievals as reported by 

Chan et al. 2018. As expected, GRIDMET (available only for the U.S.) generally agreed 

well with the rain gauge data, while the GPM IMERG, GSMaP-Standard, and GSMaP-

Gauge products exhibited wet bias at the majority of assessed sites. Wet biases were 

especially large in the GSMaP-Standard product, and these biases were mitigated 

substationally in the GSMaP-Gauge product. A major finding from this exercise is that 

biases in SMAP surface soil moisture retrievals are not necessarily consistent with biases 

in remote sensing precipitation retrievals. That is, if SMAP surface soil moisture estimates 

are drier or wetter than the true soil surface soil moisture state, it cannot be assumed that 
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the corresponding precipitation retrievals will likewise be drier or wetter than the true 

precipitation. 

Table 3-3: Biases in SMAP L3 Enhanced surface soil moisture retrievals paired with 
percent biases in neighboring daily precipitation retrievals from GRIDMET, GPM, 
GSMaP-Standard, and GSMaP-Gauge for the April 2015 to October 2016 period. 

SMAP Core 
Validation Sites 

Analysis  
(Chan et al 2018) 

Precipitation Percent Biases  
(Neighboring GHCN Rain Gauge) 

SMAP CVS 
Site Name 

SMAP 
Bias 

(m3/m3) 

GHCN Site 
Name 

GRIDMET  
(%) 

GPM  
(%) 

GSMaP-
Standard 

(%) 

GSMaP-
Gauge 

(%) 

South Fork − 0.062 Iowa Falls − 2.88 28.66 50.13 1.19 

Little River 0.087 Fitzgerald − 1.73 − 1.64 22.17 − 7.35 

Fort Cobb − 0.056 Colony − 8.63 22.31 129.52 8.18 

Kenaston − 0.040 Loreburn - −0.63 30.30 − 8.34 

Monte Buey − 0.020 Marcos 
Juarez - − 32.05 23.28 − 11.89 

REMEDHUS − 0.007 Salamanca - 72.18 100.80 21.11 

Twente 0.013 Hengelo - 31.62 13.13 0.98 

Yanco 0.020 Coleambally - 27.27 130.47 6.62 

 

 

3.3 Correlation of errors in remote sensing retrieveals of precipitation and 

remote sensing retrievals of surface soil moisture 

In the previous section, the quality of daily aggregated GPM IMERG (Version 5, Late 

Release), JAXA GSMaP-Standard (Version 7) and JAXA-GSMaP-Gauge (Version 7) 

were assessed over the continental U.S. in relation to daily gridded precipitation from the 

GRIDMET data set. Analysis revealed region-specific errors and biases in remote sensing 
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retrievals of precipitation. Such errors may adversely impact the accuracy of agricultural 

models’ prediction of crop yield, crop stress, and irrigation demand as well as the accuracy 

of hydrological streamflow predictions. In this section, a remote-sensing driven remedial 

strategy for improving the accuracy of daily remote sensing retrievals of precipitation is 

explored. It is of interest to assess whether errors in remote sensing retrievals of 

precipitation (in relation to the GRIDMET reference) are correlated with remote sensing 

retrievals of surface soil moisture from the SMAP mission. The question is asked: can we 

predict – and therefore remove – errors in remote sensing daily precipitation data, given 

information of surface soil moisture state? For the nine climate regions of the continental 

U.S., the correlation between errors in remote sensing daily precipitation data and surface 

soil moisture from the  SMAP Level 3 Enhanced data product is assessed.  

Figure 3-20 presents the correlation between errors (in relation to the GRIDMET 

precipitation reference) in regional daily mean precipitation estimates from the GPM 

IMERG (Version 5, Late Release) data product and mean regional surface soil moisture 

estimates from the SMAP Enhanced Level 3 (6AM retrieval) over the continental U.S. 

during year 2016. For the continental U.S. as a whole, as well as for the nine climate 

regions, correlations are centered about zero, suggesting that errors in GPM IMERG 

precipitation data are independent of and cannot be predicted by retrievals of regional mean 

surface soil moisture state. Similar conclusions can be made regarding the GSMaP-Gauge 

data product (i.e. surface soil moisture state does not inform what the error in precipitation 

retrieval would be) as shown by Figure 3-21. The lack of correlation between errors in 

remote sensing retrievals of daily precipitation and SMAP surface soil moisture estimates 

persists regardless of season. Figure 3-22 illustrates this lack of correlation for each season 
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during the 2015-2016 period as evaluated over the continental U.S., and similar results (i.e. 

no correlation between errors in remote sensing precipitation retrievals and SMAP surface 

soil moisture estimates) were obtained for each climate region of U.S. These findings 

suggest that the errors in the remote sensing precipitation data may be random rather than 

systematic (at least in relation to surface soil moisture state and dynamics) and thusly 

cannot be remedied by information of surface soil moisture alone. Further research should 

investigate other avenues for improving the accuracy of the remote sensing precipitation 

retrievals. At least for the continental U.S., the best data set for incorporating remote 

sensing precipitation data into agricultural and hydrological models would arguably be the 

GSMaP-Gauge data set. However, due to the relatively large errors in the GSMaP-Standard 

data set as assessed in the previous sections, the preferability of GSMaP-Gauge is attributed 

primarily to the availability of a large network of rain-gauges in the region to locally 

calibrate the remote sensing retrieveals, and not to the gauge-free retrieval algorithm itself. 

Thusly, it can be assumed that the GSMaP-Gauge product may not be suitably accurate for 

use over gauge-scarce regions (e.g. many parts of the water-sensitive and data-scarce 

developing world). 
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Figure 3-20: Correlation between errors in retrievals of regional mean daily 
precipitation from GPM IMERG (Version 5, Late Release) and SMAP Enhanced Level 3 
regional mean surface soil moisture estimates for year 2016. 
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Figure 3-21: Correlation between errors in retrievals of regional mean daily 
precipitation from GSMaP-Gauge (Version 7) and SMAP Enhanced Level 3 regional mean 
surface soil moisture estimates for year 2016. 
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Figure 3-22: Correlation between errors in retrievals of regional mean daily 

precipitation from GPM IMERG (Version 5 Late Release), GSMaP-Gauge (Version 7), 
and SMAP Enhanced Level 3 regional mean surface soil moisture estimates for each season 
during the 2015-2016 period. 

 



55 

 

Figure 3-23 presents the correlation between retrievals of regional mean daily 

precipitation from GPM IMERG (Version 5, Late Release) and one-day change (i.e. how 

much the regional surface soil moisture changes one day after the day of interest) in SMAP 

Enhanced Level 3 regional mean surface soil moisture estimates during year 2016. Figure 

3-24 presents the same figure except that GSMaP-Gauge is assessed instead of GPM 

IMERG. Results suggest that the errors in remote sensing retrievals of regional daily 

precipitation are not strongly correlated with whether the surface soil moisture is getting 

wetter or drier. 
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Figure 3-23: Correlation between errors in retrievals of regional mean daily 
precipitation from GPM IMERG (Version 5, Late Release) and one-day change in SMAP 
Enhanced Level 3 regional mean surface soil moisture estimates during year 2016. 
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Figure 3-24: Correlation between errors in retrievals of regional mean daily 
precipitation from GSMaP-Gauge (Version 7) and one-day change in SMAP Enhanced 
Level 3 regional mean surface soil moisture estimates during year 2016. 
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3.4 Spatial correlation in errors in GPM IMERG and GSMaP-Gauge 

precipitation products 

This exercise takes a preliminary look at the spatial correlations in errors of remote 

sensing daily precipitation retrievals with respect to the GRIDMET reference. For a sample 

transect divided into 15 adjacent subregions, the time series of errors in GPM IMERG and 

GSMaP-Gauge is calculated. Then the correlation between these time series of errors 

between the 15 subregions is assessed and presented as a function of geographic distance 

(in degrees of latitude) between subregions. This analysis is carried out for the entire 2015-

2016 period, as well as seasonally within years 2015-2016. 

Figure 3-25 maps the 15 sub-regions for which spatial correlation of errors in remote 

sensing retrievals of daily precipitation are assessed. The full transect lies in the 

southeastern United States and spans 0.2 degrees longitude and 3.0 degrees latitude 

(approximately 18 km by 334 km). For each of the 15 sub-regions the daily precipitation 

time series from Jan 1, 2015 to December 31, 2016 is calculated from the GRIDMET, GPM 

IMERG version 5 Late Release, and GSMaP-Gauge Version 7 data sets. Errors in the 

remote sensing retrievals are calculated with respect to the GRIDMET precipitation time 

series. The Pearson correlation coefficient is then calculated between the time series of 

errors for each of the 15 sub-regions.  
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Figure 3-25: 15 sub-regions within a sample transect in the southeastern United States 
for assessment of spatial correlations in errors of remote sensing retrievals of daily 
precipitation. 

 

Figure 3-26 plots the spatial correlation of errors in daily precipitation retrievals from 

GPM IMERG and GSMaP-Gauge data products during the year 2015-2016 period for 

regions 1 and 8 which are representative of all the 15 regions. Results show the daily 

precipitation errors in GPM IMERG and GSMaP-Gauge are highly correlated in space up 

to a distance of 2 degrees latitude (over 200 km), beyond which the correlations are below 

30 – 40 percent amongst the 15 sub-regions assessed in this exercise. This finding suggests 

that it may be possible to implement error mitigation strategies over a large area (e.g. 2 

degrees by 2 degrees region); however, it appears unlikely that SMAP surface soil moisture 

retrievals would be helpful in this effort, as SMAP retrievals were not correlated with 

precipitation retrievals, and that assessment was conducted for regions much larger than 2 

degrees by 2 degrees. 
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Figure 3-26: Spatial correlations of remote sensing precipitation errors as a function of 

latitude distance for regions 1 and 8 during the year 2015-2016 period. 
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Figure 3-27 plots the spatial correlation of errors in region 1 daily precipitation retrievals 

from GPM IMERG and GSMaP-Gauge data products during each season of the year 2015-

2016 period. Results show that the spatial correlation in daily precipitation errors is 

strongly connected to season. Spatial correlation in errors are strongest during the winter 

periods, with fall having the next strongest correlations. The strength of correlation drops 

off most rapidly during the summer and is also relatively weak during springtime beyond 

the 1.0 degree latitude distance. Precipitation in this region of the U.S. is characterized by 

frontal systems during the winter and convective systems in the summer; consequently, 

results suggest that spatial correlations in precipitation retrieval errors are connected to 

precipitation type, with errors from frontal storms being the most spatially correlated and 

those from convective storms being the least spatially correlated.  
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Figure 3-27: Spatial correlations of remote sensing precipitation errors as a function of 

latitude distance and season for region 1 during the year 2015-2016 period. 
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3.5 Impact of spatial averaging of high-resolution gridded meteorological and soil 

data on DSSAT crop model output 

Crop systems models, such as DSSAT-CSM, were originally developed to model crop 

growth and development at the single plot/field scale. For regional scale simulations, crop 

models often ingest gridded data of meteorological forcings and soil profile characteristics. 

The spatial resolution of these products may adversely impact the accuracy of such models 

originally designed for point-scale applications. In this study, the sensitivity of the DSSAT-

CSM modeled regional-scale mean crop yield and irrigation demand to coarsening spatial 

resolution – from 1km to 40km –  of soil characteristics and meteorological forcing data is 

assessed. Year 2005 to 2016 rainfed and irrigated corn is simulated for various U.S. regions 

with diverse climates. Modeling 12 years worth of regional mean crop yield and irrigation 

demand also allows for assessing the influence of relatively dry, wet, and normal (with 

regard to precipitation) growing seasons on this exercise.  

First, for each region of interest, a 200km by 200km domain is defined and divided into 

25 40km by 40km grid cells as shown in Figure 3-28. Each of the 40km grid cells is 

comprised of 1,600 1km grid cells, 100 4km grid cells, and 16 10km grid cells. 
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Figure 3-28: Schematic of domain for DSSAT simulations driven by multi-scale 
weather and soil data products 

 

Next, corn crop yield and irrigation demand are modeled by running DSSAT at a single, 

randomly selected 1km grid cell within each of the 25 sub-domains. In these simulations, 

DSSAT is forced by 1km gridded data of daily incoming solar radiation, maximum and 

minimum air temperature, and precipitation from the DAYMET reanalysis data set, and 

soil data derived from pedo-transfer functions applied to the 1km Soilsgrid data set (Hengl 

et al. 2014; Han et al. 2015). The mean of these 25 simulations (one simulation per 40km 

sub-domain) represent crop yield and irrigation demand within the regional domain using 

1km gridded data. This procedure is repeated at the 4km, 10km, and 40km spatial scales 

after aggregating DAYMET meteorological data and Soilgrids derived soil properties to 

those scales. As an example, Figure 3-29 illustrates the random selection of 10km grid cells 

for running DSSAT forced by 10km weather and soil data. 
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Figure 3-29: Schematic of domain for DSSAT simulations driven by 10km weather 
and soil data products. One 10km grid cell (red) is randomly selected in each of the 25 

40km by 40km subdomains. 
 

For each spatial scale, the sample means (and its standard error) of modeled crop yield 

and irrigation demand (constructed from 25 values at each spatial scale) are compared 

across spatial scales to detect at what level(s) of spatial coarsening do modeled regional 

mean yield and regional mean irrigation demand differ greatly from the simulations drive 

by the finest resolution 1 km input data. Table 3-4 lists important DSSAT-CSM input 

parameters for the corn simulations.  
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Table 3-4: Input parameters for DSSAT-CSM year 2005-2016 maize simulations 

Region Region Centroid 
(Lat, Lon) 

Maize 
Cultivar 

Planting 
Date (Years 

2015 & 
2016) 

Row 
Spacing 

Plant 
Population 

Irrigation: Soil 
Management 

Depth 

Irrigation: 
Available soil 
water content 

threshold 

Southeast 32.13, -84.03 Jackson 
Hybrid March 29th 

30 inches 
(76 cm) 

30,000 
plants/acre  
(7.9 pl/m2) 

12 inches (30 
cm) 

50% 

West 36.43, -120.18 
PB 8 

April 8th 70% 
South 35.23, -101.62 March 15th 50% 

Midwest 41.86, -95.45 April 26th Not Applicable (Rainfed only) 

 

Figure 3-32 through Figure 3-35 compare the regional-scale means of rainfed and 

irrigated corn yield and irrigation amount for the case study locations. The figures also 

indicate the characterization of the growing season based on the 2005-2016 rainfed crop 

production simulated using 1 km input data. Years with rainfed crop yield below the  25th 

percentile are “Low Production”, between 25th and 75th percentiles are “Normal 

Production”, and above the 75th percentile are “High Production”. For the case study region 

in the west, for which only irrigated corn yield was simulated, years are characterized 

according to irrigation demand. Years with irrigation demand crop yield above the  75th 

percentile are “High Irrigation Demand”, between 25th and 75th percentiles are “Normal 

Irrigation Demand”, and below the 25th percentile are “Low Irrigation Demand”. Due to 

difficulty of resolving soil characteristics in the west region at the 40km scale, only 1km, 

4km, and 10km simulations are performed for this region. 

With regard to rainfed and irrigated crop yields, the means are generally consistent 

across spatial scales regardless if the growing season is dry, wet, or normal. However, mean 

crop yields simulated using 40km data can be slightly higher than those simulated using 

1km data. This bias can be attributed to the impact of the spatial averaging of daily 

precipitation data over large areas. Averaging over large areas captures isolated 

precipitation events and redistributes them over the averaging domain. This bias reduces 

the length of dry spells and artificially boosts simulated crop yields. This same bias is also 
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responsible for the reduced mean irrigation amount at the 40km spatial scale compared to 

the simulations forced by finer resolution input data. Figure 3-30 compares year 2005-2016 

Daymet daily precipitation at 1km and  40km spatial aggregation scales with the subplots 

each representing a 40km x 40km domain for different U.S. climate regions. The results at 

each climate region show that when the 1km precipitation data product reports zero 

precipitation, the corresponding 40km precipitation data product can report substantial 

precipitation, sometimes over 10 mm. The effect of this bias is explored in more detail in 

Figure 3-31 that presents summarized crop production metrics for year 2007 DSSAT 

simulated rainfed corn in the midwest case study region using 1km and 40km soil and 

meteorological input data. In this example, the simulation using 40km input data has 50.4 

mm less precipitation during the growing season, but crop yield 720 kg/ha greater than the 

simulation using 1km input data. This seemingly counter-intuitive discrepancy is explained 

by the lesser water stress and the greater number of rain days in the 40km simulation 

relative to the 1km simulation. 
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Figure 3-30: Comparison of year 2005-2016 Daymet daily precipitation at 1km and  
40km spatial aggregation scales. The subplots each represent a 40km x 40km domain for 
different U.S. climate regions.  
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(a) Year 2007 DSSAT Corn Simulation: 1km input data 

 

(b) Year 2007 DSSAT Corn Simulation: 40km input data 

 

Figure 3-31: DSSAT summarized crop production metrics for year 2007 simulated 
rainfed corn using (a) 1km and (b) 40km soil and meteorological input data. Midwest case 
study region. 

 

The behavior of simulated mean corn yields and irrigation demands with coarsening 

resolution of input data, shown in Figure 3-32 through Figure 3-35 can be explained in 

most cases by the change of the medians and minimums of growing season precipitation 

as a result of spatial aggregation of gridded precipitation data (as shown in Figure 3-36). 
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This finding suggests that the quantities of interest in this analysis (region mean crop yield 

and irrigation demand) are more sensitive to the spatial averaging of daily precipitation 

data over the spatial aggregation scale of other meteorological variables and soil input data. 

To understand the influence of the spatial averaging of soil data, this exercise was repeated 

except that soil data was always kept at 10km resolution (and meteorological data was 

allowed to vary from 1km to 40km). The regional scale mean crop yields and irrigation 

demands were largely indistinguishable compared to what is presented in figures below, 

suggesting that 10km soil data is sufficient for regional scale crop modeling applications. 

These are general comments from the simulation results across the tested regions, what 

follows are summarized observations for each case study region: 

Southeast: Any spatial resolution data (from 1km to 40km) can be used for modeling 

regional mean rainfed production, except for low production (e.g. drought) years, during 

which the use of 40km input data results in overestimation of crop yield by over 10 percent 

compared to simulations driven by 1km data. During years with normal or high production 

(e.g. years with moderate or relatively wet growing seasons), the use of 40km input data 

results in underestimation of irrigation demand on the order of 10 percent relative to 

simulations driven by 1km data. 

West: For this region, 4km and 10km input data resulted in mean irrigated crop yields 

that were overestimated and mean irrigation demand that were underestimated relative to 

using 1km input data; however, these errors were less than 5 percent. Simulations using 

40km data were problematic (and thusly not shown) due to the difficulty of resolving soil 

characterisitcs at the 40km scale. 
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South: Comments regarding this region are similar to the other case study regions, 

except that during high production years there appears to be a drop in the mean of rainfed 

and irrigated crop yields relative to the 1km simulations when using either 4km and 10km 

input data. This unexpected finding is attributed to outlier temperature and spatial sampling 

effects during specific years that were characterized as “high production”. For a few 

simulations within this region, the random sampling procedure within each 40km 

subdomain selected pixels containing growing season frost spells that terminated crop 

production. These frost spells only occurred in simulations driven by the 4km and 10km 

data, resulting in lower mean values for crop yield, but no such pixels were selected for the 

1km and 40km simulations. 

Midwest:  During low production, normal production, and high production years, any 

spatial resolution data (from 1km to 40km) can be used for modeling regional mean rainfed 

crop yield. Input data coarser than 1km do result in higher yields, due to the bias introduced 

introduced by spatial averaging of precipitation data, but this bias does not exceed 5 

percent. 
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Figure 3-32: Comparison of mean rainfed corn yield, irrigated corn yield, and corn 
irrigation amount with meteorological forcing and soil input data with spatial resolutions 
ranging from 1km to 40km. The standard error of the mean is indicated by the shaded 
region. Southeast case study region. 
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Figure 3-33: Comparison of mean of irrigated corn yield and corn irrigation amount 
with meteorological forcing and soil input data with spatial resolutions ranging from 1km 
to 10km. The standard error of the mean is indicated by the shaded region. West case study 
region. 
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Figure 3-34: Comparison of mean rainfed corn yield, irrigated corn yield, and corn 
irrigation amount with meteorological forcing and soil input data with spatial resolutions 
ranging from 1km to 40km. The standard error of the mean is indicated by the shaded 
region. South case study region. 
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Figure 3-35: Comparison of mean rainfed corn yield with meteorological forcing and 
soil input data with spatial resolutions ranging from 1km to 40km. The standard error of 
the mean is indicated by the shaded region.  Midwest case study region. 
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Figure 3-36: Box plots of mean precipitation during the growing season for case studies 

in the southeast, west, south, and midwest regions as a function of scale of spatial 
aggregation of GRIDMET precipitation data. 
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The impact of spatial averaging of high-resolution gridded meteorological and soil 

property data has implications for regional-scale agricultural modeling and planning, as 

well as water resources management. For regional-scale assessments using crop model 

simulations, it is ideal to use the finest spatial resolution and soil data available; however, 

it may be adequate to use soil data as coarse as 10km and weather data (particularly 

precipitation data) no coarser than 10km to sufficiently capture the mean crop yield and 

irrigation demand. The findings of this research also suggest that it may be desireable, but 

not necessary to spatially downscale remote sensing precipitation products (which are 

typically no finer than 10km) for applications in regional scale agricultural modeling. 

 

3.6 Summary 

In this chapter, the accuracy of modern remote sensing precipitation data and the 

sensitivity of the DSSAT agricultural model to the spatial resolution of weather and soil 

input data was assessed.  

In relation to the gauge-network based GRIDMET precipitation data set, remote sensing 

retrievals of precipitation within the continental U.S. generally exhibit a wet bias, but the 

nature of these biases vary with season and climate region. The most accurate remote 

sensing precipitation retrievals are those that are heavily calibrated by rain gauge data, 

which raises questions on whether such retrievals can be trusted over scarcely gauged 

regions. Despite issues in accurately estimating the magnitude of precipitation events, the 

remote sensing precipitation retrievals were highly correlated with the GRIDMET 

reference data set, suggesting the occurrence of rain events is captured in the remote 

sensing retrievals. 
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GPM IMERG Version 5 Late Release tends to underestimate precipitation in the 

western (West and Northwest) climate regions, while overestimating everywhere else. The 

most severe overestimation is in the winter season, particularly in the Northwest, Northeast, 

and Central climate regions. While winter time underestimation of precipitation is apparent 

in the arid West and Southwest climate regions. The JAXA GSMaP-Gauge product agrees 

well with the GRIDMET reference; however, this agreement is due entirely to the 

assimilation of rain gauge data with the satellite retrievals. 

With regard to removing errors from remote sensing precipitation retrievals by way of 

using surface soil moisture data from the recent SMAP mission, at least two challenges 

were found. Firstly, SMAP retrievals of surface soil moisture were uncorrelated with errors 

in daily precipitation retrievals. Secondly, the erorrs in the remote sensing precipitation 

retrievals are highly correlated in space. 

It can be expected that if remote sensing retrievals of daily precipitation are incorporated 

into calibrated agricultural descision support models (e.g. DSSAT), then rainfed and 

irrigated crop yields would be substantially overestimated, except in regions with dry bias. 

Likewise, irrigation demand would likely be underestimated. If incorporated with 

streamflow models (such as SAC-SMA), it is expected that while the timing of peak flows 

may be accurately captured, the magnitude of such flows would be severely overestimated, 

especially during extreme events. Only remote sensing precipitation products that are 

calibrated by gauges in the region may prove useful for incorporation into agricultural and 

hydrologic models. 

With regard to the sensitivity of the DSSAT model to the spatial averaging of daily 

weather and soil inputs, this assessment shows that while finest spatial information of daily 
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weather data is ideal, atmospheric variables and soil data with spatial resolution no coarser 

than ~10km are acceptable for crop yield and irrigation assessments. Thus, it may not be 

necessary to downscale modern remote sensing precipitation data products for the study 

purpose; however, near-real-time correction of remote sensing precipitation data using rain 

gauge data is essential to accurately capture the timing and magnitude of precipitation 

events for applications in agricultural and streamflow modeling. 
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CHAPTER 4 

 

HINDCASTING AND NEAR-REAL-TIME PREDICTION OF CROP 

YIELD, IRRIGATION DEMAND, DROUGHT, AND 

HYDROLOGICAL FLOWS 

 

4.1 Preliminary Study: Modeling regional crop yield and irrigation demand using 

SMAP type of soil moisture data (El Sharif, et al. 2015) 

In this section, a preliminary study completed by El Sharif et al. (2015) is presented 

which explores a novel method for incorporating SMAP soil moisture data into the 

DSSAT-CSM crop model for estimating regional crop yield and irrigation demand. This 

study was performed before the advent of the SMAP satellite launch and before the 

availability of SMAP data products. What follows is excerpted from what was published 

in the Journal of Hydrometeorology. 

4.1.1   Abstract 

Agricultural models, such as the Decision Support System for Agrotechnology Transfer 

– Cropping Systems Model (DSSAT-CSM), have been developed for predicting crop yield 

at field and regional scales and to provide useful information for water resources 

management. A potentially valuable input to agricultural models is soil moisture. Presently, 

no observations of soil moisture exist covering the entire U.S. at adequate time (daily) and 

space (~10 km or less) resolutions desired for crop yield assessments. Data products from 

NASA’s upcoming Soil Moisture Active Passive (SMAP) mission will fill the gap. The 
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objective of this study is to demonstrate the usefulness of the SMAP soil moisture data in 

modeling and forecasting crop yields and irrigation amount. A simple, efficient data 

assimilation algorithm is presented in which the agricultural crop model DSSAT-CSM is 

constrained to produce modeled crop yield and irrigation amounts that are consistent with 

SMAP-type data. Numerical experiments demonstrate that incorporating the SMAP data 

into the agricultural model provides an added benefit of reducing the uncertainty of 

modeled crop yields when the weather input data to the crop model are subject to large 

uncertainty. 

4.1.2   Capsule 

SMAP-type soil moisture data is used to increase the precision of modeled crop yield 

and irrigation application forecasts at the ~10km spatial scale using DSSAT-CSM. 

4.1.3   Section 1: Introduction 

4.1.3.1    Background 

Agricultural production systems have evolved significantly in recent years to address a 

growing national and global demand for food supply. The advent of modern measurement 

technologies such as geographic information systems (GIS),  global positioning systems 

(GPS), and other remote sensing tools at finer spatio-temporal resolutions, and crop system 

models have provided the opportunity to guide agricultural related water resources 

management at both field and regional scales with reduced dependency on costly and 

uncertain in-situ field experiments. Precision agriculture has been largely focused on 

maximizing field and regional crop yields and associated economic benefits. The tools 

involved in precision agriculture may also guide regional water resources management as 

more accurate modeling and forecasting of water demand for crop production would lead 
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to a more efficient allocation of limited water supplies. Careful monitoring and provision 

of water resources for agricultural use is critical as agriculture demands a large fraction of 

total water use in the United States and the world. In 2005, irrigation in the United States 

consumed 128 billion gallons per day, accounting for 37 percent of all freshwater 

withdrawals and 62 percent of all freshwater withdrawals excluding thermoelectric 

withdrawals (Kenny et al. 2009). The 2013 National Climate Assessment (NCA) 

(NCADAC 2013) indicates that under the A2 emissions scenario, U.S. freshwater 

withdrawals will increase by 25 to 35% in the coming 50 years, with ¾ of this increase due 

to irrigation and ¼ to landscape watering and power generation (Brown et al. 2013; 

Georgakakos et al. 2014). Because of these and other stresses, a key message of the 2014 

NCA is that “in most U.S. regions, water resources managers and planners will encounter 

new risks, vulnerabilities, and opportunities that may not be properly managed with 

existing practices.” The information of space-time distribution of soil moisture is critical 

for irrigation decisions and for more efficient use of water resources across multiple 

sectors.   

Agricultural models, such as Decision Support System for Agrotechnology Transfer – 

Cropping Systems Model (DSSAT-CSM) (Tsuji et al. 1994), have been developed to 

predict  the  yield of various crops at field and regional scales. Crop yield modeling and 

prediction provide essential information for water resources management. One key output 

of the agricultural models is soil moisture. Presently, no soil moisture observations 

covering the entire U.S. exist with adequate time (daily) and space (~10 km or less) 

resolutions preferred for crop yield assessments. Instead, estimates of soil moisture at fine 

spatial scales are commonly derived from downscaling remotely-sensed soil moisture data 
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(Cheng et al. 2008; El-Sharkawy 2011; NCDC 2006; NRCS 2013; WRF 2013). The NASA 

Soil Moisture Active Passive (SMAP) mission satellite is scheduled for launch on 8 

January 2015 and aims to measure soil moisture from space at fine (down to 9 km for the 

combined active radar and passive radiometer product) spatial and temporal (2-3 days 

global coverage) resolution for the first time. The depth of soil moisture retrieval will be 

the topmost 5cm of the soil profile. Incorporating SMAP soil moisture data products into 

crop system models such as DSSAT-CSM has the potential to improve the accuracy of 

crop yield prediction especially with regard to regional irrigation forecasting and water 

resources management. Although agricultural water use dominates consumption of water 

in many parts of the world, reliable estimates of historical and future agricultural water 

demand are lacking for some times and regions. In the southeastern U.S., for example, 

individual farmers do not routinely monitor or record their water usage, and they are not 

obligated to report their water use to any governing body. This situation presents significant 

challenges for retrospective analysis of inter-annual and seasonal water demand. Irrigation 

practice is strongly dependent on soil moisture conditions, and accurate fine resolution soil 

moisture data are vital to regional water resources managers and related stakeholders who 

strive to efficiently and equitably allocate limited water resources especially in the face of 

a changing climate. 

4.1.3.2    Problem Statement 

Crop yield and water demand estimates depend on accurate, high resolution spatio-

temporal data of weather and/or soil moisture that are not available at sufficient resolutions 

for all regions. NASA’s SMAP mission will provide much needed soil moisture data at 

relatively high spatio-temporal resolution with global coverage. This data can potentially 
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support more accurate crop yield and irrigation demand forecasts, which would be 

particularly useful in regions where observed weather or soil moisture data are sparse or 

unavailable. In the developing world, for example, where food-security is a major concern, 

the current and historical weather data critical to forecasting crop yield and irrigation 

demand are subject to substantial uncertainty (WFP and IFAD 2011), leading to large 

uncertainty in the modeled crop yield and irrigation demand. A potential benefit of SMAP-

type data is to reduce the uncertainty in modeled crop yield and irrigation demand by 

constraining model simulations to be consistent with the remotely-sensed top soil moisture 

data. 

4.1.3.3    Objectives 

The objectives of this study are to: 

1) Develop an algorithm by which daily SMAP-type top soil moisture data can be 

assimilated into the DSSAT-CSM for modeling of crop yield and irrigation amount at the 

~10km spatial scale. 

2) Reduce the uncertainty in the forecast of crop yield and irrigation demand by 

combining SMAP-type remotely-sensed soil moisture data with other weather 

measurement data products. 

4.1.3.4    Outline 

The article is organized as follows: 

Section 1 introduces the value of precision agriculture models – models designed to 

explore site-specific, high-efficiency, sustainable agriculture with the help of detailed, 

modern data sets (McLoud and Gronwald 2007; Shibusawa 1998; Zhang et al. 2002) – and 

the potential benefit the upcoming SMAP remotely-sensed soil moisture data products can 
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provide in forecasting crop yield and irrigation demand. The objectives of this study are 

also stated. An overview of previous studies on crop system models, in particularly 

DSSAT-CSM, the role of soil moisture data in such models, and the description of the 

upcoming SMAP mission and its data products is also provided. Section 2 presents the 

methodology for developing a synthetic “ground truth” soil moisture sequence using 

observed weather data and DSSAT-CSM top soil moisture output and describes how the 

SMAP data product is expected to be within a specified error tolerance of the synthetic soil 

moisture data set. SMAP-derived information on soil moisture is then combined with 

supplementary data and incorporated into the DSSAT-CSM agricultural model to simulate 

crop yield and irrigation demand. Section 3 describes the study region for which the 

methodology is applied and identifies relevant data sources. Results and conclusions are 

presented in Sections 4 and 5 respectively. 

4.1.3.5    Literature Review 

DSSAT-CSM: 

The Decision Support System for Agrotechnology Transfer – Cropping Systems Model 

(DSSAT-CSM) is a widely used bio-physical model for simulating the phenology, growth, 

development, and yield of various crops and cultivars given inputs of soil, weather, and 

management conditions (Jones et al. 2003). DSSAT-CSM version 4.5 (Hoogenboom et al. 

2012) includes 29 crops and fallow fields (Daroub et al. 2003; Hoogenboom et al. 1999; 

Jones et al. 2001; Jones et al. 2003; Liu et al. 2011; Tsuji et al. 1994). DSSAT-CSM is 

composed of a main driver program, a land unit module, and modules of weather, soil, 

plant, soil-plant-atmosphere interaction, and management. The main driver program 

controls each of the primary modules and allows each module to read inputs, initialize 
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variables, compute rates, integrate variables, and write outputs independent of other 

modules (Jones et al. 2003). A brief description of the modules included in DSSAT-CSM 

is presented in Table 1 (Jones et al. 2003). 

History of incorporating soil moisture data into agricultural models: 

Improving agricultural models by incorporating soil moisture measurements and/or 

remote-sensing data has become a growing field of study. Baier and Robertson (1968) 

found that wheat yields from 39 plantings in Canada over five seasons were more closely 

related to soil moisture conditions than rainfall and maximum and minimum temperatures, 

a significant finding as the DSSAT-CSM soil water balance algorithm still uses 

precipitation and maximum and minimum temperatures as model input (Jones et al. 2003). 

Batts and Kaleita (2008) investigated the impact of  synthetic top 5cm soil moisture data 

on  the DSSAT-CSM model simulations in a series of modeling experiments for a maize 

field in Ames, Iowa. Differences in modeled yield using their assimilation method in some 

cases were greater than 10 percent depending on year, soil type, and nitrogen fertilizer 

application rate of the synthetic experiments.  Groenendyk (2011) investigated assimilation 

of in-situ soil moisture data into the DSSAT-CSM through a Kalman Filter to simulate the 

winter-wheat crop growing seasons of 2003-05 in Maricopa, Arizona. Model improvement 

(defined by closer agreement with field measurements of crop yield and canopy biomass) 

occurred when soil moisture data was assimilated into the top 3cm and top 5cm of the soil 

layer. Ines et al. (2013) utilized an Ensemble Kalman Filter to assimilate remotely-sensed 

AMSR-E soil moisture and MODIS Leaf Area Index (LAI) data products into DSSAT-

CSM to model year 2003 – 2009 maize yields in Story County, Iowa. Data assimilation 

improves the correlation between modeled and observed crop yield from 0.47 (no data 
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assimilation) to 0.65 (with combined assimilation of soil moisture and LAI data). Maas 

(1988) explored four techniques for incorporating remotely-sensed data into a simulation 

of a white-maize monoculture at a USDA Research Farm in Texas with direct input of 

remotely-sensed data being the simplest of data assimilation methods under test. However, 

the direct input method required frequent observations that were not available. Moulin et 

al. (1998) addressed challenges in incorporating coarse resolution remote-sensing data to 

estimate regional crop yields using a similar approach. Delécolle et al. (1992) also used 

remote-sensing data assimilation techniques for several categories of crop models and 

recommended that regional analysis may be performed by aggregating simulated crop 

yields from individual fields. Mo et al. (2005) used remotely-sensed data of crop canopy 

leaf area index (LAI) with a process-based soil-vegetation-atmosphere transfer (SVAT) 

model to predict crop yield, water consumption, and water use efficiency for a sub-region 

of the North China Plain. Mishra et al. (2012) have tested the Atmospheric Land Exchange 

Inverse (ALEXI) satellite-derived soil moisture estimates as a surrogate for precipitation 

data in the DSSAT-CSM for crop yield simulation for two climatically contrasting 

locations in Alabama and Indiana. The soil moisture data with the required resolutions are 

often obtained through downscaling. Blöschl et al. (2009) provide a statistical technique 

for downscaling 25 km remotely-sensed soil moisture data to 1 km resolution over Europe. 

Lin, et al. (2011, 2013) used a coupled the WRF-tRIBS-VEGGIE hydrologic model to 

downscale Early Adopter SMAP data products. Use of high spatio-temporal resolution soil 

moisture data for modeling crop yields is an active field of research. 

SMAP and other soil moisture measurement missions: 
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Remote-sensing soil moisture data sets have been derived from signals of active and 

passive microwave sensors on satellites (Bartalis et al. 2007; Njoku et al. 2003; Owe et al. 

2008) since the early 1980s. Without such observations, soil moisture estimates often 

depend on reanalysis data subject to large uncertainties (Dorigo et al. 2012; Ferguson and 

Wood 2011).  Satellite missions include, SkyLab (Entekhabi et al. 2010), ERS-1, ERS-2, 

AMSR-E ,SMMR, SSM/I, TMI, ASCAT, and SMOS (Dorigo et al. 2010). These soil 

moisture data products have spatial resolutions ranging from 12km to 50km and daily, 

weekly, and monthly temporal resolutions covering various regions of the earth. 

According to the National Research Council’s (NRC) Decadal Survey (NRC 2007), the 

data product of SMAP mission, whose satellite is scheduled to be launched on 8 January 

2015,  was characterized with high scientific and practical applications value in multi-scale 

hydrologic and environmental studies (Entekhabi et al. 2010). The SMAP mission will 

measure the top 5 cm layer soil moisture and soil freeze/thaw state from space at fine (down 

to 9 km) spatial and temporal (2-3 days global coverage) resolution using (the first space-

borne) L-band (active) radar and an L-band (passive) radiometer instrumentation 

(Entekhabi et al. 2010). One standard deviation about true soil moisture in the Level 2 9km 

SMAP data product is specified not to exceed 0.04 cm3cm-3. Incorporating SMAP soil 

moisture data into crop system models such as DSSAT-CSM has the potential to improve 

the accuracy of crop yield simulations related to regional irrigation forecasting and water 

resources management. 

4.1.4   Section 2: Methodology and Data 

The purpose of this study is to quantify the impact of SMAP-like remote-sensing soil 

moisture data on DSSAT-CSM agricultural model forecasts of agricultural yield and 
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irrigation demand using synthetically generated data sets with statistical characteristics 

(uncertainty) similar to those of the upcoming SMAP products. This soil moisture data 

product is then used to “filter” an ensemble of DSSAT-CSM model runs using synthetic 

weather input data. In this study, stochastic forcing is introduced by adding measurement 

noise to daily weather inputs. The “control” scenario refers to DSSAT-CSM modeled 

results using the entire ensemble of synthetic input data in DSSAT-CSM model runs. The 

“SMAP” scenario refers to DSSAT-CSM model runs in which modeled top soil moisture 

is consistent with the SMAP-like data. Agreement is assessed via the absolute difference 

between modeled and the “ground truth” top layer soil moisture content for each day of the 

simulated growing season. Model runs in which the SMAP-derived error tolerance criteria 

for soil moisture content is violated less than five percent of the growing season are selected 

as “feasible” or “SMAP-consistent” model runs. The SMAP-derived absolute difference 

threshold is assumed to be a function of the “true” soil moisture for the current day of 

simulation. “SMAP-consistent” model runs are used to generate samples of simulated rain-

fed and irrigated crop yield and irrigation demand. Under the irrigation scenarios, the 

DSSAT-CSM is programed to automatically irrigate the top soil layer to saturation when 

the modeled top layer soil moisture drops below a user-specified threshold. An overview 

of the filtering procedure is illustrated in Figure 1. Details regarding the acceptance criteria 

for a model run to be considered either feasible (SMAP-consistent) or infeasible is shown 

in the Figure 2 flowchart. Metrics used to assess the usefulness of soil moisture data include 

the reduction in the standard deviation of modeled crop yield and year-end irrigation 

application depth after the soil moisture data filter is applied. It is also of interest to record 
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whether incorporation of SMAP-like data impacts the mean modeled crop yield and 

irrigation amount.  

The experiments involved in this study are listed in Table 2. Experiment #1 explores 

how daily soil moisture data can reduce uncertainty in modeled crop yield under the 

scenario in which daily precipitation is subject to random measurement errors. Experiment 

#2 builds on this premise and subjects all required daily weather variables – precipitation, 

maximum and minimum air temperature, and solar radiation – to measurement errors. 

These two experiments represent scenarios in which field data on weather are available, 

but are subject to modest uncertainties due to measurement error or spatial 

interpolation/extrapolation of weather data, as may be the case in data-scarce regions. The 

method of generating the surrogate “ground truth” soil moisture data set and weather 

measurement sequences for a case study region and incorporating them into DSSAT-CSM 

experiments mentioned in Table 2 is described below. 

4.1.4.1    SMAP-like soil moisture data 

In this study, DSSAT-CSM modeled soil moisture driven by observed weather input is 

referred to as “ground truth”. The SMAP-like 9km spatial and daily temporal resolution 

data product is assumed to be within a specified error tolerance of the synthetic “ground-

truth” data set. Operating over a SMAP 9km pixel, the DSSAT-CSM point-scale model 

simulates crop yield and irrigation amount assuming homogeneous field, soil, crop, and 

weather conditions. DSSAT-CSM is then constrained to keep modeled top layer soil 

moisture within SMAP-derived error tolerances for each day of the growing season while 

measurement errors are introduced into daily weather inputs. When these constraints are 
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fulfilled for at least 95 percent of the growing season, it is concluded that DSSAT-CSM 

has “assimilated” SMAP-like data. 

While the upper bound of the error (one-sigma) in SMAP Level 2  (combined radar and 

radiometer) data  product is  0.04 cm3cm-3, pre-launch tests of  the SMAP retrieval 

algorithm suggest that the actual error is expected to be smaller  (e.g. approximately 0.03 

cm3cm-3) (Das et al. 2011). The error may be further reduced through constraining the 

SMAP-like data by the information of case study site. Under this condition, we suggest 

that the actual, or “effective” effective error for the SMAP product varies with true soil 

moisture: peaking halfway between wilting point and saturation and diminishing near 

wilting point and saturation. Figure 3 illustrates a characterization of the effective error σ 

in the SMAP data product with a wilting point near zero and saturation water content of 

0.361 cm3cm-3. The maximum effective error is set at a  0.025cm3cm-3 according to our 

analysis of SMAP calibration mission results from Das et al. (2011). For each day of the 

DSSAT-CSM simulated growing season, modeled soil moisture content for a feasible 

model run must remain within 1.96 times the effective error (representing two standard 

deviations) of the synthetic “ground truth” soil moisture data set for at least 95 percent of 

the modeled growing season. If this acceptance criteria is achieved, then the model run is 

considered to be “feasible” and consistent with SMAP-like data. 

4.1.4.2    Experiment #1: Soil moisture data corrects errors in daily rainfall 

input 

When precipitation observations are available with significant uncertainty, the DSSAT-

CSM may be used to “correct” rainfall input through DSSAT-CSM modeling the dynamics 

of top layer soil moisture with soil moisture data used as a rainfall correction “filter”. Using 
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information on the percent error in daily rainfall measurements, an ensemble of stochastic 

rainfall sequences is simulated. Each of these weather realizations are used as input into a 

model run of DSSAT-CSM. Whenever a weather realization results in a modeled daily 

time series of top soil moisture within the effective error threshold for at least 95 percent 

of the growing season, the model run is selected as a “SMAP-consistent”. Modeled rain-

fed and irrigated crop yields are sampled from these feasible model runs. In this 

experiment, daily precipitation data is stochastically generated based on daily observations. 

For each day of simulation, 2,000 samples of precipitation are generated from a truncated 

normal distribution with a mean equal to the observed precipitation and a standard 

deviation equal to 20 percent of the observation. The distribution is bounded by zero and 

1.1 times the observation (to allow for both under- and over-estimation errors). Introducing 

this type of noise into rainfall data mimics measurement and/or spatial 

interpolation/extrapolation errors. In this experiment, other daily weather variables 

(incoming solar radiation, maximum and minimum air temperatures) are assumed to be 

known and equivalent to observations as mentioned in Table 2. In this study, the absolute 

error threshold for DSSAT-CSM modeled daily top soil moisture is set at 1.96 times the 

daily effective SMAP error shown in Figure 3. 

4.1.4.3    Experiment #2: Soil moisture data corrects errors in daily weather 

input 

When observed meteorological variables such as incoming solar radiation, precipitation, 

and maximum and minimum air temperatures are available with significant errors, 

incorporating SMAP-like top soil moisture data into DSSAT-CSM can mitigate model 

errors due to incorrect weather input. Error-contaminated measurement data sets are 
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developed using different methods appropriate for each weather variable. The rainfall data 

is obtained using the method described in Experiment #1. The daily solar radiation data is 

simulated using a truncated Gaussian distribution with a mean equal to the day’s 

observation of solar radiation. The truncated distribution is bounded by zero and 1.2 times 

the historical data of radiation to cover the cases of both over- and under-estimation. The 

standard deviation is set as 10 percent of each day’s historically recorded solar radiation. 

Daily maximum and minimum temperatures were simulated from the observation data 

superimposed with a white noise following a truncated Gaussian distribution between -1 

and +1 °C with a mean of zero and standard deviation of 0.5 °C. Experiment #2 represents 

a practical scenario in which observations are available for multiple weather variables, all 

subject to measurement and/or interpolation/extrapolation error. 

Each of these weather realizations are used as input to DSSAT-CSM model runs. The 

synthetic soil moisture data, with the SMAP-derived effective error threshold, is used to 

select SMAP-consistent model runs just as in Experiment #1. Similarly, modeled rain-fed 

and irrigated yields are sampled from these feasible model runs. 

4.1.5   Section 3: Data 

4.1.5.1    Ames, Iowa 

The case study site was Ames, Iowa USA located at 42°1’ N, 93°44’W (Central Iowa, 

USA) at an elevation of 327 meters (NRCS 2013). As published by the National Climatic 

Data Center (NCDC) Climate Services Branch (NCDC 2006), the Iowa terrain is mostly 

comprised of rolling hills with a climate dominated by moist southerly wind from the Gulf 

of Mexico in the summer, northwesterly wind of cold, dry Canadian air in the winter, and 

occasionally air masses from the Pacific Ocean and the Desert Southwest. Summer daily 
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high temperatures (July) reach 28°C and winter daily low temperatures (January) drop to -

15.6°C. Statewide annual precipitation is 864mm with the majority of precipitation 

occurring during the late April to early October growing season. Iowa’s climate and rich 

soils are ideal for rain-fed corn and soybean crops. 

4.1.5.2    Weather Data 

This study uses 2003 weather data from Station 2031 (Ames, Iowa) from the Soil 

Climate Analysis Network (SCAN) managed by the Natural Resources Conservation 

Service (NRCS) (USDA-NRCS-NWCC 2014). Minimum weather inputs for DSSAT-

CSM include daily data of incoming solar radiation, maximum and minimum temperatures, 

and precipitation.  The SCAN station includes temperature probes and a rain gauge to 

provide the rainfall and temperature data. For daily measurement entries from the SCAN 

site containing erroneous or missing data, data entries were replaced with available data 

from the previous day. Only three days during 2003 had missing data at the SCAN site. 

Daily solar radiation data were taken from the NASA-POWER Agro-climatology (NASA 

2014) data set. 

4.1.5.3    DSSAT-CSM Initialization 

DSSAT-CSM model simulations for 2003 in this study were based upon crop, soil-type, 

and management parameters from a 1999 Ames, Iowa rain-fed maize cropping scenario. 

The 1999 scenario data files were provided as one of the default maize experiments in 

DSSAT-CSM version 4.5.0.0. and were developed by Drs. J. Lizaso and B. Batchelor of 

the Department of Agricultural and Biosystems Engineering, Iowa State University. Model 

results from the 1999 experiment agreed well with in-situ measurements of crop yields. 

DSSAT-CSM simulation of Ames, Iowa crop yields using weather observations from years 
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1996 – 1999 are compared with averaged county-level crop yields reported by the United 

States Department of Agriculture National Agricultural Statistics Service (USDA: NASS) 

as shown in Figure 4. Modeled crop yields in these years were generally within 20 percent 

of the county average, suggesting that the DSSAT-CSM model reasonably simulates the 

region’s hydrology, soil-type, expected crop growth, and crop stresses, at least for the non-

drought years of 1996 – 1999. One of the required inputs for DSSAT-CSM initialization is 

the initial soil moisture profile. Initial conditions for 2003 soil moisture profile were 

obtained from a 2002 DSSAT-CSM model run using a fallow crop. The soil moisture 

profile from December 31, 2002 was assigned to the soil water profile for January 1, 2003. 

Year 2003 model runs were initialized from January 1, 2003 with the simulated growing 

season from May 27, 2003 to October 31, 2003.  Table 3 lists some management parameters 

used to initialize DSSAT-CSM simulations, and Table 4 lists soil layer and soil-type 

parameters used in the study. 

4.1.5.4    Crop Yield Statistics 

Results from the numerical experiments are compared to the reported annual (growing 

season) maize yields for year 2003 from the United States Department of Agriculture 

National Agricultural Statistics Service (USDA:NASS). To facilitate comparison with 

USDA reported yields, DSSAT-CSM calculated dry yields were reduced by five percent 

to account for mechanical losses during the harvest process. USDA reported yields were 

converted to dry weight assuming a grain moisture content of 15.5 percent. Relevant county 

level statistics are presented in Table 5 (USDA 2013). It is important to note that this study 

models crop yield at the scale of a single SMAP pixel (~10km) and not county-level yield; 

comparison of model results to county level data is done only for reference. 
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4.1.6   Section 4: Results 

As shown in Figure 5, the soil moisture filtering procedure was able to reduce the 

uncertainty in modeled rain-fed crop yield for Experiments #1 and #2 in which 

measurement uncertainties were introduced into daily weather variables. Simulated rain-

fed crop yields in those experiments were brought closer to the modeled rain-fed crop yield 

from true weather input. The USDA county-level yield for year 2003 (an average of Boone 

and Story counties in Iowa) converted to dry weight is indicated in Figure 5 for reference.  

For Experiment #1, in which only daily rainfall was subject to measurement error, the 

soil moisture filter selected 727 SMAP-consistent model runs from a pool of 2,000. The 

mean modeled rain-fed crop yield did not change significantly after the soil moisture filter 

was applied (increasing by only 2 percent); however, the uncertainty (standard deviation) 

in the modeled crop yield was reduced by approximately 30 percent as shown in Table 6. 

Similarly, when measurement error was introduced into all daily weather inputs 

(Experiment #2), the soil moisture filter selected 872 SMAP-consistent model runs from a 

pool of 2,000, and the standard deviation in modeled rain-fed crop yield was reduced by 

approximately 18 percent. 

As evidenced by the uncertainty in the control modeled crop yields, measurement errors 

in weather input to DSSAT-CSM can introduce significant uncertainty in model results. 

Errors such as those introduced in Experiment #1, directly influence the evolution of soil 

moisture in each layer of the soil profile. Water flux downwards through the soil profile 

(via drainage) and upwards (via diffusion and root water uptake) is also affected. Lack of 

predictive skill, due to erroneous water input, would introduce errors with regard to 

modeling nutrient transport and would cause inaccurate yield estimates. Likewise, errors 
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in solar radiation and temperature data, such as those included in Experiment #2, cause 

errors in crop photosynthesis, soil evaporation, and crop transpiration, which, in turn, affect 

the transport of water and nutrients through the soil profile and lead to errors in crop growth 

and yield. Due to the highly non-linear relationship between weather variables, soil water 

and nutrient transport dynamics, and crop growth, it is not entirely clear what type of error 

(over- or under-estimation) would be introduced to crop yield due to combined (and/or 

competing) errors in precipitation, solar radiation, and air temperature. Overestimation of 

low precipitation events and underestimation of extreme (and rare) precipitation events 

could lead to water surpluses offsetting drought effects. However, when coupled with 

reduced photosynthesis and reduced evaporation due to underestimation of solar radiation, 

any benefit from the plentiful supply of water would be lost. Water surplus coupled with 

overestimation of solar radiation would obviously accelerate photosynthesis leading to 

overestimation of crop yield. It is of interest to note that the errors introduced to rainfall 

input for Experiment #1 and to weather inputs for Experiment #2 resulted in modeled top 

soil moisture content that was outside of SMAP specifications for 65 percent and 56 

percent of the crop yield simulations respectively. Guiding the DSSAT-CSM to produce 

results consistent with the SMAP-type top soil moisture data, as accomplished by the novel 

soil moisture filtering procedure developed in this study, can correct some potentially 

dramatic model biases introduced by such input/measurement errors. 

Under the automated irrigation scenario, drought stresses on photosynthesis and crop 

growth were virtually eliminated, and crop yield approached the modeled irrigated levels 

using true weather input as shown in Figure 6. This occurs regardless of whether external 

soil moisture data was available or not. Because of the achievement of potential production 
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in the absence of water stresses, modeled crop yield variation was negligible in the irrigated 

crop simulations. Mean irrigated crop yield and mean irrigation amount for Experiments 

#1 and #2 did not significantly change with application of the soil moisture filter as shown 

in Figure 6 and Figure 7; however, the standard deviation in irrigation amount was reduced 

(marginally) by 14 and 9 percent respectively for Experiments #1 and #2 as shown in Table 

7. 

4.1.7   Section 5: Conclusions and on-going research 

This study introduces an efficient algorithm for assimilating SMAP top layer daily soil 

moisture data into the DSSAT-CSM model. The soil moisture filtering procedure 

constrains the agricultural model to produce results consistent with SMAP-like remotely-

sensed soil moisture data, thereby reducing the uncertainty in forecasted crop yield and 

irrigation amount.  Incorporating SMAP-like top layer soil moisture data into DSSAT-

CSM resulted in increased precision of modeled rain-fed crop yield, bringing model 

estimates of mean crop yield into closer agreement with DSSAT-CSM rain-fed yield using 

observed weather input. Furthermore, the data assimilation algorithm developed for this 

study mitigated the impact of measurement errors in critical weather inputs on modeled 

crop yield and irrigation amount, highlighting the potential utility of both this algorithm 

and of the SMAP top soil moisture data product. 

This study is limited to a single site (an experimental “field” in Ames, Iowa) for a single 

growing season (2003). Further research will expand the case-study spatially and 

temporally to the regional scale, multiple years, and for various rain-fed and irrigated crops. 

This study is also limited by the assumption that “ground-truth” 9km soil moisture can be 
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accurately determined from weather observations, detailed site specific soil properties, and 

the other required minimum input to the point-scale DSSAT-CSM.  

As the SMAP satellite data products will not be available until early 2015, and reliable 

soil moisture observations at the Ames, Iowa case study site were not available, DSSAT-

CSM modeled top layer soil moisture driven by observed daily weather input served as a 

surrogate for “ground-truth” soil moisture and is assumed to mimic the SMAP soil moisture 

data product. Likewise, the potential to merge information on local physical constraints 

with SMAP data products to further reduce the error in SMAP remotely-sensed beyond the 

0.04cm3cm-3 mission specification needs further investigation. It is of interest to validate 

the conclusions of this study as soon as soil moisture data from the SMAP mission are 

available. 

Merging remotely-sensed SMAP soil moisture data with DSSAT-CSM is a topic of on-

going research, and we look forward to conducting on-going research on the following 

topics: 

• The impact of lower effective error in top layer soil moisture data, (e.g., 0.01 

cm3cm-3) on precision in crop model output. 

• How SMAP-like data can guide DSSAT-CSM model runs in which other inputs 

such as crop cultivars, soil type, and soil hydraulic characteristics are uncertain. 

• Performing DSSAT-CSM simulation of drought years to further investigate the 

benefit of SMAP-type data to reduce uncertainty in irrigation forecasts. 

• Incorporating the SMAP Level 4 Root-Zone soil moisture product to further reduce 

uncertainties in DSSAT-CSM forecasts. 
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4.2 Incorporation of remote sensing SMAP L3 Enhanced surface soil moisture 

data in DSSAT-CSM rainfed crop simulations 

In the following case studies, surface soil moisture estimates from the SMAP L3 

Enhanced data product are incorporated into year 2015 and 2016 county-level rain-fed 

maize DSSAT-CSM simulations. Simulations are also driven by daily meteorological 

forcing from the GRIDMET data set and gridded soil profile data from the Harvest Choice 

Global High Resolution Soil Profile Data set. In these hindcasting exercises, when data 

availability allows, remote sensing surface soil moisture estimates replace the DSSAT-

CSM modeled daily 5 cm soil moisture estimates. In this way, it is hoped that incorporation 

of SMAP estimates would “correct” the soil moisture dynamics in the DSSAT model 

simulations as the growing season progresses, thereby bringing calibrated DSSAT 

estimates of county-level rain-fed crop yield in closer agreement with USDA NASS 

reported crop yields. DSSAT crop yield estimates resultant from incorporation of SMAP 

data are also compared with simulated crop yields without SMAP data incorporation 

(referred to as DSSAT Control) to assess improved agreement with USDA NASS reported 

crop yields. 
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Table 4-1 lists some of the important input data and parameters for modeling of rain-

fed maize for year 2015 and 2016. The DSSAT-CSM model is run at multiple point 

locations within the county boundaries. The same locations are used for the control run 

simulations and simulations that incorporate SMAP estimates of surface soil moisture. 

With regard to gridded data, DSSAT simulations are driven by data from the pixel nearest 

to each point location. To facilitate comparison of simulated crop yields with USDA NASS 

reported yields, USDA yields are converted from bushels per acre to kilograms per acre 

with an assumed moisture content of 15.5 percent. 

Table 4-1: Calibrated input parameters for rainfed county-level DSSAT-CSM maize 
simulations. 

Location 

DSSAT-CSM Input Parameter 
Number of 

point 
locations 

Maize 
cultivar 

Planting 
date 

Plant Popuplation 
[plants/m2 (plants/acre)] 

Row Spacing 
[cm (in)] 

Story County, 
Iowa 88 PB 8 April 26th 

7.9 (30,000) 76 (30) 

Livingston 
County, New 

York 
110 AS 740 May 11th  

Lancaster 
County, 

Pennsylvania 
159 Cargill 

111S May 17th  

 

Figure 4-1 illustrates the box plots of simulated county-level rain-fed maize both with 

and without incorporation of SMAP surface soil moisture data, while Figure 4-2 compares 

DSSAT simulated 5 cm soil moisture (without incorporation of remote sensing soil 

moisture data) and the corresponding SMAP surface soil moisture retrieval. For year 2015 

in Story County, IA, the rain-fed maize crop received sufficient rainfall such that the crop 

yields with or without SMAP data incorporation were identical, even though the SMAP 

surface soil moisture estimates were clearly drier than the 5 cm soil moisture modeled in 

the DSSAT control experiment. In year 2016 however, the dry bias (relative to the DSSAT 
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control) caused a substantial reduction in modeled crop yield and a broadening of 

variability in the county-level estimate. In both years, modeled crop yields were not 

brought in closer agreement with the USDA reported mean county-level crop yield. For 

Livingston County, NY, SMAP surface soil moisture estimates were typically wetter than 

the DSSAT Control, and this translated to higher crop yields, but did not greatly reduce 

variability in the crop yields. For Lancaster County, PA, SMAP bias in surface soil 

moisture (relative to the DSSAT control) was not as clear as the other case study locations, 

as a result, DSSAT Control and DSSAT+SMAP crop yields were nearly identical. In 

evaluating the case studies collectively, the variability in modeled crop yield due to 

meteorological forcing data and model error (as assessed by deviation from the USDA 

reported county-level crop yield) appears to be much greater than can be mitigated by 

incorporation of SMAP surface soil moisture retrievals, especially when SMAP surface 

soil moisture retrievals may themselves be subject to substantial biases. 
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Story County, IA 

 

Livingston County, 
NY 

 

Lancaster County, PA 

 
Figure 4-1: Box plots of simulated year 2015 and 2016 county-level rain-fed maize yield 

without SMAP data incorporation (DSSAT control) and with SMAP data incorporation 
(DSSAT+SMAP) 
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Story 
County, Iowa 

 

Livingston 
County, NY 

 

Lancaster 
County, PA 

 
Figure 4-2: Comparison of DSSAT simulated and SMAP estimated surface soil 

moisture for the rain-fed maize case study locations 
 

 

4.3 Incorporation of remote sensing GPM IMERG daily precipitation in DSSAT-

CSM crop simulations 

In the following case studies, daily cumulative precipitation estimates from the GPM 

IMERG Version 5 Late Release data product are incorporated into year 2015 and 2016 

county-level rain-fed and irrigated maize DSSAT-CSM simulations. Simulations are also 

driven by daily meteorological forcing (excluding rainfall, as GPM IMERG is being used 

for precipitation forcing) from the GRIDMET data set and gridded soil profile data from 

the Harvest Choice Global High resolution Soil Profile Data set. DSSAT crop yield 
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estimates resultant from incorporation of GPM IMERG data are also compared with 

simulated crop yields without GPM IMERG data incorporation (referred to as DSSAT 

Control) to assess improved agreement with USDA NASS reported crop yields. 

Table 4-2 lists some of the important input data and parameters for modeling of rain-

fed and irrigated maize for year 2015 and 2016. The case study counties in Iowa, New 

York, and Pennsylvania are entirely rainfed while the counties in Georgia, California, and 

Texas have crop acreages that are split between rainfed and irrigated acreages as listed in 

Table 4-3. For simulation of irrigated crops, the DSSAT-CSM “Automatic-Irrigation” 

option is used in which the simulated available soil moisture within a user specified depth 

is monitored daily. When the available soil moisture drops below a threshold percentage 

value, the DSSAT-CSM model applies irrigation on that day until the soil profile saturated. 

The DSSAT-CSM model is run at multiple point locations within the county boundaries. 

The same locations are used for the control run simulations and simulations that incorporate 

GPM IMERG estimates of daily precipitation. With regard to gridded data, DSSAT 

simulations are driven by data from the pixel nearest to each point location. To facilitate 

comparison of simulated crop yields with USDA NASS reported yields, USDA yields are 

converted from bushels per acre to kilograms per acre with an assumed moisture content 

of 15.5 percent. 
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Table 4-2: Calibrated input parameters for rainfed and irrigated county-level DSSAT-
CSM maize simulations. 

Location 

DSSAT-CSM Input Parameter 
Number of 

point 
locations 

Maize 
cultivar 

Planting 
date 

Plant Popuplation 
[plants/m2 (plants/acre)] 

Row Spacing 
[cm (in)] 

Story County, 
Iowa 88 PB 8 April 26th 

7.9 (30,000) 76 (30) 

Livingston 
County, New 

York 
110 AS 740 May 11th  

Lancaster 
County, 

Pennsylvania 
159 Cargill 

111S May 17th  

Miller County, 
Georgia 36 PIO 3382 March 29th  

San Joaquin 
County, 

California 
218 PB 8 April 8th 

Wayne 
County, 

Nebraska 
70 DK 611 May 4th  

Dallam 
County, Texas 231 WASH-

GRAIN-1 March 15th  

 

Table 4-3: Calibrated DSSAT-CSM input parameters for automatic-irrigation of maize  

Location 

DSSAT-CSM Automatic-Irrigation Input Parameter 
Percentage of acreage 

with irrigation 
(%) 

Soil moisture 
montoring depth  

[cm (in)] 

Available soil moisture 
threshold 

(%) 
Miller County, Georgia 77 

30 (12) 

50 
San Joaquin County, 

California 100 70 

Wayne County, 
Nebraska 20 50 

Dallam County, Texas 47 
 

As shown in the box plots of maize yield and irrigation amount in Figure 4-3, 

incorporation of remote sensing precipitation data makes a substantial difference in model 

results; however, it is not clear that incorporation of GPM IMERG data improves the 

accuracy DSSAT-CSM simulated yields relative to USDA reported yields. For Story 

County (year 2015), Livingston County (year 2016), Miller County (year 2015), San 

Joaquin County (years 2015 and 2016), Wayne County (years 2015 and 2016), and Dallas 
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County (years 2015 and 2016), overestimation of growing season precipitation (relative to 

the GRIDMET reference) led to increased crop yields and reduced irrigation demand. 

Cases in which the amount of overestimation in GPM growing season precipitation exceeds 

the amount of underestimation in irrigation application suggest that extreme events are 

being overestimated by GPM IMERG. When this data is incorporated into DSSAT, large 

amounts of runoff and drainage from the bottom of the soil profile (both types of water are 

useless to crops) are estimated by the DSSAT-CSM model. The difference in dry spell 

lengths (consecutive days of zero precipitation during the growing season), between the 

GRIDMET reference and GPM IMERG also impact modeled crop yield results. At the 

Story County, Iowa 2016 and Miller County, Georgia 2016 locations, cumulative growing 

season precipitation was less in the GPM IMERG product than in the GRIDMET reference; 

however, crop yields driven by GPM IMERG data were still higher than the control 

scenario. This is attributed to the shorter dry spell lengths in the remote sensing 

precipitation product. 
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Lancaster County, PA 

 
 

   

 

     
Miller County, Georgia 
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San Joaquin County, California 

  
    

     
Wayne County, Nebraska 
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Dallam County, Texas 

     
Figure 4-3:    Box plots of simulated year 2015 and 2016 county-level maize yield and irrigation amount without GPM IMERG data 

incorporation (DSSAT Control) and with GPM IMERG data incorporation. Box plots of growing season cumulative precipitation and 
consecutive dry days derived from GRIDMET (DSSAT Control) and GPM IMERG are also provided for reference. 
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4.4 Incorporation of remote sensing JAXA GSMaP daily precipitation products 

in DSSAT-CSM crop simulations 

In this section, DSSAT-CSM crop simulations incorporating remote sensing retrievals 

of daily cumulative precipitation are carried out with the same method as the previous 

section, except that instead of GPM IMERG data, JAXA GSMaP-Gauge data is 

incorporated into the DSSAT-CSM model. 

As shown in the box plots of maize yield and irrigation amount in Figure 4-4, 

incorporation of remote sensing precipitation data makes a substantial difference in model 

results; however, it is not clear that incorporation of GSMaP-Gauge data improves the 

accuracy DSSAT-CSM simulated yields relative to USDA reported yields. In general, 

growing season rainfall in the GSMaP-Gauge data product is in closer agreement with the 

GRIDMET reference than the GPM IMERG Late Release Version 5 data product. The 

GSMaP-Gauge data also appears to be more spatially homogenous than GPM IMERG as 

evidenced by the relatively smaller spread in growing season precipitation and simulated 

irrigation amount for some of the case study sites. However, similar to the conclusion from 

incorporating SMAP surface soil moisture estimates in the DSSAT model, errors in remote 

sensing retrieval or precipitation, combined with errors in the DSSAT model, are still too 

large to be mitigated by remote sensing retrievals of daily precipitation. At the Story 

County, Iowa 2015 and 2016; Miller County, Georgia 2015 and 2016; and Dallam County, 

Texas 2015 locations, cumulative growing season precipitation was less in the GSMaP-

Gauge product than in the GRIDMET reference; however, crop yields driven by GSMaP-

Gauge data were still higher than the control scenario. This is attributed to the shorter dry 

spell lengths in the remote sensing precipitation product. 
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Lancaster County, PA 

 
 

   

 

     
Miller County, Georgia 
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San Joaquin County, California 

  
    

     
Wayne County, Nebraska 
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Dallam County, Texas 

     
Figure 4-4: Box plots of simulated year 2015 and 2016 county-level maize yield and irrigation amount without JAXA GSMaP-Gauge 

data incorporation (DSSAT Control) and with GSMaP-Gauge data incorporation. Box plots of growing season cumulative precipitation 
and consecutive dry days derived from GRIDMET (DSSAT Control) and GSMaP-Gauge are also provided for reference.
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4.5 Historical Climate Variability and Crop Yield / Irrigation Assessment: Case 

Study in the Apalachicola-Chattahoochee-Flint (ACF) River Basin 

 

In this case study, multi-sensor gridded data products including University of Idaho 

GRIDMET daily meteorological data (GRIDMET), HarvestChoice Global high-resolution 

soil profile database for crop modeling applications (HC-GHRSPD), and USDA-NASS 

CropScape Cropland Data Layer, are innovatively integrated with the DSSAT cropping 

system model (DSSAT-CSM) to assess crop yield and irrigation demand for various staple 

crops harvested in the Apalachicola-Chattahoochee-Flint (ACF) river basin. The top crops 

grown in the region include peanuts, corn, soybeans, and cotton.  

The ACF basin and its 14 sub-basins (located in the states of Georgia, Alabama, and 

Florida, USA) are shown in the figure below. In this study, the impact of historical climate 

variability on current (year 2016) cropping and irrigation practices in each of the 14 ACF 

sub-basins is assessed. 
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Figure 4-5: A map of the ACF basin and its 14 sub-basins. 
 
To simulate crops at multiple point locations, the location coordinates (latitude-

longitude pairs) for each crop field of interest within each of the ACF sub-basins are 

extracted from the pixels of the USDA-NASS CropScape data set from year 2016. The 

number of CDL single-planting field pixels (in year 2016) were identified for each major 

crop in the ACF sub-basins as listed in the following table. 
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Table 4-4: Quantity of 30 x 30 m2 single-planting corn, peanut, cotton, and soybean 
field pixels identified in the 2016 USDA-NASS Cropland Data Layer for each ACF sub-
basin. 

ACF  
Sub-
basin  

Quantity of USDA-NASS CDL Pixels  

Corn Peanut Cotton Soybean All Crops 

1 11,193 1 9 1,486 12,689 
2 13 0 0 48 61 
3 86 0 0 40 126 
4 179 0 38 257 474 
5 20,999 11,487 44,690 46,998 124,174 
6 2,214 1 510 1,077 3,802 
7 2,016 13 380 2,910 5,319 
8 18,561 40,692 65,383 3,351 127,987 
9 239,078 262,004 732,300 62,665 1,296,047 
10 51,905 55,931 76,923 2,792 187,551 
11 297,168 460,481 552,651 37,226 1,347,526 
12 32,567 109,355 120,469 9,698 272,089 
13 190,871 450,847 459,888 21,702 1,123,308 
14 27,201 196,768 182,688 16,462 423,119 

 

This assessment uses the University of Idaho GRIDMET gridded meteorological data 

set.  For computational efficiency, the individual crop fields (identified earlier) are each 

mapped to the nearest 4 x 4 km2 pixel of the GRIDMET. Then, DSSAT-CSM is run to 

simulate the annual crop yield from 1980–2016 (37 years) with GRIDMET meteorological 

forcing and soil characterization data from the HarvestChoice Global High-Resolution Soil 

Profile Database (HC-GHRSPD). Model results (rainfed and irrigated crop yields as well 

as irrigation amounts) are subsequently weighted and aggregated based on the number of 

crop fields mapped to a unique pixel of GRIDMET meteorological forcing. This procedure 

allows us to capture the impact of spatial variability in sub-basin weather on crop yield and 

irrigation demand without the computational expense of running DSSAT-CSM for each 30 

x 30 m2 crop field in the ACF sub-basins.  

4.5.1   DSSAT-CSM Calibration 
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DSSAT-CSM calibration for rainfed crop simulation requires selection of the crop 

cultivar, planting date, row spacing, and plant population. Simulation of irrigated crops 

additionally requires specification of a soil moisture management depth and corresponding 

available soil-water content threshold to trigger an irrigation application using DSSAT-

CSM’s “Auto-Irrigation” Water Management Option. The option to simulate nitrogen 

stress is also available and has been incorporated into the cotton simulations which are 

particularly sensitive to nitrogen stresses. The remaining crops, (corn, peanut, and soybean) 

are assumed to have all their nitrogen demands met during the growing season, thus, 

nitrogen stress is not modeled for those crops. Using historical data from USDA on 

reported corn crop yields and assumptions regarding typical irrigation practices in the ACF 

region, the calibration inputs for rainfed and irrigated corn, peanut, cotton, and soybean 

simulations were specified as shown in the table below. 

Table 4-5: DSSAT-CSM input parameters for the rainfed and irrigated corn, peanut, 
cotton, and soybean simulations in the ACF basin. 
Model Parameter Corn Peanut Cotton Soybean 

Planting Date (1980-
2016) March 29th May 16th  May 5th  May 25th 

Cultivar B73 X MO17 Georgia Green DP 555 BG/RR DP 5634  
(Maturity Group V) 

Row Spacing 30 inches (76 cm) 36 inches (90 cm) 36 inches (90 cm) 30 inches (76 cm) 

Plant Population 30,000 plants/acre 
(7.9 plants/m2) 

85,000 plants/acre 
(21 plants/m2) 

50,000 plants/acre 
(12.4 plants/m2) 

90,000 plants/acre 
(22.2 plants/m2) 

Irrigation: Soil 
Management Depth 

12 inches  
(30 cm) 

20 inches 
(50 cm) 

12 inches 
(30 cm) 

12 inches 
(30 cm) 

Irrigation: Available soil 
water content threshold 50% 60% 50% 50% 

Nitrogen Fertilizer Nitrogen stress not 
simulated 

Nitrogen stress not 
simulated 

45 lbs/acre (50 
kg/ha) of N 
fertilizer applied 
at 4 inch (10 cm) 
depth at planting 
and again at 46 
days after 
planting 

Nitrogen stress not 
simulated 
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4.5.2   ACF Assessment Methodology 

For each crop in each ACF sub-basin, the simulated rainfed and irrigated yields for 

present-day (2016) crop fields forced by historical (1980-2016) meteorological conditions 

are illustrated in time-series plots. Crop yields are reported in dry mass units normalized 

by area (kilogram/hectare). Similarly, the modeled irrigation demand is also reported. 

Variability bars are included for each year of meteorological forcing to show the variability 

of modeled crop yield and irrigation demand (due to variation in meteorological forcing 

and soil property data) in each sub-basin. This exercise assesses how present-day rainfed 

and irrigated fields would have produced had they been subjected to the historical 

meteorology. These results could reasonably be extrapolated to estimate the actual 

historical production and total amount of water used by these major crops of the 

agricultural sector if the total area of rainfed and the total area of irrigated crop fields are 

known for each historical year and for each sub-basin. 

Included with each figure are corresponding linear regression equations with the 

probability that the estimated slope of the linear trend (in units of kg/ha per year for crop 

yield and depth units of mm per year for irrigation demand) is greater than zero. The 

regression equations are estimated using Bayesian Linear Regression. Under the 

conservative assumption of non-informative priors for the regression parameters, Bayesian 

Linear Regression provides a data-dominated and analytical derivation of the posterior 

probability distribution of the trend – a non-central Student t-distribution (Elster et al. 

2015) – and thereby facilitates a more comprehensive assessment of the trend’s direction 

(e.g., positive or negative) than provided by traditional, frequentist simple linear 

regressions (Kéry 2010; Baldwin and Larson 2017). As indicated in Figure 4-6, once the 
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posterior probability distribution of the linear regression slope parameter is derived, the 

certainty regarding slope’s direction can be characterized in terms of intuitively meaningful 

probability statements (e.g “the slope is very likely positive”, “the slope is virtually certain 

to be negative”, etc.) based on what proportion of the slope probability distribution lies to 

the right of zero, indicated as “+prob” in subsequent figures. For convenience, the 

probability statements and associated probability ranges used in this study are modified 

from those adopted by the Intergovernmental Panel on Climate Change (IPCC) in their 

most recent assessment report  (IPCC 2014). 

 

Figure 4-6: an example posterior Student t-distribution for the regression slope 
determined using Bayesian Linear Regression. Probability statements (with concise 

abbreviations) describe the certainty regarding the slope’s sign (i.e. positive or negative). 
 

The assessments presented here do not incorporate the influence of technology 

innovation on crop yield.  Crop yield gains due to technology innovations are significant 

and need to be considered when comparing simulated versus observed crop yield data; this 

investigation however, focuses on the impact of historical climate variability on yield and 

irrigation demand given current crop management and irrigation practices and technology. 
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4.5.3   ACF Assessment Results: Corn 

Figure 4-7 illustrates the simulated rainfed corn yields for present-day (2016) corn fields 

forced by historical (1980–2016) meteorological conditions for each of the ACF sub-

basins. The figure also indicates the mean crop yield (in units of kilograms of dry weight 

per hectare, kg/ha) for the 37 year period (1980 – 2016) , and two 18 year periods (1980 – 

1997, and 1998 – 2015) along with corresponding annual trends (calculated using the 

previously mentioned Bayesian linear regression methodology) and the probability of these 

trends being positive. During the 1980 – 2016 historical period, the ACF sub-basins in the 

Lower portions of the Chattahoochee and Flint basins and the Apalachicola basin (sub-

basins 10 to 14) show rainfed corn crop yields that are “likely” or “very likely” decreasing 

annually. Furthermore, the results show that after 2005, agricultural droughts are increasing 

in intensity and duration, compared to the pre-2005 period, especially in the southern sub-

basins. Analysis of the two 18-year periods (1980 – 1997 and 1998 – 2015) in sub-basins 

10 to 14 shows that the decline in rainfed crop yield is a phenomenon of the latter period, 

as the mean rainfed crop yield during the 1998 – 2015 period is 13 to 21 percent less than 

that of the 1980 – 1997 period.  
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Figure 4-7: Simulated ACF mean rainfed corn yield for 1980–2016 and present-day corn fields. 
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Figure 4-8 and Figure 4-9 illustrate the simulated irrigated yields and corresponding 

irrigation amounts for present-day (2016) corn fields forced by historical (1980–2016) 

meteorology for each ACF sub-basin. Similar to the rainfed analysis, mean and trend 

information is also presented for the 1980 – 1997 and 1998 – 2015 periods. Simulation 

results show that irrigated corn yields are increasing annually in the northern sub-basins 

(which are not heavily cropped), but decreasing in the more heavily cropped southern sub-

basins. The post-2005 period clearly shows that the demand for water has markedly 

increased in response to the increased severity and duration of agricultural droughts. In the 

southern half of the ACF, the impact of the year 2011 drought stands out with over 300 

mm of irrigation demand, the greatest simulated demand for the entire 1980 – 2016 period. 

A review of local and national news during summer 2011 confirms the severe effects of 

this historic drought. The New York Times (Severson and Johnson 2011) reported: 

COLQUITT, Ga. — The heat and the drought are so bad in this southwest corner of 

Georgia ... Corn, a lucrative crop with a notorious thirst, is burning up in fields. Cotton 

plants are too weak to punch through soil so dry it might as well be pavement. 

Farmers with the money and equipment to irrigate are running wells dry in the 

unseasonably early and particularly brutal national drought that some say could rival the 

Dust Bowl days. 

Another finding from this analysis is that despite the “very likely” positive trend in 

applied irrigation in the southern half of the ACF, these sub-basins surprisingly still report 

decreasing irrigated corn yield. This indicates that some climatic variable, other than water 

availability (through precipitation and irrigation), impacts corn yield negatively.  After 
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examination of the ACF meteorological data, the declining yield trend is attributed to the 

change of the mean daily and minimum daily temperatures.  Assessment of GRIDMET air 

temperature data shows that both of these temperatures are steadily increasing in recent 

years.  Furthermore, a temperature-plant stress relationship is known to exist limiting 

carbohydrate production when daily temperature exceeds the ideal temperature for 

photosynthesis (DSSAT-CSM captures this relationship through a quadratic penalty 

function).  For corn in particular, the ideal daily temperature is 26 degrees Celsius (Ritchie 

et al. 1998).  

Lastly, Figure 4-9 shows that the irrigation amount to achieve optimal crop yield varies 

markedly from year to year depending on drought conditions.  This is true for all ACF sub-

basins but especially for sub-basins 6 to 14, after 2005.  The assessment results show that 

minimum, average, and maximum irrigation amounts have increased considerably in recent 

years, with the maximum irrigation often exceeding mean irrigation by 100%.  Similar 

results were also found for the irrigation depths of the other crops investigated in this study. 

The agricultural assessments presented here are consistent with the climatological 

trends in the ACF, which indicate that seasonal air temperature is increasing and seasonal 

precipitation is decreasing in the majority of ACF sub-basins. These findings suggest a 

decline in crop water productivity (amount of crop yield per unit of irrigation 

application/precipitation) and raise concerns about the long term sustainability of the 

current water and agricultural management practices. 
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Figure 4-8: Simulated ACF mean irrigated corn yield for historical meteorology and present-day corn fields. 
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Figure 4-9: Simulated ACF mean irrigation amount for historical meteorology and present-day corn fields. 
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4.5.4   ACF Assessment Results: Peanut 

Figure 4-10 illustrates the DSSAT-CSM simulated rainfed peanut yields for present-day 

(2016) peanut fields forced by historical (1980–2016) meteorological conditions for each 

of the ACF sub-basins. In contrast with corn (discussed earlier) ACF sub-basins with 

significant peanut acreage do not generally report a strong trend when considering the full 

1980 – 2016 period. However, when focusing on the 1998 – 2015 period, sub-basins 9 – 

14 show relatively strong trends that are either “likely” or “very likely” negative. During 

the 1980 – 1997 period, these sub-basins report rainfed peanut yields increasing by 20 to 

32 kg/ha (dry weight) per year; however, during the 1998 – 2015 period, nearly all sub-

basins report rainfed peanut yields as decreasing by 30 to 60 kg/ha per year. It is noted that 

in spite of the trend reversal, mean rainfed peanut yield during the 1998 – 2015 period 

generally exceeds that of the 1980 – 1997 period. However, this finding is attributed to a 

short-lived benefit that peanut crops may receive, in the absence of water stress, from rising 

temperatures (until an optimal temperature threshold is surpassed) and increased 

atmospheric CO2 concentrations. The analysis of irrigated peanut yields which follows 

highlights the ephemeral nature of these positive influences on peanut yield as increases in 

irrigated peanut yield are slowed during the 1998 – 2015 period despite raised 

temperatures, increased CO2 concentrations, and the absence of water stress. 
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Figure 4-10: Simulated ACF mean rainfed peanut yield for 1980–2016 and present-day peanut fields. 
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Figure 4-11 and Figure 4-12 illustrate the simulated irrigated yields and corresponding 

irrigation amounts for present-day (2016) peanut fields forced by historical (1980–2016) 

meteorology for each ACF sub-basin. Irrigated peanut yields are increasing in all sub-

basins in tandem with irrigation demand. However, the post-2005 period clearly shows that 

the demand for water has increased markedly in response to the increased severity and 

duration of agricultural droughts. It is of interest to note that the positive trend in irrigated 

peanut yield during the 1998 – 2015 period is only a fraction of the positive trend during 

the 1980 – 1997 period. In the southernmost basins, for example, the trend in irrigated yield 

during the 1998 – 2015 period is only 14 to 30 percent of that from the 1980 – 1997 period.   

The result of increasing peanut yields (both rainfed and irrigated) seems to highlight the 

resilience of the peanut plant in the face of rising temperatures in the ACF. In contrast to 

corn, the optimal air temperature for peanut vegetative growth is relatively higher, ranging 

from 25° to 28° C (Wood 1968; Cox 1979; Vara Prasad et al. 2000). Furthermore, previous 

studies have shown that peanut may benefit from increased atmospheric CO2 

concentrations, moreso than corn (Jones et al. 2012). However, as suggested by the 

apparent negative trend in rainfed peanut yields in nearly all sub-basins with substantial 

peanut acreage after year 2005 and the considerably slowed increase in irrigated peanut 

yield during the 1998 – 2015 period, ambient mean temperatures may have already 

surpassed the optimal. As a result, further increases in atmospheric CO2 concentrations 

may not offset the negative impacts of continued increases in temperature beyond the 

optimal, even in the absence of water stress (e.g. when the crop is fully irrigated). This 

finding portends that, similar to corn, peanut crop will be subject to reduced crop water 

productivity, even if projected increases in irrigation demand are sufficiently met. 
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Figure 4-11: Simulated ACF mean irrigated peanut yield for historical meteorology and present-day peanut fields. 
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Figure 4-12: Simulated ACF mean irrigation amount for historical meteorology and present-day peanut fields. 
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4.5.5   ACF Assessment Results: Cotton 

Figure 4-13 illustrates the DSSAT-CSM simulated rainfed cotton yields for present-day 

(2016) cotton fields forced by historical (1980–2016) meteorological conditions for each 

of the ACF sub-basins. The ACF sub-basins with significant cotton acreage report stable 

rainfed cotton yield, as shown by the small magnitude of the regression slopes and the near 

50% probability of positive trends. However, similar to peanut, the “inconclusive” trend in 

rainfed cotton crop yield over the 1980-2016 period masks the reality that the temperature 

stresses of recent years (which are expected to continue into the future) and decreases in 

precipitation are severely impacting yield. In the more recent 1998-2015 period, crop yields 

are decreasing rapidly as shown by the regression slopes characterized as “likely” or “very 

likely” to be negative. 
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Figure 4-13: Simulated ACF mean rainfed cotton yield for 1980–2016 and present-day cotton fields. 
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Figure 4-14 and Figure 4-15 illustrate the simulated irrigated yields and corresponding 

irrigation amounts for present-day (2016) cotton fields forced by historical (1980–2016) 

meteorology for each ACF sub-basin. Irrigated cotton yields are increasing in all sub-basins 

as well as irrigation demand. However, the positive annual trend over the 1980-2016 period 

in irrigated yields is reduced in the warmer, southernmost basins in comparison to the rest 

of the ACF. This finding suggests, that similar to the other major crops assessed, mean air 

temperatures have exceeded the optimal for crop yield. In reviewing the literature, a series 

of well-watered, temperature- and CO2-controlled studies in Mississippi showed that 

optimal mean temperatures for cotton yield were between 25° and 28° C, with fruit 

retention steeply declining until zero with temperature increases from 28° C to beyond 

33°C (Reddy et al. 1992; Hodges et al. 1993).  

Comparison of the trends in irrigated cotton yield from the 1980 – 1997 period with 

those of the 1998 – 2015 emphasize in negative impact of increased temperatures despite 

the absence of water stress. During the 1980-1997 period, irrigation demand for cotton was 

stable or decreasing, even for the southernmost sub-basins, while irrigated crop yields were 

increasing in the majority of sub-basins with extensive cotton acreage. The 1998-2015 

period stands in sharp contrast to this, with irrigation demand generally increasing in the 

sub-basins as indicated by the “likely positive” regression slopes during this period. For 

example, in the southern sub-basins, mean irrigation depth during the 1998-2015 period 

has increased by 25 up to 40 percent compared to the 1980 – 1997 period. It is also 

concerning that despite the increase in irrigation application during the 1998-2015 period, 

irrigated cotton yields continued to decline annually (indicated by slopes that are “virtually 

certain” or “very likely” to be negative) in the southern half the ACF basins where the most 
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cotton acreage lies. This finding indicates a sharp reduction in cotton’s crop water 

productivity (e.g. increased water application coupled with persistently decreasing yields) 

in the face of rising temperatures and reduced precipitation in the ACF. 
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Figure 4-14: Simulated ACF mean irrigated cotton yield for historical meteorology and present-day cotton fields. 
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Figure 4-15: Simulated ACF mean irrigation amount for historical meteorology and present-day cotton fields. 
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4.5.6   ACF Assessment Results: Soybean 

Figure 4-16 illustrates the simulated rainfed soybean yields for present-day (2016) 

soybean fields forced by historical (1980–2016) meteorological conditions for each of the 

ACF sub-basins. The linear trend in soybean yields over this period is positive in the sub-

basins with the most soybean acreage (sub-basins 5, 9, and 11 along the Flint River). 

However, similar to other major crops tested in this report, the overall positive trend in 

rainfed soybean crop yield over the 1980-2016 period masks the reality that the temperature 

stresses of recent years (which are expected to continue into the future) and decreases in 

precipitation are adversely impacting yield. Rainfed soybean yields were generally 

increasing annually in ACF during the 1980-1997 sub-period, but are now “likely” 

decreasing in the southern basins as shown by the negative regression slopes during the 

1998-2015 period.  
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Figure 4-16: Simulated ACF mean rainfed soybean yield for 1980–2016 and present-day soybean fields. 
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Figure 4-17 and Figure 4-18 illustrate the simulated irrigated yields and corresponding 

irrigation amounts for present-day (2016) soybean fields forced by historical (1980–2016) 

meteorology for each ACF sub-basin. Irrigated soybean yields are increasing steadily with 

“virtual certainty” throughout the period in all sub-basins. Irrigation demand is increasing 

as well. In contrast to other crops, irrigated soybean yields are increasing in both the 1980-

1997 and 1998-2015 periods. In fact, in many of the sub-basins the 1998-2015 positive 

trend, exceeds that of the 1980-1997 period. In the Upper Chattahoochee for example, the 

1998-2015 trend in irrigated soybean yield is nearly three times that of the 1980-1997 

period. These findings suggest that the increasing temperatures in the ACF have not yet 

exceeded the optimal maximum temperature for the crop, provided that the markedly 

increased water demands are satisfied.  

It remains to be seen however for how long can the annual increases in irrigated soybean 

yield can be sustained in the face of the ACF’s changing climate. Previous studies have 

shown that soybean yield in the absence of water stress increases until daytime/nighttime 

temperatures exceed 26°C/20°C, after which yield declines due to temperature stresses 

(Huxley et al. 1976; Sionit et al. 1987). CO2 enrichment has been reported to reduce seed 

weight, but this deleterious effect is balanced by an increase in seed number, such that 

soybean yields generally benefit from elevated CO2 concentrations; however, increase in 

yield components due to increases in CO2 is highly dependent on temperature (Baker et al. 

1989; Baker and Allen 1993).  
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Figure 4-17: Simulated ACF mean irrigated soybean yield for historical meteorology and present-day soybean fields. 
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Figure 4-18: Simulated ACF mean irrigation amount for historical meteorology and present-day soybean fields. 



154 

 

4.5.7   ACF Assessment Results: Summary Statistics 

Table 4-6 through Table 4-9 list summary statistics related to crop yield and irrigation 

demand for the major crops in the ACF during the 1980 – 1997 period and the 1998 – 2015 

period. Bootstrap sampling (Efron and Tibshirani 1993) of data from these two periods is 

used to estimate the probability distribution of the change in summary statistics between 

these two periods. Depending on how much of the “change distribution” lies to the right of 

zero, the change in the statistic of interest can be characterized as shown in Figure 4-19. 

The summary statistics of interest include the mean of rainfed and irrigated crop yields, the 

25th percentile of rainfed and irrigated crop yields (indicative of agricultural drought), the 

mean of irrigation amount, and the 75th percentile of irrigation amount (indicative of 

agricultural drought). 

 

 

Figure 4-19: Probability statements describing the change in a summary statistic going 
from the 1980-1997 period to the 1998-2015 period. 
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Results confirm that for both rainfed and irrigated corn, the mean and 25th percentile of 

corn yields have decreased going from the 1980 – 1997 period to the 1998 – 2015 period 

(as indicated by “VL-“[very likely decrease] and “L-“ [likely decrease] in Table 4-6) in the 

southern half of the ACF, while the corn yields have increased or stabilized in the northern 

sub-basins (as indicated by “L+” [likely increase] and “I” [change inconclusive]). Mean 

and 75th percentile corn irrigation amounts have generally increased throughout the ACF, 

especially in the southern basins. For peanut, there is not a clear distinction between the 

north and south. Rainfed peanut yields have “likely” increased or stabilized going from the 

1980 – 1997 period to the 1998 – 2015 period. Irrigated peanut yields have increased 

throughout the ACF, but so has the irrigation demand to support these higher yields. Cotton 

and soybean also show similar behavior of increasing or stabilized crop yields with an 

increase in irrigation demand. These findings are consistent with the trend analyses 

discussed in the preceeding sections. 
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Table 4-6: Summary statistics for corn crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and 
characterization of the change going from the former period to the latter. 

 Rainfed Corn Yield (kg/ha)  Irrigated Corn Yield (kg/ha)  Irrigation Amount Corn (mm) 
 Mean  25th Percentile  Mean  25th Percentile  Mean  75th Percentile 

ACF 
Sub-basin 

1980-
1997 

1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change 

1 9940 9354 L-  7109 6548 L-  13364 13805 L+  12035 12952 L+  131 149 L+  185 210 L+ 

2 7866 8333 L+  5150 6117 I  11798 12905 VC+  10394 12079 VL+  157 163 I  221 223 I 

3 8261 8381 I  4829 5694 I  12235 12993 VL+  11212 12236 VL+  155 158 I  205 214 I 

4 7830 8291 L+  6025 5817 I  11295 12441 VC+  10312 11315 VL+  139 152 L+  200 207 L+ 

5 6219 6099 I  4259 3373 I  10693 10894 L+  9812 9557 L-  171 191 L+  220 243 L+ 

6 7653 8380 L+  4862 6695 L+  11385 12385 VC+  10488 11430 VL+  147 155 I  201 219 I 

7 6702 7944 VL+  5109 6454 L+  10258 10545 L+  9324 9983 L+  147 135 L-  187 149 L- 

8 6967 6723 I  5490 4275 L-  11013 11132 I  10285 9988 I  155 180 L+  201 228 L+ 

9 6619 6150 L-  5065 3714 L-  10577 10601 I  10089 9608 L-  161 189 L+  201 239 L+ 

10 7342 6048 VL-  5489 4021 L-  10416 10168 L-  9927 8887 L-  142 183 VL+  183 242 L+ 

11 7421 6270 VL-  6099 3777 L-  10552 10368 I  10167 9241 L-  144 179 VL+  174 248 VL+ 

12 7686 6697 L-  6354 4045 L-  10949 10792 I  10206 9748 I  138 176 VL+  173 241 VL+ 

13 7437 5895 VL-  6198 3404 VL-  10414 9847 L-  9786 8371 L-  142 183 VL+  182 237 VL+ 

14 7913 6584 VL-  6925 3919 VL-  10607 10317 L-  9866 8734 L-  128 171 VL+  161 212 VL+ 
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Table 4-7: Summary statistics for peanut crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and 
characterization of the change going from the former period to the latter. 
 Rainfed Peanut Yield (kg/ha)  Irrigated Peanut Yield (kg/ha)  Irrigation Amount Peanut (mm) 

 Mean  25th Percentile  Mean  25th Percentile  Mean  75th Percentile 

ACF Sub-basin 1980-
1997 

1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change 

1 4136 4333 L+  3462 3677 I  5017 5518 VC+  4692 5206 L+  140 163 L+  198 223 I 

5 3364 3625 L+  2569 2714 L+  5109 5575 VC+  4960 5331 VC+  198 216 L+  236 256 I 

6 3802 3729 I  3127 3148 I  5270 5812 VC+  5039 5594 VC+  183 217 VL+  221 288 L+ 

7 3397 3640 L+  2440 2722 L+  5128 5647 VC+  4921 5487 VC+  192 220 L+  264 268 L+ 

8 3619 3987 L+  2965 3237 L+  5088 5573 VC+  4876 5266 VC+  180 195 L+  233 241 I 

9 3532 3839 L+  2579 3293 L+  5060 5507 VC+  4941 5238 VC+  183 199 L+  222 235 I 

10 4053 4296 L+  3756 3766 I  5072 5487 VC+  4906 5304 VL+  147 168 L+  193 194 I 

11 4037 4231 L+  3829 3683 I  5045 5481 VC+  4838 5220 VC+  149 173 L+  188 211 L+ 

12 4019 4256 L+  3771 3511 I  5095 5514 VC+  4843 5253 VC+  151 174 L+  182 212 VL+ 

13 4162 4291 I  3874 3893 I  5061 5441 VC+  4838 5227 VC+  138 167 L+  171 205 L+ 

14 4369 4461 I  4181 3845 L-  5028 5458 VC+  4838 5239 VC+  116 148 VL+  146 193 VL+ 
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Table 4-8: Summary statistics for cotton crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and 
characterization of the change going from the former period to the latter. 
 Rainfed Cotton Yield (kg/ha)  Irrigated Cotton Yield (kg/ha)  Irrigation Amount Cotton (mm) 

 Mean  25th Percentile  Mean  25th Percentile  Mean  75th Percentile 

ACF Sub-
basin 

1980-
1997 

1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change 

1 2342 2293 L-  2062 2117 I  2577 2699 VC+  2555 2572 I  115 141 VL+  152 192 L+ 

4 2410 2385 I  2169 2249 L+  2668 2762 VC+  2580 2695 VL+  128 169 VL+  173 216 VL+ 

5 2507 2608 L+  2194 2415 VL+  2951 3030 VL+  2785 2959 VL+  142 160 L+  172 206 I 

6 2426 2450 I  2152 2281 L+  2700 2810 VC+  2634 2742 VL+  138 169 VL+  182 214 L+ 

7 2416 2495 L+  2095 2333 VL+  2749 2854 VC+  2669 2812 VC+  140 166 L+  190 210 L+ 

8 2463 2615 VL+  2210 2439 VL+  2812 2930 VC+  2733 2866 VC+  132 149 L+  175 194 L+ 

9 2622 2728 L+  2193 2413 VL+  3066 3147 VL+  2898 3033 VL+  133 150 L+  178 188 L+ 

10 2910 2958 I  2696 2664 I  3172 3290 VL+  3034 3188 VL+  97 119 L+  117 148 L+ 

11 2856 2920 L+  2656 2589 I  3144 3240 VL+  3013 3136 VL+  100 125 VL+  118 154 VL+ 

12 2690 2769 L+  2537 2532 I  2942 2995 L+  2826 2902 L+  100 123 L+  129 151 VL+ 

13 2861 2894 I  2677 2631 I  3125 3172 L+  2975 3043 L+  92 118 VL+  112 141 VL+ 

14 2812 2863 L+  2648 2812 L+  2957 3011 L+  2848 2932 VL+  67 94 VL+  80 123 VL+ 
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Table 4-9: Summary statistics for soybean crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and 
characterization of the change going from the former period to the latter. 
 Rainfed Soybean Yield (kg/ha)  Irrigated Soybean Yield (kg/ha)  Irrigation Amount Soybean (mm) 

 Mean  25th Percentile  Mean  25th Percentile  Mean  75th Percentile 

ACF Sub-basin 1980-
1997 

1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-

1997 
1998-
2015 Change  1980-1997 1998-2015 Change 

1 2542 2687 L+  1923 2089 L+  3128 3526 VC+  3030 3374 VC+  101 119 L+  150 163 I 

2 2245 2139 L-  1494 1547 I  3197 3562 VC+  3078 3477 VL+  129 155 L+  180 194 I 

3 2277 2201 I  1590 1654 I  3197 3580 VC+  3062 3487 VL+  130 154 L+  170 195 I 

4 2229 1994 L-  1557 1337 L-  3153 3510 VC+  3051 3370 VC+  120 157 VL+  173 210 L+ 

5 1811 2046 L+  1363 1632 L+  3002 3369 VC+  2879 3222 VC+  138 151 L+  170 193 I 

6 2145 1963 L-  1568 1353 I  3176 3536 VC+  3054 3406 VC+  123 162 VL+  185 214 VL+ 

7 1926 1976 I  1353 1593 I  3125 3476 VC+  3005 3355 VC+  134 163 VL+  176 205 L+ 

8 1844 2100 L+  1410 1710 L+  2975 3357 VC+  2844 3279 VC+  132 146 L+  176 185 I 

9 1755 2071 VL+  1256 1602 L+  2909 3273 VC+  2795 3215 VC+  138 145 I  166 181 I 

10 2069 2350 VL+  1794 1694 I  2850 3177 VC+  2724 3123 VC+  105 111 I  130 135 I 

11 1980 2285 VL+  1652 1669 I  2865 3238 VC+  2715 3183 VC+  113 125 L+  144 162 L+ 

12 2001 2306 L+  1495 1829 L+  2875 3233 VC+  2727 3196 VC+  110 122 L+  140 146 L+ 

13 2156 2337 L+  1804 1813 I  2836 3136 VC+  2690 3050 VC+  100 110 L+  127 129 I 

14 2355 2481 L+  2189 1883 I  2804 3131 VC+  2661 3063 VC+  70 85 L+  91 104 VL+ 
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4.5.8   ACF Assessment Results: Monthly Irrigation Volumes 

After estimating the irrigation timings and depths for the major crops of the ACF basin 

for the 1980 – 2016 historical period, these depths are converted to monthly irrigation 

volumes by way of the following equation: 

𝑉𝑉𝑖𝑖,𝑚𝑚 = �
1
𝐸𝐸
∙ 𝐹𝐹𝑖𝑖,𝑐𝑐 ∙ 𝐴𝐴𝑖𝑖,𝑐𝑐 ∙ 𝐷𝐷𝑖𝑖,𝑐𝑐,𝑚𝑚

𝑛𝑛

𝑐𝑐=1

 

Where 𝑉𝑉 is the irrigation volume, in cubic meters, for ACF sub-basin 𝑖𝑖, in the of the 

month (and year) of interest 𝑚𝑚; 𝑐𝑐, the index representing a major crop (i.e. 1=Corn, 

2=Peanut, 3=Cotton, and 4=Soybean); 𝑛𝑛, the number of crops (4 in this study);  𝐸𝐸, the 

efficiency of applied irrigation, i.e. the percentage of simulated irrigation that is actually 

utilized by crop. In this report 𝐸𝐸 is conservatively set as 0.85;  𝐹𝐹𝑖𝑖,𝑐𝑐, the fraction of acreage 

which is irrigated in sub-basin 𝑖𝑖 for crop 𝑐𝑐; and 𝐴𝐴𝑖𝑖,𝑐𝑐 and 𝐷𝐷𝑖𝑖,𝑐𝑐,𝑚𝑚 refer to the total acreage 

(square meters) and irrigation depth (meters) in the month (and year) 𝑚𝑚 of interest within 

sub-basin 𝑖𝑖 for crop 𝑐𝑐 respectively. 

The term 𝐴𝐴𝑖𝑖,𝑐𝑐 is estimated based on the quantity of year 2016 USDA-NASS Cropland 

Data Layer pixels presented earlier in Table 4-4 in which each pixel represents 900 square 

meters. 𝐷𝐷𝑖𝑖,𝑐𝑐,𝑚𝑚 is determined from the irrigated crop simulations completed in the previous 

sections of this report, except that the irrigation applications are aggregated monthly 

instead of annually. 

𝐹𝐹𝑖𝑖,𝑐𝑐, the fraction of crop acreage that is irrigated within a sub-basin, is estimated 

following a review of year 2014-2016 county-level crop acreage data publicly available 

from the USDA Farm Service Agency (USDA FSA 2015, 2016, 2017). For each county 
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included within each ACF sub-basin, the USDA FSA data set is queried (from years 2014 

to 2016 to ensure coverage of relatively dry, normal, and wet growing seasons) for the 

quantity of irrigated and non-irrigated acreages for corn, cotton, peanut, and soybean. 

Review of the data showed that 𝐹𝐹𝑖𝑖,𝑐𝑐 is not overly sensitive to the dryness/wetness of the 

growing season, so a time-constant value for 𝐹𝐹𝑖𝑖,𝑐𝑐 has been estimated based on a weighted 

average of county-level data for each ACF sub-basin for each major crop as listed in Table 

4-10. The estimates show that the major crops grown in the Upper Chattahoochee to Middle 

Chattahoochee (sub-basins 1-4, and 6) are rainfed (𝐹𝐹𝑖𝑖,𝑐𝑐 = 0), while in the remaining basins 

representing the Flint, Apalachicola, and Middle to Lower Chattahoochee, 10 to 90 percent 

of the fields are irrigated depending on crop type. 

Table 4-10: Fraction of acreage that is irrigated (𝐹𝐹𝑖𝑖,𝑐𝑐 ) for corn, peanut, cotton, and 
soybean fields in each ACF sub-basin, estimated from year 2014-2016 county-level crop 
acreage data provided by the USDA Farm Service Agency. 

ACF  
Sub-basin 

Irrigation Acreage Fraction  (𝐹𝐹𝑖𝑖,𝑐𝑐 ) 
Corn Peanut Cotton Soybean 

1 0 0 0 0 
2 0 0 0 0 
3 0 0 0 0 
4 0 0 0 0 
5 0.9 0.6 0.5 0.2 
6 0 0 0 0 
7 0.3 0.2 0.2 0.1 
8 0.7 0.4 0.4 0.3 
9 0.8 0.6 0.5 0.4 
10 0.9 0.6 0.6 0.6 
11 0.9 0.7 0.6 0.5 
12 0.7 0.3 0.3 0.4 
13 0.9 0.5 0.6 0.5 
14 0.7 0.4 0.4 0.3 
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4.5.9   ACF Monthly Irrigation Volumes: Upper Chattahoochee 

For the Upper Chattahoochee (ACF sub-basins 1 – 4, and 6), the major crops corn, 

cotton, soybean, and peanut are rainfed as shown previously in Table 4-10. 

 

4.5.10   ACF Monthly Irrigation Volumes: Middle Chattahoochee and 

Upper Flint 

For the Middle Chattahoochee and Upper Flint (ACF sub-basins 5, 7, and 8), the 

irrigation season spans from April through October. As shown in Figure 4-20 through 

Figure 4-22, monthly irrigation volumes have large inter-annual variations, with irrigation 

volumes easily reaching double or more of the long term (1980-2016) mean during 

droughts, especially in the summer months. The 1980-2016 trends in irrigation volumes 

are generally positive (indicating increasing irrigation volumes annually) except for 

September and October in sub-basin 5; April, June, and July in sub-basin 7; and April and 

October in sub-basin 8. These findings are for the most part consistent with the trends in 

monthly precipitation and potential evapotranspiration. As a result, the mean irrigation 

volumes of the 1998-2015 period are greater than their counterparts from the 1980-1997 

period for the majority of the growing season. When comparing 1980-1997 trends to those 

of 1998-2015, there are trend reversals in which irrigation volumes go from decreasing 

annually during the 1980-1997 period, to increasing during the 1998-2015 period. This 

occurs in June and July for sub-basin 5; October for sub-basin 7; and July for sub-basin 8.  
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Figure 4-20: Monthly irrigation volumes for ACF Sub-basin 5 
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Figure 4-21: Monthly irrigation volumes for ACF Sub-basin 7 
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Figure 4-22: Monthly irrigation volumes for ACF Sub-basin 8 
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4.5.11   ACF Monthly Irrigation Volumes: Middle and Lower Flint and 

Lower Chattahoochee 

For the Middle and Lower regions of the Flint sub-basins and the Lower Chattahoochee 

(sub-basins 9-13), the irrigation season spans from April through October. As shown in 

Figure 4-23 through Figure 4-27, monthly irrigation volumes have large inter-annual 

variations, with irrigation volumes reaching up to three times or more of the long term 

(1980-2016) mean during droughts, especially in the summer months of the 1998-2015 

period. Also in these months, peak irrigation volumes are generally greater in magnitude 

and occur more frequently during the 1998-2015 period than the 1980-1997 period. Mean 

irrigation volumes of the 1998-2015 period are generally greater than their counterparts 

from the 1980-1997 period throughout the growing season except for the months of 

September and October. It is also of interest to note the mean irrigation volume in April 

during the 1998-2015 period is nearly double or even more than the corresponding April 

volume from the 1980-1997 period for the sub-basins in this region.  The 1980-2016 trends 

in irrigation volumes are generally positive (indicating increasing irrigation volumes 

annually) except for October in all sub-basins, and except for September in sub-basins 9, 

10, 12, and 13 in which the slope’s direction is “inconclusive”. When comparing 1980-

1997 trends to those of 1998-2015, in the summer months there are trend reversals in which 

irrigation volumes go from “likely decreasing” annually during the 1980-1997 period, to 

“likely increasing” during the 1998-2015 period.  
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Figure 4-23: Monthly irrigation volumes for ACF Sub-basin 9 
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Figure 4-24: Monthly irrigation volumes for ACF Sub-basin 10 
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Figure 4-25: Monthly irrigation volumes for ACF Sub-basin 11 
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Figure 4-26: Monthly irrigation volumes for ACF Sub-basin 12 
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Figure 4-27: Monthly irrigation volumes for ACF Sub-basin 13 
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4.5.12   ACF Monthly Irrigation Volumes: Apalachicola  

For the Apalachicola sub-basin (sub-basin 14), the irrigation season spans from April 

through October. As shown in Figure 4-28, monthly irrigation volumes have large inter-

annual variations, with irrigation volumes reaching up to four times or more of the long 

term (1980-2016) mean during droughts, especially in the summer months of the 1998-

2015 period. Also in these months, peak irrigation volumes are generally greater in 

magnitude and occur more frequently during the 1998-2015 period than the 1980-1997 

period, indicating that droughts are becoming more common and more severe. Mean 

irrigation volumes of the 1998-2015 period are greater than their counterparts from the 

1980-1997 period throughout the growing season except for the month of October. The 

mean irrigation volume in April during the 1998-2015 period is more than double the 

corresponding April volume from the 1980-1997 period. The 1980-2016 trends in 

irrigation volumes are “very likely” positive (indicating increasing irrigation volumes 

annually) for most of the summer.  
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Figure 4-28: Monthly irrigation volumes for ACF Sub-basin 14 
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4.5.13   ACF Agricultural and Irrigation Demand Assessments: Summary 

Crop yields and irrigation volumes simulated by way of integrating multi-sensor gridded 

climate, soil, and crop data with the DSSAT-CSM illustrate how crop yield and irrigation 

demand represent highly non-linear integrators of temperature, precipitation, potential 

evaporation, crop genetics, and agricultural and irrigation management practices. These 

simulations provide valuable insights that cannot readily be discerned from analysis of 

climate variables or individual gridded data products alone. Major crops in the Upper 

Chattahoochee are largely rainfed, but considering the slowed increase and/or decrease in 

rainfed crop yields in the region, the Upper Chattahoochee may have to consider expanding 

irrigated acreage. For the remainder of the ACF, summertime rising temperatures and 

precipitation shortfalls would place considerable stress on surface and groundwater 

reservoirs during droughts as monthly irrigation demands could peak to multiple times the 

long term historical means that are conventionally used to assess irrigation allowances. 

This analysis also confirms that droughts are occurring with increasing frequency and 

severity throughout the ACF and that the crops themselves may be reaching biophysical 

limits with regard to resilience towards the changing climate. These findings highlight the 

need to develop an adaptive management strategy to safeguard agricultural production and 

water resources especially during drought periods. 
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4.6 Hindcasting of natural streamflows using GPM IMERG daily precipitation 

retrievals 

In the following hindcasting case studies, remote sensing retrievals of daily cumulative 

precipitation from the GPM IMERG Version 5 Late Release are incorporated into the 

Sacramento Soil Moisture Accounting (SAC-SMA) model for estimation of natural 

streamflows. As mentioned in Chapter 2, SAC-SMA accepts input of daily precipitation 

and potential evapotranspiration and provides daily estimates of streamflow. In this study, 

snow precipitation is converted to daily snowmelt discharge (a surrogate for SAC-SMA 

precipitation input during the winter season) using the simple SNOW-17 model which only 

requires input of daily precipitation and air temperature. Daily potential evapotranspiration 

is estimated using the similarly parsimonious Hamon model (Hamon 1961) which ingests 

latitude and daily mean temperature as input. As SAC-SMA is a lumped model, daily input 

variables (i.e. temperature and precipitation data from GRIDMET and remote sensing 

precipitation data) are spatially averaged over the watershed of each case study site. The 

case study locations tested in this study are listed in Table 4-11. 

Table 4-11: Case study locations for assessing SAC-SMA performance with 
incorporation of remote sensing precipitation retrievals 

Watershed Name HUC-8 
Number 

USGS Station 
Number 

Station 
Latitude 

Station 
Longitude 

Area  
(km2) 

East Fork White River at 
Columbus, Indiana 05120205 03364000 39.200 -85.926 4,421 

Grand River at Lansing, 
Michigan 04050004 04113000 42.751 -84.555 3,186 

North Fork John Day River 
at Monument, Oregon 17070202 14046000 44.814 -119.431 6,527 

Greens Bayou near 
Houston, Texas 12040104 08076000 29.918 -95.307 178 

French Broad River at 
Asheville, North Carolina 06010105 03451500 35.609 -82.579 2,448 

Sacramento R.A. Delta, 
California 18020005 11342000 40.940 -122.416 1,101 

North Fork of Clearwater 
River near Canyon Ranger 

Station, Montana 
17060307 13340600 46.841 -115.621 3,357 
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The SAC-SMA model is first calibrated for each case study site with historical 

streamflow data provided by the U.S. Geological Survey (USGS). Year 1980 to 2000 

USGS Daily streamflow data, GRIDMET precipitation and temperature data, and potential 

evapotranspiration estimates from the Hamon model are used to calibrate the 13 parameters 

of SAC-SMA using the Hydromad software package. The Hydromad package includes 

data-optimization tools for calibrating SAC-SMA model parameters. For these case 

studies, SAC-SMA parameters are optimized in terms of the Nash-Sutcliff model 

efficiency coefficient. 

After calibration, SAC-SMA is run from years 2014 to 2016 both without (Control) and 

with incorporation of remote sensing precipitation input during years 2015 to 2016. Year 

2014 is included in the simulation period (but without incorporation of remote sensing 

precipitation data) to serve as the model’s “spin up” period. Simulated streamflows are 

subsequently compared to measured streamflows from USGS stream gauge data. Model 

performance during the 2015-2016 period is assessed by way of three metrics, NRMSE 

(root-mean-squared-error normalized by the standard deviation of observations), Nash-

Sutcliffe model efficiency coefficient (NSE), and PBIAS (percent bias). According to 

Moriasi et al. (2007), a watershed streamflow model can be judged as satisfactory if the 

NRMSE is less than 70 percent, NSE is greater than 0.5, and PBIAS is within ±25 percent. 

4.6.1   East Fork White River at Columbus, Indiana 

Figure 4-29 summarizes the performance of the calibrated SAC-SMA model at the East 

Fork White River at Columbus, Indiana site. The watershed is located in the Central climate 

region. Even though the model was satisfactorily calibrated for the 1980-2000 period, 

extreme peak streamflows (e.g. streamflows exceeding 10 mm/day) were underestimated 
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during the calibration period. During the 2015-2016 period, SAC-SMA had satisfactory 

performance under the Control scenario; however, when daily precipitation data was 

replaced with GPM IMERG Version 5 Late Release retrievals, model performance suffered 

greatly, with all three performance metrics (NSE, NRMSE, and PBIAS) far exceeding 

acceptable values. With incorporation of GPM IMERG data at this site, streamflows are 

overestimated, especially during the spring and early summer of year 2016. This finding is 

consistent with the GPM IMERG wet bias (relative to the GRIDMET reference) in the 

Central climate region as assessed in Chapter 3. 
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GPM IMERG 

NSE 0.633 -10.97 

NRMSE 60.5 345.8 

PBIAS -17.0 120.1 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-29: Year 2015-2016 SAC-SMA performance at East Fork White River at 
Columbus, Indiana site with incorporation of GPM IMERG daily precipitation retrievals. 
(a) Streamflow time series during the calibration (1980-2000) and validation (2015-2016) 
period. (b) Time series during 2015-2016 period (c) Year 2015-2016 scatter plot (d) 
Summary performance metrics during the 2015-2016 period 
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4.6.2   Grand River at Lansing, Michigan 

Figure 4-30 summarizes the performance of the calibrated SAC-SMA model at the 

Grand River at Lansing, Michigan site. The watershed is located in the East North Central 

climate region. During the 2015-2016 period, SAC-SMA had satisfactory performance 

under the Control scenario; however, when daily precipitation data was replaced with GPM 

IMERG Version 5 Late Release retrievals, model performance suffered greatly, with all 

three performance metrics (NSE, NRMSE, and PBIAS) far exceeding acceptable values. 

Similar to the East Fork White River site, with incorporation of GPM IMERG data at this 

site, streamflows are overestimated, especially during the winter through summer of year 

2016. This finding is consistent with the GPM IMERG wet bias (relative to the GRIDMET 

reference) in the East North Central climate. 
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GPM IMERG 

NSE 0.729 -2.01 

NRMSE 52.1 173.5 

PBIAS -0.3 60.5 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-30: Year 2015-2016 SAC-SMA performance at Grand River at Lansing, 
Michigan site with incorporation of GPM IMERG daily precipitation retrievals 
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4.6.3   North Fork John Day River at Monument, Oregon 

Figure 4-31 summarizes the performance of the calibrated SAC-SMA model at the 

North Fork John Day River at Monument, Oregon site. The watershed is located in the 

Northwest climate region. During the 2015-2016 period, SAC-SMA had satisfactory 

performance under the Control scenario; however, when daily precipitation data was 

replaced with GPM IMERG Version 5 Late Release retrievals, model performance suffered 

greatly, with all three performance metrics (NSE, NRMSE, and PBIAS) far exceeding 

acceptable values. With incorporation of GPM IMERG data at this site, streamflows are 

overestimated, especially during the winter, spring, and early summer seasons.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GPM IMERG 

NSE 0.572 -1.22 

NRMSE 65.4 149.0 

PBIAS -0.2 107.0 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-31: Year 2015-2016 SAC-SMA performance at North Fork John Day River at 
Monument, Oregon site with incorporation of GPM IMERG daily precipitation retrievals 
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4.6.4   Greens Bayou near Houston, Texas 

Figure 4-32 summarizes the performance of the calibrated SAC-SMA model at the 

Greens Bayou near Houston, Texas site. The watershed is located in the South climate 

region. During the 2015-2016 period, SAC-SMA had satisfactory performance both under 

the Control scenario and when daily precipitation data was replaced with GPM IMERG 

Version 5 Late Release retrievals, with all three performance metrics (NSE, NRMSE, and 

PBIAS) within acceptable bounds, despite underestimation of extreme peak flows.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GPM IMERG 

NSE 0.529 0.585 

NRMSE 68.6 64.4 

PBIAS -14.3 -16.3 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-32: Year 2015-2016 SAC-SMA performance at Greens Bayou near Houston, 
Texas site with incorporation of GPM IMERG daily precipitation retrievals 
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4.6.5   French Broad River at Asheville, North Carolina 

Figure 4-33 summarizes the performance of the calibrated SAC-SMA model at the 

French Broad River at Asheville, North Carolina site. The watershed is located in the 

Southeast climate region. During the 2015-2016 period, SAC-SMA had satisfactory 

performance under the Control and GPM IMERG scenarios.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GPM IMERG 

NSE 0.701 0.582 

NRMSE 54.6 64.6 

PBIAS 4.8 6.2 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-33: Year 2015-2016 SAC-SMA performance at French Broad River at 
Asheville, North Carolina site with incorporation of GPM IMERG daily precipitation 
retrievals 
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4.6.6   Sacramento R.A. Delta, California 

Figure 4-34 summarizes the performance of the calibrated SAC-SMA model at the 

Sacramento R.A. Delta, California site. The watershed is located in the West climate 

region. During the 2015-2016 period, SAC-SMA had satisfactory performance under the 

Control scenario; however, when daily precipitation data was replaced with GPM IMERG 

Version 5 Late Release retrievals, model performance suffered greatly, with all three 

performance metrics (NSE, NRMSE, and PBIAS) exceeding acceptable values. 

Incorporation of GPM IMERG data resulted in severe underestimation of flows, especially 

the peak flows of winter and early spring. Results suggest that some large precipitation 

events were entirely missed by the GPM IMERG retrieval (e.g. Fall 2016). These finds are 

consistent with the dry bias (relative to the GRIDMET reference) in the GPM IMERG 

product for the West climate region as assessed in Chapter 3. 
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GPM IMERG 

NSE 0.835 0.034 

NRMSE 40.5 98.2 

PBIAS 5.6 -74.5 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-34: Year 2015-2016 SAC-SMA performance at Sacramento R.A. Delta, 
California site with incorporation of GPM IMERG daily precipitation retrievals 
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4.6.7   North Fork of Clearwater River near Canyon Ranger Station, Montana 

Figure 4-35 summarizes the performance of the calibrated SAC-SMA model at the 

North Fork of Clearwater River near Canyon Ranger Station, Montana site. The watershed 

is located in the West North Central climate region. During the 2015-2016 period, SAC-

SMA had satisfactory performance under the Control scenario; however, when daily 

precipitation data was replaced with GPM IMERG Version 5 Late Release retrievals, 

model performance suffered greatly, with all three performance metrics (NSE, NRMSE, 

and PBIAS) far exceeding acceptable values. Incorporation of GPM IMERG data resulted 

in severe underestimation of flows, especially during the spring and summer periods.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GPM IMERG 

NSE 0.620 -0.019 

NRMSE 61.6 100.9 

PBIAS -10.5 -51.1 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-35: Year 2015-2016 SAC-SMA performance at North Fork of Clearwater 
River near Canyon Ranger Station, Montana site with incorporation of GPM IMERG daily 
precipitation retrievals 
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4.7 Hindcasting of natural streamflows using JAXA GSMaP daily precipitation 

retrievals 

The following hindcasting case studies are conducted just as those mentioned in the 

previous section, except that remote sensing retrievals of daily cumulative precipitation 

from the JAXA GSMaP-Gauge Version 7 are incorporated into the Sacramento Soil 

Moisture Accounting (SAC-SMA) model for estimation of natural streamflows. 

4.7.1   East Fork White River at Columbus, Indiana 

Figure 4-36 summarizes the performance of the calibrated SAC-SMA model at the East 

Fork White River at Columbus, Indiana site. During the 2015-2016 period, SAC-SMA had 

satisfactory performance under the Control scenario, but unlike the GPM IMERG data 

incorporation experiment, SAC-SMA model performance was also satisifactory with 

incorporation of GSMaP-Gauge daily cumulative precipitation retrievals. 
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GSMaP-Gauge 

NSE 0.633 0.595 

NRMSE 60.5 63.6 

PBIAS -17.0 -20.3 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-36: Year 2015-2016 SAC-SMA performance at East Fork White River at 
Columbus, Indiana site with incorporation of JAXA GSMaP-Gauge daily precipitation 
retrievals. (a) Streamflow time series during the calibration (1980-2000) and validation 
(2015-2016) period. (b) Time series during 2015-2016 period (c) Year 2015-2016 scatter 
plot (d) Summary performance metrics during the 2015-2016 period 
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4.7.2   Grand River at Lansing, Michigan 

Figure 4-37 summarizes the performance of the calibrated SAC-SMA model at the 

Grand River at Lansing, Michigan site. The watershed is located in the East North Central 

climate region. During the 2015-2016 period, SAC-SMA had satisfactory performance 

under the Control and GSMaP-Gauge scenarios. 
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GSMaP-Gauge 

NSE 0.729 0.704 

NRMSE 52.1 54.3 

PBIAS -0.3 6.7 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-37: Year 2015-2016 SAC-SMA performance at Grand River at Lansing, 
Michigan site with incorporation of JAXA GSMaP-Gauge daily precipitation retrievals 
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4.7.3   North Fork John Day River at Monument, Oregon 

Figure 4-38 summarizes the performance of the calibrated SAC-SMA model at the 

North Fork John Day River at Monument, Oregon site. With incorporation of GSMaP-

Gauge data, SAC-SMA model performance was satisfactory.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GSMaP-Gauge 

NSE 0.572 0.551 

NRMSE 65.4 67.0 

PBIAS -0.2 4.8 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-38: Year 2015-2016 SAC-SMA performance at North Fork John Day River at 
Monument, Oregon site with incorporation of JAXA GSMaP-Gauge daily precipitation 
retrievals 

 

 



197 

4.7.4   Greens Bayou near Houston, Texas 

Figure 4-39 summarizes the performance of the calibrated SAC-SMA model at the 

Greens Bayou near Houston, Texas site. During the 2015-2016 period, SAC-SMA had 

satisfactory performance under the Control scenario, but not when daily precipitation data 

was replaced with GSMaP-Gauge data, due to underestimation of peak flows.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GSMaP-Gauge 

NSE 0.529 0.460 

NRMSE 68.6 73.4 

PBIAS -14.3 -11.2 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-39: Year 2015-2016 SAC-SMA performance at Greens Bayou near Houston, 
Texas site with incorporation of JAXA GSMaP-Gauge daily precipitation retrievals 
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4.7.5   French Broad River at Asheville, North Carolina 

Figure 4-40 summarizes the performance of the calibrated SAC-SMA model at the 

French Broad River at Asheville, North Carolina site. During the 2015-2016 period, SAC-

SMA had satisfactory performance under the Control and GSMaP-Gauge data incorpation 

scenarios, unlike the GPM IMERG scenario.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GSMaP-Gauge 

NSE 0.701 0.752 

NRMSE 54.6 49.7 

PBIAS 4.8 0.4 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-40: Year 2015-2016 SAC-SMA performance at French Broad River at 
Asheville, North Carolina site with incorporation of JAXA GSMaP-Gauge daily 
precipitation retrievals 
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4.7.6   Sacramento R.A. Delta, California 

Figure 4-41 summarizes the performance of the calibrated SAC-SMA model at the 

Sacramento R.A. Delta, California site. During the 2015-2016 period, SAC-SMA had 

satisfactory performance under the Control scenario, but failed according to the PBIAS 

metric in the GSMaP-Gauge scenario, though model performance was superior to the GPM 

IMERG data incorporation scenario in which critical precipitation events were missed. 
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GSMaP-Gauge 

NSE 0.835 0.584 

NRMSE 40.5 64.5 

PBIAS 5.6 -31.0 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-41: Year 2015-2016 SAC-SMA performance at Sacramento R.A. Delta, 
California site with incorporation of JAXA GSMaP-Gauge daily precipitation retrievals 
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4.7.7   North Fork of Clearwater River near Canyon Ranger Station, Montana 

Figure 4-42 summarizes the performance of the calibrated SAC-SMA model at the 

North Fork of Clearwater River near Canyon Ranger Station, Montana site. During the 

2015-2016 period, SAC-SMA had satisfactory performance under the Control and 

GSMaP-Gauge data incorporation, despite underestimation of streamflows during the 

spring and summer.  
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(a) 
 

 
(b) 
 

 

 

Performance 
Metric Control GSMaP-Gauge 

NSE 0.620 0.566 

NRMSE 61.6 65.9 

PBIAS -10.5 -17.3 

Note: Red values in table above indicate unsatisfactory performance 

(c) 
 

(d) 

Figure 4-42: Year 2015-2016 SAC-SMA performance at North Fork of Clearwater 
River near Canyon Ranger Station, Montana site with incorporation of JAXA GSMaP-
Gauge daily precipitation retrievals 
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4.8 SAC-SMA calibration using recent remote sensing precipitation retrievals 

In the previous sections, SAC-SMA was calibrated using long-term (year 1980-2000) 

reanalysis data from the GRIDMET data product. When SAC-SMA was used to simulate 

recent streamflows using input of remote sensing precipitation retrievals instead of 

GRIDMET precipitation estimates, biases in the remote sensing precipitation retrievals, 

especially in the GPM IMERG Late Release product, oftentimes adversely impacted the 

SAC-SMA model performance. In the following exercise, SAC-SMA is used to simulate 

daily streamflows from Jan 2017 to December 2018; however, the SAC-SMA is calibrated 

using daily remote sensing precipitation retrievals from May 2014 to December 2016 (32 

months) instead of GRIDMET precipitation estimates in hopes that this revised calibration 

procedure would compensate for the biases in the remote sensing precipitation data and 

allow for more accurate simulation of hydrological flows. 

Figure 4-43 through Figure 4-47 illustrate the performance of SAC-SMA when 

calibrated using recent remote sensing precipitation retrievals. The results generally 

confirm that the accuracy of SAC-SMA is not only strongly connected to the length of the 

calibration period, but to the accuracy of the precipitation forcing data set. For the East 

Fork White River and the Sacramento R.A. Delta watersheds, when calibrated with over 

20 years worth of daily GRIDMET precipitation estimates as mentioned previously, SAC-

SMA exhibited satisfactory performance (according to the Nash-Sutcliffe, Normalized 

RMSE, and Percent Bias metrics); however, when calibrated with only 32 months worth 

of GRIDMET precipitation, SAC-SMA did not perform satisfactorily with the GPM 

precipitation forcing.  
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With regard to the use of GPM Late and GSMaP-Gauge precipitation forcing, SAC-

SMA calibrated using 32 months worth of GSMaP-Gauge data performed better, often with 

satisfactory performance at the tested sites, than SAC-SMA calibrated with GPM Late 

retrievals. Of the five sites tested, GPM-calibrated SAC-SMA only had satisfactory 

performance at the Greens Bayou watershed, as shown in Figure 4-45, owing to the GPM 

product’s consistency with the rain-gauge derived GRIDMET precipitation data set for that 

particular watershed. 

Table 4-12 and Table 4-13 present some of the SAC-SMA water storage parameters 

calibrated using 32 months (May 2014 to December 2016) worth of precipitation forcing 

data from GRIDMET, GPM Late, and GSMaP-Gauge for two of the tested watersheds, 

East Fork White River and Sacramento R.A. Delta. In the case of the East Fork White 

River, the stark discrepancy between calibrated water storage parameters between 

precipitation data sets explains the poor performance of SAC-SMA calibrated with GPM 

Late data. At this watershed, the GPM product severely overestimated some precipitation 

events that occurred during the 2014 – 2016 calibration period (refer to Figure 4-43), 

resulting in the assignment of relatively large capacities for upper and lower soil water 

storage zones. During the 2017 – 2018 evaluation period, these large storage capacities 

resulted in a muted streamflow response to precipitation relative to the SAC-SMA 

simulations calibrated using GRIDMET or GSMaP-Gauge data. For the Sacramento R.A. 

Delta watershed, the dry bias in the GPM product resulted in the SAC-SMA constructing 

soil water reservoirs (upper and lower zones) with total capacity about one-third the storage 

compared to the GRIDMET and half the storage compared to the GSMaP-Gauge 

calibrations (when lower zone supplemental water capacity is excluded). Results from this 
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exercise also highlight that even when there is agreement in modeled streamflow between 

simulations calibrated with different precipitation data products, the SAC-SMA model 

parameters between these different simulations do not necessarily agree. In summary, this 

exercise confirms that biases in remote sensing precipitation retrievals have a substantial 

impact on modeling hydrological flows, and model calibration is not sufficient to mitigate 

the impact of such errors in precipitation forcing. 
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(a) 
 

 
(b) 

 

 
(c) 

 

 

 

Performance 
Metric GRIDMET GPM GSMaP-

Gauge 

NSE 0.728 0.113 0.793 

NRMSE 52.2 94.1 45.4 

PBIAS 2.2 54.8 5.2 

Note: Red values in table above indicate unsatisfactory performance 

(d) 
 

(e) 

Figure 4-43: Year 2017-2018 SAC-SMA performance at East Fork White River at 
Columbus, Indiana site with model calibration using daily remote sensing precipitation 
retrievals. (a) Precipitation time series including snow melt (b) Streamflow time series 
during 2017-2018 period (c) SAC-SMA normalized upper zone water content (d) Year 
2017-2018 scatter plot (e) Performance metrics during the 2017-2018 period. 
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(a) 
 

 
(b) 

 

 
(c) 

 

 

 

Performance 
Metric GRIDMET GPM GSMaP-

Gauge 

NSE 0.758 -1.058 0.800 

NRMSE 49.2 143.4 44.6 

PBIAS 18.5 46.0 6.8 

Note: Red values in table above indicate unsatisfactory performance 

(d) 
 

(e) 

Figure 4-44: Year 2017-2018 SAC-SMA performance at Grand River at Lansing, 
Michigan site with model calibration using daily remote sensing precipitation retrievals. 
(a) Precipitation time series including snow melt (b) Streamflow time series during 2017-
2018 period (c) SAC-SMA normalized upper zone water content (d) Year 2017-2018 
scatter plot (e) Performance metrics during the 2017-2018 period. 
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(a) 
 

 
(b) 

 

 
(c) 

 

 

 

Performance 
Metric GRIDMET GPM GSMaP-

Gauge 

NSE 0.704 0.640 0.828 

NRMSE 54.4 60.0 41.5 

PBIAS -5.3 -13.7 -31.0 

Note: Red values in table above indicate unsatisfactory performance 

(d) 
 

(e) 

Figure 4-45: Year 2017-2018 SAC-SMA performance at Greens Bayou near Houston, 
Texas site with model calibration using daily remote sensing precipitation retrievals. (a) 
Precipitation time series including snow melt (b) Streamflow time series during 2017-2018 
period (c) SAC-SMA normalized upper zone water content (d) Year 2017-2018 scatter plot 
(e) Performance metrics during the 2017-2018 period. 
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(a) 
 

 
(b) 

 

 
(c) 

 

 

 

Performance 
Metric GRIDMET GPM GSMaP-

Gauge 

NSE 0.756 0.384 0.705 

NRMSE 49.3 78.4 54.3 

PBIAS -7.8 -23.7 -10.2 

Note: Red values in table above indicate unsatisfactory performance 

(d) 
 

(e) 

Figure 4-46: Year 2017-2018 SAC-SMA performance at French Broad River at 
Asheville, North Carolina site with model calibration using daily remote sensing 
precipitation retrievals. (a) Precipitation time series including snow melt (b) Streamflow 
time series during 2017-2018 period (c) SAC-SMA normalized upper zone water content 
(d) Year 2017-2018 scatter plot (e) Performance metrics during the 2017-2018 period. 
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(a) 
 

 
(b) 

 

 
(c) 

 

 

 

Performance 
Metric GRIDMET GPM GSMaP-

Gauge 

NSE -0.667 0.328 0.576 

NRMSE 129.0 81.9 65.1 

PBIAS 16.6 -67.9 -11.2 

Note: Red values in table above indicate unsatisfactory performance 

(d) 
 

(e) 

Figure 4-47: Year 2017-2018 SAC-SMA performance at Sacramento R.A. Delta, 
California site with model calibration using daily remote sensing precipitation retrievals. 
(a) Precipitation time series including snow melt (b) Streamflow time series during 2017-
2018 period (c) SAC-SMA normalized upper zone water content (d) Year 2017-2018 
scatter plot (e) Performance metrics during the 2017-2018 period. 
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Table 4-12: SAC-SMA calibrated water storage parameters (in mm depth units) for the 
East Fork White River at Columbus, Indiana case study 

SAC-SMA 
Water Storage 

Parameters 
(mm) 

Definition GRIDMET GPM GSMaP-
Gauge 

uztwm 
Upper zone 
tension water 
capacity  

18 150 1 

uzfwm 
Upper zone 
free water 
capacity 

33 145 99 

lztwm 
Lower zone 
tension water 
capacity 

44 500 77 

lzfpm 

Lower zone 
free primary 
free water 
capacity 

23 1000 680 

lzfsm 
Lower zone 
supplemental 
water capacity  

61 266 997 

 

Table 4-13: SAC-SMA calibrated water storage parameters (in mm depth units) for the 
Sacramento R.A. Delta, California case study 

SAC-SMA 
Water Storage 

Parameters 
(mm) 

Definition GRIDMET GPM GSMaP-
Gauge 

uztwm 
Upper zone 
tension water 
capacity  

150 49 34 

uzfwm 
Upper zone 
free water 
capacity 

102 110 37 

lztwm 
Lower zone 
tension water 
capacity 

398 56 205 

lzfpm 

Lower zone 
free primary 
free water 
capacity 

85 21 168 

lzfsm 
Lower zone 
supplemental 
water capacity  

340 1000 23 
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4.9 Summary 

In this chapter, the impact of incorporating modern remote sensing and gridded data 

products covering the gamut of agriculturally and hydrologically relevant variables from 

atmosphere to root-zone is assessed with regard to hindcasting and near-real-time 

prediction of crop yield, irrigation demand, assessment of agricultural drought, and 

monitoring of hydrological flows.  

With regard to incorporating SMAP surface soil moisture data into the DSSAT-CSM 

agricultural simulations, preliminary analysis gave an optimistic outlook for how this new 

information could improve crop yield simulations. However, in application, biases in 

remote sensing surface soil moisture retrievals, combined with the coarser than expected 

spatial resolution of the retrievals (due to post-mission launch sensor failure), showed that 

incorporation of SMAP L3 Enhanced surface moisture retrievals could not improve or 

mitigate errors in the DSSAT simulations at the case study sites. Though it is sufficient for 

atmospheric variables (e.g. incoming solar radiation, air temperature, and precipitation) to 

have spatial resolutions of 10 km, heterogenerities in surface condition (e.g. type of crop 

planted, irrigated, non-irrigated, etc.) is an issue that has to be addressed before SMAP 

retrievals of surface soil moisture can be integrated into the DSSAT crop model. This 

assessment highlights the need for either remote sensing surface soil moisture retrievals of 

sub-10km spatial resolution (which may have been possible had the active sensor on the 

SMAP satellite not failed) or of spatial downscaling of SMAP surface soil moisture 

retrievals. 

As shown in Chapter 3, biases in remote sensing retrievals of daily precipitation would 

likely adversely impact the accuracy of modeled crop yield, irrigation demand, and 
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streamflow if such data were incorporated in agricultural and streamflow models. The case 

studies in this chapter confirm that expectation. Dry and wet biases in remote sensing 

retrievals of precipitation have a profound impact on crop yield and irrigation demand 

simulations. As a result of this assessment, remote sensing retrievals of precipitation that 

are not heavily calibrated with gauge data should not be used in agricultural models nor 

streamflow models, a finding from this research which casts doubts on the utility of remote 

sensing precipitation data for near-real-time monitoring of crop state, irrigation planning, 

and streamflow prediction in ungauged regions. 

Remote sensing data aside, integration of multiple high resolution data products 

available over the continental U.S. can inform analyses of the feasibility of modern 

agricultural practices at the watershed scale in light of historical climate variability and 

change. Long-term agricultural simulations driven by modern gridded data products such 

as GRIDMET, HarvestChoice Global high-resolution soil profile database, USDA NASS 

Cropland Data Layer, and others, provide insight into the highly non-linear interactions 

between crop, soil, atmosphere, and climate, and allow for more refined characterizations 

of agricultural drought (both their occurrence and severity) as exemplified in the case study 

of year 1980-2016 crop production and irrigation demand in the Apalachicola-

Chattahoochee-Flint (ACF) River Basin. 
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CHAPTER 5 

 

SEASONAL AGRICULTURAL FORECASTS  

AND CLIMATE CHANGE ASSESSMENTS 

 

5.1 Depth-averaged soil moisture-based historical analog for crop yield and 

irrigation forecasting – synthetic experiments 

In this study, the hypothesis of predicting crop yield and irrigation demand using time 

series information of regional-scale soil moisture is tested by way of synthetic experiments.  

5.1.1   Methodology 

In the subsequent case studies, simulated daily 200cm depth averaged soil moisture 

from the DSSAT model is used to predict end-of-season crop yield and irrigation demand 

via a historical analog approach outlined as follows: 

First for a 100 km by 100 km region, the daily time series of 200cm depth averaged soil 

moisture is simulated from years 1980 to 2016 using the DSSAT model (with a fallow 

crop) forced by GRIDMET meteorological data. This time series serves a historical pool 

of temporally continuous soil moisture data. 

Next, for each year from 1980 to 2016, January – June regional-scale simulated depth-

averaged soil moisture is compared to the January – June soil moisture time series from 

the historical pool to determine which years from the historical pool are most similar to the 

year of interest. The eight years with the lowest RMSE values for January – June simulated 
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soil moisture are selected as candidates for historical analog years for infilling June – End 

of Growing Season daily weather for crop yield forecasting. 

The DSSAT crop model is then run for a particular crop (i.e. corn) at the local-scale, 

(e.g. for a single field within the 100 km by 100 km regional domain) using local 

GRIDMET data from the year of interest for January – June concatenated with daily 

weather from the historical analog years for the June – End of Growing Season (e.g. 

November) period. The end result is an ensemble of eight crop yield and irrigation demand 

predictions for each year from 1980 to 2016 which can be compared to simulated crop 

yields without using historical analog daily weather data (which represents the “true” or 

“target” crop yield in these synthetic experiments) to assess predictive skill. This approach 

is tested for three case study locations as listed in Table 5-1. 

 

Table 5-1: DSSAT-CSM input parameters for crop yield prediction via depth-averaged 
soil moisture-based historical analog method 

Location 
DSSAT-CSM Input Parameter 

Maize cultivar Planting date Plant Popuplation 
[plants/m2 (plants/acre)] 

Row Spacing 
[cm (in)] 

Story County, Iowa PB 8 April 26th 
7.9 (30,000) 76 (30) San Joaquin County, California* April 8th  

Miller County, Georgia** Jackson Hybrid March 29th  
  *Simulations include only irrigated crop yields  
**Simulations include rainfed and irrigated crop yields 

 

5.1.2   Results 

Before assessing skill in this method’s prediction of crop yield and irrigation demand, 

the skill in using January – June DSSAT simulated soil moisture to predict July – December 

total precipitation is assessed for each year from 1980 to 2016. Performance of this 

historical analog approach is assessed in terms of three metrics: (1) Reliability: does the 

range of historical analog-based estimates encompass the target value? (2) Bias: the 
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difference between the average of historical analog-based estimates and the target value; 

and the (3) Standard Deviation of historical analog-based estimates. Figure 5-1 illustrates 

an ideal scenario in which the ensemble of historical analog-based estimates using the best 

eight estimates (in red) has reduced bias and reduced spread compared to the ensemble of 

all possible estimates (in blue), and both ensembles are reliable in that the target value is 

encompassed. 

 

Figure 5-1: Schematic comparing the empirical probability distributions of historical 
analog-based estimates of a target quantity. The red probability distribution, resultant 
from the best historical analog based estimates, has reduced bias and reduced spread 

compared to the control scenario (in blue), while still capturing the target value. 
 



219 

 
Figure 5-2, Figure 5-3, and Figure 5-4 characterize the bias, reliability, and spread of 

soil moisture based historical analog forecasts of July – December cumulative precipitation 

given January – June daily depth averaged soil moisture at the Iowa, Georgia, and 

California case study locations respectively. The control scenario representing the 

ensemble of all possible historical analog estimates is presented in blue while the ensemble 

of the best eight historical analog estimates is presented in red. The upper panels indicate 

that this application of the historical analog method, when applied over the long term, is 

not unbiased, as the ensemble of predictions from the top peforming eight years tends to 

overestimate July – December cumulative precipitation on average. For the lower panels, 

for less than one-third of the years from 1980 – 2015 does this method result in forecasts 

that are simultaneously reliable, with improved bias, and reduced spread. The lack of skill 

in predicting July – Decemeber cumulative precipitation translates to lack of skill in 
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forecasting crop yield and irrigation amount as shown in Figure 5-5 through Figure 5-7 for 

the case study locations. 
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Figure 5-2: Analysis of bias and reliability of soil moisture based historical analog 

forecasts of July – December cumulative precipitation. Iowa case study site. 
 

 



222 

Figure 5-3: Analysis of bias and reliability of soil moisture based historical analog 
forecasts of July – December cumulative precipitation. Georgia case study site. 

 

 

Figure 5-4: Analysis of bias and reliability of soil moisture based historical analog 
forecasts of July – December cumulative precipitation. California case study site. 
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Figure 5-5: Analysis of bias and reliability of soil moisture based historical analog 

forecasts of rainfed crop yield. Iowa case study site. 
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Figure 5-6: Analysis of bias and reliability of soil moisture based historical analog 
forecasts of rainfed crop yield, irrigated crop yield, and irrigation amount. Georgia case 
study site. 
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Figure 5-7: Analysis of bias and reliability of soil moisture based historical analog 
forecasts of irrigated crop yield and irrigation amount. California case study site. 
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5.2 Comparing DSSAT surface soil moisture to SMAP retrievals 

The time series of January to June DSSAT depth-averaged soil moisture did not exhibit 

skill in predicting crop yield using the historical analog approach tested in the study. This 

historical analog experiment was repeated using top 5cm soil moisture estimates from 

DSSAT (instead of depth-averaged soil moisture) and similarly, predictive skill was not 

shown. These results suggest that remote-sensing surface soil moisture retrievals from 

SMAP would not have improved the performance of the historical analog approach; 

however, it is still of interest to assess how consistent SMAP surface soil moisture 

retrievals are with DSSAT surface soil moisture estimates for a region for which DSSAT 

has been calibrated. 

Using the data from the crop and irrigation hindcasting study for the Apalachicola-

Chattahoochee-Flint (ACF) river basin (refer to Section 4.5), Figure 5-8 compares DSSAT 

simulated surface soil moisture for major crops in ACF Sub-basin #11 (mapped in Figure 

5-9) with sub-basin averaged surface soil moisture from the SMAP L3 Enhanced data 

product. The comparison shows major dry-down and wetting events are captured by both 

data sets despite some discrepancies. SMAP retrievals are consistent with the more 

dominant crops in the region, for example, the SMAP surface soil moisture retrievals in 

June 2016 are in closer agreement with cotton, soybean, and peanut simulated soil moisture 

than with the simulated soil moisture of the corn crop. For this sub-basin, USDA cropland 

data shows that corn fields in 2016 represented only six percent of the total sub-basin area, 

while cotton, soybean, and peanut comprised about 21 percent of the sub-basin as presented 

in Figure 5-10. It is noted that about 38 percent of the sub-basin area is forest, for which 

DSSAT surface soil moisture simulations are not available, and it it is unlikely that SMAP 
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retrievals would be reliable over such densely vegetated areas. Nevertheless, the 

correspondence between SMAP and DSSAT surface soil moisture offers an 

encouragement that there may be value in SMAP data for agro-hydrological applications. 

 

 

Figure 5-8: Comparison of year 2016 DSSAT surface soil moisture (top 5cm) for major 
rainfed and irrigated crops in ACF Subbasin #11 and SMAP L3 Enhanced surface soil 
moisture retrievals 
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Figure 5-9: Year 2016 USDA Crop Land Layer for ACF Sub-basin #11 
 

 

Figure 5-10: Year 2016 USDA Crop Land Data Layer land surface area designations 
for ACF Sub-basin #11 
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5.3 GRIDMET-based historical analog for rainfed and irrigated crop yield 

forecasting 

In the following case studies, the same historical analog approach for predicting crop 

yield and irrigation demand is conducted just as the previous section; however, instead of 

daily soil moisture data, monthly precipitation data from the GRIDMET data set is used. 

5.3.1   Methodology 

First for a 100 km by 100 km region, the monthly time series of GRIDMET precipitation 

is retrieved from years 1980 to 2016. This time series serves a historical pool of temporally 

continuous monthly precipitation data. 

Next, for each year from 1980 to 2016, January – June regional-scale monthly 

precipitation is compared to the January – June monthly precipitation time series from the 

historical pool to determine which years from the historical pool are most similar to the 

year of interest. The eight years with the lowest RMSE values for January – June 

precipitation are selected as candidates for historical analog years for infilling June – End 

of Growing Season daily weather for crop yield forecasting. 

The DSSAT crop model is then run for a particular crop (i.e. corn) at the local-scale, 

(e.g. for a single field within the 100 km by 100 km regional domain) using local 

GRIDMET data from the year of interest for January – June concatenated with daily 

weather from the historical analog years for the June – End of Growing Season (e.g. 

November) period. The end result is an ensemble of eight crop yield and irrigation demand 

predictions for each year from 1980 to 2016 which can be compared to simulated crop 

yields without using historical analog daily weather data (which represents the “true” or 
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“target” crop yield in these synthetic experiments) to assess predictive skill. This approach 

is tested for the Iowa and Georgia case study locations listed previously in Table 5-1. 

5.3.2   Results 

Similar to the analysis conducted with the depth averaged soil moisture based historical 

analog method, the skill of the precipitation based historical analog method in forecasting 

July – December cumulative precipitation given January – June monthly precipitation is 

assessed in Figure 5-11 and Figure 5-12 for the Iowa and Georgia case study locations 

respectively. The forecasts of July – December precipitation are not unbiased when this 

method is applied over the long term, and that similarly there is poor skill in predicting 

crop yield and irrigation amount as shown in Figure 5-13 and Figure 5-14. Based on these 

results, it can be assumed that if near-real-time remote sensing precipitation retrievals from 

GPM IMERG or GSMaP were incorporated into a similar historical analog approach, that 

the predictive skill in forecasting crop yield and irrigation demand would be even less. 
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Figure 5-11: Analysis of bias and reliability of monthly precipitation based historical 

analog forecasts of July – December cumulative precipitation. Iowa case study site. 
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Figure 5-12: Analysis of bias and reliability of monthly precipitation based historical 
analog forecasts of July – December cumulative precipitation. Georgia case study site. 
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Figure 5-13: Analysis of bias and reliability of monthly precipitation based historical 

analog forecasts of rainfed crop yield. Iowa case study site. 
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Figure 5-14: Analysis of bias and reliability of monthly precipitation based historical 
analog forecasts of rainfed crop yield, irrigated crop yield, and irrigation amount. Georgia 
case study site. 
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5.4 Assessment of local climate change impacts on crop production and irrigation 

demand using bias-corrected and downscaled Global Circulation Model 

(GCM) output 

In the following case studies, LOCA bias-corrected and downscaled CMIP5 Global 

Circulation Model (GCM) outputs are integrated into the DSSAT model for assessment of 

long-term, localized impacts on crop production and irrigation demand. LOCA downscaled 

variables include 6 km x 6 km daily estimates of maximum and minimum air temperature 

and precipitation under two CO2 emissions scenarios (RCP 4.5 and RCP 8.5) from 32 

different climate models. Soil profile data is taken from the Harvest Choice Global High 

resolution Soil Profile Data set. In this study, rainfed and irrigated corn are modeled from 

year 2000 to 2095 under all available climate models and emission scenarios for a single 

6km pixel in Mitchell County, Georgia and San Joaquin County, California. Table 5-2 lists 

calibrated input parameters for rainfed and irrigated model runs. 

Table 5-2: Calibrated input parameters for LOCA CMIP5 data driven DSSAT-CSM 
maize simulations. 

 Location DSSAT-CSM Input Parameter 
DSSAT-CSM 

Automatic-Irrigation 
Input Parameter 

Site Name Latitude Longitude Maize 
cultivar 

Planting 
date 

Plant 
Popuplation 
[plants/m2 

(plants/acre)] 

Row 
Spacing 
[cm (in)] 

Soil 
moisture 

montoring 
depth  

[cm (in)] 

Available 
soil 

moisture 
threshold 

(%) 
Mitchell 
County, 
Georgia 

31.2230 -84.1857 PIO 
3382 

March 
29th 

7.9 (30,000) 76 (30) 30 (12) 

50 

San 
Joaquin 
County, 

California 

37.9176 -121.1710 PB 8 April 
8th 70 
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5.4.1   Generating climate change forecasts of daily solar radiation 

The agriculture decision support model used in this study, DSSAT, requires daily input 

of downwelling surface solar radiation, which is not provided in the LOCA CMIP5 data 

product. Solar radiation forecasts are instead generated using a basic artificial neural 

network (ANN) model calibrated from fine resolution GRIDMET data (years 1980 – 2000) 

at each of the case study sites. The neural network accepts daily input of the following six 

variables: month of year, daily top of atmosphere (extraterrestrial) solar radiation 

(MJ/m2/day), maximum air temperature (℃), minimum air temperature (℃), precipitation 

(mm), and precipitation from the previous day (mm). Neural network output is daily 

surface downwelling solar radiation (MJ/m2/day). The network is constructed using the 

default settings of the MATLAB Deep Learning Toolbox, with six inputs, 10 hidden nodes, 

and one output node. The training function used to calibrate the network was Bayesian 

Regularization Backpropagation with the objective function to optimize being Mean 

Squared Error (MSE). Year 1980 – 2000 daily data from GRIDMET (solar radiation, 

maximum and minimum air temperatures, and precipitation) was divided into neural 

network training, validation, and testing data sets using a 70% - 15% - 15% split 

respectively. Neural network performance for prediction of daily surface solar radiation 

was additionally assessed in comparison to year 2001 – 2016 surface solar radiation data 

from GRIDMET. 

Figure 5-15 illustrates the performance of the surface solar radiation ANN models 

developed for Mitchell County, Georgia and San Joaquin County, California case study 

sites during the year 2001 – 2016 period in relation to the surface solar radiation estimates 

from the reference GRIDMET data set. The models’ agreement with the GRIDMET 
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reference is excellent, with near or above 90 percent correlation and acceptable scatter. 

There is a slight underestimation bias, but as will be shown, the bias bias and scatter do not 

adversely impact analysis of long term trends in crop-yield and irrigation demand from 

DSSAT simulations that are driven by ANN estimated solar radiation. The Mitchell County 

site has greater scatter than the San Joaquin County site, and this is attributed to greater 

cloudiness at the Georgia site. Cloudiness data is not directly incorporated into the ANN 

(but some information of cloudiness is implicitly included by way of maximum and 

minimum daily air temperature) and is not available in the LOCA CMIP5 data set. Figure 

5-16 and Figure 5-17 present the time series of ANN surface solar radiation output along 

with the GRIDMET reference for the 2001 – 2016 period. 

 

Daily Surface Solar Radiation Neural Network Performance  
Years 2001-2016 

Mitchell County, Georgia San Joaquin County, California 

  
RMSE: 3.17 MJ/m2/day 
Bias: -0.63 MJ/m2/day 

Correlation: 0.87 

RMSE: 2.14 MJ/m2/day 
Bias: -0.08 MJ/m2/day 

Correlation: 0.97 
Figure 5-15: Performance of calibrated artificial neural networks (ANN) for estimation 

of daily surface solar radiation at case study locations during years 2001-2016 
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Figure 5-16: Time series of GRIDMET and Artificial Neural Network (ANN) estimated 
daily surface solar radiation at the Mitchell County, Georgia case study site during years 
2001-2016.  
 

 

 

Figure 5-17: Time series of GRIDMET and Artificial Neural Network (ANN) estimated 
daily surface solar radiation at the San Joaquin County, California case study site during 
years 2001-2016.  

 

Table 5-3 compares the year 2001-2016 performance of the surface solar radiation ANN 

model to the commonly used, parsimonious, and seasonally calibrated model of Bristow 

and Campbell (1984). The Bristow and Campbell model accepts daily input of 
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extraterrestrial solar radiation and diurnal temperature range (i.e. the difference between 

daily maximum and minimum air temperatures) and requires calibration of three empirical 

parameters for each season. Results show that the ANN model has superior (e.g. Mitchell 

County, GA site) or comparable (e.g. San Joaquin County, CA site) performance to the 

Bristow and Campbell model.   

 
Table 5-3: Performance of Artificial Neural Network (ANN) model for estimation of 

surface solar radiation compared to seasonally calibrated Bristow & Campbell (1984) 
model. Green highlights indicate best performance for the specified metric. 

 Mitchell County, GA  San Joaquin County, CA 

Model RMSE 
(MJ/m2/day) 

Bias 
(MJ/m2/day) Correlation  RMSE 

(MJ/m2/day) 
Bias 

(MJ/m2/day) Correlation 

Bristow & 
Campbell  3.51 -0.92 0.85  2.22 -0.03 0.97 

ANN  3.17 -0.63 0.87  2.14 -0.08 0.97 
 

Figure 5-18 compares year 1980 – 2016 DSSAT modeled corn yield and irrigation 

demand at the case study sites, given either GRIDMET or ANN modeled surface solar 

radiation forcing data. Results confirm the suitability of the ANN modeled surface solar 

radiation forcing for crop yield and irrigation demand modeling at the case study locations, 

especially for the purpose of assessing long term trends in local agricultural production and 

irrigation demand. The ANN model will therefore be used for generating daily surface solar 

radiation forcing data that corresponds to LOCA downscaled CMIP5 variables, assuming 

that relationship between ANN model inputs and solar radiation output modeled for the 

1980-2000 calibration period will remain valid for the 2000 – 2095 climate change period. 
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Mitchell County, Georgia San Joaquin County, California 

 

 

  

  
Note: rainfed corn yield was not modeled for the San Joaquin County site. 
 

Figure 5-18: Comparison of DSSAT modeled corn yield and irrigation amount at the 
Mitchell County, Georgia and San Joaquin County, California case study sites given 
GRIDMET reference and ANN modeled surface solar radiation forcing data.  
 

5.4.2   Results 

Figure 5-19 presents the climate change forecasts of rainfed corn yield, irrigated corn 

yield, and irrigation demand for the Mitchell County, Georgia case study site. DSSAT 

simulations were forced with LOCA CMIP5 downscaled data from the 6km x 6km pixel 

nearest the case study site. In the figure, the uncertainty bars characterize the standard 

deviation from the mean of crop simulations forced by 32 different GCM models. The 

green curve represents the RCP 4.5 emissions scenario while the red curve represents the 

“worst-case” or “business-as-usual” CO2 emissions scenario. In general, corn crop yield 
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and irrigation demand forecasts are nearly indinstinguishable between the RCP 4.5 and 

RCP 8.5 scenarios until year 2050, after which the RCP 8.5 scenario reports substantially 

lower crop yields and more intense irrigation demands than the RCP 4.5 scenario. Under 

the RCP 4.5 scenario, the mean of modeled rainfed corn yield at the Mitchell County case 

study site goes from 8,297 kg/ha in year 2000 to 5,211 kg/ha by year 2095, an over 37 

percent reduction. Under the RCP 8.5 scenario, year 2095 mean rainfed corn yield is only 

2,625 kg/ha, a loss of over 68 percent. 

Alarmingly, regardless of RCP scenario or GCM model, crop yields are forecasted to 

reduce considerably, even if all water needs of the crop are met (i.e. irrigated crop yield). 

Under the RCP 4.5 scenario, the mean of modeled irrigated corn yield at the Mitchell 

County case study site goes from 11,793 kg/ha with 144 mm of irrigation in year 2000 to 

8,092 kg/ha with 171 mm or irrigation by year 2095, an over 31 percent reduction in crop 

yield and 19 percent increase in irrigation demand.  

Under the RCP 8.5 scenario, year 2095 mean irrigated corn yield reduces to only 3,779 

kg/ha with 189 mm of irrigation, a 68 percent loss in yield and a 31 percent increase in 

irrigation demand.The finding that even irrigated crop yields are forecasted to fall, despite 

the absence of water stress (and the abdundance of atmospheric CO2), suggests that 

temperature rise is responsible for reducing crop yields. As mentioned previously in this 

dissertation, corn crops have an ideal daily temperature for carbohydrate production, that 

if surpassed, adversely impacts crop yield, even if no water stress is present. Results 

suggest that climate change would adversely impact corn’s water-use efficiency, in that 

more water would be required to produce lesser yield.  
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Figure 5-19: Year 2000 – 2095 Mitchell County, Georgia corn crop yield and irrigation 

demand forecasts from DSSAT model simulations driven by LOCA CMIP5 downscaled 
data. 
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Figure 5-20 presents the climate change forecasts of irrigated corn yield and irrigation 

demand for the San Joaquin County, California case study site. Similar to the Mitchell 

County site, irrigated corn yield is forecasted to drop substantially by year 2095. Irrigated 

crop yield goes from 9,239 kg/ha in year 2000 to 6,677 kg/ha by year 2095 under the RCP 

4.5 scenario, a 28 percent reduction. Under the RCP 8.5 scenario, irrigated crop yield falls 

by 48 percent to 4,786 kg/ha by year 2095. However, the mean of modeled irrigation 

amount remains largely unchanged at approximately 720 mm regardless of RCP scenario; 

however, the spread of irrigation demand increases more under the RCP 8.5 than the RCP 

4.5 scenario. 
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Figure 5-20: Year 2000 – 2095 San Joaquin County, California corn crop yield and 

irrigation demand forecasts from DSSAT model simulations driven by LOCA CMIP5 
downscaled data. 

 

5.5 Summary 

In this chapter, the utility of modern remote-sensing and reanalysis gridded data 

products for seasonal and long-term prediction of crop yield and irrigation demand is 

assessed. A data-driven historical analog approach involving time series data of SMAP 

surface soil moisture estimates was assessed to be ineffective for prediction of end-of-

season crop yield and irrigation amount. Similarly, the time series of depth averaged soil 

moisture simulated using the DSSAT model was not effective for prediction of growing 
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season crop yield or irrigation amount, despite soil moisture being an integrator of 

precipitation, temperature, and evapotranspiration information. Because reanalysis 

precipitation data based on rain gauge data showed poor skill in forecasting crop yield and 

irrigation amount, it can also be assumed that near-real-time remote sensing precipitation 

retrievals, which can have substantial errors as shown in Chapter 3, would also have poor 

predictive skill under the historical analog approach tested in this study.  

With regard to long-term analysis of climate change impacts on crop yield, this study 

showed how modern bias-corrected and downscaled GCM data can be combined with other 

agriculture-relevant gridded data products to quantify climate change impacts on local 

agricultural production and irrigation demand. The data and methodology adopted in this 

study can be used to assess the long-term feasibility of current agricultural and irrigation 

practices. 
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CHAPTER 6 

 

CONCLUSIONS 

 

6.1 Summary and contributions 

This dissertation explores how modern multi-sensor remote sensing and reanalysis 

gridded data products can provide decision support for crop yield hindcasting and 

prediction, irrigation planning, agricultural drought assessment, and monitoring of 

hydrological flows when integrated into state-of-the-science agricultural and hydrological 

models.  

Data products from recently launched remote sensing missions, including NASA 

SMAP, NASA GPM, JAXA GSMaP, along with national and global gridded reanalysis 

data products such as GRIDMET, Daymet, HarvestChoice Global High Resolution Soil 

Profile Database, USDA Cropscape Cropland Data Layer, and LOCA downscaled GCM 

projections, provide relatively fine resolution (spatially and/or temporally) information on 

a full range of hydrometeorologically relevant parameters and variables from the near 

surface atmosphere, ground surface, to the bottom of the root-zone. This study assesses 

how these modern data products can be synergistically incorporated into a popular 

agricultural decision support model, DSSAT-CSM, and a commonly used rainfall-runoff 

routing model, Sacramento Soil Moisture Accounting model (SAC-SMA). What follows 

is a point summary of major findings and contributions from this research in answering the 

science question: Can prediction of crop yield, assessment of irrigation demand, and 
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monitoring of agricultural drought and hydrological flows be improved by integrating 

multiple gridded data sets with agricultural and hydrological models? 

6.1.1   Quality Assessment of remote sensing retrievals of precipitation over the 

continental U.S. 

• NASA GPM IMERG Version 5 Late Release, JAXA GSMaP-Standard and 

JAXA GSMaP-Gauge were assessed in relation to the observation network 

derived gridded GRIDMET precipitation data set for the various seasons and 

climate regions of the continental U.S. Generally, satellite retrievals of 

precipitation overestimate precipitation in relation to the GRIDMET reference, 

but the nature of the biases vary with season (and implicitly storm-type) and 

climate region. Despite issues in accurately capturing the magnitude of 

precipitation events, remote sensing precipitation retrievals appear to capture the 

occurrence of precipitation events. 

• GPM IMERG Version 5 Late Release tends to underestimate precipitation in the 

western (West and Northwest) climate regions, while overestimating 

everywhere else. The most severe overestimation is in the winter season, 

particularly in the Northwest, Northeast, and Central climate regions. Winter 

time underestimation of precipitation is also apparent in the arid West and 

Southwest climate regions. 

• The JAXA GSMaP-Gauge product agrees well with the GRIDMET reference; 

however, this agreement is due entirely to the incorporation of rain gauge data 

with the satellite retrievals. This finding highlights the importance of rain gauge 

calibration of remote sensing precipitation retrievals. The availability, low-
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latency, and apparent accuracy of the GSMaP-Gauge product as assessed in this 

study should inspire future versions of the NASA GPM IMERG Late Release 

data product to more efficiently incorporate rain gauge data. However, results 

beg the question of how accurate remote sensing retrievals of precipitation are 

over national and especially global regions which are only scarcely gauged, if at 

all.  

6.1.2   Leveraging SMAP surface soil moisture retrievals to improve accuracy of 

remote sensing precipitation retrievals 

• After identifying dry and wet biases in daily remote sensing precipitation 

retrievals over the continental U.S., this study investigated whether these biases 

could be predicted, and thusly removed, given information of daily remote 

sensing retrievals of surface soil moisture state. Unfortunately, there was no 

discernable correlation, regardless of climate zone or season, between estimates 

of surface soil moisture from SMAP and biases in remote sensing retrievals of 

daily precipitation. 

6.1.3   Impact of spatial averaging of high-resolution gridded meteorological data 

on DSSAT-CSM crop model output 

• DSSAT-CSM was originally developed for application at the single field (point-

scale). This study aimed to determine the coarsest acceptable spatial resolution 

for atmospheric weather variables and soil property data for reliable DSSAT 

mean crop yield and irrigation assessments. While very fine spatial resolution 

information of daily weather data is ideal (though computationally expensive), 

results from this study suggest that atmospheric variables and soil property data 
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of spatial resolution no coarser than ~10km are acceptable for crop yield and 

irrigation assessments. Thus, it may not be necessary to downscale modern 

remote sensing precipitation data products for the study purpose (which to date 

have finest spatial resolution of 10 km), provided that the remote sensing 

retrievals provide accurate information to begin with. 

6.1.4   Hindcasting and near-real-time prediction of crop yield, irrigation demand, 

and agricultural drought 

• Various remote sensing and reanalysis data products (and synergistic 

combinations of them) were incorporated into the DSSAT-CSM crop model for 

crop yield prediction and assessment of irrigation demand.  

• Dry and wet biases in SMAP L3 Enhanced data product prevented SMAP data 

from being useful in improving the accuracy of, or reducing the uncertainty in, 

prediction of crop yield. The failure of the active sensor on the SMAP satellite 

prevents us from having a truly sub-10km remote sensing characterization of 

surface soil moisture state. Though it is sufficient for atmospheric variables (e.g. 

incoming solar radiation, air temperature, and precipitation) to have spatial 

resolutions of 10 km, heterogenerities in surface condition (e.g. type of crop 

planted, irrigated, non-irrigated, etc.) is an issue that has to be addressed before 

SMAP retrievals of surface soil moisture can be integrated into the DSSAT crop 

model. 

• Dry and wet biases in remote sensing retrievals of precipitation have a profound 

impact on crop yield and irrigation demand simulations. Remote sensing 

retrievals of precipitation that are not heavily calibrated with gauge data should 
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not be used in agricultural models, a finding from this research which casts 

doubts on the utility of remote sensing precipitation data for near-real-time 

monitoring of crop state and irrigation planning in ungauged regions. 

• Integration of multiple high resolution data products can guide critical analyses 

of the feasibility of modern agricultural practices at the watershed scale in light 

of climate change. Long-term agricultural simulations driven by modern gridded 

data products provide insight into the highly non-linear interactions between 

crop, soil, atmosphere, and climate, and allow for refined characterizations of 

the occurrence and severity agricultural drought. 

6.1.5   Incorporation of remote sensing retrievals of precipitation for near-real-time 

monitoring of hydrological flows 

• Dry and wet biases in remote sensing retrievals of precipitation have a profound 

impact on streamflow simulations. Remote sensing retrievals of precipitation 

that are not heavily calibrated with gauge data should not be used in streamflow 

models, a finding from this research which casts doubts on the utility of remote 

sensing precipitation data for near-real-time monitoring of streamflow. In order 

to incorporate remote sensing precipitation data in streamflow models, such data 

needs to be calibrated with other observational data sets in order for the 

precipitation data to accurately capture the timing, spatial extent, and magnitude 

of events. 

6.1.6   Use of modern multi-sensor data for seasonal prediction of and climate-

change impacts on local crop yield and irrigation demand 
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• This study investigated a historical data association method for prediction of 

end-of-season crop yield and irrigation amount. 

• Root zone soil moisture estimates did not have skill in predicting end-of-season 

crop yield via the historical analog method used in this study. It is unclear if 

there would be skill in this approach provided a longer (e.g., more than 20 years), 

temporally continuous (e.g., daily) time series of SMAP surface soil moisture 

retrievals were available. This is because the historical analog approach also 

failed to show predictive skill when depth-averaged soil moisture (which is more 

indicative of crop state than surface soil moisture) was used for predicting crop 

yield and irrigation amounts. Furthermore SMAP-derived root zone soil 

moisture estimates may have substantial biases. 

• Reanalysis estimates of monthly regional precipitation did not, and near-real-

time remote sensing precipitation retrievals would not have skill in predicting 

crop yield and irrigation demand via the historical analog approach tested in this 

study. 

• This study integrated the new LOCA bias-corrected and downscaled CMIP5 

Climate Projections into the DSSAT-CSM for assessment of climate change 

impacts on local-scale crop yield and irrigation demand. According to review of 

the literature, this is the first study incorporating this data product along with 

other agriculture-relevant data sets into DSSAT-CSM. Findings from this 

exercise allowed for evaluation of the long-term feasibility of current 

agricultural management practices of irrigated corn at the case study sites under 

multiple projected climate-change scenarios. Incidently, a simple, but effective 
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artificial neural network was developed to leverage historical fine resolution 

weather and solar radiation estimates to predict daily projections of solar 

radiation which are usually not provided by CMIP5 GCM projections, but are 

necessary for crop modeling. 

 

6.2 Recommendations for future work 

Based on the findings, analyses, and results developed in this thesis, the following topics 

warrant further investigation: 

• Identification of the source of biases in remote sensing retrievals of precipitation 

and their subsequent correction/removal. Significant dry and wet biases in 

remote sensing retrievals of precipitation, especially for ungauged regions, 

seriously hamper the usefulness of such data products in agricultural modeling 

and streamflow simulation and monitoring. This research identified the 

existence of these anomalies and quantified them, but it is still not clear what 

is/are the source(s) of these errors in the raw retrieval algorithms. It is hoped that 

identification of the causes of dry and wet biases in retrievals would lead to 

correction and improved accuracy of these vital data products. 

• Spatial and temporal downscaling of SMAP surface soil moisture retrievals to 

10 km and finer resolution. Even though the SMAP L3 Enhanced data product 

is posted at ~10 km spatial resolution, the native resolution of the product is still 

considerably coarser. Sub-10 km heteorogeneity in crop plantings suggests 

potentially substantial differences in surface soil moisture state between 

different crops planted within a single 10 km SMAP pixel, especially during 
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stages of crop growth and development that are acutely water-sensitive. 

Considering that the finest spatial resolution of the USDA Cropscape Crop Land 

Data Layer is 30 meters, it is of interest to investigate how close to this fine 

resolution we can reliably downscale SMAP estimates to. Future releases from 

the SMAP mission do include down to 3 km spatial resolution; however, these 

proposed products have a long latency and temporal gaps (i.e. 10  - 12 days 

between retrievals) making them unsuitable for incorporation in near-real-time 

decision support systems for agriculture. 

• While the historical analog approach applied in this study using SMAP surface 

soil moisture data and/or depth-averaged simulated soil moisture did not 

demonstrate skill in prediction of precipitation or crop yield, it may be possible 

that this approach, along with soil moisture time series data, can demonstrate 

skill in the prediction of streamflow. With streamflow being strongly connected 

to antecedent soil moisture condition (and to precipitation), such forecasting 

experiments would be expected to demonstrate predictive skill in accordance 

with soil moisture persistence characteristics. 

• Alternative applications of remote sensing data to support and improve 

agricultural and hydrologic modeling. Significant biases in remote sensing 

retrievals and precipitation and surface soil moisture from the GPM, GSMaP, 

and SMAP missions generally prevent such data products from being directly 

incorporated into agricultural and streamflow models without correction/pre-

processing. However, these data, in spite of biases and errors, may be beneficial 

through indirect means. For example, remote sensing retrievals of surface soil 
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moisture, combined with identification of wet days from remote sensing 

precipitation data can possibly lead to improved modeling of daily solar 

radiation. Similiarly remote sensing data from other missions can be explored to 

support applications in agricultural planning and modeling of hydrological 

flows. 
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