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SUMMARY

New remote sensing and gridded reanalysis data products from sources including the
NASA Soil Moisture Active Passive (SMAP) Mission, Global Precipitation Measurement
(GPM) Mission, North American Land Data Assimilation System (NLDAS), Parameter-
elevation Relationships on Independent Slopes Model (PRISM), and others provide
unprecedented fine resolution characterization of near-surface atmospheric variables (e.g.
air temperature, precipitation, downwelling solar radiation, etc.) and surface-to-root-zone
hydrologic variables (e.g. soil moisture, hydraulic conductivity, soil composition, etc.) with
national to global coverage. When integrated with state-of-the-science process models,
these novel data products have the potential to provide useful information for applications
in agriculture management, drought assessment, irrigation planning, and hydrological (e.g.
streamflow) assessments. This study investigates the value of integrating these new multi-
sensor gridded data products for hindcasting and prediction of regional-scale crop yield,

irrigation demand, monitoring of agricultural drought, and hydrological flows.
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CHAPTER 1

INTRODUCTION

New multi-sensor data products such as those from sources including the NASA Soil
Moisture Active Passive (SMAP) Mission, Global Precipitation Measurement (GPM)
Mission, North American Land Data Assimilation System (NLDAS), Parameter-elevation
Relationships on Independent Slopes Model (PRISM), and others provide useful
information with national to global coverage and with potentially valuable applications in
agriculture management, drought monitoring, irrigation planning, and streamflow
modeling.

Gridded data plays an increasingly important role in the development of crop yield and
crop water-stress models used to predict and monitor the physical availability of food, the
critical “supply-side” dimension of food security. Such data and models may also guide
regional water resources management as more accurate modelling and forecasting of water
demand for crop production would lead to a more efficient allocation of limited water
supplies. Careful monitoring and provision of water resources for agricultural use is critical
as agriculture demands a large fraction of total water use in the United States and the world.
In 2005, irrigation in the United States consumed 128 billion gallons per day, accounting
for 37 percent of all freshwater withdrawals and 62 percent of all freshwater withdrawals
excluding thermoelectric withdrawals (Kenny et al. 2009). The Water Resources chapter

of the 2014 National Climate Assessment (Georgakakos et al. 2014) indicates that under
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the A2 emissions scenario (which assumes continued global emissions of greenhouse
gases), U.S. water demand will increase by 34 percent over the year 2005 to 2060 period,
and increase to 82 percent over 2005 levels by year 2090. As consumptive water use is
currently and projected to be by far dominated by agricultural irrigation (81 percent of
consumptive water use is consumed by agriculture), new multi-sensor gridded data
products, coupled with models that can accurate estimate irrigation demand, would play a
vital role in planning for future risks and addressing vulnerabilities in water supplies.

Also According to the 2014 National Climate Assessment annual precipitation and
river-flow increases are now being observed in the midwestern and northwestern United
States. Nationally, intense precipitation events have increased and are also projected to
increase in all regions. Flooding may intensify nationally, even in regions where total
precipitation is expected to decline. These findings highlight the importance of modeling
streamflow-runoff phenomena in order to understand, monitor, and predict hydrological
flows. As mentioned previously with regard to modeling agricultural yield and irrigation
demand, modern gridded data products, especially remote sensing of precipitation, may be
uniquely leveraged to improve streamflow models.

This study explores how new multi-sensor gridded data products can shed light on the
hydrologic processes and variables that are vital to crop growth and development, thereby
improving regional scale assessments of crop yield, agricultural drought, and irrigation.
Likewise, this study tests how these data products can be used to monitor hydrologic
processes such as streamflow. Benefits derived from this research may not only assist water
resources managers and related stake-holders who strive to efficiently and equitably

allocate limited water resources, but also provide guidance on what kinds of improvements



to data products and models may be necessary for more accurate agricultural and
hydrological assessments.

1.1 Objectives and Scope

This study explores how new multi-sensor gridded data products can shed light on the
hydrologic processes and variables that are vital to crop growth and development, thereby
improving regional scale assessments of crop yield, agricultural drought, and irrigation.
Likewise, this study tests how these data products can be used to monitor hydrologic
processes such as streamflow. The science question to be answered by this research is:

Can prediction of crop yield, assessment of irrigation demand, and monitoring of
agricultural drought and hydrological flows be improved by integrating multiple gridded
data sets with agricultural and hydrological models?

The research objectives as scope are as follows:

e To provide a quality/accuracy assessment of new remote sensing data products
of surface soil moisture (i.e. from the SMAP mission) and their impacts on crop
yield prediction.

e To provide a quality/accuracy assessment of new remote sensing data products
of daily precipitation (i.e. from the GPM mission) and their impacts on crop
yield prediction, irrigation planning, and streamflow modeling.

e Development of an operational framework to incorporate multi-sensor gridded
data products for hindcasting and prediction applications in crop yield modeling,
drought monitoring, irrigation planning, and streamflow modeling.

e To provide recommendations for improvements in multi-sensor gridded data

products necessary for more accurate agricultural and hydrologic modeling.



Benefits derived from this research may not only assist water resources managers and
related stake-holders who strive to efficiently and equitably allocate limited water
resources, but also provide guidance on what kinds of improvements to data products and
models may be necessary for more accurate agricultural and hydrological assessments.

1.2 Thesis Organization

This dissertation comprises six chapters and is organized as follows:

Chapter 2 reviews previous studies on incorporating remote sensing and reanalysis data
into agricultural and hydrological models, as well as providing a description of the new
multi-sensor gridded data products and models used in this research.

Chapter 3 investigates the accuracy of remote sensing daily precipitation retrievals in
comparison to gauge-based gridded precipitation estimates over the continental United
States (CONUS). Remote sensing data of soil moisture is explored as a tool to improve
accuracy of the remote sensing precipitation retrievals. Finally, the sensitivity of crop
model performance to spatial averaging of gridded meteorological and soil input data is
assessed.

Chapter 4 explores multiple case studies in which multi-sensor gridded data products are
incorporated into crop and streamflow models for hindcasting and near-real-time
monitoring of crop yield, irrigation demand, drought, and hydrological flows.

Chapter 5 explores multiple case studies in which multi-sensor gridded estimates of soil
moisture and precipitation are used for near-future (seasonal) forecasting of crop yield and

irrigation demand via a historical analog approach. Additionally, finely downscaled and



biased-corrected global circulation model (GCM) outputs are integrated with other
agriculture-relevant data products into a crop model to assess long-term climate change
impacts on localized crop production and irrigation demand.

Chapter 6 summarizes the dissertation and provides recommendations to guide the future

development of gridded data products for agricultural and hydrologic modeling.



CHAPTER 2

LITERATURE REVIEW

2.1 Crop yield and irrigation demand models and data assimilation

Crop models were born out of a necessity to test hypotheses related to crop production
under various scenarios without resorting exclusively to costly, time-consuming field
experiments. Agriculture scientists dating back to 19" century proposed the “law of the
minimum”, stating that plant development would be impeded by environmental “limiting
factors” (El-Sharkawy 2011). In early singular scale crop models, crop production was
estimated based on empirical relationships between depth of applied water and crop yield
per unit area (Hexem and Heady 1978; Brumbelow and Georgakakos 2007). With the
development of biophysical sciences and computational technology, physiologically-based
crop models could overcome some of the limitations of these empiricisms. The first
comprehensive physiological crop model was formulated based on the dynamics of the
growth of specific crop tissues and the influence of environmental factors on
photosynthesis and various forms of crop stress (Brumbelow 2001). Combined with
relevant field data, it was feasible to calibrate such models to local crop genetic
characteristics and soil-water-atmospheric environmental conditions. However, field data
for calibration of crop models can be a prohibitively expensive, time consuming endeavor,
and minimum data requirements for the operation of dynamic biophysical crop model can
often times be unavailable at appropriate spatial and temporal resolutions, especially in

data scarce regions of the developing world.



Table 2-1 lists the minimum data sets for operation of a popular field scale cropping
systems model used in this study, the Decision Support System for Agrotechnology
Transfer — Cropping Systems Model (DSSAT-CSM) (Jones et al. 2003). Table 2-2 lists
and describes the major modules and sub-modules of the program. Early crop models were
developed for single plot or field scale studies in agrotechnology transfer, but modelling
focus has since been expanded to address regional-scale simulation of different crops,
management practices, climate change impacts, and food security risks (Ewert et al. 2014)
at spatiotemporal resolutions that are in-line with recent gridded multi-sensor data

products.



Table 2-1: Minimum data sets for operation of DSSAT-CSM, from (Jones et al. 2003)

Category Minimum Required Data

Site Latitude and longitude, elevation; average annual temperature;
average annual amplitude in temperature; slope and aspect;
major obstruction to the sun (e.g. nearby mountain); drainage
(type, spacing and depth); surface stones (coverage and size)

Weather Daily global solar radiation; maximum and minimum air
temperatures; precipitation

Soil Classification using the local system and (to family level) the
USDA-NRCS taxonomic system; Basic profile characteristics
by soil layer:

in-situ water release curve characteristics (saturated drained
upper limit, lower limit); bulk density, organic carbon; pH; root
growth factor; drainage coefficient

Initial Conditions Previous crop, root, and nodule amounts; numbers and
effectiveness of rhizobia (nodulating crop); Water, ammonium
and nitrate by soil layer

Management Cultivar name and type; planting date, depth and method; row
spacing and direction; plant population; irrigation and water
management, dates, methods and amounts or depths; fertilizer
(inorganic) and inoculant applications; residue (organic
fertilizer) applications (material, depth of incorporation, amount
and nutrient concentrations); Tillage; Environment (aerial)
adjustments; Harvest schedule




Table 2-2: Description of DSSAT-CSM modules and sub-modules, from (Jones et al.

2003)

Modules

Sub modules

Behavior

Main program
(DSSAT-CSM)

Controls time loops, determines which modules to call based
on user input switches, controls print timing for all modules.

Land unit

Provides a single interface between cropping system
behavior and applications that control the use of the
cropping system. It serves as a collection point for all
components that interact on a homogenous area of land.

Weather

Reads or generates daily weather parameters used by the
model. Adjusts daily values if required, and computes hourly
values.

Soil

Soil dynamics

Computes soil structure characteristics by layer. This module
currently reads values from a file, but future versions can
modify soil properties in response to tillage, etc.

Soil temperature
module

Computes soil temperature by layer.

Soil water module

Computes soil water processes including snow accumulation
and melt, runoff, infiltration, saturated flow and water table
depth. Volumetric soil water content is updated daily for all
soil layers. Tipping bucket approach is used.

Soil nitrogen and
carbon module

Computes soil nitrogen and carbon processes, including
organic and inorganic fertilizer and residue placement,
decomposition rates, nutrient fluxes between various pools
and soil layers. Soil nitrate and ammonium concentrations
are updated on a daily basis for each layer.

SPAM

Resolves competition for resources in soil-plant-
atmosphere system. Current version computes partitioning
of energy and resolves energy balance processes for soil
evaporation, transpiration, and root water extraction.

CROPGRO Crop
Template module

Computes crop growth processes including phenology,
photosynthesis, plant nitrogen and carbon demand, growth
partitioning, and pest and disease damage for crops modeled
using the CROPGRO model Crop Template (soybean, peanut,
dry bean, chickpea, cowpea, faba bean, tomato, Macuna,
Brachiaria, Bahiagrass).

Individual plant
growth modules

CERES-Maize; CERES-
Wheat; CERES-Rice;
SubStor-Potato; Other
plant models

Modules that simulate growth and yield for individual
species. Each is a separate module that simulates phenology,
daily growth and partitioning, plant nitrogen and carbon
demands, senescence of plant material, etc.

Management
operations module

Planting

Determines planting date based on read-in value or
simulated using an input planting window and soil, weather
conditions.

Harvesting

Determines harvest date, based on maturity, read-in value or
on a harvesting window along with soil, weather conditions.

Irrigation

Determines daily irrigation, based on read-in values or
automatic applications based on monitoring of dates, crop
growth stage, soil water depletion, and/or modeled potential
evapotranspiration.

Fertilizer

Determines fertilizer additions, based on read-in values or
automatic conditions.

Residue

Application of residues and other organic material (plant,
animal) as read-in values or simulated in crop rotations.




Improving agricultural models by incorporating remote-sensing and reanalysis data as
model input has become a growing field of study. The advantage of such data products are
that they may allow for the quantification of critical state variables of a crop at a given time
instant; this information can then be used to force, recalibrate, or update modeled crop
states (Maas 1988). Furthermore, remote-sensing data can provide relatively accurate
information on critical variables (such as of rainfall, temperature, soil moisture, etc.) for
large regions with relatively high spatial and temporal resolutions. The availability of this
information makes possible the application of field-scale crop models at regional scales,
and also allows for the models to be useful in ungauged locales (e.g. such as in many places
in the developing world). Maas (1988) explored four techniques for incorporating
remotely-sensed data into in a uniform white-maize monoculture at a USDA Research
Farm in the state of Texas. Direct input of remotely-sensed data was the simplest method
of data assimilation; however, the method required frequent observations not available at
the time of the study. Moulin et al. (1998) addressed challenges in incorporating coarse
resolution remote-sensing data to estimate regional crop yields using a similar approach.
Delécolle et al. (1992) also explored remotely-sensed data assimilation techniques in
relation to different categories of crop models. Mo et al. (2005) used remotely-sensed
retrievals of Leaf Area Index (LAI) with a process-based soil-vegetation-atmosphere
transfer (SVAT) model to predict crop yield, water consumption, and water use efficiency
for a sub-region of the North China Plain. Ines et al. (2013) utilized an Ensemble Kalman
Filter to assimilate remotely-sensed AMSR-E soil moisture and MODIS Leaf Area Index
(LAI) data products into DSSAT-CSM to model year 2003 — 2009 maize yields in Story

County, lIowa. Data assimilation improved the correlation between modeled and observed
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crop yield from 0.47 (no data assimilation) to 0.65 (with combined assimilation of soil
moisture and LAI data). Nearing et al. (2012) investigated using the Ensemble Kalman
Filter and a Sequential Importance Resampling Filter (SIRF) through an observing system
simulation experiment for assimilating surface soil moisture and LAIL The study
highlighted the importance of having more than just remote sensing surface soil moisture
data for improving agricultural yield estimates, as crop state is understandably more
connected to root zone soil moisture state than just surface soil water condition alone. This
finding provides an opening for remote sensing soil moisture to be used in tandem with
precipitation data to improve agricultural modeling. Incorporating remote-sensing data into
crop system models such as DSSAT-CSM has the potential to improve the accuracy of
crop yield simulations related to regional irrigation forecasting and water resources
management.

2.2 Sacramento Soil Moisture Accounting Model for Streamflow prediction

Moradkhani and Sorooshian (2008) conducted an introductory review of the history of
rainfall-runoff modeling. In it, the authors mention the variety of rainfall-runoff models
including deterministic, stochastic, physically-based, empirical (e.g. “black box”), lumped
models, and distributed models. Owing to its relatively simple conceptualization and
development, the lumped modeling approach characterizes a river basin as a single unit
and disregards spatial variability. In such models, the main focus is to relate forcing data
(i.e. precipitation input) to streamflow without having to resolve the finest details of the
spatial processes, patterns, and characteristics that govern streamflow generation. One such
lumped model that found widespread use by the US National Weather Service (NWS) for

flood forecasting is the Sacramento Soil Moisture Accounting Modeling (SAC-SMA)
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(Burnash et al. 1973; Burnash 1995). SAC-SMA divides relatively large watersheds into
lower and upper subsurface zones and defines the distribution and transport of two types
of water components within these zones: tension water (moisture transported by way of
evapotranspiration and diffusion) and free water (driven by gravity). By way of about 13
parameters (with values determined by manual analysis of historical streamflow and
precipitation records or by automated optimization approaches), SAC-SMA converts input
of daily precipitation and potential evapotranspiration to streamflow. The computed
streamflow consists of five basic forms including direct runoff from impervious areas;
surface runoff due to precipitation occurring at a faster rate than percolation and interflow
when upper zone moisture storage reservoirs are full; interflow resulting from lateral
drainage of a temporary free water storage; supplemental base flow; and primary base flow
(Burnash 1995). For scenarios in which precipitation data includes snowfall, then the
snowfall data needs to converted to liquid water available for streamflow generation by
way of a snowpack/snowmelt model. One such snowmelt discharge model also adopted by
the NWS is the SNOW-17 model (Anderson 1973) which only requires input of daily
precipitation and air temperature. Figure 2-1 illustrates the main processes, runoff
components, and moisture reservoirs included in SAC-SMA, and Table 2-3 lists the
parameters of the model. In this research, the open-source Hydromad software package
(Andrews et al. 2011; Andrews 2013), which includes a SAC-SMA module as well as data-
fitting optimization tools for estimating SAC-SMA input parameters, is utilized for
estimating streamflow and for quantiying the impact of using both gridded meteorological
forcing data (i.e. GRIDMET) and remote sensing precipitation data (i.e. GPM IMERG and

JAXA GSMaP products) on model performance.
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Figure 2-1: Schematic of runoff components and moisture reservoirs of the
Sacramento Soil Moisture Accounting Model (SAC-SMA), from (World Bank 2016).
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Table 2-3: Parameters of the Sacramento Soil Moisture Accounting Model (SAC-SMA)
in the Hydromad modeling package, from (Andrews 2013).

SAC-SMA Description

Parameter

UZTWM Upper zone tension water maximum capacity (mm).

UZFWM Upper zone free water maximum capacity (mm).

UZK Lateral drainage rate of upper zone free water expressed as a
fraction of contents per day.

PCTIM The fraction of the catchment which produces impervious runoff
during low flow conditions.

ADIMP The additional fraction of the catchment which exhibits

impervious characteristics when the catchment's tension water
requirements are met.

ZPERC Maximum percolation (from upper zone free water into the lower
zone) rate coefficient.

REXP An exponent determining the rate of change of the percolation
rate with changing lower zone water contents.

LZTWM Lower zone tension water maximum capacity (mm).

LZFSM Lower zone supplemental free water maximum capacity (mm).

LZFPM Lower zone primary free water maximum capacity (mm).

LZSK Lateral drainage rate of lower zone supplemental free water
expressed as a fraction of contents per day.

LZPK Lateral drainage rate of lower zone primary free water expressed
as a fraction of contents per day.

PFREE Direct percolation fraction from upper to lower zone free water

(the percentage of percolated water which is available to the
lower zone free water aquifers before all lower zone tension
water deficiencies are satisfied).

2.3 NASA SMAP L3 Enhanced (surface soil moisture)

The launch of NASA Soil Moisture Active Passive (SMAP) satellite on 31 January 2015
offers an opportunity to improve the observed soil moisture record with high spatial and
temporal resolution data products with global coverage. SMAP data has the potential to
reduce the uncertainty in food-security essential estimates of crop yield, water-stress, and
irrigation demand when incorporated in agricultural models, and can also serve as vital
input for parameterizations of soil water infiltration and crop transpiration. The Level 3

Enhanced SMAP data product (SMAP_L3 SMPE) provides 36 km (posted to a 9km grid)
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and 2-3 daily top 5 cm layer soil moisture (Entekhabi et al. 2010b). The mission requires
the product’s unbiased root-mean-squared-error (ubRMSE), the RMSE between satellite
retrieved and upscaled in-situ soil moisture estimates after the temporal mean has been
removed from both data streams (Entekhabi et al. 2010a), not exceed 0.04 cm’® cm™
(Entekhabi et al. 2014). Chan et al. (2018) investigated the performance of the SMAP
enhanced passive surface soil moisture data product over a collection of core validation
sites with distinct climates. Table 2-4 summarizes the performance metrics at various
cropland sites. In general the SMAP data is well-correlated with in-situ data; however, the
combined impact of the ubRMSE and bias may drive soil moisture estimates to deviate
from in-situ estimates by over 0.1 cm?®/cm® which may adversely impact crop yield and

irrigation demand simulations if this data is incorporated into a cropping systems model.

Table 2-4: Performance metrics of SMAP Passive Enhanced Surface Soil Moisture data
product at various cropland in-situ core validation sites (CVS) over the April 2015 to
October 2016 period, from (Chan et al. 2018).

Cropland Location Climate ubRMSE Bias RMSE Correlation
CVS Name (m*/m%) (m’/m®) | (m*m’)

South Fork Iowa, USA Cold 0.054 —0.062 0.082 0.646
Little River Georgia, USA | Temperate 0.028 0.087 0.092 0.887
Kenaston Canada Cold 0.022 —0.040 0.046 0.854
Monte Buey Argentina Arid 0.051 —0.020 0.055 0.840
REMEDHUS Spain Temperate 0.042 —0.007 0.042 0.872
Twente Netherlands Temperate 0.056 0.013 0.057 0.885
Yanco Australia Arid 0.043 0.020 0.048 0.964

2.4 NASA GPM IMERG Precipitation

The NASA Global Precipitation Measurement (GPM) mission with its core satellite
launched on 27 February 2014 combines the measurements from a constellation of

satellites to provide precipitation measurements with global coverage (between the Arctic
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and Antarctic Circles) at sub-daily temporal resolutions (NASA 2012). The Late release
Level 3 data product from the GPM’s Integrated Multi-Satellite Retrievals (IMERG)
provides gridded rainfall intensity data at 0.1° spatial and half-hourly resolution with 18
hour latency (NASA 2015). The availability of the GPM rainfall observations together with
the SMAP soil moisture data and hydrologic and agricultural models allows continuous
and more accurate assessment of soil moisture state from surface to root zone at global
scale. These data are expected to significantly reduce the uncertainty in the forecast of crop
production and drought monitoring not only over the United States but also for the data

scarce (ungauged) regions in the developing world.

2.5 JAXA GSMaP and GSMaP-Gauge Precipitation

The Global Satellite Mapping of Precipitation (GSMaP) Project is a research project
started in 2002 sponsored by the Core Research for Evolutional Science and Technology
(CREST) of the Japan Science and Technology Corporation (JST) and promoted by the
Japan Aerospace Exploration Agency (JAXA) Precipitation Measuring Mission (PMM)
Science Team (Okamoto et al. 2005; JAXA/EORC 2018). GSMaP’s objective is to produce
high precision, high resolution global maps of precipitation using satellite data. The finest
resolution data available from GSMaP is 0.1° spatial and hourly resolution. The latest
versions of GSMaP data incorporates rain rate retrievals from the GPM mission. In this
research, two daily aggregated precipitation products from GSMaP are utilized, the first:
GSMaP-Standard product, which integrates passive microwave radiometer data with
infrared radiometer data into a Kalman filter to produce fine resolution precipitation maps,

while the GSMaP-Gauge product calibrates the Standard product with global rain gauge
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analysis (CPC Unified Gauge-Based Analysis of Global Daily Precipitation) supplied by
United States’ National Oceanic and Atmospheric Administration (NOAA) (JAXA/EORC
2017). Tian et al. (2009) evaluated the performance of GSMaP precipitation estimates over
the contiguous United States and found that GSMaP does well in capturing spatial patterns
of precipitation, particularly in the summer, with better performance over the eastern
United States than the western region. Summertime overestimates were attributed to
overestimation of strong precipitation events. It is important to note however that this
analysis was completed before retrievals from the GPM mission were available. Before
incorporating daily GSMaP data into agricultural and streamflow models, it is of interest
to re-evaluate the performance of this data (both GSMaP-Standard and GSMaP-Gauge)

over the contiguous United States.

2.6 GRIDMET Surface Meteorological Data

GRIDMET is a recently developed, publicly available data set of high spatial resolution
(~4 km) gridded daily surface meteorlogical data covering the contiguous United States
from 1979 to present (Abatzoglou 2011). GRIDMET combines the fine resolution spatial
attributes of gridded climate data from Parameter Regression on Independent Slopes Model
(PRISM) (Daly et al. 1994) with the fine temporal resolution of NLDAS-2 (Mitchell et al.
2004) reanalysis data. Primary and derived climate variables in this data set include daily
maximum and minimum air temperature, precipitation, downwelling surface shortwave-
radiation, reference evapotranspiration, 10-day Palmer Drought Severity Index, mean
vapor pressure deficit, and other variables. Behnke et al. (2016) evaluated the performance

of multiple gridded temperature and precipitation data products, including GRIDMET,
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over the contiguous United States. They found that at the national level, GRIDMET’s (as
well as other data sets’) temperature data was highly correlated (greater than 0.9) and
shared nearly identical temporal variability with weather station records. However for
precipitation evaluated at the national scale, the correlation was considerably weaker
(between 0.5 and 0.6) with annual wet biases in the Great Basin, Northern Rockies, and
Pacific Northwest regions, and mean annual absolute errors of greater than 3 mm in the
Southeast and Deep South regions. GRIDMET data has been incorporated in cropping
systems models (e.g. (Karimi et al. 2018)) and streamflow models (e.g. (Ficklin et al. 2016)
). Despite some discrepancies in precipitation data, GRIDMET, due to its derivation from
products strongly linked to a wide range of monitoring networks, arguably represents one
of the finest resolution data products with low latency mimicking “ground truth”. It is of
interest in this study to assess the performance of remote sensing data products of
precipitation (i.e. GPM and GSMaP products) in relation to the GRIDMET data set.

2.7 Daymet Surface Meteorological Data

Similar to GRIDMET, Daymet is a data set providing fine resolution gridded model
estimates of daily weather variables for North America based on daily meteorological
observations (Thornton et al. 1997; Thornton and Running 1999; Thornton et al. 2000;
Thornton et al. 2014). The spatial resolution is 1 km x 1 km with temporal coverage
beginning from 1980, but unlike GRIDMET which includes up to near present-day
estimates, the most recent Daymet data is from the previous calendar year. Daily variables
available from this data set include daylight length (seconds), daily precipitation (converted
to water-eqivalent), incident shortwave radiation, and maximum and minimum air

temperature (2 meters above surface). Daymet is archived and distributed through the Oak
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Ridge National Laboratory Distributed Active Archive Center for Biogeochemical
Dynamics (ORNL DAAC), and is supported by NASA Earth Science Data and Information
System (ESDIS) and the Terrestrial Ecosystem Program. Because of its fine spatial
resolution (1 km x 1 km), Daymet data lends itself to a useful analysis of how the spatial
coarsening of daily meteorological inputs impacts crop yield and irrigation estimates from
cropping systems models such as DSSAT-CSM which were original developed for point-
scale (e.g. single farm field scale) modeling. For example, how much do crop model
predictions change when daily meteorlogical input data is coarsened (by spatial averaging
of 1 km pixels) from 1 km resolution to 30 km resolution? What is the coarsest spatial
resolution of meteorological input data that is acceptable for crop modeling applications?
This study explores these questions by way of this data set.

2.8 HarvestChoice Global high-resolution soil profile database (HC-GHRSPD)

The HarvestChoice Global high-resolution soil profile database for crop modeling
applications (hereafter referred to as HC-GHRSPD) is a relatively new (released in 2015)
data set providing estimates of soil composition, hydraulic properties, and other soil
properties that are critical inputs to cropping systems models, particularly DSSAT-CSM
(Han et al. 2015). HC-GHRSPD provides DSSAT-CSM compatible surface-to-root-zone
soil profiles at the 5 arc-minute (~10km) spatial resolution with global coverage (with a
global crop mask applied). Table 2-1 lists the parameters provided by the data set with their

associated units.

19



Table 2-5: Soil profile parameters provided by the HC-GHRSPD data set, from (Han et
al. 2015).

Variable name Definition

SCOM Color, moist, Munsell hue

SALB Albedo, fraction

SLUI Evaporation limit, mm

SLDR Drainage rate, fraction day’!

SLRO Runoff curve no. (Soil Conservation Service)
SLNF Mineralization factor, 0 to 1 scale

SLPF Photosynthesis factor, 0 to 1 scale
SMHB pH in buffer determination method, code
SMPX Phosphorus determination code

SMKE Potassium determination method, code
SLLL lower limit, or wilting point, cm® cm™
SDUL drained upper limit, or field capacity, cm? cm™
SSAT Upper limit, saturated, cm® cm™

SRGF Root growth factor, soil only, 0.0 to 1.0
SSKS Sat. hydraulic conductivity, cm h’!
SBDM Bulk density, g cm™

SLOC Organic carbon, %

SLCL Clay (<0.002 mm), %

SLSI Silt (0.05 to 0.002 mm), %

SLNI Total nitrogen, %
SLHW pH in water

SCEC Cation exchange capacity, cmol kg’!

2.9 USDA NASS Cropscape — Cropland Data Layer

The USDA National Agricultural Statistics Service (USDA-NASS) Cropland Data
Layer (Han et al. 2012; USDA NASS 2015), referred to as Cropscape, contains crop and
other land cover classifications derived from remote sensing of the continguous United
States and has been publicly accessible through a web service based application since year
2011. With regard to data relevant to agricultural decision support, the Cropscape data
product, produced yearly, provides geo-referenced, high accuracy thematic maps of crop
acreages by crop type (e.g. Corn, Cotton, Soybeans, Potatoes, Grassland/Pasture, etc.) at
spatial resolution as fine as 30 meters. Data sources used to develop the product include

satellite imagery from the Advanced Wide Field Sensor (AWiFS), Landsat, USDA Farm
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Service Agency (USDA-FSA), USDA National Agricultural Statistics Service (USDA-
NASS) June Agricultural Survey data, and the US Geological Survey (USGS) National
Land Cover Datasets (NLCD) (Han et al. 2012). A sample thematic map is presented in
Figure 2-2. The Cropscape data product has found many applications such as agricultural
land cover monitoring, crop acreage and yield estimation, disaster assessment, bioenergy
crop inventory, carbon accounting, among other studies (West et al. 2010; Han et al. 2012;

Kutz et al. 2012; Green et al. 2018).

2009 Cropland Data Layers

-

Major Land Cover Categories (by decreasing acreage) '

Agriculture Nor-Agriculture

[ Pasture/Grass ] Fallow Cropland [l Vegetables/Fruits/Nuts  [II Woodland [ Barren
[Jcomn [ asfalfa I Other Small Grains [ shrubland [lce/Snow
I Soybeans M Cotton I Rice [ Urban/Developed

I A Wheat I Cther Crops I Wetlands

[ Other Hay [ sorghum Il Water Source: USDA/MASS

Figure 2-2: Year 2009 Cropscape Map with major land cover categories, from (Han et
al. 2012)

One innovative use of this data product to be explored in this research includes
estimation of regional-scale crop irrigation volumes. While there are data products that

provide local (e.g. U.S. county-level) insight on what percentage of a specific crop type’s
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acreage are irrigated, the actual irrigation amount or irrigation volume, in many cases is
neither reported nor monitored (sometimes due to privacy concerns). Gridded Cropscape
data can be integrated with local information on irrigated acreage to more precisely
determine how much land area of a given crop is either irrigated or rainfed. From there
crop systems models, such as DSSAT-CSM, driven by high resolution gridded
meteorological data (e.g. GRIDMET) and soil information (e.g. HC-GHRSPD) can be
leveraged to determine crop specific irrigation volumes. The results of such an
investigation could prove invaluable to drought monitoring, food security studies, and

guide irrigation withdrawal planning and permiting.

2.10 LOCA Downscaled CMIPS Climate Projections

The Coupled Model Intercomparison Project phase 5 (CMIPS) recently released
downscaled climate projections based on the relatively new Localized Constructed
Analogs (LOCA) method (Pierce et al. 2014). Constructed Analog methods spatially
downscale GCM output by searching for a set of observed days, from a spatially coarsened
observational data set, that are most similar to the coarse grid GCM data. Then the fine-
resolution observations from the analog days are combined to create the final spatially
downscaled field (Hidalgo et al. 2008; Bracken 2016). LOCA improves on commonly used
constructed analog approaches by selecting analog days based on an analysis within a
synoptic-scale (approximately 1000 km) region instead of the entire downscaling domain;
and by selecting a single analog day from a set of 30 candidates based on local
(approximately 100 km about the point being downscaled) matching between the

downscaled model and fine observational grid instead of using a weighted average of
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candidate analog days (Bracken 2016). While the LOCA downscaling method requires
more computational power than previous methods, performance tests showed LOCA
downscaled variable fields (maximum and minimum air temperature and precipitation)
provide better estimates of extreme days, more realistically preserve spatial coherence of
the downscaled variables, and avoid the problem of producing light-precipition artifacts
(Pierce et al. 2014). Furthermore, the novel bias-correction procedure adopted for this data
set is an improvement over conventional methods with regard to preserving the GCMs’
climate change signal as well as the frequency-dependent variance of climate variables
(Pierce et al. 2015). It is also important to note that the LOCA procedure also involves
treatment for future climate anomalies (in precipitation and temperature) that are outside
the bounds of historical observations (Pierce et al. 2014). LOCA-CMIP5 downscaled
estimates of maximum and minimum air temperature and precipitation for two CO-
emission path scenarios (RCP 4.5 and RCP 8.5) from 32 different GCM models are

publicly available at https://gdo-dcp.uclinl.org/. The coverage is the continental U.S. from

year 1950 — 2099 and the resolution is 1/16™ degree (~6 km x 6 km grid cells) at the daily
time step. With its aforementioned spatial, temporal, and statistical features, the LOCA-
CMIPS5 product is uniquely suited for use with agricultural models. Review of recent
literature showed that this modern data set has yet to be incorporated into a crop systems
model for assessment of local climate change impacts on agricultural production and

irrigation demand.
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CHAPTER 3

ERROR ANALYSIS OF REMOTE SENSING PRECIPITATION AND
AGRI-HYDROLOGICAL MODEL SENSITIVITIES TO

GRIDDED INPUT DATA

3.1 Comparison of Near Real Time NASA GPM IMERG and JAXA GSMaP
products over the continental US

As mentioned in Chapter 2, recent remote sensing precipitation missions such as NASA
GPM and JAXA GSMaP provide a unique opportunity to monitor precipitation, a vital
input to agricultural and streamflow models, in near real time. However, before these data
are incorporated into hydrological models it is important to understand how accurate (or
inaccurate) these data are. In this study, low-latency (e.g. available to the public within
three days or less from the satellite retrieval time) gridded retrievals of daily rainfall from
NASA GPM IMERG (Version 5, Level 3, Late Release), JAXA GSMaP (Version 7), and
JAXA GSMaP-Gauge (Version 7) are compared to the GRIDMET rainfall product over
the years 2015-2016 for various regions of the continental United States. While the
GRIDMET product is a reanalysis estimate of precipitation, precipitation estimates from
this product are driven by a wide range of “ground-truth” monitoring networks.

Figure 3-1 presents a map of the nine climate regions of the continental United States
used for assessing the quality of the remote sensing precipitation data products. These nine

regions were identified as being climatically consistent by the U.S. National Centers for
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Environmental Information (NCEI) and useful for understanding current climate anomalies

(Karl and Koss 1984).

U.S. Climate Regions
¥ N
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[ P and Plains Upper Midurest
IVest North Central] ¥ [East Nonth Gentral]

Ohio Yalley
Southwest iCentral)

Figure 3-1: Nine climate regions for assessment of remote sensing precipitation
products over the continental United States. From (NCDC 2017).

3.1.1 Annual Assessments

Figure 3-2 and Figure 3-3 illustrate the performance of the remote sensing precipitation
data products in estimating annual accumulated precipitation over the continental U.S.
during years 2015 and 2016 respectively. In 2015, The GRIDMET product estimated the
annual precipitation as 878 mm while the remote sensing retrievals were 1017 mm, 1246
mm, and 877 mm for GPM IMERG, GSMaP-Standard, and GSMaP-Gauge respectively.
In 2016, The GRIDMET product estimated the annual precipitation as 823 mm. All of the
remote sensing products had higher estimates of 901 mm, 1321 mm, and 831 mm for GPM
IMERG, GSMaP-Standard, and GSMaP-Gauge respectively. The discrepancy between the

GSMaP-Standard and the GSMaP-Gauge product (in both years) highlights the impact and
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importance of the rain-gauge correction for ensuring the accuracy of remote sensing
precipitation retrievals.

Figure 3-4 and Figure 3-5 highlight how the performance of the remote sensing
precipitation retrievals vary by climate region. For all climate regions of the continental
U.S., the JAXA GSMaP-Standard product greatly overestimates precipitation in
comparison to the rain-gauge derived GRIDMET data product. The rain-gauge correction
introduced in the GSMaP-Gauge product is essential for producing more accurate
retrievals. The GPM IMERG product typically overestimates precipitation (relative to
GRIDMET), except for West in year 2015 and West and Northwest climate regions in year
2016 where the GPM IMERG product appears to have a considerable dry bias. The best
performance of the GPM IMERG product is in the Southeast, Southwest, and West North
Central for both years as the deviation (usually overestimation) from the GRIDMET
product is less than 100 mm. In year 2015, the West and Northwest regions are also in good
agreement with GRIDMET, and in year 2016, the South region agrees well with

GRIDMET.
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Figure 3-2: Assessment of year 2015 cumulative precipitation from GPM IMERG,
GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-3: Assessment of year 2016 cumulative precipitation from GPM IMERG,
GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-4: Assessment of year 2015 regional cumulative precipitation from GPM
IMERG, GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-5: Assessment of year 2016 regional cumulative precipitation from GPM
IMERG, GSMaP-Standard, and GSMaP-Gauge data products.

3.1.2 Seasonal Assessments

Figure 3-6 and Figure 3-7 present the cumulative precipitation for each season of years
2015 and 2016 for GRIDMET, GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data
products. As with the annual assessment, GSMaP-Standard greatly overestimates
precipitation in spring, summer, and fall, but the overestimation appears to be remedied in

the GSMaP-Gauge product. GPM IMERG also typically overestimates in all seasons.
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Figure 3-6: Seasonal assessment of year 2015 cumulative precipitation from GPM
IMERG, GSMaP-Standard, and GSMaP-Gauge data products for the Continental US
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Figure 3-7: Seasonal assessment of year 2016 cumulative precipitation from GPM
IMERG, GSMaP-Standard, and GSMaP-Gauge data products for the Continental US

Figure 3-8 and Figure 3-9 present the regional cumulative precipitation for the winter
seasons of years 2015 and 2016 for GRIDMET, GPM IMERG, GSMaP-Standard, and
GSMaP-Gauge data products. The GPM IMERG product consistently overestimates winter
precipitation in the Northwest, Northeast, and Central regions and underestimates in the
Southwest. The GSMaP-Standard estimates are generally either lesser or comparable to the
GRIDMET reference except for the South and Southeast for which there is substantial
overestimation, and the inconsistency with GRIDMET appears to be removed with the
incorporation of rain gauge data in the GSMaP-Gauge product.

As shown in Figure 3-10 and Figure 3-11, the GPM IMERG product underestimates

spring precipitation in the Northwest, West, and Southwest climate regions, while
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overestimating in the Central and East North Central regions. GSMaP-Standard
overestimates in most regions, and this is rectified by the GSMaP-Gauge data set.

Figure 3-12 and Figure 3-13 show that the GPM IMERG summer cumulative
precipitation is comparable to the GRIDMET reference except for the the West and
Southwest regions for which there is overestimation, in contrast to the underestimation
during the winter and spring seasons. GSMaP-Standard is conspicuous by its large
overestimation for most regions, which similar to the previous assessments, is rectified in
the GSMaP-Gauge data set.

Figure 3-14 and Figure 3-15 show that the GPM IMERG fall cumulative precipitation
is comparable to the GRIDMET reference, but there is a dry bias in the GPM IMERG
product in the Northwest and West. GSMaP-Standard overestimates in the majority of

regions while GSMaP-Gauge agrees well with the GRIDMET reference.
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Figure 3-8: Assessment of year 2015 regional winter cumulative precipitation from
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-9: Assessment of year 2016 regional winter cumulative precipitation from
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-10: Assessment of year 2015 regional spring cumulative precipitation from
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-11: Assessment of year 2016 regional spring cumulative precipitation from

GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-12: Assessment of year 2015 regional summer cumulative precipitation from
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-13: Assessment of year 2016 regional summer cumulative precipitation from
GPM IMERG, GSMaP-Standard, and GSMaP-Gauge data products.

39



Year 2015 Fal Precipitation - Northeast

Yaar 2015 Fall Precipitation - Norihwest Year 2015 Fall Precipitation - WestNorthCentral
- 350
0 o
.
a
Euo Eum s
B B ]
Eue g E e
w
0
B 0
w )
0 o o
GRIDWET  GPM (Late 5) GEMAP-Slandar GVAP-Gauge GRIDWET  G7MA (Lale v5) GSMAP-Slandsre GEVAP-Gauge GRIDVET  GPM Lale v5) GSMAP-Siandarc GENMAP-Bauge
, Yaar 2015 Fall Precipitation - Wast Yoar 2015 Fall Precipitati Yoar 2015 Fall Pracipitation - Cantral
am
P ] 50
Y
a0
00
£ £
] B
g &0 g
£ B
a
o
o0
x s
B E
o o [
GRIDWET G (Late +3) GIMAP-Slandare GIVAF-Gauge GRIDMET 7 (Lale 5) GSMAP-Sisndare GIVAP-Gauge GRIDVET  GPMiLste v3) GSWAF-Slendard GENAP-Gauge
. Vear 2015 Fall Precipitation - Southwest Year 2015 Fall Pracipitation - South Year 2015 Fall Pracipitation - Southeast
" 250 e
a
k) m
=
E
fao
Em
50
@ 10
00
20 a0 B
o o

o

GRIDMET  GPM Late v5) GEMAP-Siandsrs GEUAP-Gauge GRIDMET M Lale 5] GSMAP-Slsnusrc GEVAP-Gauge GRIOMET  GPHLsle v5) GSWAP-Slinsar GEMAP-Gauge

Figure 3-14: Assessment of year 2015 regional fall cumulative precipitation from GPM
IMERG, GSMaP-Standard, and GSMaP-Gauge data products.
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Figure 3-15: Assessment of year 2016 regional fall cumulative precipitation from GPM
IMERG, GSMaP-Standard, and GSMaP-Gauge data products.

3.1.3 Assessment of Empirical Probability Density Functions of Daily
Precipitation and Summary Statistics

To assess how remote sensing retrievals of precipitation fare with regard to extreme,
typical, and dry events, Figure 3-16 presents the empirical probability density function
(PDF) and cumulative probabilities (CDF) for daily rainfall from the GRIDMET, GPM
IMERG, GSMaP-Standard and GSMaP-Gauge data products for the continental United
States. The results indicate that daily precipitation events between 0 and 5 mm occur more
frequently in the monitoring-network driven GRIDMET data product, than in all the remote

sensing derived products. GSMaP-Gauge follows the GRIDMET closely, while the
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GSMaP-Standard has a clear wet bias for non-extreme daily precipitation events. The CDF

suggests that the GPM IMERG product may overestimate extreme precipitation events.
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Figure 3-16: Empirical probability (PDF) and cumulative density functions (CDF) for
daily precipitation over the 2015-2016 period for the continental United States

Figure 3-17 presents the seasonal empirical probability density functions and
cumulative probabilities for daily precipitation. Results confirm the great wet bias in the
GSMaP-Standard product. GSMaP standard also overestimates extreme precipitation
events relative to the other data products in all seasons except for the winter season in
which the GPM IMERG product overestimates precipitation by a greater amount than
GSMaP-Standard. The GPM IMERG product appears to agree best with the GRIDMET
data product for all types of daily precipitation during the summer and fall, while the

GSMaP-Gauge product agrees well with GRIDMET in all seasons.
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Figure 3-17: Seasonal empirical probability density functions and cumulative
probabilities for daily precipitation over the 2015-2016 period for the continental United

States.
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Figure 3-18 and Figure 3-19 present the empirical probability density functions and
cumulative probabilities for daily precipitation over the 2015-2016 period for the nine U.S.
climate regions. Features that stand out from the probability densities are the for
precipitation events between 0 and 5 mm, GPM IMERG and GSMaP-Standard generally
overestimate precipitation with respect to the GRIDMET reference, except for GPM
IMERG in the Northwest and West regions. The regional cumulative probabilities also
confirm that GSMaP-Standard generally overestimates all types of precipitation (dry,
typical, intense) in all climate regions, while the GPM IMERG product appears to greatly
overestimate intense precipitation events in the East North Central, Central, South, and

Southeast.

Ermpirical Probebilty Density of Deity Rainall Morthwent) o o Empicical Probabiliy Density of Daily Reinfall (Northeast

Empiricad Proatiiy Density of Daily Rainfadl (West

Gy Bresptenen (o)

Figure 3-18: Empirical probability density functions for daily precipitation over the
2015-2016 period for nine climate regions of the continental United States.
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Figure 3-19: Cumulative probabilities for daily precipitation over the 2015-2016 period
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for nine climate regions of the continental United States.

Table 3-1 summarizes the statistical performance of the remote sensing retrievals of

Northeast

—GRIDMET
——GPM (Late v5)

- - ~GSMAP-Standard
——GSMAP-Gauge

20 40 60 80
Daily Rainfall (mm)

Central

——GRIDMET
——GPM (Late v5)

- = ~GSMAP-Standard
——GSMAP-Gauge

20 40 60 80
Daily Rainfall (mm)

Southeast
——GRIDMET
——GPM (Lale v5)
- = ~GSMAP-Standard
——GEMAP-Gauge
10 20 30 40 50 &0

Dally Rainfall (mm)

daily precipitation over the 2015-2016 period in comparison to the GRIDMET reference.

As expected from the previous assessments in this study, GSMaP-Standard has the lowest

correlation, greatest root-mean-squared-error (RMSE), and greatest mean absolute error

(MAE) compared to the GPM IMERG and the GSMaP-Gauge product for all climate
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regions as well as the entire continental US. The GPM IMERG product is more highly
correlated with the GRIDMET reference than the other remote sensing retrievals, with
correlations greater than 80 percent for most of the climate regions, suggesting that GPM
IMERG captures the occurrence of rain days well (even if there is over/underestimation of
the event itself). The RMSE results, which are sensitive to extreme precipitation events,
highlight the GPM IMERG biases during extreme events as explored in the previous
sections of this assessment.

Table 3-1: Summary performance statistics for remote sensing retrievals of daily
precipitation over the 2015-2016 period.

Mean Daily Precipitation GRIDMET Correlation GRIDMET RMSE GRIDMET MAE
(mm) (mm) (mm)

) GPM | GSMaP- | GSMaP- | GPM | GSMaP- | GSMaP- GSMaP- | GSMaP- | GPM | GSMaP- | GSMaP-
Region Name| GRIDMET | iop 6 | Standard | Gauge | IMERG | Standard | Gauge |SPM™ERG| givdard | Gauge |IMERG | Standard | Gauge
C”“l']‘;':““’l 2.33 2.62 351 234 0.83 0.73 0.80 1.10 2.04 0.90 0.62 1.51 0.61
Northwest 2.43 2.28 2.63 2.33 0.85 0.72 0.84 2.28 3.26 1.96 118 1.64 1.05
West North 1.47 1.66 2.93 1.54 0.89 0.66 0.74 1.00 3.68 139 0.62 1.87 0.84

Central
Northeast 282 325 3.18 278 0.73 0.60 0.66 375 4.65 3.60 1.80 237 1.88
West 1.23 0.95 1.56 118 0.85 0.72 0.82 1.36 2.09 1.45 0.68 1.03 0.64
EastNorth | ) ¢ 326 371 2.53 0.80 0.60 0.67 339 5.03 2.88 1.59 2.52 1.67
Central
Central 3.29 431 4.92 3.29 0.77 0.68 0.74 4.73 5.39 3.06 2.08 2.95 1.81
Southwest 1.14 118 1.85 1.15 0.79 0.66 0.80 0.95 221 0.92 0.59 1.06 0.52
South 3.05 3.54 5.20 3.12 0.91 0.73 0.81 2.20 5.52 2.64 1.20 2.99 1.51
Southeast 3.69 3.81 5.02 3.65 0.77 0.68 0.72 3.62 5.45 3.67 1.61 2.82 1.87
Difference in comparison to .
GRIDMET reference Metric Performance
Highlight . . )
Legend >+10% (Wet Bias) Best
<-10% (Dry Bias) Worst
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3.2 Bias assessment of remote sensing precipitation and surface soil moisture with
respect to in-situ measurements

As presented in Chapter 2, Chan et al. (2018) listed biases in SMAP L3 Enhanced
surface soil moisture products during the April 2015 to October 2016 time period as
assessed at SMAP core validation sites. Expanding on this assessment, the following
exercise quantifies bias in remote sensing (i.e. GPM IMERG, GSMaP-Standard, and
GSMaP-Gauge) and reanalysis (i.e. GRIDMET) retrievals of daily precipitation with
respect to a single rain-gauge in the vicinity of select SMAP core validation sites. Table
3-2 lists select SMAP core validation sites along with a neighboring rain gauge from the
Global Historical Climatology Network (GHCN) data source made publicly available by
the NOAA National Climatic Data Center (NCDC) (Menne et al. 2012). For each GHCN
site, the daily precipitation time series from the GRIDMET, NASA GPM IMERG (Version
5 Late Release), JAXA GSMaP-Standard (Version 7), and JAXA GSMaP-Gauge (Version
7) data products spanning April 1, 2015 to October 31, 2016 are retrieved from a 0.1° by

0.1° bounding box centered at the GHCN gauge location.
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Table 3-2: Locations of select SMAP core validation sites and neighboring GHCN rain
gauges

SMAP Core Validation Sites GHCN Rain-Gauge Sites
) . Distance from
Site Name Latltpde, Site Name Latlt}lde, SMAP CVS
Longitude Longitude
(km)
South Fork, Iowa lowa Falls, Iowa
USA 42.42,-93.41 USA 42.52,-93.25 17
Little River, Georgia Fitzgerald,
USA 31.67, -83.60 Georgia USA 31.77,-83.26 34
Fort Cobb, Oklahoma Colony,
USA 35.38, -98.64 Oklahoma USA 35.35,-98.67 4
Kenaston, Canada | 51.47,-10648 | 00U | 5y 55 10654 25
Canada
Monte Buey, | 35 g1 g 51 | MarcosJuarez, | 5, co 65 16 41
Argentina Argentina
Salamanca
REMEDHUS, Spain| 41.29, -5.46 Aeropuerto, 40.96, -5.50 37
Spain
Twente, Netherlands|  52.26, 6.77 Hengclo, 52.27,6.77 1
Netherlands
Coleambally
Yanco, Australia -34.86, 146.16 Irrigation, -34.80, 145.89 26
Australia

Table 3-3 presents the biases in the remote sensing and reanalysis precipitation retrievals
along with the biases in SMAP L3 Enhanced surface soil moisture retrievals as reported by
Chan et al. 2018. As expected, GRIDMET (available only for the U.S.) generally agreed
well with the rain gauge data, while the GPM IMERG, GSMaP-Standard, and GSMaP-
Gauge products exhibited wet bias at the majority of assessed sites. Wet biases were
especially large in the GSMaP-Standard product, and these biases were mitigated
substationally in the GSMaP-Gauge product. A major finding from this exercise is that
biases in SMAP surface soil moisture retrievals are not necessarily consistent with biases
in remote sensing precipitation retrievals. That is, if SMAP surface soil moisture estimates

are drier or wetter than the true soil surface soil moisture state, it cannot be assumed that
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the corresponding precipitation retrievals will likewise be drier or wetter than the true
precipitation.
Table 3-3: Biases in SMAP L3 Enhanced surface soil moisture retrievals paired with

percent biases in neighboring daily precipitation retrievals from GRIDMET, GPM,
GSMaP-Standard, and GSMaP-Gauge for the April 2015 to October 2016 period.

SMAP Core
Validation Sites Precipitation Percent Biases
Analysis (Neighboring GHCN Rain Gauge)
(Chan et al 2018)
sMAP cvs | SMAP | e site [GrRIDMET] gpm | SSMaP- | GSMaP-
Site Name Bias Name (%) (%) Standard | Gauge
(m’/m’) ’ ’ (%) (%)
South Fork | —0.062 | Iowa Falls —2.88 28.66 50.13 1.19
Little River 0.087 | Fitzgerald | —1.73 —1.64 22.17 -7.35
Fort Cobb | —0.056 | Colony —8.63 22.31 129.52 8.18
Kenaston —0.040 | Loreburn - —0.63 30.30 —8.34
Monte Buey | —0.020 | Marcos ; ~3205| 2328 | -11.89
Juarez
REMEDHUS | —0.007 | Salamanca - 72.18 100.80 21.11
Twente 0.013 Hengelo - 31.62 13.13 0.98
Yanco 0.020 |Coleambally - 27.27 130.47 6.62

3.3 Correlation of errors in remote sensing retrieveals of precipitation and
remote sensing retrievals of surface soil moisture

In the previous section, the quality of daily aggregated GPM IMERG (Version 5, Late

Release), JAXA GSMaP-Standard (Version 7) and JAXA-GSMaP-Gauge (Version 7)

were assessed over the continental U.S. in relation to daily gridded precipitation from the

GRIDMET data set. Analysis revealed region-specific errors and biases in remote sensing
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retrievals of precipitation. Such errors may adversely impact the accuracy of agricultural
models’ prediction of crop yield, crop stress, and irrigation demand as well as the accuracy
of hydrological streamflow predictions. In this section, a remote-sensing driven remedial
strategy for improving the accuracy of daily remote sensing retrievals of precipitation is
explored. It is of interest to assess whether errors in remote sensing retrievals of
precipitation (in relation to the GRIDMET reference) are correlated with remote sensing
retrievals of surface soil moisture from the SMAP mission. The question is asked: can we
predict — and therefore remove — errors in remote sensing daily precipitation data, given
information of surface soil moisture state? For the nine climate regions of the continental
U.S., the correlation between errors in remote sensing daily precipitation data and surface
soil moisture from the SMAP Level 3 Enhanced data product is assessed.

Figure 3-20 presents the correlation between errors (in relation to the GRIDMET
precipitation reference) in regional daily mean precipitation estimates from the GPM
IMERG (Version 5, Late Release) data product and mean regional surface soil moisture
estimates from the SMAP Enhanced Level 3 (6AM retrieval) over the continental U.S.
during year 2016. For the continental U.S. as a whole, as well as for the nine climate
regions, correlations are centered about zero, suggesting that errors in GPM IMERG
precipitation data are independent of and cannot be predicted by retrievals of regional mean
surface soil moisture state. Similar conclusions can be made regarding the GSMaP-Gauge
data product (i.e. surface soil moisture state does not inform what the error in precipitation
retrieval would be) as shown by Figure 3-21. The lack of correlation between errors in
remote sensing retrievals of daily precipitation and SMAP surface soil moisture estimates

persists regardless of season. Figure 3-22 illustrates this lack of correlation for each season
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during the 2015-2016 period as evaluated over the continental U.S., and similar results (i.e.
no correlation between errors in remote sensing precipitation retrievals and SMAP surface
soil moisture estimates) were obtained for each climate region of U.S. These findings
suggest that the errors in the remote sensing precipitation data may be random rather than
systematic (at least in relation to surface soil moisture state and dynamics) and thusly
cannot be remedied by information of surface soil moisture alone. Further research should
investigate other avenues for improving the accuracy of the remote sensing precipitation
retrievals. At least for the continental U.S., the best data set for incorporating remote
sensing precipitation data into agricultural and hydrological models would arguably be the
GSMaP-Gauge data set. However, due to the relatively large errors in the GSMaP-Standard
data set as assessed in the previous sections, the preferability of GSMaP-Gauge is attributed
primarily to the availability of a large network of rain-gauges in the region to locally
calibrate the remote sensing retrieveals, and not to the gauge-free retrieval algorithm itself.
Thusly, it can be assumed that the GSMaP-Gauge product may not be suitably accurate for
use over gauge-scarce regions (e.g. many parts of the water-sensitive and data-scarce

developing world).
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Figure 3-20: Correlation between errors in retrievals of regional mean daily
precipitation from GPM IMERG (Version 5, Late Release) and SMAP Enhanced Level 3
regional mean surface soil moisture estimates for year 2016.
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Figure 3-21: Correlation between errors in retrievals of regional mean daily
precipitation from GSMaP-Gauge (Version 7) and SMAP Enhanced Level 3 regional mean
surface soil moisture estimates for year 2016.
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Figure 3-23 presents the correlation between retrievals of regional mean daily
precipitation from GPM IMERG (Version 5, Late Release) and one-day change (i.e. how
much the regional surface soil moisture changes one day after the day of interest) in SMAP
Enhanced Level 3 regional mean surface soil moisture estimates during year 2016. Figure
3-24 presents the same figure except that GSMaP-Gauge is assessed instead of GPM
IMERG. Results suggest that the errors in remote sensing retrievals of regional daily
precipitation are not strongly correlated with whether the surface soil moisture is getting

wetter or drier.
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Figure 3-23: Correlation between errors in retrievals of regional mean daily
precipitation from GPM IMERG (Version 5, Late Release) and one-day change in SMAP
Enhanced Level 3 regional mean surface soil moisture estimates during year 2016.
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Figure 3-24: Correlation between errors in retrievals of regional mean daily
precipitation from GSMaP-Gauge (Version 7) and one-day change in SMAP Enhanced
Level 3 regional mean surface soil moisture estimates during year 2016.
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3.4 Spatial correlation in errors in GPM IMERG and GSMaP-Gauge

precipitation products

This exercise takes a preliminary look at the spatial correlations in errors of remote
sensing daily precipitation retrievals with respect to the GRIDMET reference. For a sample
transect divided into 15 adjacent subregions, the time series of errors in GPM IMERG and
GSMaP-Gauge is calculated. Then the correlation between these time series of errors
between the 15 subregions is assessed and presented as a function of geographic distance
(in degrees of latitude) between subregions. This analysis is carried out for the entire 2015-
2016 period, as well as seasonally within years 2015-2016.

Figure 3-25 maps the 15 sub-regions for which spatial correlation of errors in remote
sensing retrievals of daily precipitation are assessed. The full transect lies in the
southeastern United States and spans 0.2 degrees longitude and 3.0 degrees latitude
(approximately 18 km by 334 km). For each of the 15 sub-regions the daily precipitation
time series from Jan 1, 2015 to December 31, 2016 is calculated from the GRIDMET, GPM
IMERG version 5 Late Release, and GSMaP-Gauge Version 7 data sets. Errors in the
remote sensing retrievals are calculated with respect to the GRIDMET precipitation time
series. The Pearson correlation coefficient is then calculated between the time series of

errors for each of the 15 sub-regions.
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Figure 3-25: 15 sub-regions within a sample transect in the southeastern United States
for assessment of spatial correlations in errors of remote sensing retrievals of daily
precipitation.

Figure 3-26 plots the spatial correlation of errors in daily precipitation retrievals from
GPM IMERG and GSMaP-Gauge data products during the year 2015-2016 period for
regions 1 and 8 which are representative of all the 15 regions. Results show the daily
precipitation errors in GPM IMERG and GSMaP-Gauge are highly correlated in space up
to a distance of 2 degrees latitude (over 200 km), beyond which the correlations are below
30 — 40 percent amongst the 15 sub-regions assessed in this exercise. This finding suggests
that it may be possible to implement error mitigation strategies over a large area (e.g. 2
degrees by 2 degrees region); however, it appears unlikely that SMAP surface soil moisture
retrievals would be helpful in this effort, as SMAP retrievals were not correlated with
precipitation retrievals, and that assessment was conducted for regions much larger than 2
degrees by 2 degrees.
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Figure 3-26: Spatial correlations of remote sensing precipitation errors as a function of
latitude distance for regions 1 and 8 during the year 2015-2016 period.
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Figure 3-27 plots the spatial correlation of errors in region 1 daily precipitation retrievals
from GPM IMERG and GSMaP-Gauge data products during each season of the year 2015-
2016 period. Results show that the spatial correlation in daily precipitation errors is
strongly connected to season. Spatial correlation in errors are strongest during the winter
periods, with fall having the next strongest correlations. The strength of correlation drops
off most rapidly during the summer and is also relatively weak during springtime beyond
the 1.0 degree latitude distance. Precipitation in this region of the U.S. is characterized by
frontal systems during the winter and convective systems in the summer; consequently,
results suggest that spatial correlations in precipitation retrieval errors are connected to
precipitation type, with errors from frontal storms being the most spatially correlated and

those from convective storms being the least spatially correlated.
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Figure 3-27: Spatial correlations of remote sensing precipitation errors as a function of
latitude distance and season for region 1 during the year 2015-2016 period.
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3.5 Impact of spatial averaging of high-resolution gridded meteorological and soil
data on DSSAT crop model output

Crop systems models, such as DSSAT-CSM, were originally developed to model crop
growth and development at the single plot/field scale. For regional scale simulations, crop
models often ingest gridded data of meteorological forcings and soil profile characteristics.
The spatial resolution of these products may adversely impact the accuracy of such models
originally designed for point-scale applications. In this study, the sensitivity of the DSSAT-
CSM modeled regional-scale mean crop yield and irrigation demand to coarsening spatial
resolution — from 1km to 40km — of soil characteristics and meteorological forcing data is
assessed. Year 2005 to 2016 rainfed and irrigated corn is simulated for various U.S. regions
with diverse climates. Modeling 12 years worth of regional mean crop yield and irrigation
demand also allows for assessing the influence of relatively dry, wet, and normal (with
regard to precipitation) growing seasons on this exercise.

First, for each region of interest, a 200km by 200km domain is defined and divided into
25 40km by 40km grid cells as shown in Figure 3-28. Each of the 40km grid cells is

comprised of 1,600 1km grid cells, 100 4km grid cells, and 16 10km grid cells.
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Figure 3-28: Schematic of domain for DSSAT simulations driven by multi-scale
weather and soil data products

Next, corn crop yield and irrigation demand are modeled by running DSSAT at a single,
randomly selected 1km grid cell within each of the 25 sub-domains. In these simulations,
DSSAT is forced by 1km gridded data of daily incoming solar radiation, maximum and
minimum air temperature, and precipitation from the DAYMET reanalysis data set, and
soil data derived from pedo-transfer functions applied to the 1km Soilsgrid data set (Hengl
et al. 2014; Han et al. 2015). The mean of these 25 simulations (one simulation per 40km
sub-domain) represent crop yield and irrigation demand within the regional domain using
lkm gridded data. This procedure is repeated at the 4km, 10km, and 40km spatial scales
after aggregating DAYMET meteorological data and Soilgrids derived soil properties to
those scales. As an example, Figure 3-29 illustrates the random selection of 10km grid cells

for running DSSAT forced by 10km weather and soil data.
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Figure 3-29: Schematic of domain for DSSAT simulations driven by 10km weather
and soil data products. One 10km grid cell (red) is randomly selected in each of the 25
40km by 40km subdomains.

For each spatial scale, the sample means (and its standard error) of modeled crop yield
and irrigation demand (constructed from 25 values at each spatial scale) are compared
across spatial scales to detect at what level(s) of spatial coarsening do modeled regional
mean yield and regional mean irrigation demand differ greatly from the simulations drive

by the finest resolution 1 km input data. Table 3-4 lists important DSSAT-CSM input

parameters for the corn simulations.
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Table 3-4: Input parameters for DSSAT-CSM year 2005-2016 maize simulations

Planting Irrication: Soil Irrigation:
Region Region Centroid Maize Date (Years Row Plant ana erﬁent Available soil
gto (Lat, Lon) Cultivar 2015 & Spacing Population D eg h water content
2016) P threshold
Jackson " o
Southeast 32.13, -84.03 Hybrid March 29 ' 30.000 12 inches (30 50%
West 36.43,-120.18 April 8" 38;“““; plants/acre cm) 70%
South 35.23,-101.62 PB 8 March 15" W (7.9 pim?) 50%
Midwest 41.86, -95.45 April 26" Not Applicable (Rainfed only)

Figure 3-32 through Figure 3-35 compare the regional-scale means of rainfed and
irrigated corn yield and irrigation amount for the case study locations. The figures also
indicate the characterization of the growing season based on the 2005-2016 rainfed crop
production simulated using 1 km input data. Years with rainfed crop yield below the 25
percentile are “Low Production”, between 25" and 75" percentiles are “Normal
Production”, and above the 75" percentile are “High Production”. For the case study region
in the west, for which only irrigated corn yield was simulated, years are characterized
according to irrigation demand. Years with irrigation demand crop yield above the 75%
percentile are “High Irrigation Demand”, between 25" and 75" percentiles are “Normal
Irrigation Demand”, and below the 25" percentile are “Low Irrigation Demand”. Due to
difficulty of resolving soil characteristics in the west region at the 40km scale, only 1km,
4km, and 10km simulations are performed for this region.

With regard to rainfed and irrigated crop yields, the means are generally consistent
across spatial scales regardless if the growing season is dry, wet, or normal. However, mean
crop yields simulated using 40km data can be slightly higher than those simulated using
lkm data. This bias can be attributed to the impact of the spatial averaging of daily
precipitation data over large areas. Averaging over large areas captures isolated
precipitation events and redistributes them over the averaging domain. This bias reduces

the length of dry spells and artificially boosts simulated crop yields. This same bias is also
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responsible for the reduced mean irrigation amount at the 40km spatial scale compared to
the simulations forced by finer resolution input data. Figure 3-30 compares year 2005-2016
Daymet daily precipitation at 1km and 40km spatial aggregation scales with the subplots
each representing a 40km x 40km domain for different U.S. climate regions. The results at
each climate region show that when the lkm precipitation data product reports zero
precipitation, the corresponding 40km precipitation data product can report substantial
precipitation, sometimes over 10 mm. The effect of this bias is explored in more detail in
Figure 3-31 that presents summarized crop production metrics for year 2007 DSSAT
simulated rainfed corn in the midwest case study region using 1km and 40km soil and
meteorological input data. In this example, the simulation using 40km input data has 50.4
mm less precipitation during the growing season, but crop yield 720 kg/ha greater than the
simulation using 1km input data. This seemingly counter-intuitive discrepancy is explained
by the lesser water stress and the greater number of rain days in the 40km simulation

relative to the 1km simulation.
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Figure 3-30: Comparison of year 2005-2016 Daymet daily precipitation at 1km and
40km spatial aggregation scales. The subplots each represent a 40km x 40km domain for
different U.S. climate regions.
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(a) Year 2007 DSSAT Corn Simulation: 1km input data

*ENVIRONMENTAL AND STRESS FACTORS

| Environment Stressemmmmmmmmemmeaaan |
-Average ----Cumulative=-- | Min, 1l=Max Stress) I
Time Temp Sclar Evapo Pot TMIN TMIN TMAX TMAX TMAX RAIN|----Water----|---Nitrogen--|-Phosphorus-|

Span Rad Rain Trans ET < < > > > Photo Photo
days MI/m2 mm  0oC 28C 300C 32eC 34sC omm synth Growth synth Growth synth Growth
Emergence=-End Juvenile 26 2] 8 ©0.000 0.000 0.008 0.000 0.060 ©.000
End Juvenil-Floral Init 6 2] 3 0.000 0.000 0.000 ©.000 0.000 ©0.000
Floral Init-End Lf Grow 41 1 3 ©0.003 0.030 0.000 0.000 0.000 ©.000
End Lf Grth-Beg Grn Fil 1e 2 1l ©.187 0.258 ©0.000 ©0.000 0.000 ©.000
Grain Filling Phase 56 2] 17 ©.008 0.021 0.008 0.000 0.000 ©.000

Planting to Harvest

“Resource Productivity
Growing season length: 156 days

Precipitation during growing season 538.0 mm[rain]
Dry Matter Productivity 4.13 kg[pMl/m3[rain] = kg[DMI/ha per mm[rain]
vield Productivity 1.27 kglgrain yield]/m3[rain] = kglyieldl/ha per mm[rain]

Evapotranspiration during growing season 5 mm[ET]

87.5
Dry Matter Productivity 3.78 kgloml/m3 [ET] = 37.8 kgloml/ha per mm[ET]
vield Productivity 1.16 kglgrain yield]l/m3[ET] = 11.5 kglyieldl/ha per mm[ET]
Transpiration during growing season mm[EP]
Dry Matter Productivity kglpmM] /m3[EP] kg[DMl/ha per mm[EP]

vield Productivity kglgrain yield]l/m3[eP] kglyield]l/ha per mm[EP]
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(b) Year 2007 DSSAT Corn Simulation: 40km input data
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Figure 3-31: DSSAT summarized crop production metrics for year 2007 simulated
rainfed corn using (a) 1km and (b) 40km soil and meteorological input data. Midwest case
study region.

The behavior of simulated mean corn yields and irrigation demands with coarsening
resolution of input data, shown in Figure 3-32 through Figure 3-35 can be explained in

most cases by the change of the medians and minimums of growing season precipitation

as a result of spatial aggregation of gridded precipitation data (as shown in Figure 3-36).
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This finding suggests that the quantities of interest in this analysis (region mean crop yield
and irrigation demand) are more sensitive to the spatial averaging of daily precipitation
data over the spatial aggregation scale of other meteorological variables and soil input data.
To understand the influence of the spatial averaging of soil data, this exercise was repeated
except that soil data was always kept at 10km resolution (and meteorological data was
allowed to vary from lkm to 40km). The regional scale mean crop yields and irrigation
demands were largely indistinguishable compared to what is presented in figures below,
suggesting that 10km soil data is sufficient for regional scale crop modeling applications.
These are general comments from the simulation results across the tested regions, what
follows are summarized observations for each case study region:

Southeast: Any spatial resolution data (from 1km to 40km) can be used for modeling
regional mean rainfed production, except for low production (e.g. drought) years, during
which the use of 40km input data results in overestimation of crop yield by over 10 percent
compared to simulations driven by 1km data. During years with normal or high production
(e.g. years with moderate or relatively wet growing seasons), the use of 40km input data
results in underestimation of irrigation demand on the order of 10 percent relative to
simulations driven by 1km data.

West: For this region, 4km and 10km input data resulted in mean irrigated crop yields
that were overestimated and mean irrigation demand that were underestimated relative to
using 1km input data; however, these errors were less than 5 percent. Simulations using
40km data were problematic (and thusly not shown) due to the difficulty of resolving soil

characterisitcs at the 40km scale.
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South: Comments regarding this region are similar to the other case study regions,
except that during high production years there appears to be a drop in the mean of rainfed
and irrigated crop yields relative to the 1km simulations when using either 4km and 10km
input data. This unexpected finding is attributed to outlier temperature and spatial sampling
effects during specific years that were characterized as “high production”. For a few
simulations within this region, the random sampling procedure within each 40km
subdomain selected pixels containing growing season frost spells that terminated crop
production. These frost spells only occurred in simulations driven by the 4km and 10km
data, resulting in lower mean values for crop yield, but no such pixels were selected for the
lkm and 40km simulations.

Midwest: During low production, normal production, and high production years, any
spatial resolution data (from 1km to 40km) can be used for modeling regional mean rainfed
crop yield. Input data coarser than 1km do result in higher yields, due to the bias introduced
introduced by spatial averaging of precipitation data, but this bias does not exceed 5

percent.
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Figure 3-32: Comparison of mean rainfed corn yield, irrigated corn yield, and corn
irrigation amount with meteorological forcing and soil input data with spatial resolutions
ranging from lkm to 40km. The standard error of the mean is indicated by the shaded
region. Southeast case study region.
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The impact of spatial averaging of high-resolution gridded meteorological and soil
property data has implications for regional-scale agricultural modeling and planning, as
well as water resources management. For regional-scale assessments using crop model
simulations, it is ideal to use the finest spatial resolution and soil data available; however,
it may be adequate to use soil data as coarse as 10km and weather data (particularly
precipitation data) no coarser than 10km to sufficiently capture the mean crop yield and
irrigation demand. The findings of this research also suggest that it may be desireable, but
not necessary to spatially downscale remote sensing precipitation products (which are

typically no finer than 10km) for applications in regional scale agricultural modeling.

3.6 Summary

In this chapter, the accuracy of modern remote sensing precipitation data and the
sensitivity of the DSSAT agricultural model to the spatial resolution of weather and soil
input data was assessed.

In relation to the gauge-network based GRIDMET precipitation data set, remote sensing
retrievals of precipitation within the continental U.S. generally exhibit a wet bias, but the
nature of these biases vary with season and climate region. The most accurate remote
sensing precipitation retrievals are those that are heavily calibrated by rain gauge data,
which raises questions on whether such retrievals can be trusted over scarcely gauged
regions. Despite issues in accurately estimating the magnitude of precipitation events, the
remote sensing precipitation retrievals were highly correlated with the GRIDMET
reference data set, suggesting the occurrence of rain events is captured in the remote

sensing retrievals.
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GPM IMERG Version 5 Late Release tends to underestimate precipitation in the
western (West and Northwest) climate regions, while overestimating everywhere else. The
most severe overestimation is in the winter season, particularly in the Northwest, Northeast,
and Central climate regions. While winter time underestimation of precipitation is apparent
in the arid West and Southwest climate regions. The JAXA GSMaP-Gauge product agrees
well with the GRIDMET reference; however, this agreement is due entirely to the
assimilation of rain gauge data with the satellite retrievals.

With regard to removing errors from remote sensing precipitation retrievals by way of
using surface soil moisture data from the recent SMAP mission, at least two challenges
were found. Firstly, SMAP retrievals of surface soil moisture were uncorrelated with errors
in daily precipitation retrievals. Secondly, the erorrs in the remote sensing precipitation
retrievals are highly correlated in space.

It can be expected that if remote sensing retrievals of daily precipitation are incorporated
into calibrated agricultural descision support models (e.g. DSSAT), then rainfed and
irrigated crop yields would be substantially overestimated, except in regions with dry bias.
Likewise, irrigation demand would likely be underestimated. If incorporated with
streamflow models (such as SAC-SMA), it is expected that while the timing of peak flows
may be accurately captured, the magnitude of such flows would be severely overestimated,
especially during extreme events. Only remote sensing precipitation products that are
calibrated by gauges in the region may prove useful for incorporation into agricultural and
hydrologic models.

With regard to the sensitivity of the DSSAT model to the spatial averaging of daily

weather and soil inputs, this assessment shows that while finest spatial information of daily
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weather data is ideal, atmospheric variables and soil data with spatial resolution no coarser
than ~10km are acceptable for crop yield and irrigation assessments. Thus, it may not be
necessary to downscale modern remote sensing precipitation data products for the study
purpose; however, near-real-time correction of remote sensing precipitation data using rain
gauge data is essential to accurately capture the timing and magnitude of precipitation

events for applications in agricultural and streamflow modeling.
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CHAPTER 4

HINDCASTING AND NEAR-REAL-TIME PREDICTION OF CROP
YIELD, IRRIGATION DEMAND, DROUGHT, AND

HYDROLOGICAL FLOWS

4.1 Preliminary Study: Modeling regional crop yield and irrigation demand using
SMAP type of soil moisture data (El Sharif, et al. 2015)

In this section, a preliminary study completed by El Sharif et al. (2015) is presented
which explores a novel method for incorporating SMAP soil moisture data into the
DSSAT-CSM crop model for estimating regional crop yield and irrigation demand. This
study was performed before the advent of the SMAP satellite launch and before the
availability of SMAP data products. What follows is excerpted from what was published
in the Journal of Hydrometeorology.

4.1.1 Abstract

Agricultural models, such as the Decision Support System for Agrotechnology Transfer
— Cropping Systems Model (DSSAT-CSM), have been developed for predicting crop yield
at field and regional scales and to provide useful information for water resources
management. A potentially valuable input to agricultural models is soil moisture. Presently,
no observations of soil moisture exist covering the entire U.S. at adequate time (daily) and
space (~10 km or less) resolutions desired for crop yield assessments. Data products from

NASA’s upcoming Soil Moisture Active Passive (SMAP) mission will fill the gap. The
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objective of this study is to demonstrate the usefulness of the SMAP soil moisture data in
modeling and forecasting crop yields and irrigation amount. A simple, efficient data
assimilation algorithm is presented in which the agricultural crop model DSSAT-CSM is
constrained to produce modeled crop yield and irrigation amounts that are consistent with
SMAP-type data. Numerical experiments demonstrate that incorporating the SMAP data
into the agricultural model provides an added benefit of reducing the uncertainty of
modeled crop yields when the weather input data to the crop model are subject to large
uncertainty.
4.1.2 Capsule

SMAP-type soil moisture data is used to increase the precision of modeled crop yield

and irrigation application forecasts at the ~10km spatial scale using DSSAT-CSM.
4.1.3 Section 1: Introduction
4.1.3.1 Background

Agricultural production systems have evolved significantly in recent years to address a
growing national and global demand for food supply. The advent of modern measurement
technologies such as geographic information systems (GIS), global positioning systems
(GPS), and other remote sensing tools at finer spatio-temporal resolutions, and crop system
models have provided the opportunity to guide agricultural related water resources
management at both field and regional scales with reduced dependency on costly and
uncertain in-situ field experiments. Precision agriculture has been largely focused on
maximizing field and regional crop yields and associated economic benefits. The tools
involved in precision agriculture may also guide regional water resources management as

more accurate modeling and forecasting of water demand for crop production would lead
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to a more efficient allocation of limited water supplies. Careful monitoring and provision
of water resources for agricultural use is critical as agriculture demands a large fraction of
total water use in the United States and the world. In 2005, irrigation in the United States
consumed 128 billion gallons per day, accounting for 37 percent of all freshwater
withdrawals and 62 percent of all freshwater withdrawals excluding thermoelectric
withdrawals (Kenny et al. 2009). The 2013 National Climate Assessment (NCA)
(NCADAC 2013) indicates that under the A2 emissions scenario, U.S. freshwater
withdrawals will increase by 25 to 35% in the coming 50 years, with % of this increase due
to irrigation and % to landscape watering and power generation (Brown et al. 2013;
Georgakakos et al. 2014). Because of these and other stresses, a key message of the 2014
NCA is that “in most U.S. regions, water resources managers and planners will encounter
new risks, vulnerabilities, and opportunities that may not be properly managed with
existing practices.” The information of space-time distribution of soil moisture is critical
for irrigation decisions and for more efficient use of water resources across multiple
sectors.

Agricultural models, such as Decision Support System for Agrotechnology Transfer —
Cropping Systems Model (DSSAT-CSM) (Tsuji et al. 1994), have been developed to
predict the yield of various crops at field and regional scales. Crop yield modeling and
prediction provide essential information for water resources management. One key output
of the agricultural models is soil moisture. Presently, no soil moisture observations
covering the entire U.S. exist with adequate time (daily) and space (~10 km or less)
resolutions preferred for crop yield assessments. Instead, estimates of soil moisture at fine

spatial scales are commonly derived from downscaling remotely-sensed soil moisture data
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(Cheng et al. 2008; El-Sharkawy 2011; NCDC 2006; NRCS 2013; WRF 2013). The NASA
Soil Moisture Active Passive (SMAP) mission satellite is scheduled for launch on 8
January 2015 and aims to measure soil moisture from space at fine (down to 9 km for the
combined active radar and passive radiometer product) spatial and temporal (2-3 days
global coverage) resolution for the first time. The depth of soil moisture retrieval will be
the topmost Scm of the soil profile. Incorporating SMAP soil moisture data products into
crop system models such as DSSAT-CSM has the potential to improve the accuracy of
crop yield prediction especially with regard to regional irrigation forecasting and water
resources management. Although agricultural water use dominates consumption of water
in many parts of the world, reliable estimates of historical and future agricultural water
demand are lacking for some times and regions. In the southeastern U.S., for example,
individual farmers do not routinely monitor or record their water usage, and they are not
obligated to report their water use to any governing body. This situation presents significant
challenges for retrospective analysis of inter-annual and seasonal water demand. Irrigation
practice is strongly dependent on soil moisture conditions, and accurate fine resolution soil
moisture data are vital to regional water resources managers and related stakeholders who
strive to efficiently and equitably allocate limited water resources especially in the face of
a changing climate.
4.1.3.2  Problem Statement

Crop yield and water demand estimates depend on accurate, high resolution spatio-
temporal data of weather and/or soil moisture that are not available at sufficient resolutions
for all regions. NASA’s SMAP mission will provide much needed soil moisture data at

relatively high spatio-temporal resolution with global coverage. This data can potentially
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support more accurate crop yield and irrigation demand forecasts, which would be
particularly useful in regions where observed weather or soil moisture data are sparse or
unavailable. In the developing world, for example, where food-security is a major concern,
the current and historical weather data critical to forecasting crop yield and irrigation
demand are subject to substantial uncertainty (WFP and IFAD 2011), leading to large
uncertainty in the modeled crop yield and irrigation demand. A potential benefit of SMAP-
type data is to reduce the uncertainty in modeled crop yield and irrigation demand by
constraining model simulations to be consistent with the remotely-sensed top soil moisture
data.
4.1.3.3 Objectives

The objectives of this study are to:

1) Develop an algorithm by which daily SMAP-type top soil moisture data can be
assimilated into the DSSAT-CSM for modeling of crop yield and irrigation amount at the
~10km spatial scale.

2) Reduce the uncertainty in the forecast of crop yield and irrigation demand by
combining SMAP-type remotely-sensed soil moisture data with other weather
measurement data products.

4.1.3.4 Outline

The article is organized as follows:

Section 1 introduces the value of precision agriculture models — models designed to
explore site-specific, high-efficiency, sustainable agriculture with the help of detailed,
modern data sets (McLoud and Gronwald 2007; Shibusawa 1998; Zhang et al. 2002) — and

the potential benefit the upcoming SMAP remotely-sensed soil moisture data products can
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provide in forecasting crop yield and irrigation demand. The objectives of this study are
also stated. An overview of previous studies on crop system models, in particularly
DSSAT-CSM, the role of soil moisture data in such models, and the description of the
upcoming SMAP mission and its data products is also provided. Section 2 presents the
methodology for developing a synthetic “ground truth” soil moisture sequence using
observed weather data and DSSAT-CSM top soil moisture output and describes how the
SMAP data product is expected to be within a specified error tolerance of the synthetic soil
moisture data set. SMAP-derived information on soil moisture is then combined with
supplementary data and incorporated into the DSSAT-CSM agricultural model to simulate
crop yield and irrigation demand. Section 3 describes the study region for which the
methodology is applied and identifies relevant data sources. Results and conclusions are
presented in Sections 4 and 5 respectively.
4.1.3.5 Literature Review

DSSAT-CSM:

The Decision Support System for Agrotechnology Transfer — Cropping Systems Model
(DSSAT-CSM) is a widely used bio-physical model for simulating the phenology, growth,
development, and yield of various crops and cultivars given inputs of soil, weather, and
management conditions (Jones et al. 2003). DSSAT-CSM version 4.5 (Hoogenboom et al.
2012) includes 29 crops and fallow fields (Daroub et al. 2003; Hoogenboom et al. 1999;
Jones et al. 2001; Jones et al. 2003; Liu et al. 2011; Tsuji et al. 1994). DSSAT-CSM is
composed of a main driver program, a land unit module, and modules of weather, soil,
plant, soil-plant-atmosphere interaction, and management. The main driver program

controls each of the primary modules and allows each module to read inputs, initialize
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variables, compute rates, integrate variables, and write outputs independent of other
modules (Jones et al. 2003). A brief description of the modules included in DSSAT-CSM
is presented in Table 1 (Jones et al. 2003).

History of incorporating soil moisture data into agricultural models:

Improving agricultural models by incorporating soil moisture measurements and/or
remote-sensing data has become a growing field of study. Baier and Robertson (1968)
found that wheat yields from 39 plantings in Canada over five seasons were more closely
related to soil moisture conditions than rainfall and maximum and minimum temperatures,
a significant finding as the DSSAT-CSM soil water balance algorithm still uses
precipitation and maximum and minimum temperatures as model input (Jones et al. 2003).
Batts and Kaleita (2008) investigated the impact of synthetic top Scm soil moisture data
on the DSSAT-CSM model simulations in a series of modeling experiments for a maize
field in Ames, lowa. Differences in modeled yield using their assimilation method in some
cases were greater than 10 percent depending on year, soil type, and nitrogen fertilizer
application rate of the synthetic experiments. Groenendyk (2011) investigated assimilation
of in-situ soil moisture data into the DSSAT-CSM through a Kalman Filter to simulate the
winter-wheat crop growing seasons of 2003-05 in Maricopa, Arizona. Model improvement
(defined by closer agreement with field measurements of crop yield and canopy biomass)
occurred when soil moisture data was assimilated into the top 3cm and top Scm of the soil
layer. Ines et al. (2013) utilized an Ensemble Kalman Filter to assimilate remotely-sensed
AMSR-E soil moisture and MODIS Leaf Area Index (LAI) data products into DSSAT-
CSM to model year 2003 — 2009 maize yields in Story County, lowa. Data assimilation

improves the correlation between modeled and observed crop yield from 0.47 (no data
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assimilation) to 0.65 (with combined assimilation of soil moisture and LAI data). Maas
(1988) explored four techniques for incorporating remotely-sensed data into a simulation
of a white-maize monoculture at a USDA Research Farm in Texas with direct input of
remotely-sensed data being the simplest of data assimilation methods under test. However,
the direct input method required frequent observations that were not available. Moulin et
al. (1998) addressed challenges in incorporating coarse resolution remote-sensing data to
estimate regional crop yields using a similar approach. Delécolle et al. (1992) also used
remote-sensing data assimilation techniques for several categories of crop models and
recommended that regional analysis may be performed by aggregating simulated crop
yields from individual fields. Mo et al. (2005) used remotely-sensed data of crop canopy
leaf area index (LAI) with a process-based soil-vegetation-atmosphere transfer (SVAT)
model to predict crop yield, water consumption, and water use efficiency for a sub-region
of the North China Plain. Mishra et al. (2012) have tested the Atmospheric Land Exchange
Inverse (ALEXI) satellite-derived soil moisture estimates as a surrogate for precipitation
data in the DSSAT-CSM for crop yield simulation for two climatically contrasting
locations in Alabama and Indiana. The soil moisture data with the required resolutions are
often obtained through downscaling. Bldschl et al. (2009) provide a statistical technique
for downscaling 25 km remotely-sensed soil moisture data to 1 km resolution over Europe.
Lin, et al. (2011, 2013) used a coupled the WRF-tRIBS-VEGGIE hydrologic model to
downscale Early Adopter SMAP data products. Use of high spatio-temporal resolution soil
moisture data for modeling crop yields is an active field of research.

SMAP and other soil moisture measurement missions.
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Remote-sensing soil moisture data sets have been derived from signals of active and
passive microwave sensors on satellites (Bartalis et al. 2007; Njoku et al. 2003; Owe et al.
2008) since the early 1980s. Without such observations, soil moisture estimates often
depend on reanalysis data subject to large uncertainties (Dorigo et al. 2012; Ferguson and
Wood 2011). Satellite missions include, SkyLab (Entekhabi et al. 2010), ERS-1, ERS-2,
AMSR-E ,SMMR, SSM/I, TMI, ASCAT, and SMOS (Dorigo et al. 2010). These soil
moisture data products have spatial resolutions ranging from 12km to 50km and daily,
weekly, and monthly temporal resolutions covering various regions of the earth.

According to the National Research Council’s (NRC) Decadal Survey (NRC 2007), the
data product of SMAP mission, whose satellite is scheduled to be launched on 8 January
2015, was characterized with high scientific and practical applications value in multi-scale
hydrologic and environmental studies (Entekhabi et al. 2010). The SMAP mission will
measure the top 5 cm layer soil moisture and soil freeze/thaw state from space at fine (down
to 9 km) spatial and temporal (2-3 days global coverage) resolution using (the first space-
borne) L-band (active) radar and an L-band (passive) radiometer instrumentation
(Entekhabi et al. 2010). One standard deviation about true soil moisture in the Level 2 9km
SMAP data product is specified not to exceed 0.04 cm3cm-3. Incorporating SMAP soil
moisture data into crop system models such as DSSAT-CSM has the potential to improve
the accuracy of crop yield simulations related to regional irrigation forecasting and water
resources management.

4.1.4 Section 2: Methodology and Data
The purpose of this study is to quantify the impact of SMAP-like remote-sensing soil

moisture data on DSSAT-CSM agricultural model forecasts of agricultural yield and
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irrigation demand using synthetically generated data sets with statistical characteristics
(uncertainty) similar to those of the upcoming SMAP products. This soil moisture data
product is then used to “filter” an ensemble of DSSAT-CSM model runs using synthetic
weather input data. In this study, stochastic forcing is introduced by adding measurement
noise to daily weather inputs. The “control” scenario refers to DSSAT-CSM modeled
results using the entire ensemble of synthetic input data in DSSAT-CSM model runs. The
“SMAP” scenario refers to DSSAT-CSM model runs in which modeled top soil moisture
is consistent with the SMAP-like data. Agreement is assessed via the absolute difference
between modeled and the “ground truth” top layer soil moisture content for each day of the
simulated growing season. Model runs in which the SMAP-derived error tolerance criteria
for soil moisture content is violated less than five percent of the growing season are selected
as “feasible” or “SMAP-consistent” model runs. The SMAP-derived absolute difference
threshold is assumed to be a function of the “true” soil moisture for the current day of
simulation. “SMAP-consistent” model runs are used to generate samples of simulated rain-
fed and irrigated crop yield and irrigation demand. Under the irrigation scenarios, the
DSSAT-CSM is programed to automatically irrigate the top soil layer to saturation when
the modeled top layer soil moisture drops below a user-specified threshold. An overview
of the filtering procedure is illustrated in Figure 1. Details regarding the acceptance criteria
for a model run to be considered either feasible (SMAP-consistent) or infeasible is shown
in the Figure 2 flowchart. Metrics used to assess the usefulness of soil moisture data include
the reduction in the standard deviation of modeled crop yield and year-end irrigation

application depth after the soil moisture data filter is applied. It is also of interest to record
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whether incorporation of SMAP-like data impacts the mean modeled crop yield and
irrigation amount.

The experiments involved in this study are listed in Table 2. Experiment #1 explores
how daily soil moisture data can reduce uncertainty in modeled crop yield under the
scenario in which daily precipitation is subject to random measurement errors. Experiment
#2 builds on this premise and subjects all required daily weather variables — precipitation,
maximum and minimum air temperature, and solar radiation — to measurement errors.
These two experiments represent scenarios in which field data on weather are available,
but are subject to modest uncertainties due to measurement error or spatial
interpolation/extrapolation of weather data, as may be the case in data-scarce regions. The
method of generating the surrogate “ground truth” soil moisture data set and weather
measurement sequences for a case study region and incorporating them into DSSAT-CSM
experiments mentioned in Table 2 is described below.

4.14.1 SMAP-like soil moisture data

In this study, DSSAT-CSM modeled soil moisture driven by observed weather input is
referred to as “ground truth”. The SMAP-like 9km spatial and daily temporal resolution
data product is assumed to be within a specified error tolerance of the synthetic “ground-
truth” data set. Operating over a SMAP 9km pixel, the DSSAT-CSM point-scale model
simulates crop yield and irrigation amount assuming homogeneous field, soil, crop, and
weather conditions. DSSAT-CSM is then constrained to keep modeled top layer soil
moisture within SMAP-derived error tolerances for each day of the growing season while

measurement errors are introduced into daily weather inputs. When these constraints are
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fulfilled for at least 95 percent of the growing season, it is concluded that DSSAT-CSM
has “assimilated” SMAP-like data.

While the upper bound of the error (one-sigma) in SMAP Level 2 (combined radar and
radiometer) data product is 0.04 cm’cm?, pre-launch tests of the SMAP retrieval
algorithm suggest that the actual error is expected to be smaller (e.g. approximately 0.03
cm3cm-3) (Das et al. 2011). The error may be further reduced through constraining the
SMAP-like data by the information of case study site. Under this condition, we suggest
that the actual, or “effective” effective error for the SMAP product varies with true soil
moisture: peaking halfway between wilting point and saturation and diminishing near
wilting point and saturation. Figure 3 illustrates a characterization of the effective error o
in the SMAP data product with a wilting point near zero and saturation water content of
0.361 cm?cm™. The maximum effective error is set at a 0.025cm’cm™ according to our
analysis of SMAP calibration mission results from Das et al. (2011). For each day of the
DSSAT-CSM simulated growing season, modeled soil moisture content for a feasible
model run must remain within 1.96 times the effective error (representing two standard
deviations) of the synthetic “ground truth” soil moisture data set for at least 95 percent of
the modeled growing season. If this acceptance criteria is achieved, then the model run is
considered to be “feasible” and consistent with SMAP-like data.

4.1.4.2  Experiment #1.: Soil moisture data corrects errors in daily rainfall
input

When precipitation observations are available with significant uncertainty, the DSSAT-
CSM may be used to “correct” rainfall input through DSSAT-CSM modeling the dynamics

of top layer soil moisture with soil moisture data used as a rainfall correction “filter”. Using
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information on the percent error in daily rainfall measurements, an ensemble of stochastic
rainfall sequences is simulated. Each of these weather realizations are used as input into a
model run of DSSAT-CSM. Whenever a weather realization results in a modeled daily
time series of top soil moisture within the effective error threshold for at least 95 percent
of the growing season, the model run is selected as a “SMAP-consistent”. Modeled rain-
fed and irrigated crop yields are sampled from these feasible model runs. In this
experiment, daily precipitation data is stochastically generated based on daily observations.
For each day of simulation, 2,000 samples of precipitation are generated from a truncated
normal distribution with a mean equal to the observed precipitation and a standard
deviation equal to 20 percent of the observation. The distribution is bounded by zero and
1.1 times the observation (to allow for both under- and over-estimation errors). Introducing
this type of noise into rainfall data mimics measurement and/or spatial
interpolation/extrapolation errors. In this experiment, other daily weather variables
(incoming solar radiation, maximum and minimum air temperatures) are assumed to be
known and equivalent to observations as mentioned in Table 2. In this study, the absolute
error threshold for DSSAT-CSM modeled daily top soil moisture is set at 1.96 times the

daily effective SMAP error shown in Figure 3.
4.1.4.3  Experiment #2: Soil moisture data corrects errors in daily weather

input

When observed meteorological variables such as incoming solar radiation, precipitation,
and maximum and minimum air temperatures are available with significant errors,
incorporating SMAP-like top soil moisture data into DSSAT-CSM can mitigate model

errors due to incorrect weather input. Error-contaminated measurement data sets are
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developed using different methods appropriate for each weather variable. The rainfall data
is obtained using the method described in Experiment #1. The daily solar radiation data is
simulated using a truncated Gaussian distribution with a mean equal to the day’s
observation of solar radiation. The truncated distribution is bounded by zero and 1.2 times
the historical data of radiation to cover the cases of both over- and under-estimation. The
standard deviation is set as 10 percent of each day’s historically recorded solar radiation.
Daily maximum and minimum temperatures were simulated from the observation data
superimposed with a white noise following a truncated Gaussian distribution between -1
and +1 °C with a mean of zero and standard deviation of 0.5 °C. Experiment #2 represents
a practical scenario in which observations are available for multiple weather variables, all
subject to measurement and/or interpolation/extrapolation error.

Each of these weather realizations are used as input to DSSAT-CSM model runs. The
synthetic soil moisture data, with the SMAP-derived effective error threshold, is used to
select SMAP-consistent model runs just as in Experiment #1. Similarly, modeled rain-fed
and irrigated yields are sampled from these feasible model runs.

4.1.5 Section 3: Data
4.1.5.1 Ames, lowa

The case study site was Ames, lowa USA located at 42°1° N, 93°44°W (Central Iowa,
USA) at an elevation of 327 meters (NRCS 2013). As published by the National Climatic
Data Center (NCDC) Climate Services Branch (NCDC 2006), the Iowa terrain is mostly
comprised of rolling hills with a climate dominated by moist southerly wind from the Gulf
of Mexico in the summer, northwesterly wind of cold, dry Canadian air in the winter, and

occasionally air masses from the Pacific Ocean and the Desert Southwest. Summer daily
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high temperatures (July) reach 28°C and winter daily low temperatures (January) drop to -
15.6°C. Statewide annual precipitation is 864mm with the majority of precipitation
occurring during the late April to early October growing season. lowa’s climate and rich
soils are ideal for rain-fed corn and soybean crops.
4.1.5.2 Weather Data

This study uses 2003 weather data from Station 2031 (Ames, lowa) from the Soil
Climate Analysis Network (SCAN) managed by the Natural Resources Conservation
Service (NRCS) (USDA-NRCS-NWCC 2014). Minimum weather inputs for DSSAT-
CSM include daily data of incoming solar radiation, maximum and minimum temperatures,
and precipitation. The SCAN station includes temperature probes and a rain gauge to
provide the rainfall and temperature data. For daily measurement entries from the SCAN
site containing erroneous or missing data, data entries were replaced with available data
from the previous day. Only three days during 2003 had missing data at the SCAN site.
Daily solar radiation data were taken from the NASA-POWER Agro-climatology (NASA
2014) data set.

4.1.5.3  DSSAT-CSM Initialization

DSSAT-CSM model simulations for 2003 in this study were based upon crop, soil-type,
and management parameters from a 1999 Ames, lowa rain-fed maize cropping scenario.
The 1999 scenario data files were provided as one of the default maize experiments in
DSSAT-CSM version 4.5.0.0. and were developed by Drs. J. Lizaso and B. Batchelor of
the Department of Agricultural and Biosystems Engineering, lowa State University. Model
results from the 1999 experiment agreed well with in-situ measurements of crop yields.

DSSAT-CSM simulation of Ames, lowa crop yields using weather observations from years
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1996 — 1999 are compared with averaged county-level crop yields reported by the United
States Department of Agriculture National Agricultural Statistics Service (USDA: NASS)
as shown in Figure 4. Modeled crop yields in these years were generally within 20 percent
of the county average, suggesting that the DSSAT-CSM model reasonably simulates the
region’s hydrology, soil-type, expected crop growth, and crop stresses, at least for the non-
drought years of 1996 — 1999. One of the required inputs for DSSAT-CSM initialization is
the initial soil moisture profile. Initial conditions for 2003 soil moisture profile were
obtained from a 2002 DSSAT-CSM model run using a fallow crop. The soil moisture
profile from December 31, 2002 was assigned to the soil water profile for January 1, 2003.
Year 2003 model runs were initialized from January 1, 2003 with the simulated growing
season from May 27, 2003 to October 31, 2003. Table 3 lists some management parameters
used to initialize DSSAT-CSM simulations, and Table 4 lists soil layer and soil-type
parameters used in the study.
4.1.5.4 Crop Yield Statistics

Results from the numerical experiments are compared to the reported annual (growing
season) maize yields for year 2003 from the United States Department of Agriculture
National Agricultural Statistics Service (USDA:NASS). To facilitate comparison with
USDA reported yields, DSSAT-CSM calculated dry yields were reduced by five percent
to account for mechanical losses during the harvest process. USDA reported yields were
converted to dry weight assuming a grain moisture content of 15.5 percent. Relevant county
level statistics are presented in Table 5 (USDA 2013). It is important to note that this study
models crop yield at the scale of a single SMAP pixel (~10km) and not county-level yield,

comparison of model results to county level data is done only for reference.
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4.1.6 Section 4: Results

As shown in Figure 5, the soil moisture filtering procedure was able to reduce the
uncertainty in modeled rain-fed crop yield for Experiments #1 and #2 in which
measurement uncertainties were introduced into daily weather variables. Simulated rain-
fed crop yields in those experiments were brought closer to the modeled rain-fed crop yield
from true weather input. The USDA county-level yield for year 2003 (an average of Boone
and Story counties in lowa) converted to dry weight is indicated in Figure 5 for reference.

For Experiment #1, in which only daily rainfall was subject to measurement error, the
soil moisture filter selected 727 SMAP-consistent model runs from a pool of 2,000. The
mean modeled rain-fed crop yield did not change significantly after the soil moisture filter
was applied (increasing by only 2 percent); however, the uncertainty (standard deviation)
in the modeled crop yield was reduced by approximately 30 percent as shown in Table 6.
Similarly, when measurement error was introduced into all daily weather inputs
(Experiment #2), the soil moisture filter selected 872 SMAP-consistent model runs from a
pool of 2,000, and the standard deviation in modeled rain-fed crop yield was reduced by
approximately 18 percent.

As evidenced by the uncertainty in the control modeled crop yields, measurement errors
in weather input to DSSAT-CSM can introduce significant uncertainty in model results.
Errors such as those introduced in Experiment #1, directly influence the evolution of soil
moisture in each layer of the soil profile. Water flux downwards through the soil profile
(via drainage) and upwards (via diffusion and root water uptake) is also affected. Lack of
predictive skill, due to erroneous water input, would introduce errors with regard to

modeling nutrient transport and would cause inaccurate yield estimates. Likewise, errors
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in solar radiation and temperature data, such as those included in Experiment #2, cause
errors in crop photosynthesis, soil evaporation, and crop transpiration, which, in turn, affect
the transport of water and nutrients through the soil profile and lead to errors in crop growth
and yield. Due to the highly non-linear relationship between weather variables, soil water
and nutrient transport dynamics, and crop growth, it is not entirely clear what type of error
(over- or under-estimation) would be introduced to crop yield due to combined (and/or
competing) errors in precipitation, solar radiation, and air temperature. Overestimation of
low precipitation events and underestimation of extreme (and rare) precipitation events
could lead to water surpluses offsetting drought effects. However, when coupled with
reduced photosynthesis and reduced evaporation due to underestimation of solar radiation,
any benefit from the plentiful supply of water would be lost. Water surplus coupled with
overestimation of solar radiation would obviously accelerate photosynthesis leading to
overestimation of crop yield. It is of interest to note that the errors introduced to rainfall
input for Experiment #1 and to weather inputs for Experiment #2 resulted in modeled top
soil moisture content that was outside of SMAP specifications for 65 percent and 56
percent of the crop yield simulations respectively. Guiding the DSSAT-CSM to produce
results consistent with the SMAP-type top soil moisture data, as accomplished by the novel
soil moisture filtering procedure developed in this study, can correct some potentially
dramatic model biases introduced by such input/measurement errors.

Under the automated irrigation scenario, drought stresses on photosynthesis and crop
growth were virtually eliminated, and crop yield approached the modeled irrigated levels
using true weather input as shown in Figure 6. This occurs regardless of whether external

soil moisture data was available or not. Because of the achievement of potential production

97



in the absence of water stresses, modeled crop yield variation was negligible in the irrigated
crop simulations. Mean irrigated crop yield and mean irrigation amount for Experiments
#1 and #2 did not significantly change with application of the soil moisture filter as shown
in Figure 6 and Figure 7; however, the standard deviation in irrigation amount was reduced
(marginally) by 14 and 9 percent respectively for Experiments #1 and #2 as shown in Table
7.
4.1.7 Section 5: Conclusions and on-going research

This study introduces an efficient algorithm for assimilating SMAP top layer daily soil
moisture data into the DSSAT-CSM model. The soil moisture filtering procedure
constrains the agricultural model to produce results consistent with SMAP-like remotely-
sensed soil moisture data, thereby reducing the uncertainty in forecasted crop yield and
irrigation amount. Incorporating SMAP-like top layer soil moisture data into DSSAT-
CSM resulted in increased precision of modeled rain-fed crop yield, bringing model
estimates of mean crop yield into closer agreement with DSSAT-CSM rain-fed yield using
observed weather input. Furthermore, the data assimilation algorithm developed for this
study mitigated the impact of measurement errors in critical weather inputs on modeled
crop yield and irrigation amount, highlighting the potential utility of both this algorithm
and of the SMAP top soil moisture data product.

This study is limited to a single site (an experimental “field” in Ames, lowa) for a single
growing season (2003). Further research will expand the case-study spatially and
temporally to the regional scale, multiple years, and for various rain-fed and irrigated crops.

This study is also limited by the assumption that “ground-truth” 9km soil moisture can be
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accurately determined from weather observations, detailed site specific soil properties, and
the other required minimum input to the point-scale DSSAT-CSM.

As the SMAP satellite data products will not be available until early 2015, and reliable
soil moisture observations at the Ames, lowa case study site were not available, DSSAT-
CSM modeled top layer soil moisture driven by observed daily weather input served as a
surrogate for “ground-truth” soil moisture and is assumed to mimic the SMAP soil moisture
data product. Likewise, the potential to merge information on local physical constraints
with SMAP data products to further reduce the error in SMAP remotely-sensed beyond the
0.04cm3cm-3 mission specification needs further investigation. It is of interest to validate
the conclusions of this study as soon as soil moisture data from the SMAP mission are
available.

Merging remotely-sensed SMAP soil moisture data with DSSAT-CSM is a topic of on-
going research, and we look forward to conducting on-going research on the following
topics:

* The impact of lower effective error in top layer soil moisture data, (e.g., 0.01
cm3cm-3) on precision in crop model output.

»  How SMAP-like data can guide DSSAT-CSM model runs in which other inputs
such as crop cultivars, soil type, and soil hydraulic characteristics are uncertain.

*  Performing DSSAT-CSM simulation of drought years to further investigate the
benefit of SMAP-type data to reduce uncertainty in irrigation forecasts.

* Incorporating the SMAP Level 4 Root-Zone soil moisture product to further reduce
uncertainties in DSSAT-CSM forecasts.
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4.1.10

Tables

Table 1: Description of DSSAT-CSM modules and sub-modules

Modules

Sub modules

Behavior

Main program
(DSSAT-CSM)

Controls time loops, determines which
modules to call based on user input switches,
controls print timing for all modules

Land unit

Provides a single interface between cropping
system behavior and applications that control
the use of the cropping system. It serves as a
collection point for all components that
interact on a homogenous area of land

Weather

Reads or generates daily weather parameters
used by the model. Adjusts daily values if
required, and computes hourly values

Soil

Soil dynamics

Soil temperature
module

Computes soil structure characteristics by
layer. This module currently reads values from
a file, but future versions can modify soil
properties in response to tillage, etc.
Computes soil temperature by layer

Soil water module

Computes soil water processes including snow
accumulation and melt, runoff, infiltration,
saturated flow and water table depth.
Volumetric soil water content is updated daily
for all soil layers. Tipping bucket approach is
used

Soil nitrogen and
carbon module

Computes soil nitrogen and carbon processes,
including organic and inorganic fertilizer and
residue placement, decomposition rates,
nutrient fluxes between various pools and soil
layers. Soil nitrate and ammonium
concentrations are updated on a daily basis for
each layer

SPAM

Resolves competition for resources in soil—
plant-atmosphere system. Current version
computes partitioning of energy and resolves
energy balance processes for soil evaporation,
transpiration, and root water extraction

CROPGRO Crop
Template module

Computes crop growth processes including
phenology, photosynthesis, plant nitrogen and
carbon demand, growth partitioning, and pest

and disease damage for crops modeled using
the CROPGRO model Crop Template (soybean,
peanut, dry bean, chickpea, cowpea, faba
bean, tomato, Macuna, Brachiaria, Bahiagrass)

Individual plant
growth modules

CERES-Maize; CERES-
Wheat; CERES-Rice;
SubStor-Potato;
Other plant models

Modules that simulate growth and yield for
individual species. Each is a separate module
that simulates phenology, daily growth and
partitioning, plant nitrogen and carbon
demands, senescence of plant material, etc.

Management
operations module

Planting

Determines planting date based on read-in
value or simulated using an input planting
window and soil, weather conditions

Harvesting

Determines harvest date, based on maturity,
read-in value or on a harvesting window along
with soil, weather conditions

Irrigation

Determines daily irrigation, based on read-in
values or automatic applications based on soil
water depletion

Fertilizer

Determines fertilizer additions, based on read-
in values or automatic conditions

Residue

Application of residues and other organic
material (plant, animal) as read-in values or
simulated in crop rotations
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Table 2: Experiment description

Incoming
P- Description Solar I\ﬁ:}; ii'-\llllt'i Precipitation (mm)
No. P Radiation Tem * C0) P
(MJ/m?) P
Soil moisture data . .
1 corrects errors in Known Known Subject to 20% daily
. 3 . measurement error.
daily rainfall input.
Soil moisture data Subject to Subject to
. +10% daily +0.5°C daily | Subject to 20% daily
2 corrects errors in
. . measurement | measurement | measurement error.
daily weather input.
error. error.

Table 3: DSSAT-CSM Initialization

Experiment Parameter

Description

Maize Cultivar

DK 611

Plant Population

4.7 plants/m?

Nitrogen Fertilizer Application

Not applicable”,

Soil Type

Clarion Loam

Planting Date

May 27, 2003

Harvest Date

October 31, 2003

* Crop nitrogen demand is assumed to be fully met throughout growing season; nitrogen

transport and nitrogen-deficit plant stress is not simulated.

Table 4: Site specific soil profile characteristics for Ames, lowa USA

Table 5: USDA: NASS Year 2003 lowa Maize yield

(Boone & Story Counties)

. Dry Yield
Region (Lyg/ha)
Story County 8,725
Boone County 9,038
Average 2.882
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Sat. Org.
Depth | Soil Water Drained Sat. Water | Hyd. Carbon Sand | Clay | Silt
(ecm) | Lower Limit | Upper Limit Content Cond. | Content (%) (%) | (%)
(em/h) (%)
10 0.110 0.300 0.361 33 2.03 79 21 0
30 0.110 0.300 0.361 33 2.03 79 21 0
60 0.129 0.310 0.371 3.3 0.44 73 27 0
90 0.129 0.310 0.371 33 0.44 73 27 0
120 0.107 0.229 0.369 33 0.15 83 17 0




Table 6: Change in uncertainty of modeled rain-fed crop yield after applying daily soil
moisture (SM) filter

Standard Deviation in
modeled rain-fed crop yield
Fﬁx[])). Description (kg/ha) Percent Change
N Before SM After SM
Filter Filter
Soil moisture data
1 corrects errors in 223 157 -30%
daily rainfall input.
Soil moisture data
2 corrects errors in 302 249 -18%
daily weather input.

Table 7: Change in uncertainty of modeled cumulative irrigation amount after applying daily
soil moisture (SM) filter

Standard Deviation in
modeled irrigation amount
Fﬁxl?' Description (mm) Percent Change
) Before SM After SM
Filter Filter
Soil moisture data
1 corrects errors in 5.9 5.1 -14%
daily rainfall input.
Soil moisture data
2 corrects errors in 6.1 5.6 -0%
daily weather input.

4.1.11 Figures

Stochastically Generated Swthetlc
DSSAT-CSM (Geoundztui)
T Soil Moisture .
nput Variables Data Rain-fed Crop Yield

Imigated Crop Yield

Cumulative Irrigation
Application

SMAP-Consistent

soil moisture sequences

Filter:
‘Accept Simulated Soil
Moisture sequences
within tolerance of
SMAP-like data

Gorresponding
feasible DSSAT-CSM DSSAT-CSM
Input Variables

Simulated
DSSAT-CSM Soil Moisture
Sequances

Figure 1: Flow chart describing process of using “ground truth” soil moisture data and SMAP-
derived error tolerances in modeled top layer soil moisture to “filter” through DSSAT-CSM
model runs.
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Figure 2: Flow chart detailing process of determining the SMAP-Consistency (feasibility) of a
DS5AT-C5M model run. For each day of the growing season, the absolute difference between
the DSSAT-CSM modeled seil moisture 8 and the “ground truth” synthetic soil moisture # is
compared to the effective error in SMAP-like measurement o. A violation counter V is
incremented each day the acceptance criteria is not fulfilled. If acceptance criteria is violated
more than five percent of the days of the growing season, then the model run is deemed as
“infeasible”, and if otherwise, then "SMAP-Consistent”.

0.030
0.025 .
0.020 ; 1
0.015 J . N
0.010 / Ay

0.005

1-sigma (o) Standard Deviation in SMAP-type Soll Moisture (em’/em®)

000 4] 0.1805
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0.381

Figure 3: Simple characterization of effective error in the Level 2 9km SMAP data product for
a soil type with a wilting point near zero and saturation water content of 0.361 cm3/cm-3.
Maximum error is assigned where the soil moisture has more freedom to vary; minimum
error is assigned at the extremes of wilting point and saturation.
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Figure 4: Comparison of DSSAT-CSM modeled crop yield to USDA-NASS averaged county
yield. Yield average reported for Boone and Story counties near Ames, lowa USA.
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Figure 5: Modeled rain-fed crop yields for Experiments #1 and #2.
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Figure 6: Modeled irrigated crop yields for Experiments #1 and #2.
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Figure 7: Modeled cumulative irrigation amounts for Experiments #1 and #2.

4.2 Incorporation of remote sensing SMAP L3 Enhanced surface soil moisture
data in DSSAT-CSM rainfed crop simulations

In the following case studies, surface soil moisture estimates from the SMAP L3
Enhanced data product are incorporated into year 2015 and 2016 county-level rain-fed
maize DSSAT-CSM simulations. Simulations are also driven by daily meteorological
forcing from the GRIDMET data set and gridded soil profile data from the Harvest Choice
Global High Resolution Soil Profile Data set. In these hindcasting exercises, when data
availability allows, remote sensing surface soil moisture estimates replace the DSSAT-
CSM modeled daily 5 cm soil moisture estimates. In this ways, it is hoped that incorporation
of SMAP estimates would “correct” the soil moisture dynamics in the DSSAT model
simulations as the growing season progresses, thereby bringing calibrated DSSAT
estimates of county-level rain-fed crop yield in closer agreement with USDA NASS
reported crop yields. DSSAT crop yield estimates resultant from incorporation of SMAP
data are also compared with simulated crop yields without SMAP data incorporation
(referred to as DSSAT Control) to assess improved agreement with USDA NASS reported
crop yields.
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Table 4-1 lists some of the important input data and parameters for modeling of rain-
fed maize for year 2015 and 2016. The DSSAT-CSM model is run at multiple point
locations within the county boundaries. The same locations are used for the control run
simulations and simulations that incorporate SMAP estimates of surface soil moisture.
With regard to gridded data, DSSAT simulations are driven by data from the pixel nearest
to each point location. To facilitate comparison of simulated crop yields with USDA NASS
reported yields, USDA yields are converted from bushels per acre to kilograms per acre
with an assumed moisture content of 15.5 percent.

Table 4-1: Calibrated input parameters for rainfed county-level DSSAT-CSM maize
simulations.

DSSAT-CSM Input Parameter
Location Numt?er of Maize Planting Plant Popuplation Row Spacing
point cultivar date [plants/m? (plants/acre)] [cm (in)]
locations
Story County, 88 PB 8 April 26"
Towa
Livingston
th
County, New 110 AS 740 May 11 7.9 (30,000) 76 (30)
York
Lancaster Caroill
County, 159 & May 17
. 1118
Pennsylvania

Figure 4-1 illustrates the box plots of simulated county-level rain-fed maize both with
and without incorporation of SMAP surface soil moisture data, while Figure 4-2 compares
DSSAT simulated 5 cm soil moisture (without incorporation of remote sensing soil
moisture data) and the corresponding SMAP surface soil moisture retrieval. For year 2015
in Story County, IA, the rain-fed maize crop received sufficient rainfall such that the crop
yields with or without SMAP data incorporation were identical, even though the SMAP
surface soil moisture estimates were clearly drier than the 5 cm soil moisture modeled in

the DSSAT control experiment. In year 2016 however, the dry bias (relative to the DSSAT
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control) caused a substantial reduction in modeled crop yield and a broadening of
variability in the county-level estimate. In both years, modeled crop yields were not
brought in closer agreement with the USDA reported mean county-level crop yield. For
Livingston County, NY, SMAP surface soil moisture estimates were typically wetter than
the DSSAT Control, and this translated to higher crop yields, but did not greatly reduce
variability in the crop yields. For Lancaster County, PA, SMAP bias in surface soil
moisture (relative to the DSSAT control) was not as clear as the other case study locations,
as a result, DSSAT Control and DSSAT+SMAP crop yields were nearly identical. In
evaluating the case studies collectively, the variability in modeled crop yield due to
meteorological forcing data and model error (as assessed by deviation from the USDA
reported county-level crop yield) appears to be much greater than can be mitigated by
incorporation of SMAP surface soil moisture retrievals, especially when SMAP surface

soil moisture retrievals may themselves be subject to substantial biases.
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Figure 4-1: Box plots of simulated year 2015 and 2016 county-level rain-fed maize yield
without SMAP data incorporation (DSSAT control) and with SMAP data incorporation

(DSSAT+SMAP)
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Figure 4-2: Comparison of DSSAT simulated and SMAP estimated surface soil
moisture for the rain-fed maize case study locations

4.3 Incorporation of remote sensing GPM IMERG daily precipitation in DSSAT-
CSM crop simulations
In the following case studies, daily cumulative precipitation estimates from the GPM
IMERG Version 5 Late Release data product are incorporated into year 2015 and 2016
county-level rain-fed and irrigated maize DSSAT-CSM simulations. Simulations are also
driven by daily meteorological forcing (excluding rainfall, as GPM IMERG is being used
for precipitation forcing) from the GRIDMET data set and gridded soil profile data from
the Harvest Choice Global High resolution Soil Profile Data set. DSSAT crop yield
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estimates resultant from incorporation of GPM IMERG data are also compared with
simulated crop yields without GPM IMERG data incorporation (referred to as DSSAT
Control) to assess improved agreement with USDA NASS reported crop yields.

Table 4-2 lists some of the important input data and parameters for modeling of rain-
fed and irrigated maize for year 2015 and 2016. The case study counties in Iowa, New
York, and Pennsylvania are entirely rainfed while the counties in Georgia, California, and
Texas have crop acreages that are split between rainfed and irrigated acreages as listed in
Table 4-3. For simulation of irrigated crops, the DSSAT-CSM ‘“Automatic-Irrigation”
option is used in which the simulated available soil moisture within a user specified depth
is monitored daily. When the available soil moisture drops below a threshold percentage
value, the DSSAT-CSM model applies irrigation on that day until the soil profile saturated.
The DSSAT-CSM model is run at multiple point locations within the county boundaries.
The same locations are used for the control run simulations and simulations that incorporate
GPM IMERG estimates of daily precipitation. With regard to gridded data, DSSAT
simulations are driven by data from the pixel nearest to each point location. To facilitate
comparison of simulated crop yields with USDA NASS reported yields, USDA yields are
converted from bushels per acre to kilograms per acre with an assumed moisture content

of 15.5 percent.
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Table 4-2: Calibrated input parameters for rainfed and irrigated county-level DSSAT-

CSM maize simulations.

DSSAT-CSM Input Parameter
Location Nuggﬁi of Maize Planting Plant Popuplation Row Spacing
. ) .
locations cultivar [plants/m* (plants/acre)] [cm (in)]
Story County, 88 PB 8 April 26"
Towa
Livingston
County, New 110 AS 740 May 11t
York
Lancaster Caroill
County, 159 & May 17
. 1118
Pennsylvania
Miller County, 36 PIO 3382 | March 29" 7.9 (30,000) 76 (30)
Georgia
San Joaquin
County, 218 PB 8 April 8th
California
Wayne
County, 70 DK 611 May 4
Nebraska
Dallam WASH- th
County, Texas 231 GRAIN-] | March 15

Table 4-3: Calibrated DSSAT-CSM input parameters for automatic-irrigation of maize

DSSAT-CSM Automatic-Irrigation Input Parameter
Location Perceptage .of acreage Soil moisture Available soil moisture
with irrigation montoring depth threshold
(%) [cm (in)] (%)
Miller County, Georgia 77 50
San J oaq}lin County, 100 70
California 30 (12)
Wayne County, 20
Nebraska 50
Dallam County, Texas 47

As shown in the box plots of maize yield and irrigation amount in Figure 4-3,

incorporation of remote sensing precipitation data makes a substantial difference in model

results; however, it is not clear that incorporation of GPM IMERG data improves the

accuracy DSSAT-CSM simulated yields relative to USDA reported yields. For Story

County (year 2015), Livingston County (year 2016), Miller County (year 2015), San

Joaquin County (years 2015 and 2016), Wayne County (years 2015 and 2016), and Dallas



County (years 2015 and 2016), overestimation of growing season precipitation (relative to
the GRIDMET reference) led to increased crop yields and reduced irrigation demand.
Cases in which the amount of overestimation in GPM growing season precipitation exceeds
the amount of underestimation in irrigation application suggest that extreme events are
being overestimated by GPM IMERG. When this data is incorporated into DSSAT, large
amounts of runoff and drainage from the bottom of the soil profile (both types of water are
useless to crops) are estimated by the DSSAT-CSM model. The difference in dry spell
lengths (consecutive days of zero precipitation during the growing season), between the
GRIDMET reference and GPM IMERG also impact modeled crop yield results. At the
Story County, lowa 2016 and Miller County, Georgia 2016 locations, cumulative growing
season precipitation was less in the GPM IMERG product than in the GRIDMET reference;
however, crop yields driven by GPM IMERG data were still higher than the control
scenario. This is attributed to the shorter dry spell lengths in the remote sensing

precipitation product.
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San Joaquin County, California

2015

GPM

- HIH

2015

DSSAT Control

= t-{[}

8 & 8 8

3 8 £ =
.EE_:oamm_t_+9um_n_5mmmmm5§_o

.._.E._..

DSSAT+GPM

2015

..E._

DSSAT

2016

...TE-._..

2 8 8 8

GPM

DSSAT Control

£ E 2 S
(ww) uonebuy) + dindid uoseag BumoID

- {J+

2016

. .:_._.

8 8 g g g

& = @ @ s
(ww) unowyy uoiebuy| ‘nwng funod

GPM

+]]

o

®
=
&

E

£

3

S s

<

3

a

o

g 8 8 3 ’§ °

(shep) .umcﬂ lledg fug uosess Bumain

DSSAT+GPM

DSSAT

g 8 g 8 g

3 = 3 & 3
(ww) unowy uonebiw) ‘nwny Aunod

|

2016

SR

s g 8§ 2 g °

8 B8 ¥ =8

GPM

DSSAT Control

(shep) :ﬂm,._ﬁ |ladg Aug uosess Buimoio

DSSAT+GPM

DSSAT Control

USDA

=
e #o_llgln_ g IIIDulll_
2
=3
~
E E
5 5
Q o
@ @
@ @
a a
2 8 g 2 2 g 2 g 2 8 9 g
¢ 8 8 8 8 ¢ ® ¢ 8 8 8 8 8@ ®
(ww) vonepdald uoseas Bumols (ww) uoneydioaid uoseas Gumoissy
=
&
7
HJ I
[
o
g
m @
w
- o = |-
8 _AE..* 3 ] _ AEA_
3
=)
_ i _
Fa)
@
B
2 @ 2 5 8 2 5 o g 8@ 2@ 8 8 8 g o
g 8 8 8 8 8 8 8 2 8 8 8 8 8 8 g
g 8 g8 8 8 8 8 2 8 8 8 8 8 8
&8 £ 8 8 38R B B &8 £ 8 8 8 R 8 8
(ey/6x) pjaiA doig Aunon (eyBy) poip doip Auno)

]

2015

B[ =3

2 8 3 8 2

o @ )

2 =
(wuw) uonebuy| + didald uoseas Bumoi

2015

2 8 8 8 8 <°
&

& = =

(ww) Junowsy uonebuy| ‘Inwn? Luno)

=

yne County, Nebraska
2015 i

N o @ © ¥ o o

Wa

2015

650
00
50
00
50
00

(ww) uoneyda.g uoseas Bumoin

_ ==
=

14000

12000 |
1000 [
0000 |
9000
8000 -
7000

=]
8
Q
8

(euyBy) piaiA doig Aunod

=

GPM

DSSAT Control

DSSAT+GPM

DSSAT

GPM

DSSAT Control

E@E 51m=3 lleds fug uoseag Bumossy

DSSATIGPM DSSAT Control GPM

DSSAT

usba

L
I
£
GPM

2016

1
1
A
DSSAT Control

3 8 2 g 3
£ S & 3 8
(ww) uonebuy) + divdid uoseas BuMoID

e
<4
DSSAT+GPM

2016

-
4
L]
DSSAT

2 8 8 8 8 =©°

L -
{ww) unowy uonebiy) ‘|nwng Auno)

GPM

==

2016

+
*
DSSAT Control

1---{ ]

84 o ® © w ~ o

.&ME .:mzma lleds Aug uoseas Buimai

GPM

H -

2016

HJ}H

3 88 83 8

S © B @ W %
(ww) voneydwald uoseas Bumoss

DSSAT Control

2016
- ]
1
i -+
Q * |
]
L
DSSAT DSSAT+GPM

<
g
@
=]
2 2 2 2 2@ g 2
8 8 8 8 8 8 8
=] S €S 28 g ¢
g & € & 8 R

2
8
g
2
(e

u/Bx) pielA doud Aunod

119



Dallam County, Texas
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Figure 4-3: Box plots of simulated year 2015 and 2016 county-level maize yield and irrigation amount without GPM IMERG data
incorporation (DSSAT Control) and with GPM IMERG data incorporation. Box plots of growing season cumulative precipitation and
consecutive dry days derived from GRIDMET (DSSAT Control) and GPM IMERG are also provided for reference.
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4.4 Incorporation of remote sensing JAXA GSMaP daily precipitation products
in DSSAT-CSM crop simulations

In this section, DSSAT-CSM crop simulations incorporating remote sensing retrievals
of daily cumulative precipitation are carried out with the same method as the previous
section, except that instead of GPM IMERG data, JAXA GSMaP-Gauge data is
incorporated into the DSSAT-CSM model.

As shown in the box plots of maize yield and irrigation amount in Figure 4-4,
incorporation of remote sensing precipitation data makes a substantial difference in model
results; however, it is not clear that incorporation of GSMaP-Gauge data improves the
accuracy DSSAT-CSM simulated yields relative to USDA reported yields. In general,
growing season rainfall in the GSMaP-Gauge data product is in closer agreement with the
GRIDMET reference than the GPM IMERG Late Release Version 5 data product. The
GSMaP-Gauge data also appears to be more spatially homogenous than GPM IMERG as
evidenced by the relatively smaller spread in growing season precipitation and simulated
irrigation amount for some of the case study sites. However, similar to the conclusion from
incorporating SMAP surface soil moisture estimates in the DSSAT model, errors in remote
sensing retrieval or precipitation, combined with errors in the DSSAT model, are still too
large to be mitigated by remote sensing retrievals of daily precipitation. At the Story
County, Iowa 2015 and 2016; Miller County, Georgia 2015 and 2016; and Dallam County,
Texas 2015 locations, cumulative growing season precipitation was less in the GSMaP-
Gauge product than in the GRIDMET reference; however, crop yields driven by GSMaP-
Gauge data were still higher than the control scenario. This is attributed to the shorter dry

spell lengths in the remote sensing precipitation product.
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Lancaster County, PA
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San Joaquin County, California
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Dallam County, Texas
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Figure 4-4: Box plots of simulated year 2015 and 2016 county-level maize yield and irrigation amount w1th0ut JAXA GSMaP-Gauge
data incorporation (DSSAT Control) and with GSMaP-Gauge data incorporation. Box plots of growing season cumulative precipitation
and consecutive dry days derived from GRIDMET (DSSAT Control) and GSMaP-Gauge are also provided for reference.
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4.5 Historical Climate Variability and Crop Yield / Irrigation Assessment: Case

Study in the Apalachicola-Chattahoochee-Flint (ACF) River Basin

In this case study, multi-sensor gridded data products including University of Idaho
GRIDMET daily meteorological data (GRIDMET), HarvestChoice Global high-resolution
soil profile database for crop modeling applications (HC-GHRSPD), and USDA-NASS
CropScape Cropland Data Layer, are innovatively integrated with the DSSAT cropping
system model (DSSAT-CSM) to assess crop yield and irrigation demand for various staple
crops harvested in the Apalachicola-Chattahoochee-Flint (ACF) river basin. The top crops
grown in the region include peanuts, corn, soybeans, and cotton.

The ACF basin and its 14 sub-basins (located in the states of Georgia, Alabama, and
Florida, USA) are shown in the figure below. In this study, the impact of historical climate
variability on current (year 2016) cropping and irrigation practices in each of the 14 ACF

sub-basins is assessed.
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Figure 4-5: A map of the ACF basin and its 14 sub-basins.

To simulate crops at multiple point locations, the location coordinates (latitude-
longitude pairs) for each crop field of interest within each of the ACF sub-basins are
extracted from the pixels of the USDA-NASS CropScape data set from year 2016. The
number of CDL single-planting field pixels (in year 2016) were identified for each major

crop in the ACF sub-basins as listed in the following table.
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Table 4-4: Quantity of 30 x 30 m? single-planting corn, peanut, cotton, and soybean
field pixels identified in the 2016 USDA-NASS Cropland Data Layer for each ACF sub-
basin.

ACF Quantity of USDA-NASS CDL Pixels

Eub_ Corn Peanut Cotton Soybean All Crops
asin
1 11,193 1 9 1,486 12,689
2 13 0 0 48 61
3 86 0 0 40 126
4 179 0 38 257 474
5 20,999 11,487 44,690 46,998 124,174
6 2,214 1 510 1,077 3,802
7 2,016 13 380 2,910 5,319
8 18,561 40,692 65,383 3,351 127,987
9 239,078 262,004 732,300 62,665 1,296,047
10 51,905 55,931 76,923 2,792 187,551
11 297,168 460,481 552,651 37,226 1,347,526
12 32,567 109,355 120,469 9,698 272,089
13 190,871 450,847 459,888 21,702 1,123,308
14 27,201 196,768 182,688 16,462 423,119

This assessment uses the University of Idaho GRIDMET gridded meteorological data
set. For computational efficiency, the individual crop fields (identified earlier) are each
mapped to the nearest 4 x 4 km? pixel of the GRIDMET. Then, DSSAT-CSM is run to
simulate the annual crop yield from 1980-2016 (37 years) with GRIDMET meteorological
forcing and soil characterization data from the HarvestChoice Global High-Resolution Soil
Profile Database (HC-GHRSPD). Model results (rainfed and irrigated crop yields as well
as irrigation amounts) are subsequently weighted and aggregated based on the number of
crop fields mapped to a unique pixel of GRIDMET meteorological forcing. This procedure
allows us to capture the impact of spatial variability in sub-basin weather on crop yield and
irrigation demand without the computational expense of running DSSAT-CSM for each 30
x 30 m? crop field in the ACF sub-basins.

4.5.1 DSSAT-CSM Calibration
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DSSAT-CSM calibration for rainfed crop simulation requires selection of the crop
cultivar, planting date, row spacing, and plant population. Simulation of irrigated crops
additionally requires specification of a soil moisture management depth and corresponding
available soil-water content threshold to trigger an irrigation application using DSSAT-
CSM’s “Auto-Irrigation” Water Management Option. The option to simulate nitrogen
stress is also available and has been incorporated into the cotton simulations which are
particularly sensitive to nitrogen stresses. The remaining crops, (corn, peanut, and soybean)
are assumed to have all their nitrogen demands met during the growing season, thus,
nitrogen stress is not modeled for those crops. Using historical data from USDA on
reported corn crop yields and assumptions regarding typical irrigation practices in the ACF
region, the calibration inputs for rainfed and irrigated corn, peanut, cotton, and soybean
simulations were specified as shown in the table below.

Table 4-5: DSSAT-CSM input parameters for the rainfed and irrigated corn, peanut,
cotton, and soybean simulations in the ACF basin.

Model Parameter Corn Peanut Cotton Soybean
Planting Date (1980- . g May 16 May 5th May 25t
2016)

. . DP 5634
Cultivar B73 X MO17 Georgia Green DP 555 BG/RR (Maturity Group V)
Row Spacing 30 inches (76 cm) 36 inches (90 cm) 36 inches (90 cm) 30 inches (76 cm)
Plant Population 30,000 plants/acre 85,000 plants/acre 50,000 plants/acre 90,000 plants/acre

P (7.9 plants/m?) (21 plants/m?) (12.4 plants/m?)  (22.2 plants/m?)

Irrigation: Soil 12 inches 20 inches 12 inches 12 inches
Management Depth (30 cm) (50 cm) (30 cm) (30 cm)
Irrigation: Available soil 50% 60% 50% 50%

water content threshold

Nitrogen Fertilizer

Nitrogen stress not
simulated

Nitrogen stress not
simulated

45 1bs/acre (50
kg/ha) of N
fertilizer applied
at 4 inch (10 cm)
depth at planting
and again at 46
days after
planting

Nitrogen stress not
simulated
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4.5.2 ACF Assessment Methodology

For each crop in each ACF sub-basin, the simulated rainfed and irrigated yields for
present-day (2016) crop fields forced by historical (1980-2016) meteorological conditions
are illustrated in time-series plots. Crop yields are reported in dry mass units normalized
by area (kilogram/hectare). Similarly, the modeled irrigation demand is also reported.
Variability bars are included for each year of meteorological forcing to show the variability
of modeled crop yield and irrigation demand (due to variation in meteorological forcing
and soil property data) in each sub-basin. This exercise assesses how present-day rainfed
and irrigated fields would have produced had they been subjected to the historical
meteorology. These results could reasonably be extrapolated to estimate the actual
historical production and total amount of water used by these major crops of the
agricultural sector if the total area of rainfed and the total area of irrigated crop fields are
known for each historical year and for each sub-basin.

Included with each figure are corresponding linear regression equations with the
probability that the estimated slope of the linear trend (in units of kg/ha per year for crop
yield and depth units of mm per year for irrigation demand) is greater than zero. The
regression equations are estimated using Bayesian Linear Regression. Under the
conservative assumption of non-informative priors for the regression parameters, Bayesian
Linear Regression provides a data-dominated and analytical derivation of the posterior
probability distribution of the trend — a non-central Student t-distribution (Elster et al.
2015) — and thereby facilitates a more comprehensive assessment of the trend’s direction
(e.g., positive or negative) than provided by traditional, frequentist simple linear

regressions (Kéry 2010; Baldwin and Larson 2017). As indicated in Figure 4-6, once the
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posterior probability distribution of the linear regression slope parameter is derived, the
certainty regarding slope’s direction can be characterized in terms of intuitively meaningful
probability statements (e.g “the slope is very likely positive”, “the slope is virtually certain
to be negative”, etc.) based on what proportion of the slope probability distribution lies to
the right of zero, indicated as “+prob” in subsequent figures. For convenience, the
probability statements and associated probability ranges used in this study are modified

from those adopted by the Intergovernmental Panel on Climate Change (IPCC) in their

most recent assessment report (IPCC 2014).

. Inconclusive
Positive Slope 1 Negative Slope

/O

Very
Likely
VL+

Virtually
Certain
VC+

Virtually
Certain
VC-

Proportion of
Distribution to the ~ 1.000 0.990 0.900 0.667 0.333 0.100 0.010 0.000
right of zero (+prob):

Figure 4-6: an example posterior Student t-distribution for the regression slope
determined using Bayesian Linear Regression. Probability statements (with concise
abbreviations) describe the certainty regarding the slope’s sign (i.e. positive or negative).

The assessments presented here do not incorporate the influence of technology
innovation on crop yield. Crop yield gains due to technology innovations are significant
and need to be considered when comparing simulated versus observed crop yield data; this

investigation however, focuses on the impact of historical climate variability on yield and

irrigation demand given current crop management and irrigation practices and technology.
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4.5.3 ACF Assessment Results: Corn

Figure 4-7 illustrates the simulated rainfed corn yields for present-day (2016) corn fields
forced by historical (1980-2016) meteorological conditions for each of the ACF sub-
basins. The figure also indicates the mean crop yield (in units of kilograms of dry weight
per hectare, kg/ha) for the 37 year period (1980 — 2016) , and two 18 year periods (1980 —
1997, and 1998 — 2015) along with corresponding annual trends (calculated using the
previously mentioned Bayesian linear regression methodology) and the probability of these
trends being positive. During the 1980 — 2016 historical period, the ACF sub-basins in the
Lower portions of the Chattahoochee and Flint basins and the Apalachicola basin (sub-
basins 10 to 14) show rainfed corn crop yields that are “likely” or “very likely”” decreasing
annually. Furthermore, the results show that after 2005, agricultural droughts are increasing
in intensity and duration, compared to the pre-2005 period, especially in the southern sub-
basins. Analysis of the two 18-year periods (1980 — 1997 and 1998 — 2015) in sub-basins
10 to 14 shows that the decline in rainfed crop yield is a phenomenon of the latter period,
as the mean rainfed crop yield during the 1998 — 2015 period is 13 to 21 percent less than

that of the 1980 — 1997 period.
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Figure 4-7: Simulated ACF mean rainfed corn yield for 1980-2016 and present-day corn fields.
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Figure 4-8 and Figure 4-9 illustrate the simulated irrigated yields and corresponding
irrigation amounts for present-day (2016) corn fields forced by historical (1980-2016)
meteorology for each ACF sub-basin. Similar to the rainfed analysis, mean and trend
information is also presented for the 1980 — 1997 and 1998 — 2015 periods. Simulation
results show that irrigated corn yields are increasing annually in the northern sub-basins
(which are not heavily cropped), but decreasing in the more heavily cropped southern sub-
basins. The post-2005 period clearly shows that the demand for water has markedly
increased in response to the increased severity and duration of agricultural droughts. In the
southern half of the ACF, the impact of the year 2011 drought stands out with over 300
mm of irrigation demand, the greatest simulated demand for the entire 1980 — 2016 period.
A review of local and national news during summer 2011 confirms the severe effects of
this historic drought. The New York Times (Severson and Johnson 2011) reported:

COLQUITT, Ga. — The heat and the drought are so bad in this southwest corner of
Georgia ... Corn, a lucrative crop with a notorious thirst, is burning up in fields. Cotton
plants are too weak to punch through soil so dry it might as well be pavement.

Farmers with the money and equipment to irrigate are running wells dry in the
unseasonably early and particularly brutal national drought that some say could rival the
Dust Bowl days.

Another finding from this analysis is that despite the “very likely” positive trend in
applied irrigation in the southern half of the ACF, these sub-basins surprisingly still report
decreasing irrigated corn yield. This indicates that some climatic variable, other than water

availability (through precipitation and irrigation), impacts corn yield negatively. After

134



examination of the ACF meteorological data, the declining yield trend is attributed to the
change of the mean daily and minimum daily temperatures. Assessment of GRIDMET air
temperature data shows that both of these temperatures are steadily increasing in recent
years. Furthermore, a temperature-plant stress relationship is known to exist limiting
carbohydrate production when daily temperature exceeds the ideal temperature for
photosynthesis (DSSAT-CSM captures this relationship through a quadratic penalty
function). For corn in particular, the ideal daily temperature is 26 degrees Celsius (Ritchie
et al. 1998).

Lastly, Figure 4-9 shows that the irrigation amount to achieve optimal crop yield varies
markedly from year to year depending on drought conditions. This is true for all ACF sub-
basins but especially for sub-basins 6 to 14, after 2005. The assessment results show that
minimum, average, and maximum irrigation amounts have increased considerably in recent
years, with the maximum irrigation often exceeding mean irrigation by 100%. Similar
results were also found for the irrigation depths of the other crops investigated in this study.

The agricultural assessments presented here are consistent with the climatological
trends in the ACF, which indicate that seasonal air temperature is increasing and seasonal
precipitation is decreasing in the majority of ACF sub-basins. These findings suggest a
decline in crop water productivity (amount of crop yield per unit of irrigation
application/precipitation) and raise concerns about the long term sustainability of the

current water and agricultural management practices.
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Figure 4-8: Simulated ACF mean irrigated corn yield for historical meteorology and present-day corn fields.
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Figure 4-9: Simulated ACF mean irrigation amount for historical meteorology and present-day corn fields.
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4.5.4 ACF Assessment Results: Peanut

Figure 4-10 illustrates the DSSAT-CSM simulated rainfed peanut yields for present-day
(2016) peanut fields forced by historical (1980-2016) meteorological conditions for each
of the ACF sub-basins. In contrast with corn (discussed earlier) ACF sub-basins with
significant peanut acreage do not generally report a strong trend when considering the full
1980 — 2016 period. However, when focusing on the 1998 — 2015 period, sub-basins 9 —
14 show relatively strong trends that are either “likely” or “very likely” negative. During
the 1980 — 1997 period, these sub-basins report rainfed peanut yields increasing by 20 to
32 kg/ha (dry weight) per year; however, during the 1998 — 2015 period, nearly all sub-
basins report rainfed peanut yields as decreasing by 30 to 60 kg/ha per year. It is noted that
in spite of the trend reversal, mean rainfed peanut yield during the 1998 — 2015 period
generally exceeds that of the 1980 — 1997 period. However, this finding is attributed to a
short-lived benefit that peanut crops may receive, in the absence of water stress, from rising
temperatures (until an optimal temperature threshold is surpassed) and increased
atmospheric CO2 concentrations. The analysis of irrigated peanut yields which follows
highlights the ephemeral nature of these positive influences on peanut yield as increases in
irrigated peanut yield are slowed during the 1998 — 2015 period despite raised

temperatures, increased CO2 concentrations, and the absence of water stress.
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Figure 4-10: Simulated ACF mean rainfed peanut yield for 1980-2016 and present-day peanut fields.
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Figure 4-11 and Figure 4-12 illustrate the simulated irrigated yields and corresponding
irrigation amounts for present-day (2016) peanut fields forced by historical (1980-2016)
meteorology for each ACF sub-basin. Irrigated peanut yields are increasing in all sub-
basins in tandem with irrigation demand. However, the post-2005 period clearly shows that
the demand for water has increased markedly in response to the increased severity and
duration of agricultural droughts. It is of interest to note that the positive trend in irrigated
peanut yield during the 1998 — 2015 period is only a fraction of the positive trend during
the 1980 — 1997 period. In the southernmost basins, for example, the trend in irrigated yield
during the 1998 — 2015 period is only 14 to 30 percent of that from the 1980 — 1997 period.

The result of increasing peanut yields (both rainfed and irrigated) seems to highlight the
resilience of the peanut plant in the face of rising temperatures in the ACF. In contrast to
corn, the optimal air temperature for peanut vegetative growth is relatively higher, ranging
from 25° to 28° C (Wood 1968; Cox 1979; Vara Prasad et al. 2000). Furthermore, previous
studies have shown that peanut may benefit from increased atmospheric CO2
concentrations, moreso than corn (Jones et al. 2012). However, as suggested by the
apparent negative trend in rainfed peanut yields in nearly all sub-basins with substantial
peanut acreage after year 2005 and the considerably slowed increase in irrigated peanut
yield during the 1998 — 2015 period, ambient mean temperatures may have already
surpassed the optimal. As a result, further increases in atmospheric CO2 concentrations
may not offset the negative impacts of continued increases in temperature beyond the
optimal, even in the absence of water stress (e.g. when the crop is fully irrigated). This
finding portends that, similar to corn, peanut crop will be subject to reduced crop water

productivity, even if projected increases in irrigation demand are sufficiently met.
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Figure 4-11: Simulated ACF mean irrigated peanut yield for historical meteorology and present-day peanut fields.
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Figure 4-12: Simulated ACF mean irrigation amount for historical meteorology and present-day peanut fields.
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4.5.5 ACF Assessment Results: Cotton

Figure 4-13 illustrates the DSSAT-CSM simulated rainfed cotton yields for present-day
(2016) cotton fields forced by historical (1980-2016) meteorological conditions for each
of the ACF sub-basins. The ACF sub-basins with significant cotton acreage report stable
rainfed cotton yield, as shown by the small magnitude of the regression slopes and the near
50% probability of positive trends. However, similar to peanut, the “inconclusive” trend in
rainfed cotton crop yield over the 1980-2016 period masks the reality that the temperature
stresses of recent years (which are expected to continue into the future) and decreases in
precipitation are severely impacting yield. In the more recent 1998-2015 period, crop yields
are decreasing rapidly as shown by the regression slopes characterized as “likely” or “very

likely” to be negative.
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Figure 4-13: Simulated ACF mean rainfed cotton yield for 1980-2016 and present-day cotton fields.
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Figure 4-14 and Figure 4-15 illustrate the simulated irrigated yields and corresponding
irrigation amounts for present-day (2016) cotton fields forced by historical (1980-2016)
meteorology for each ACF sub-basin. Irrigated cotton yields are increasing in all sub-basins
as well as irrigation demand. However, the positive annual trend over the 1980-2016 period
in irrigated yields is reduced in the warmer, southernmost basins in comparison to the rest
of the ACF. This finding suggests, that similar to the other major crops assessed, mean air
temperatures have exceeded the optimal for crop yield. In reviewing the literature, a series
of well-watered, temperature- and CO2-controlled studies in Mississippi showed that
optimal mean temperatures for cotton yield were between 25° and 28° C, with fruit
retention steeply declining until zero with temperature increases from 28° C to beyond
33°C (Reddy et al. 1992; Hodges et al. 1993).

Comparison of the trends in irrigated cotton yield from the 1980 — 1997 period with
those of the 1998 — 2015 emphasize in negative impact of increased temperatures despite
the absence of water stress. During the 1980-1997 period, irrigation demand for cotton was
stable or decreasing, even for the southernmost sub-basins, while irrigated crop yields were
increasing in the majority of sub-basins with extensive cotton acreage. The 1998-2015
period stands in sharp contrast to this, with irrigation demand generally increasing in the
sub-basins as indicated by the “likely positive” regression slopes during this period. For
example, in the southern sub-basins, mean irrigation depth during the 1998-2015 period
has increased by 25 up to 40 percent compared to the 1980 — 1997 period. It is also
concerning that despite the increase in irrigation application during the 1998-2015 period,
irrigated cotton yields continued to decline annually (indicated by slopes that are “virtually

certain” or “very likely” to be negative) in the southern half the ACF basins where the most
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cotton acreage lies. This finding indicates a sharp reduction in cotton’s crop water
productivity (e.g. increased water application coupled with persistently decreasing yields)

in the face of rising temperatures and reduced precipitation in the ACF.
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Figure 4-14: Simulated ACF mean irrigated cotton yield for historical meteorology and present-day cotton fields.
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Figure 4-15: Simulated ACF mean irrigation amount for historical meteorology and present-day cotton fields.

148

%15 1684 MM

H0- 161,05 mmiyr (VL] +prob:0.971
B097. 421 mmiyr (W :
08" 15 209 mmys L vprob: G885

ACF 06

Means:
B8 1SEB mm
2047, 1376mm
%15 1688 mm

Trends:

B0 1.50 mmiyT (VLs; +proo: 0.996
‘8097, 478 mmiyr (Vo) +prcp: 0,059
G815 324 mimiyr (Lv); vprob: 0875

ACF 08

Means:
8016 1427 mm
297, 1317 mm
"85 1480 mm

80416 086 mMyr (L) +prod: TE
“B0"07, -3.18 mmiyr (L +prots 0. 77
98" 15 1,80 mmyr L+ +prod: 073

ACF 10
Means:

“E0-16 1084 mm
8097, 86.7 mm

"G5 11BEmm

Trengs:

E0-16 128 mmyr (VL +prod: 0.984
80297, .77 mmiye (I, +orcty: 0.385
9815 227 mmyr L +prob: 0813

ACF 12
Means:

16 1122mm

“E0- 16 1.16 mnyr (Lo +prob: 0885
8097, 0.85 mye (I, vorety. 0378
G415 224 mMyr (L +prod: Q78

“H0- 16 1.27 mmiye (VL +prob:0.957
*60-°47. 0.45 mmyr (I, +oret: 0.416
G415 1:90 mMyr L+ +prod: Q78




4.5.6 ACF Assessment Results: Soybean

Figure 4-16 illustrates the simulated rainfed soybean yields for present-day (2016)
soybean fields forced by historical (1980-2016) meteorological conditions for each of the
ACF sub-basins. The linear trend in soybean yields over this period is positive in the sub-
basins with the most soybean acreage (sub-basins 5, 9, and 11 along the Flint River).
However, similar to other major crops tested in this report, the overall positive trend in
rainfed soybean crop yield over the 1980-2016 period masks the reality that the temperature
stresses of recent years (which are expected to continue into the future) and decreases in
precipitation are adversely impacting yield. Rainfed soybean yields were generally
increasing annually in ACF during the 1980-1997 sub-period, but are now “likely”
decreasing in the southern basins as shown by the negative regression slopes during the

1998-2015 period.
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Figure 4-16: Simulated ACF mean rainfed soybean yield for 1980-2016 and present-day soybean fields.
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Figure 4-17 and Figure 4-18 illustrate the simulated irrigated yields and corresponding
irrigation amounts for present-day (2016) soybean fields forced by historical (1980-2016)
meteorology for each ACF sub-basin. Irrigated soybean yields are increasing steadily with
“virtual certainty” throughout the period in all sub-basins. Irrigation demand is increasing
as well. In contrast to other crops, irrigated soybean yields are increasing in both the 1980-
1997 and 1998-2015 periods. In fact, in many of the sub-basins the 1998-2015 positive
trend, exceeds that of the 1980-1997 period. In the Upper Chattahoochee for example, the
1998-2015 trend in irrigated soybean yield is nearly three times that of the 1980-1997
period. These findings suggest that the increasing temperatures in the ACF have not yet
exceeded the optimal maximum temperature for the crop, provided that the markedly
increased water demands are satisfied.

It remains to be seen however for how long can the annual increases in irrigated soybean
yield can be sustained in the face of the ACF’s changing climate. Previous studies have
shown that soybean yield in the absence of water stress increases until daytime/nighttime
temperatures exceed 26°C/20°C, after which yield declines due to temperature stresses
(Huxley et al. 1976; Sionit et al. 1987). CO2 enrichment has been reported to reduce seed
weight, but this deleterious effect is balanced by an increase in seed number, such that
soybean yields generally benefit from elevated CO2 concentrations; however, increase in
yield components due to increases in CO2 is highly dependent on temperature (Baker et al.

1989; Baker and Allen 1993).
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Figure 4-17: Simulated ACF mean irrigated soybean yield for historical meteorology and present-day soybean fields.
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Figure 4-18: Simulated ACF mean irrigation amount for historical meteorology and present-day soybean fields.
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4.5.7 ACF Assessment Results: Summary Statistics

Table 4-6 through Table 4-9 list summary statistics related to crop yield and irrigation
demand for the major crops in the ACF during the 1980 — 1997 period and the 1998 — 2015
period. Bootstrap sampling (Efron and Tibshirani 1993) of data from these two periods is
used to estimate the probability distribution of the change in summary statistics between
these two periods. Depending on how much of the “change distribution™ lies to the right of
zero, the change in the statistic of interest can be characterized as shown in Figure 4-19.
The summary statistics of interest include the mean of rainfed and irrigated crop yields, the
25™ percentile of rainfed and irrigated crop yields (indicative of agricultural drought), the
mean of irrigation amount, and the 75" percentile of irrigation amount (indicative of

agricultural drought).

Inconclusive

Increase from the I Decrease from the
1980-1997 period to /\ 1980-1997 period to
the 1998-2015 the 1998-2015
period period
Very Very
Likely Likely
VL+ VL-

Virtually Virtually
Certain Certain
VC+ VC-

Proportion of

Distribution to the  1.000 0.990 0.900 0.667 0.333 0.100 0.010 0.000
right of zero (+prob):

Figure 4-19: Probability statements describing the change in a summary statistic going
from the 1980-1997 period to the 1998-2015 period.
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Results confirm that for both rainfed and irrigated corn, the mean and 25" percentile of
corn yields have decreased going from the 1980 — 1997 period to the 1998 — 2015 period
(as indicated by “VL-“[very likely decrease] and “L-“ [likely decrease] in Table 4-6) in the
southern half of the ACF, while the corn yields have increased or stabilized in the northern
sub-basins (as indicated by “L+” [likely increase] and “I” [change inconclusive]). Mean
and 75" percentile corn irrigation amounts have generally increased throughout the ACF,
especially in the southern basins. For peanut, there is not a clear distinction between the
north and south. Rainfed peanut yields have “likely” increased or stabilized going from the
1980 — 1997 period to the 1998 — 2015 period. Irrigated peanut yields have increased
throughout the ACF, but so has the irrigation demand to support these higher yields. Cotton
and soybean also show similar behavior of increasing or stabilized crop yields with an
increase in irrigation demand. These findings are consistent with the trend analyses

discussed in the preceeding sections.
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Table 4-6: Summary statistics for corn crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and
characterization of the change going from the former period to the latter.

Rainfed Corn Yield (kg/ha) Irrigated Corn Yield (kg/ha) Irrigation Amount Corn (mm)
Mean 25th Percentile Mean 25th Percentile Mean 75th Percentile
Subsbasin 1997 2015 CHESjg97 nis Change gy oy Change  ogy Sis Change  fogy bl Change g7 by Change
1 9940 9354  L- 7109 6548  L- 13364 13805 L+ 12035 12952 L+ 131 149 L+ 185 210 L+
2 7866 8333 L+ 5150 6117 I 11798 12905 VC+ 10394 12079 VL+ 157 163 I 221 223 I
3 8261 8381 I 4829 5694 I 12235 12993 VL+ 11212 12236 VL+ 155 158 I 205 214 I
4 7830 8291 L+ 6025 5817 I 11295 12441 VC+ 10312 11315 VL+ 139 152 L+ 200 207 L+
5 6219 6099 I 4259 3373 I 10693 10894 L+ 9812 9557 L- 171 191 L+ 220 243 L+
6 7653 8380 L+ 4862 6695 L+ 11385 12385 VC+ 10488 11430 VL+ 147 155 I 201 219 I
7 6702 7944 VLt 5109 6454 L+ 10258 10545 L+ 9324 9983 L+ 147 135 L- 187 149 L-
8 6967 6723 I 5490 4275  L- 11013 11132 1 10285 9988 I 155 180 L+ 201 228 L+
9 6619 6150  L- 5065 3714  L- 10577 10601 I 10089 9608  L- 161 189 L+ 201 239 L+
10 7342 6048 VL- 5489 4021 L- 10416 10168  L- 9927 8887  L- 142 183 VL+ 183 242 L+
11 7421 6270 VL- 6099 3777  L- 10552 10368 1 10167 9241  L- 144 179 VL+ 174 248 VL+
12 7686 6697  L- 6354 4045 L- 10949 10792 1 10206 9748 I 138 176 VL+ 173 241 VL+
13 7437 5895 VL- 6198 3404 VL- 10414 9847  L- 9786 8371 L- 142 183  VL+ 182 237 VL+
14 7913 6584 VL- 6925 3919 VL- 10607 10317 L- 9866 8734 L- 128 171  VL+ 161 212 VL+
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Table 4-7: Summary statistics for peanut crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and

characterization of the change going from the former period to the latter.

ACF Sub-basin

Rainfed Peanut Yield (kg/ha)

Irrigated Peanut Yield (kg/ha)

Irrigation Amount Peanut (mm)

Mean 25th Percentile Mean 25th Percentile Mean 75th Percentile
RO g gy U Gy U G U G DD
4136 4333 L+ 3462 3677 I 5017 5518  VC+ 4692 5206 L+ 140 163 L+ 198 223 I
3364 3625 L+ 2569 2714 L+ 5109 5575  VC+ 4960 5331  VC+ 198 216 L+ 236 256 I
3802 3729 I 3127 3148 I 5270 5812 VC+ 5039 5594  VC+ 183 217 VL+ 221 288 L+
3397 3640 L+ 2440 2722 L+ 5128 5647  VC+ 4921 5487  VC+ 192 220 L+ 264 268 L+
3619 3987 L+ 2965 3237 L+ 5088 5573  VC+ 4876 5266 VC+ 180 195 L+ 233 241 I
3532 3839 L+ 2579 3293 L+ 5060 5507  VC+ 4941 5238 VC+ 183 199 L+ 222 235 I
4053 4296 L+ 3756 3766 I 5072 5487  VC+ 4906 5304  VL+ 147 168 L+ 193 194 I
4037 4231 L+ 3829 3683 I 5045 5481  VC+ 4838 5220 VC+ 149 173 L+ 188 211 L+
4019 4256 L+ 3771 3511 I 5095 5514  VC+ 4843 5253  VC+ 151 174 L+ 182 212 VL+
4162 4291 I 3874 3893 I 5061 5441  VC+ 4838 5227 VC+ 138 167 L+ 171 205 L+
4369 4461 I 4181 3845 L- 5028 5458  VC+ 4838 5239  VC+ 116 148 VL+ 146 193 VL+
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Table 4-8: Summary statistics for cotton crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and
characterization of the change going from the former period to the latter.

Rainfed Cotton Yield (kg/ha) Irrigated Cotton Yield (kg/ha) Irrigation Amount Cotton (mm)
Mean 25th Percentile Mean 25th Percentile Mean 75th Percentile
AT IO 9 GO e D G R D G I Gy D oy

1 2342 2293 L- 2062 2117 I 2577 2699  VC+ 2555 2572 I 115 141 VL+ 152 192 L+
4 2410 2385 I 2169 2249 L+ 2668 2762  VC+ 2580 2695  VL+ 128 169 VL+ 173 216 VL+
5 2507 2608 L+ 2194 2415  VL+ 2951 3030  VL+ 2785 2959  VL+ 142 160 L+ 172 206 I

6 2426 2450 I 2152 2281 L+ 2700 2810 VC+ 2634 2742 VL+ 138 169 VL+ 182 214 L+
7 2416 2495 L+ 2095 2333  VL+ 2749 2854  VC+ 2669 2812  VC+ 140 166 L+ 190 210 L+
8 2463 2615  VL+ 2210 2439  VL+ 2812 2930 VC+ 2733 2866  VC+ 132 149 L+ 175 194 L+
9 2622 2728 L+ 2193 2413  VL+ 3066 3147  VL+ 2898 3033  VL+ 133 150 L+ 178 188 L+
10 2910 2958 I 2696 2664 I 3172 3290  VL+ 3034 3188  VL+ 97 119 L+ 117 148 L+
11 2856 2920 L+ 2656 2589 I 3144 3240  VL+ 3013 3136  VL+ 100 125 VL+ 118 154 VL+
12 2690 2769 L+ 2537 2532 I 2942 2995 L+ 2826 2902 L+ 100 123 L+ 129 151 VL+
13 2861 2894 I 2677 2631 I 3125 3172 L+ 2975 3043 L+ 92 118 VL+ 112 141 VL+
14 2812 2863 L+ 2648 2812 L+ 2957 3011 L+ 2848 2932  VL+ 67 94 VL+ 80 123 VL+
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Table 4-9: Summary statistics for soybean crop yield and irrigation demand for the 1980-1997 and 1998-2015 periods and
characterization of the change going from the former period to the latter.
Rainfed Soybean Yield (kg/ha)

ACF Sub-basin

O 0 N N kR W =

e = = T
AW = O

Irrigated Soybean Yield (kg/ha)

Irrigation Amount Soybean (mm)

Mean 25th Percentile Mean 25th Percentile Mean 75th Percentile

1199%(;_ 12909185_ Change 11%89(;_ 12909185_ Change 11%89(;_ 12%9185_ Change 11%89(;_ 12%9185_ Change 11%89(;_ 12%9185_ Change 1980-1997 1998-2015 Change
2542 2687 L+ 1923 2089 L+ 3128 3526 VC+ 3030 3374 VC+ 101 119 L+ 150 163 I
2245 2139 L- 1494 1547 I 3197 3562 VC+ 3078 3477 VL+ 129 155 L+ 180 194 I
2277 2201 I 1590 1654 I 3197 3580 VC+ 3062 3487 VL+ 130 154 L+ 170 195 I
2229 1994 L- 1557 1337 L- 3153 3510 VC+ 3051 3370 VC+ 120 157 VLt 173 210 L+
1811 2046 L+ 1363 1632 L+ 3002 3369 VC+ 2879 3222 VC+ 138 151 L+ 170 193 I
2145 1963 L- 1568 1353 I 3176 3536 VC+ 3054 3406 VC+ 123 162 VLt 185 214 VL+
1926 1976 I 1353 1593 I 3125 3476 VC+ 3005 3355 VC+ 134 163  VL+ 176 205 L+
1844 2100 L+ 1410 1710 L+ 2975 3357 VC+ 2844 3279 VC+ 132 146 L+ 176 185 I
1755 2071  VL+ 1256 1602 L+ 2909 3273 VC+ 2795 3215 VC+ 138 145 I 166 181 I
2069 2350 VL+ 1794 1694 I 2850 3177 VC+ 2724 3123 VC+ 105 111 I 130 135 I
1980 2285 VL+ 1652 1669 I 2865 3238 VC+ 2715 3183 VC+ 113 125 L+ 144 162 L+
2001 2306 L+ 1495 1829 L+ 2875 3233 VC+ 2727 3196 VC+ 110 122 L+ 140 146 L+
2156 2337 L+ 1804 1813 I 2836 3136 VC+ 2690 3050 VC+ 100 110 L+ 127 129 I
2355 2481 L+ 2189 1883 I 2804 3131 VC+ 2661 3063 VC+ 70 85 L+ 91 104 VL+
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4.5.8 ACF Assessment Results: Monthly Irrigation Volumes
After estimating the irrigation timings and depths for the major crops of the ACF basin
for the 1980 — 2016 historical period, these depths are converted to monthly irrigation

volumes by way of the following equation:

n
Vi,m = §
c=1

Where V is the irrigation volume, in cubic meters, for ACF sub-basin i, in the of the

' Fi,c ' Ai,c ' Di,c,m

| =

month (and year) of interest m; c, the index representing a major crop (i.e. 1=Corn,
2=Peanut, 3=Cotton, and 4=Soybean); n, the number of crops (4 in this study); E, the
efficiency of applied irrigation, i.e. the percentage of simulated irrigation that is actually
utilized by crop. In this report E is conservatively set as 0.85; F; ., the fraction of acreage
which is irrigated in sub-basin i for crop c; and A; . and D; ., refer to the total acreage
(square meters) and irrigation depth (meters) in the month (and year) m of interest within
sub-basin i for crop c respectively.

The term A; . is estimated based on the quantity of year 2016 USDA-NASS Cropland
Data Layer pixels presented earlier in Table 4-4 in which each pixel represents 900 square
meters. D; ., is determined from the irrigated crop simulations completed in the previous
sections of this report, except that the irrigation applications are aggregated monthly
instead of annually.

F; ., the fraction of crop acreage that is irrigated within a sub-basin, is estimated

following a review of year 2014-2016 county-level crop acreage data publicly available

from the USDA Farm Service Agency (USDA FSA 2015, 2016, 2017). For each county
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included within each ACF sub-basin, the USDA FSA data set is queried (from years 2014
to 2016 to ensure coverage of relatively dry, normal, and wet growing seasons) for the
quantity of irrigated and non-irrigated acreages for corn, cotton, peanut, and soybean.
Review of the data showed that F; . is not overly sensitive to the dryness/wetness of the
growing season, so a time-constant value for F; . has been estimated based on a weighted
average of county-level data for each ACF sub-basin for each major crop as listed in Table
4-10. The estimates show that the major crops grown in the Upper Chattahoochee to Middle
Chattahoochee (sub-basins 1-4, and 6) are rainfed (F; . = 0), while in the remaining basins
representing the Flint, Apalachicola, and Middle to Lower Chattahoochee, 10 to 90 percent
of the fields are irrigated depending on crop type.

Table 4-10: Fraction of acreage that is irrigated (F;. ) for corn, peanut, cotton, and

soybean fields in each ACF sub-basin, estimated from year 2014-2016 county-level crop
acreage data provided by the USDA Farm Service Agency.

ACF Irrigation Acreage Fraction (F;.)
Sub-basin Corn Peanut Cotton Soybean
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0.9 0.6 0.5 0.2
6 0 0 0 0
7 0.3 0.2 0.2 0.1
8 0.7 0.4 0.4 0.3
9 0.8 0.6 0.5 0.4
10 0.9 0.6 0.6 0.6
11 0.9 0.7 0.6 0.5
12 0.7 0.3 0.3 0.4
13 0.9 0.5 0.6 0.5
14 0.7 0.4 0.4 0.3
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4.5.9 ACF Monthly Irrigation Volumes: Upper Chattahoochee
For the Upper Chattahoochee (ACF sub-basins 1 — 4, and 6), the major crops corn,

cotton, soybean, and peanut are rainfed as shown previously in Table 4-10.

4.5.10 ACF Monthly Irrigation Volumes: Middle Chattahoochee and
Upper Flint

For the Middle Chattahoochee and Upper Flint (ACF sub-basins 5, 7, and 8), the
irrigation season spans from April through October. As shown in Figure 4-20 through
Figure 4-22, monthly irrigation volumes have large inter-annual variations, with irrigation
volumes easily reaching double or more of the long term (1980-2016) mean during
droughts, especially in the summer months. The 1980-2016 trends in irrigation volumes
are generally positive (indicating increasing irrigation volumes annually) except for
September and October in sub-basin 5; April, June, and July in sub-basin 7; and April and
October in sub-basin 8. These findings are for the most part consistent with the trends in
monthly precipitation and potential evapotranspiration. As a result, the mean irrigation
volumes of the 1998-2015 period are greater than their counterparts from the 1980-1997
period for the majority of the growing season. When comparing 1980-1997 trends to those
of 1998-2015, there are trend reversals in which irrigation volumes go from decreasing
annually during the 1980-1997 period, to increasing during the 1998-2015 period. This

occurs in June and July for sub-basin 5; October for sub-basin 7; and July for sub-basin 8.
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Figure 4-20: Monthly irrigation volumes for ACF Sub-basin 5
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Figure 4-21: Monthly irrigation volumes for ACF Sub-basin 7

164

2000 2005
Year



ACF 08 (Irrigated - Total Irrigation Volume)
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Figure 4-22: Monthly irrigation volumes for ACF Sub-basin 8
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4.5.11 ACF Monthly Irrigation Volumes: Middle and Lower Flint and
Lower Chattahoochee

For the Middle and Lower regions of the Flint sub-basins and the Lower Chattahoochee
(sub-basins 9-13), the irrigation season spans from April through October. As shown in
Figure 4-23 through Figure 4-27, monthly irrigation volumes have large inter-annual
variations, with irrigation volumes reaching up to three times or more of the long term
(1980-2016) mean during droughts, especially in the summer months of the 1998-2015
period. Also in these months, peak irrigation volumes are generally greater in magnitude
and occur more frequently during the 1998-2015 period than the 1980-1997 period. Mean
irrigation volumes of the 1998-2015 period are generally greater than their counterparts
from the 1980-1997 period throughout the growing season except for the months of
September and October. It is also of interest to note the mean irrigation volume in April
during the 1998-2015 period is nearly double or even more than the corresponding April
volume from the 1980-1997 period for the sub-basins in this region. The 1980-2016 trends
in irrigation volumes are generally positive (indicating increasing irrigation volumes
annually) except for October in all sub-basins, and except for September in sub-basins 9,
10, 12, and 13 in which the slope’s direction is “inconclusive”. When comparing 1980-
1997 trends to those of 1998-2015, in the summer months there are trend reversals in which
irrigation volumes go from “likely decreasing” annually during the 1980-1997 period, to

“likely increasing” during the 1998-2015 period.
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ACF 0 (Irrigated - Total Iigation Volume)
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Figure 4-23: Monthly irrigation volumes for ACF Sub-basin 9
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ACF 10 (Irrigated - Total Iigation Volume)
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Figure 4-24: Monthly irrigation volumes for ACF Sub-basin 10
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ACF 11 (Irrigated - Total Iigation Volume)
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Figure 4-25: Monthly irrigation volumes for ACF Sub-basin 11
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ACF 12 (Irrigated - Total Iigation Volume)
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Figure 4-26: Monthly irrigation volumes for ACF Sub-basin 12
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ACF 13 (Irrigated - Total Irrigation Volume)
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Figure 4-27: Monthly irrigation volumes for ACF Sub-basin 13
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4.5.12 ACF Monthly Irrigation Volumes: Apalachicola

For the Apalachicola sub-basin (sub-basin 14), the irrigation season spans from April
through October. As shown in Figure 4-28, monthly irrigation volumes have large inter-
annual variations, with irrigation volumes reaching up to four times or more of the long
term (1980-2016) mean during droughts, especially in the summer months of the 1998-
2015 period. Also in these months, peak irrigation volumes are generally greater in
magnitude and occur more frequently during the 1998-2015 period than the 1980-1997
period, indicating that droughts are becoming more common and more severe. Mean
irrigation volumes of the 1998-2015 period are greater than their counterparts from the
1980-1997 period throughout the growing season except for the month of October. The
mean irrigation volume in April during the 1998-2015 period is more than double the
corresponding April volume from the 1980-1997 period. The 1980-2016 trends in
irrigation volumes are “very likely” positive (indicating increasing irrigation volumes

annually) for most of the summer.
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Figure 4-28: Monthly irrigation volumes for ACF Sub-basin 14
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4.5.13 ACF Agricultural and Irrigation Demand Assessments: Summary

Crop yields and irrigation volumes simulated by way of integrating multi-sensor gridded
climate, soil, and crop data with the DSSAT-CSM illustrate how crop yield and irrigation
demand represent highly non-linear integrators of temperature, precipitation, potential
evaporation, crop genetics, and agricultural and irrigation management practices. These
simulations provide valuable insights that cannot readily be discerned from analysis of
climate variables or individual gridded data products alone. Major crops in the Upper
Chattahoochee are largely rainfed, but considering the slowed increase and/or decrease in
rainfed crop yields in the region, the Upper Chattahoochee may have to consider expanding
irrigated acreage. For the remainder of the ACF, summertime rising temperatures and
precipitation shortfalls would place considerable stress on surface and groundwater
reservoirs during droughts as monthly irrigation demands could peak to multiple times the
long term historical means that are conventionally used to assess irrigation allowances.
This analysis also confirms that droughts are occurring with increasing frequency and
severity throughout the ACF and that the crops themselves may be reaching biophysical
limits with regard to resilience towards the changing climate. These findings highlight the
need to develop an adaptive management strategy to safeguard agricultural production and

water resources especially during drought periods.
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4.6 Hindcasting of natural streamflows using GPM IMERG daily precipitation
retrievals

In the following hindcasting case studies, remote sensing retrievals of daily cumulative
precipitation from the GPM IMERG Version 5 Late Release are incorporated into the
Sacramento Soil Moisture Accounting (SAC-SMA) model for estimation of natural
streamflows. As mentioned in Chapter 2, SAC-SMA accepts input of daily precipitation
and potential evapotranspiration and provides daily estimates of streamflow. In this study,
snow precipitation is converted to daily snowmelt discharge (a surrogate for SAC-SMA
precipitation input during the winter season) using the simple SNOW-17 model which only
requires input of daily precipitation and air temperature. Daily potential evapotranspiration
is estimated using the similarly parsimonious Hamon model (Hamon 1961) which ingests
latitude and daily mean temperature as input. As SAC-SMA is a lumped model, daily input
variables (i.e. temperature and precipitation data from GRIDMET and remote sensing
precipitation data) are spatially averaged over the watershed of each case study site. The
case study locations tested in this study are listed in Table 4-11.

Table 4-11: Case study locations for assessing SAC-SMA performance with
incorporation of remote sensing precipitation retrievals

Watershed Name HUC-8 USGS Station Station Station Area
Number Number Latitude Longitude (km?)
East Fork White Riverat | 51,555 03364000 39.200 -85.926 4,421
Columbus, Indiana
Grand River at Lansing, | 150004 | 04113000 42751 -84.555 3,186
Michigan
North Fork John Day River | 07050, 14046000 44.814 119431 | 6,527
at Monument, Oregon
Greens Bayou near 12040104 08076000 29918 95.307 178
Houston, Texas
French Broad River at
Asheville, North Carolina | 26010105 03451500 35.609 -82.579 2,448
Sacramento R.A. Delta, |} 55 11342000 40.940 -122.416 | 1,101
California
North Fork of Clearwater
River near Canyon Ranger | 17060307 13340600 46.841 -115.621 3,357
Station, Montana
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The SAC-SMA model is first calibrated for each case study site with historical
streamflow data provided by the U.S. Geological Survey (USGS). Year 1980 to 2000
USGS Daily streamflow data, GRIDMET precipitation and temperature data, and potential
evapotranspiration estimates from the Hamon model are used to calibrate the 13 parameters
of SAC-SMA using the Hydromad software package. The Hydromad package includes
data-optimization tools for calibrating SAC-SMA model parameters. For these case
studies, SAC-SMA parameters are optimized in terms of the Nash-Sutcliff model
efficiency coefficient.

After calibration, SAC-SMA is run from years 2014 to 2016 both without (Control) and
with incorporation of remote sensing precipitation input during years 2015 to 2016. Year
2014 is included in the simulation period (but without incorporation of remote sensing
precipitation data) to serve as the model’s “spin up” period. Simulated streamflows are
subsequently compared to measured streamflows from USGS stream gauge data. Model
performance during the 2015-2016 period is assessed by way of three metrics, NRMSE
(root-mean-squared-error normalized by the standard deviation of observations), Nash-
Sutcliffe model efficiency coefficient (NSE), and PBIAS (percent bias). According to
Moriasi et al. (2007), a watershed streamflow model can be judged as satisfactory if the
NRMSE is less than 70 percent, NSE is greater than 0.5, and PBIAS is within £25 percent.

4.6.1 East Fork White River at Columbus, Indiana

Figure 4-29 summarizes the performance of the calibrated SAC-SMA model at the East
Fork White River at Columbus, Indiana site. The watershed is located in the Central climate
region. Even though the model was satisfactorily calibrated for the 1980-2000 period,

extreme peak streamflows (e.g. streamflows exceeding 10 mm/day) were underestimated
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during the calibration period. During the 2015-2016 period, SAC-SMA had satisfactory
performance under the Control scenario; however, when daily precipitation data was
replaced with GPM IMERG Version 5 Late Release retrievals, model performance suffered
greatly, with all three performance metrics (NSE, NRMSE, and PBIAS) far exceeding
acceptable values. With incorporation of GPM IMERG data at this site, streamflows are
overestimated, especially during the spring and early summer of year 2016. This finding is
consistent with the GPM IMERG wet bias (relative to the GRIDMET reference) in the

Central climate region as assessed in Chapter 3.
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Figure 4-29: Year 2015-2016 SAC-SMA performance at East Fork White River at
Columbus, Indiana site with incorporation of GPM IMERG daily precipitation retrievals.
(a) Streamflow time series during the calibration (1980-2000) and validation (2015-2016)
period. (b) Time series during 2015-2016 period (c¢) Year 2015-2016 scatter plot (d)
Summary performance metrics during the 2015-2016 period
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4.6.2 Grand River at Lansing, Michigan

Figure 4-30 summarizes the performance of the calibrated SAC-SMA model at the
Grand River at Lansing, Michigan site. The watershed is located in the East North Central
climate region. During the 2015-2016 period, SAC-SMA had satisfactory performance
under the Control scenario; however, when daily precipitation data was replaced with GPM
IMERG Version 5 Late Release retrievals, model performance suffered greatly, with all
three performance metrics (NSE, NRMSE, and PBIAS) far exceeding acceptable values.
Similar to the East Fork White River site, with incorporation of GPM IMERG data at this
site, streamflows are overestimated, especially during the winter through summer of year
2016. This finding is consistent with the GPM IMERG wet bias (relative to the GRIDMET

reference) in the East North Central climate.
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Figure 4-30: Year 2015-2016 SAC-SMA performance at Grand River at Lansing,
Michigan site with incorporation of GPM IMERG daily precipitation retrievals
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4.6.3 North Fork John Day River at Monument, Oregon

Figure 4-31 summarizes the performance of the calibrated SAC-SMA model at the
North Fork John Day River at Monument, Oregon site. The watershed is located in the
Northwest climate region. During the 2015-2016 period, SAC-SMA had satisfactory
performance under the Control scenario; however, when daily precipitation data was
replaced with GPM IMERG Version 5 Late Release retrievals, model performance suffered
greatly, with all three performance metrics (NSE, NRMSE, and PBIAS) far exceeding
acceptable values. With incorporation of GPM IMERG data at this site, streamflows are

overestimated, especially during the winter, spring, and early summer seasons.
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Figure 4-31: Year 2015-2016 SAC-SMA performance at North Fork John Day River at
Monument, Oregon site with incorporation of GPM IMERG daily precipitation retrievals
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4.6.4 Greens Bayou near Houston, Texas
Figure 4-32 summarizes the performance of the calibrated SAC-SMA model at the
Greens Bayou near Houston, Texas site. The watershed is located in the South climate
region. During the 2015-2016 period, SAC-SMA had satisfactory performance both under
the Control scenario and when daily precipitation data was replaced with GPM IMERG
Version 5 Late Release retrievals, with all three performance metrics (NSE, NRMSE, and

PBIAS) within acceptable bounds, despite underestimation of extreme peak flows.
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Figure 4-32: Year 2015-2016 SAC-SMA performance at Greens Bayou near Houston,
Texas site with incorporation of GPM IMERG daily precipitation retrievals
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4.6.5 French Broad River at Asheville, North Carolina
Figure 4-33 summarizes the performance of the calibrated SAC-SMA model at the
French Broad River at Asheville, North Carolina site. The watershed is located in the
Southeast climate region. During the 2015-2016 period, SAC-SMA had satisfactory

performance under the Control and GPM IMERG scenarios.
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Figure 4-33: Year 2015-2016 SAC-SMA performance at French Broad River at
Asheville, North Carolina site with incorporation of GPM IMERG daily precipitation
retrievals
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4.6.6 Sacramento R.A. Delta, California

Figure 4-34 summarizes the performance of the calibrated SAC-SMA model at the
Sacramento R.A. Delta, California site. The watershed is located in the West climate
region. During the 2015-2016 period, SAC-SMA had satisfactory performance under the
Control scenario; however, when daily precipitation data was replaced with GPM IMERG
Version 5 Late Release retrievals, model performance suffered greatly, with all three
performance metrics (NSE, NRMSE, and PBIAS) exceeding acceptable values.
Incorporation of GPM IMERG data resulted in severe underestimation of flows, especially
the peak flows of winter and early spring. Results suggest that some large precipitation
events were entirely missed by the GPM IMERG retrieval (e.g. Fall 2016). These finds are
consistent with the dry bias (relative to the GRIDMET reference) in the GPM IMERG

product for the West climate region as assessed in Chapter 3.
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Figure 4-34: Year 2015-2016 SAC-SMA performance at Sacramento R.A. Delta,
California site with incorporation of GPM IMERG daily precipitation retrievals
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4.6.7 North Fork of Clearwater River near Canyon Ranger Station, Montana

Figure 4-35 summarizes the performance of the calibrated SAC-SMA model at the
North Fork of Clearwater River near Canyon Ranger Station, Montana site. The watershed
is located in the West North Central climate region. During the 2015-2016 period, SAC-
SMA had satisfactory performance under the Control scenario; however, when daily
precipitation data was replaced with GPM IMERG Version 5 Late Release retrievals,
model performance suffered greatly, with all three performance metrics (NSE, NRMSE,
and PBIAS) far exceeding acceptable values. Incorporation of GPM IMERG data resulted

in severe underestimation of flows, especially during the spring and summer periods.
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Figure 4-35: Year 2015-2016 SAC-SMA performance at North Fork of Clearwater
River near Canyon Ranger Station, Montana site with incorporation of GPM IMERG daily
precipitation retrievals
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4.7 Hindcasting of natural streamflows using JAXA GSMaP daily precipitation
retrievals
The following hindcasting case studies are conducted just as those mentioned in the
previous section, except that remote sensing retrievals of daily cumulative precipitation
from the JAXA GSMaP-Gauge Version 7 are incorporated into the Sacramento Soil
Moisture Accounting (SAC-SMA) model for estimation of natural streamflows.
4.7.1 East Fork White River at Columbus, Indiana
Figure 4-36 summarizes the performance of the calibrated SAC-SMA model at the East
Fork White River at Columbus, Indiana site. During the 2015-2016 period, SAC-SMA had
satisfactory performance under the Control scenario, but unlike the GPM IMERG data
incorporation experiment, SAC-SMA model performance was also satisifactory with

incorporation of GSMaP-Gauge daily cumulative precipitation retrievals.
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Figure 4-36: Year 2015-2016 SAC-SMA performance at East Fork White River at
Columbus, Indiana site with incorporation of JAXA GSMaP-Gauge daily precipitation
retrievals. (a) Streamflow time series during the calibration (1980-2000) and validation
(2015-2016) period. (b) Time series during 2015-2016 period (c) Year 2015-2016 scatter
plot (d) Summary performance metrics during the 2015-2016 period
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4.7.2 Grand River at Lansing, Michigan
Figure 4-37 summarizes the performance of the calibrated SAC-SMA model at the
Grand River at Lansing, Michigan site. The watershed is located in the East North Central
climate region. During the 2015-2016 period, SAC-SMA had satisfactory performance

under the Control and GSMaP-Gauge scenarios.

193



East North Central - Grand River - Lansing M|

7~
Obs.
——Sim. GRIDMET
6~ —— Sim. GSMaP-Gauge
=50
©
=
£
E4
z
S
E3r
[u]
o
&gl
1
0 | | | ! | | |
1985 1990 1995 2000 2005 2010 2015
Date
(a)
45 East North Central - Grand River - Lansing M|
. Obs.
4 —Sim. GRIDMET
——Sim. GSMaP-Gauge
35
B
g
£
Eos
g
= 2
£
[u]
245
%)
1
05
0 | | | | | | | J
Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016 Apr 2016 Jul 2016 Oct 2016 Jan 2017
Date
(b)
East North Central - Grand River - Lansing MI
2015-2016
GSMaP-Gauge
6 bt Performance
= e . Control GSMaP-Gauge
& g Metric
395 d
£
£ .
=4
2 NSE 0.729 0.704
T 3 ’
o© .
& .
g2 NRMSE 52.1 54.3
E
1
PBIAS -0.3 6.7
0 : - . . - - T — -
0 1 2 3 4 5 6 Note: Red values in table above indicate unsatisfactory performance

Obs. Streamflow (mm/day)

(c) (d)

Figure 4-37: Year 2015-2016 SAC-SMA performance at Grand River at Lansing,
Michigan site with incorporation of JAXA GSMaP-Gauge daily precipitation retrievals
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4.7.3 North Fork John Day River at Monument, Oregon
Figure 4-38 summarizes the performance of the calibrated SAC-SMA model at the
North Fork John Day River at Monument, Oregon site. With incorporation of GSMaP-

Gauge data, SAC-SMA model performance was satisfactory.
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Figure 4-38: Year 2015-2016 SAC-SMA performance at North Fork John Day River at
Monument, Oregon site with incorporation of JAXA GSMaP-Gauge daily precipitation
retrievals
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4.7.4 Greens Bayou near Houston, Texas
Figure 4-39 summarizes the performance of the calibrated SAC-SMA model at the
Greens Bayou near Houston, Texas site. During the 2015-2016 period, SAC-SMA had
satisfactory performance under the Control scenario, but not when daily precipitation data

was replaced with GSMaP-Gauge data, due to underestimation of peak flows.
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Figure 4-39: Year 2015-2016 SAC-SMA performance at Greens Bayou near Houston,
Texas site with incorporation of JAXA GSMaP-Gauge daily precipitation retrievals
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4.7.5 French Broad River at Asheville, North Carolina
Figure 4-40 summarizes the performance of the calibrated SAC-SMA model at the
French Broad River at Asheville, North Carolina site. During the 2015-2016 period, SAC-
SMA had satisfactory performance under the Control and GSMaP-Gauge data incorpation

scenarios, unlike the GPM IMERG scenario.
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Figure 4-40: Year 2015-2016 SAC-SMA performance at French Broad River at
Asheville, North Carolina site with incorporation of JAXA GSMaP-Gauge daily
precipitation retrievals
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4.7.6 Sacramento R.A. Delta, California
Figure 4-41 summarizes the performance of the calibrated SAC-SMA model at the
Sacramento R.A. Delta, California site. During the 2015-2016 period, SAC-SMA had
satisfactory performance under the Control scenario, but failed according to the PBIAS
metric in the GSMaP-Gauge scenario, though model performance was superior to the GPM

IMERG data incorporation scenario in which critical precipitation events were missed.
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Figure 4-41: Year 2015-2016 SAC-SMA performance at Sacramento R.A. Delta,
California site with incorporation of JAXA GSMaP-Gauge daily precipitation retrievals
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4.7.7 North Fork of Clearwater River near Canyon Ranger Station, Montana
Figure 4-42 summarizes the performance of the calibrated SAC-SMA model at the
North Fork of Clearwater River near Canyon Ranger Station, Montana site. During the
2015-2016 period, SAC-SMA had satisfactory performance under the Control and
GSMaP-Gauge data incorporation, despite underestimation of streamflows during the

spring and summer.
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Figure 4-42: Year 2015-2016 SAC-SMA performance at North Fork of Clearwater
River near Canyon Ranger Station, Montana site with incorporation of JAXA GSMaP-
Gauge daily precipitation retrievals
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4.8 SAC-SMA calibration using recent remote sensing precipitation retrievals

In the previous sections, SAC-SMA was calibrated using long-term (year 1980-2000)
reanalysis data from the GRIDMET data product. When SAC-SMA was used to simulate
recent streamflows using input of remote sensing precipitation retrievals instead of
GRIDMET precipitation estimates, biases in the remote sensing precipitation retrievals,
especially in the GPM IMERG Late Release product, oftentimes adversely impacted the
SAC-SMA model performance. In the following exercise, SAC-SMA is used to simulate
daily streamflows from Jan 2017 to December 2018; however, the SAC-SMA is calibrated
using daily remote sensing precipitation retrievals from May 2014 to December 2016 (32
months) instead of GRIDMET precipitation estimates in hopes that this revised calibration
procedure would compensate for the biases in the remote sensing precipitation data and
allow for more accurate simulation of hydrological flows.

Figure 4-43 through Figure 4-47 illustrate the performance of SAC-SMA when
calibrated using recent remote sensing precipitation retrievals. The results generally
confirm that the accuracy of SAC-SMA is not only strongly connected to the length of the
calibration period, but to the accuracy of the precipitation forcing data set. For the East
Fork White River and the Sacramento R.A. Delta watersheds, when calibrated with over
20 years worth of daily GRIDMET precipitation estimates as mentioned previously, SAC-
SMA exhibited satisfactory performance (according to the Nash-Sutcliffe, Normalized
RMSE, and Percent Bias metrics); however, when calibrated with only 32 months worth
of GRIDMET precipitation, SAC-SMA did not perform satisfactorily with the GPM

precipitation forcing.
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With regard to the use of GPM Late and GSMaP-Gauge precipitation forcing, SAC-
SMA calibrated using 32 months worth of GSMaP-Gauge data performed better, often with
satisfactory performance at the tested sites, than SAC-SMA calibrated with GPM Late
retrievals. Of the five sites tested, GPM-calibrated SAC-SMA only had satisfactory
performance at the Greens Bayou watershed, as shown in Figure 4-45, owing to the GPM
product’s consistency with the rain-gauge derived GRIDMET precipitation data set for that
particular watershed.

Table 4-12 and Table 4-13 present some of the SAC-SMA water storage parameters
calibrated using 32 months (May 2014 to December 2016) worth of precipitation forcing
data from GRIDMET, GPM Late, and GSMaP-Gauge for two of the tested watersheds,
East Fork White River and Sacramento R.A. Delta. In the case of the East Fork White
River, the stark discrepancy between calibrated water storage parameters between
precipitation data sets explains the poor performance of SAC-SMA calibrated with GPM
Late data. At this watershed, the GPM product severely overestimated some precipitation
events that occurred during the 2014 — 2016 calibration period (refer to Figure 4-43),
resulting in the assignment of relatively large capacities for upper and lower soil water
storage zones. During the 2017 — 2018 evaluation period, these large storage capacities
resulted in a muted streamflow response to precipitation relative to the SAC-SMA
simulations calibrated using GRIDMET or GSMaP-Gauge data. For the Sacramento R.A.
Delta watershed, the dry bias in the GPM product resulted in the SAC-SMA constructing
soil water reservoirs (upper and lower zones) with total capacity about one-third the storage
compared to the GRIDMET and half the storage compared to the GSMaP-Gauge

calibrations (when lower zone supplemental water capacity is excluded). Results from this
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exercise also highlight that even when there is agreement in modeled streamflow between
simulations calibrated with different precipitation data products, the SAC-SMA model
parameters between these different simulations do not necessarily agree. In summary, this
exercise confirms that biases in remote sensing precipitation retrievals have a substantial
impact on modeling hydrological flows, and model calibration is not sufficient to mitigate

the impact of such errors in precipitation forcing.
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Figure 4-43: Year 2017-2018 SAC-SMA performance at East Fork White River at
Columbus, Indiana site with model calibration using daily remote sensing precipitation
retrievals. (a) Precipitation time series including snow melt (b) Streamflow time series
during 2017-2018 period (¢) SAC-SMA normalized upper zone water content (d) Year
2017-2018 scatter plot (e) Performance metrics during the 2017-2018 period.
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Figure 4-44: Year 2017-2018 SAC-SMA performance at Grand River at Lansing,
Michigan site with model calibration using daily remote sensing precipitation retrievals.
(a) Precipitation time series including snow melt (b) Streamflow time series during 2017-
2018 period (c) SAC-SMA normalized upper zone water content (d) Year 2017-2018
scatter plot (e) Performance metrics during the 2017-2018 period.
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Figure 4-45: Year 2017-2018 SAC-SMA performance at Greens Bayou near Houston,
Texas site with model calibration using daily remote sensing precipitation retrievals. (a)
Precipitation time series including snow melt (b) Streamflow time series during 2017-2018
period (¢) SAC-SMA normalized upper zone water content (d) Year 2017-2018 scatter plot
(e) Performance metrics during the 2017-2018 period.
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Figure 4-46: Year 2017-2018 SAC-SMA performance at French Broad River at
Asheville, North Carolina site with model calibration using daily remote sensing
precipitation retrievals. (a) Precipitation time series including snow melt (b) Streamflow
time series during 2017-2018 period (c) SAC-SMA normalized upper zone water content
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(d) Year 2017-2018 scatter plot (e) Performance metrics during the 2017-2018 period.
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Figure 4-47: Year 2017-2018 SAC-SMA performance at Sacramento R.A. Delta,
California site with model calibration using daily remote sensing precipitation retrievals.
(a) Precipitation time series including snow melt (b) Streamflow time series during 2017-
2018 period (c) SAC-SMA normalized upper zone water content (d) Year 2017-2018
scatter plot (e) Performance metrics during the 2017-2018 period.
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Table 4-12: SAC-SMA calibrated water storage parameters (in mm depth units) for the
East Fork White River at Columbus, Indiana case study

SAC-SMA
Water Storage | 1y finition | GRIDMET GPM GSMaP-
Parameters Gauge

(mm)
Upper zone

uztwm tension water 18 150 1
capacity
Upper zone

uzfwm free water 33 145 99
capacity
Lower zone

Iztwm tension water 44 500 77
capacity
Lower zone

lzfpm free primary 23 1000 680
free water
capacity
Lower zone

lzfsm supplemental 61 266 997
water capacity

Table 4-13: SAC-SMA calibrated water storage parameters (in mm depth units) for the
Sacramento R.A. Delta, California case study

SAC-SMA
Water Storage | ) 5oition | GRIDMET GPM GSMaP-
Parameters Gauge

(mm)
Upper zone

uztwm tension water 150 49 34
capacity
Upper zone

uzfwm free water 102 110 37
capacity
Lower zone

Iztwm tension water 398 56 205
capacity
Lower zone

Izfpm ?ee primary 85 21 168

ree water

capacity
Lower zone

lzfsm supplemental 340 1000 23
water capacity
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4.9 Summary

In this chapter, the impact of incorporating modern remote sensing and gridded data
products covering the gamut of agriculturally and hydrologically relevant variables from
atmosphere to root-zone is assessed with regard to hindcasting and near-real-time
prediction of crop yield, irrigation demand, assessment of agricultural drought, and
monitoring of hydrological flows.

With regard to incorporating SMAP surface soil moisture data into the DSSAT-CSM
agricultural simulations, preliminary analysis gave an optimistic outlook for how this new
information could improve crop yield simulations. However, in application, biases in
remote sensing surface soil moisture retrievals, combined with the coarser than expected
spatial resolution of the retrievals (due to post-mission launch sensor failure), showed that
incorporation of SMAP L3 Enhanced surface moisture retrievals could not improve or
mitigate errors in the DSSAT simulations at the case study sites. Though it is sufficient for
atmospheric variables (e.g. incoming solar radiation, air temperature, and precipitation) to
have spatial resolutions of 10 km, heterogenerities in surface condition (e.g. type of crop
planted, irrigated, non-irrigated, etc.) is an issue that has to be addressed before SMAP
retrievals of surface soil moisture can be integrated into the DSSAT crop model. This
assessment highlights the need for either remote sensing surface soil moisture retrievals of
sub-10km spatial resolution (which may have been possible had the active sensor on the
SMAP satellite not failed) or of spatial downscaling of SMAP surface soil moisture
retrievals.

As shown in Chapter 3, biases in remote sensing retrievals of daily precipitation would

likely adversely impact the accuracy of modeled crop yield, irrigation demand, and
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streamflow if such data were incorporated in agricultural and streamflow models. The case
studies in this chapter confirm that expectation. Dry and wet biases in remote sensing
retrievals of precipitation have a profound impact on crop yield and irrigation demand
simulations. As a result of this assessment, remote sensing retrievals of precipitation that
are not heavily calibrated with gauge data should not be used in agricultural models nor
streamflow models, a finding from this research which casts doubts on the utility of remote
sensing precipitation data for near-real-time monitoring of crop state, irrigation planning,
and streamflow prediction in ungauged regions.

Remote sensing data aside, integration of multiple high resolution data products
available over the continental U.S. can inform analyses of the feasibility of modern
agricultural practices at the watershed scale in light of historical climate variability and
change. Long-term agricultural simulations driven by modern gridded data products such
as GRIDMET, HarvestChoice Global high-resolution soil profile database, USDA NASS
Cropland Data Layer, and others, provide insight into the highly non-linear interactions
between crop, soil, atmosphere, and climate, and allow for more refined characterizations
of agricultural drought (both their occurrence and severity) as exemplified in the case study
of year 1980-2016 crop production and irrigation demand in the Apalachicola-

Chattahoochee-Flint (ACF) River Basin.
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CHAPTERS

SEASONAL AGRICULTURAL FORECASTS

AND CLIMATE CHANGE ASSESSMENTS

5.1 Depth-averaged soil moisture-based historical analog for crop yield and
irrigation forecasting — synthetic experiments

In this study, the hypothesis of predicting crop yield and irrigation demand using time
series information of regional-scale soil moisture is tested by way of synthetic experiments.

5.1.1 Methodology

In the subsequent case studies, simulated daily 200cm depth averaged soil moisture
from the DSSAT model is used to predict end-of-season crop yield and irrigation demand
via a historical analog approach outlined as follows:

First for a 100 km by 100 km region, the daily time series of 200cm depth averaged soil
moisture is simulated from years 1980 to 2016 using the DSSAT model (with a fallow
crop) forced by GRIDMET meteorological data. This time series serves a historical pool
of temporally continuous soil moisture data.

Next, for each year from 1980 to 2016, January — June regional-scale simulated depth-
averaged soil moisture is compared to the January — June soil moisture time series from
the historical pool to determine which years from the historical pool are most similar to the

year of interest. The eight years with the lowest RMSE values for January — June simulated
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soil moisture are selected as candidates for historical analog years for infilling June — End
of Growing Season daily weather for crop yield forecasting.

The DSSAT crop model is then run for a particular crop (i.e. corn) at the local-scale,
(e.g. for a single field within the 100 km by 100 km regional domain) using local
GRIDMET data from the year of interest for January — June concatenated with daily
weather from the historical analog years for the June — End of Growing Season (e.g.
November) period. The end result is an ensemble of eight crop yield and irrigation demand
predictions for each year from 1980 to 2016 which can be compared to simulated crop
yields without using historical analog daily weather data (which represents the “true” or
“target” crop yield in these synthetic experiments) to assess predictive skill. This approach

is tested for three case study locations as listed in Table 5-1.

Table 5-1: DSSAT-CSM input parameters for crop yield prediction via depth-averaged
soil moisture-based historical analog method

DSSAT-CSM Input Parameter
Location . . . Plant Popuplation Row Spacing
Maize cultivar | Planting date [plants/m? (plants/acre)] [cm (in)]
Story County, lowa PB 8 April 26"
San Joaquin County, California* April 8" 7.9 (30,000) 76 (30)
Miller County, Georgia** Jackson Hybrid March 29"

*Simulations include only irrigated crop yields

**Simulations include rainfed and irrigated crop yields

5.1.2  Results
Before assessing skill in this method’s prediction of crop yield and irrigation demand,
the skill in using January — June DSSAT simulated soil moisture to predict July — December
total precipitation is assessed for each year from 1980 to 2016. Performance of this
historical analog approach is assessed in terms of three metrics: (1) Reliability: does the

range of historical analog-based estimates encompass the target value? (2) Bias: the
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difference between the average of historical analog-based estimates and the target value;
and the (3) Standard Deviation of historical analog-based estimates. Figure 5-1 illustrates
an ideal scenario in which the ensemble of historical analog-based estimates using the best
eight estimates (in red) has reduced bias and reduced spread compared to the ensemble of

all possible estimates (in blue), and both ensembles are reliable in that the target value is

encompassed.
x10°2
3t =——Target Value
—Hist. Analog (36 Possible Estimates)
— Hist. Analog (Best 8 Estimates)
25T
> 27
E
3
) 151
o
1+
0.5
0 ‘ . ‘ ‘ . ‘
0 200 400 600 800 1000 1200 1400
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Figure 5-1: Schematic comparing the empirical probability distributions of historical
analog-based estimates of a target quantity. The red probability distribution, resultant
from the best historical analog based estimates, has reduced bias and reduced spread
compared to the control scenario (in blue), while still capturing the target value.
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Figure 5-2, Figure 5-3, and Figure 5-4 characterize the bias, reliability, and spread of

soil moisture based historical analog forecasts of July — December cumulative precipitation
given January — June daily depth averaged soil moisture at the lowa, Georgia, and
California case study locations respectively. The control scenario representing the
ensemble of all possible historical analog estimates is presented in blue while the ensemble
of the best eight historical analog estimates is presented in red. The upper panels indicate
that this application of the historical analog method, when applied over the long term, is
not unbiased, as the ensemble of predictions from the top peforming eight years tends to
overestimate July — December cumulative precipitation on average. For the lower panels,
for less than one-third of the years from 1980 — 2015 does this method result in forecasts
that are simultaneously reliable, with improved bias, and reduced spread. The lack of skill

in predicting July — Decemeber cumulative precipitation translates to lack of skill in

219



forecasting crop yield and irrigation amount as shown in Figure 5-5 through Figure 5-7 for

the case study locations.
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Figure 5-2: Analysis of bias and reliability of soil moisture based historical analog
forecasts of July — December cumulative precipitation. lowa case study site.
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Figure 5-3: Analysis of bias and reliability of soil moisture based historical analog
forecasts of July — December cumulative precipitation. Georgia case study site.
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Figure 5-4: Analysis of bias and reliability of soil moisture based historical analog
forecasts of July — December cumulative precipitation. California case study site.
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Figure 5-5: Analysis of bias and reliability of soil moisture based historical analog
forecasts of rainfed crop yield. lowa case study site.
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Figure 5-6: Analysis of bias and reliability of soil moisture based historical analog
forecasts of rainfed crop yield, irrigated crop yield, and irrigation amount. Georgia case
study site.
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Figure 5-7: Analysis of bias and reliability of soil moisture based historical analog
forecasts of irrigated crop yield and irrigation amount. California case study site.
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5.2 Comparing DSSAT surface soil moisture to SMAP retrievals

The time series of January to June DSSAT depth-averaged soil moisture did not exhibit
skill in predicting crop yield using the historical analog approach tested in the study. This
historical analog experiment was repeated using top Scm soil moisture estimates from
DSSAT (instead of depth-averaged soil moisture) and similarly, predictive skill was not
shown. These results suggest that remote-sensing surface soil moisture retrievals from
SMAP would not have improved the performance of the historical analog approach;
however, it is still of interest to assess how consistent SMAP surface soil moisture
retrievals are with DSSAT surface soil moisture estimates for a region for which DSSAT
has been calibrated.

Using the data from the crop and irrigation hindcasting study for the Apalachicola-
Chattahoochee-Flint (ACF) river basin (refer to Section 4.5), Figure 5-8 compares DSSAT
simulated surface soil moisture for major crops in ACF Sub-basin #11 (mapped in Figure
5-9) with sub-basin averaged surface soil moisture from the SMAP L3 Enhanced data
product. The comparison shows major dry-down and wetting events are captured by both
data sets despite some discrepancies. SMAP retrievals are consistent with the more
dominant crops in the region, for example, the SMAP surface soil moisture retrievals in
June 2016 are in closer agreement with cotton, soybean, and peanut simulated soil moisture
than with the simulated soil moisture of the corn crop. For this sub-basin, USDA cropland
data shows that corn fields in 2016 represented only six percent of the total sub-basin area,
while cotton, soybean, and peanut comprised about 21 percent of the sub-basin as presented
in Figure 5-10. It is noted that about 38 percent of the sub-basin area is forest, for which

DSSAT surface soil moisture simulations are not available, and it it is unlikely that SMAP
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retrievals would be reliable over such densely vegetated areas. Nevertheless, the

correspondence between SMAP and DSSAT

surface soil moisture offers an

encouragement that there may be value in SMAP data for agro-hydrological applications.
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Figure 5-8: Comparison of year 2016 DSSAT surface soil moisture (top Scm) for major
rainfed and irrigated crops in ACF Subbasin #11 and SMAP L3 Enhanced surface soil
moisture retrievals
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Figure 5-9: Year 2016 USDA Crop Land Layer for ACF Sub-basin #11
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Figure 5-10: Year 2016 USDA Crop Land Data Layer land surface area designations
for ACF Sub-basin #11
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5.3 GRIDMET-based historical analog for rainfed and irrigated crop yield
forecasting

In the following case studies, the same historical analog approach for predicting crop
yield and irrigation demand is conducted just as the previous section; however, instead of
daily soil moisture data, monthly precipitation data from the GRIDMET data set is used.

5.3.1 Methodology

First for a 100 km by 100 km region, the monthly time series of GRIDMET precipitation
is retrieved from years 1980 to 2016. This time series serves a historical pool of temporally
continuous monthly precipitation data.

Next, for each year from 1980 to 2016, January — June regional-scale monthly
precipitation is compared to the January — June monthly precipitation time series from the
historical pool to determine which years from the historical pool are most similar to the
year of interest. The eight years with the lowest RMSE values for January — June
precipitation are selected as candidates for historical analog years for infilling June — End
of Growing Season daily weather for crop yield forecasting.

The DSSAT crop model is then run for a particular crop (i.e. corn) at the local-scale,
(e.g. for a single field within the 100 km by 100 km regional domain) using local
GRIDMET data from the year of interest for January — June concatenated with daily
weather from the historical analog years for the June — End of Growing Season (e.g.
November) period. The end result is an ensemble of eight crop yield and irrigation demand
predictions for each year from 1980 to 2016 which can be compared to simulated crop

yields without using historical analog daily weather data (which represents the “true” or
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“target” crop yield in these synthetic experiments) to assess predictive skill. This approach
is tested for the lowa and Georgia case study locations listed previously in Table 5-1.
5.3.2 Results

Similar to the analysis conducted with the depth averaged soil moisture based historical
analog method, the skill of the precipitation based historical analog method in forecasting
July — December cumulative precipitation given January — June monthly precipitation is
assessed in Figure 5-11 and Figure 5-12 for the lowa and Georgia case study locations
respectively. The forecasts of July — December precipitation are not unbiased when this
method is applied over the long term, and that similarly there is poor skill in predicting
crop yield and irrigation amount as shown in Figure 5-13 and Figure 5-14. Based on these
results, it can be assumed that if near-real-time remote sensing precipitation retrievals from
GPM IMERG or GSMaP were incorporated into a similar historical analog approach, that

the predictive skill in forecasting crop yield and irrigation demand would be even less.
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Figure 5-11: Analysis of bias and reliability of monthly precipitation based historical
analog forecasts of July — December cumulative precipitation. lowa case study site.
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Figure 5-12: Analysis of bias and reliability of monthly precipitation based historical
analog forecasts of July — December cumulative precipitation. Georgia case study site.
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Figure 5-14: Analysis of bias and reliability of monthly precipitation based historical
analog forecasts of rainfed crop yield, irrigated crop yield, and irrigation amount. Georgia
case study site.

234



5.4 Assessment of local climate change impacts on crop production and irrigation
demand using bias-corrected and downscaled Global Circulation Model
(GCM) output

In the following case studies, LOCA bias-corrected and downscaled CMIP5 Global
Circulation Model (GCM) outputs are integrated into the DSSAT model for assessment of
long-term, localized impacts on crop production and irrigation demand. LOCA downscaled
variables include 6 km x 6 km daily estimates of maximum and minimum air temperature
and precipitation under two CO; emissions scenarios (RCP 4.5 and RCP 8.5) from 32
different climate models. Soil profile data is taken from the Harvest Choice Global High
resolution Soil Profile Data set. In this study, rainfed and irrigated corn are modeled from
year 2000 to 2095 under all available climate models and emission scenarios for a single
6km pixel in Mitchell County, Georgia and San Joaquin County, California. Table 5-2 lists
calibrated input parameters for rainfed and irrigated model runs.

Table 5-2: Calibrated input parameters for LOCA CMIP5 data driven DSSAT-CSM
maize simulations.

DSSAT-CSM
Location DSSAT-CSM Input Parameter Automatic-Irrigation
Input Parameter
Plant Soil Available
. . . Maize | Planting | Popuplation RO\.V mmstqre S0 il
Site Name | Latitude | Longitude . Spacing | montoring | moisture
cultivar date [plants/m? .
(plants/acre)] [cm (in)] depth threshold
[em (in)] (%)
Mitchell
County, | 312230 | -84.1857 | 11O | March 50
! 3382 29
Georgia
San 7.9 (30,000) 76 (30) 30 (12)
Joaquin April
County, 379176 | -121.1710 PB 8 3th 70
California
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5.4.1 Generating climate change forecasts of daily solar radiation

The agriculture decision support model used in this study, DSSAT, requires daily input
of downwelling surface solar radiation, which is not provided in the LOCA CMIP5 data
product. Solar radiation forecasts are instead generated using a basic artificial neural
network (ANN) model calibrated from fine resolution GRIDMET data (years 1980 —2000)
at each of the case study sites. The neural network accepts daily input of the following six
variables: month of year, daily top of atmosphere (extraterrestrial) solar radiation
(MJ/m?/day), maximum air temperature (°C), minimum air temperature (°C), precipitation
(mm), and precipitation from the previous day (mm). Neural network output is daily
surface downwelling solar radiation (MJ/m?/day). The network is constructed using the
default settings of the MATLAB Deep Learning Toolbox, with six inputs, 10 hidden nodes,
and one output node. The training function used to calibrate the network was Bayesian
Regularization Backpropagation with the objective function to optimize being Mean
Squared Error (MSE). Year 1980 — 2000 daily data from GRIDMET (solar radiation,
maximum and minimum air temperatures, and precipitation) was divided into neural
network training, validation, and testing data sets using a 70% - 15% - 15% split
respectively. Neural network performance for prediction of daily surface solar radiation
was additionally assessed in comparison to year 2001 — 2016 surface solar radiation data
from GRIDMET.

Figure 5-15 illustrates the performance of the surface solar radiation ANN models
developed for Mitchell County, Georgia and San Joaquin County, California case study
sites during the year 2001 — 2016 period in relation to the surface solar radiation estimates

from the reference GRIDMET data set. The models’ agreement with the GRIDMET

236



reference is excellent, with near or above 90 percent correlation and acceptable scatter.
There is a slight underestimation bias, but as will be shown, the bias bias and scatter do not
adversely impact analysis of long term trends in crop-yield and irrigation demand from
DSSAT simulations that are driven by ANN estimated solar radiation. The Mitchell County
site has greater scatter than the San Joaquin County site, and this is attributed to greater
cloudiness at the Georgia site. Cloudiness data is not directly incorporated into the ANN
(but some information of cloudiness is implicitly included by way of maximum and
minimum daily air temperature) and is not available in the LOCA CMIP5 data set. Figure
5-16 and Figure 5-17 present the time series of ANN surface solar radiation output along

with the GRIDMET reference for the 2001 — 2016 period.

Daily Surface Solar Radiation Neural Network Performance
Years 2001-2016
Mitchell County, Georgia San Joaquin County, California
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Figure 5-15: Performance of calibrated artificial neural networks (ANN) for estimation
of daily surface solar radiation at case study locations during years 2001-2016
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Figure 5-16: Time series of GRIDMET and Artificial Neural Network (ANN) estimated

daily surface solar radiation at the Mitchell County, Georgia case study site during years
2001-2016.
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Figure 5-17: Time series of GRIDMET and Artificial Neural Network (ANN) estimated
daily surface solar radiation at the San Joaquin County, California case study site during

years 2001-2016.

Table 5-3 compares the year 2001-2016 performance of the surface solar radiation ANN
model to the commonly used, parsimonious, and seasonally calibrated model of Bristow
and Campbell (1984). The Bristow and Campbell model accepts daily input of
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extraterrestrial solar radiation and diurnal temperature range (i.e. the difference between
daily maximum and minimum air temperatures) and requires calibration of three empirical
parameters for each season. Results show that the ANN model has superior (e.g. Mitchell
County, GA site) or comparable (e.g. San Joaquin County, CA site) performance to the
Bristow and Campbell model.

Table 5-3: Performance of Artificial Neural Network (ANN) model for estimation of

surface solar radiation compared to seasonally calibrated Bristow & Campbell (1984)
model. Green highlights indicate best performance for the specified metric.

Mitchell County, GA San Joaquin County, CA
RMSE Bias . RMSE Bias .
Model |\ 1y2/day)  (MIm?day)  COTCRION \pimiday)  (M/miday)  COTTelation
Bristow & 3.51 -0.92 0.85 2.22 -0.03 0.97
Campbell
ANN 3.17 -0.63 0.87 2.14 -0.08 0.97

Figure 5-18 compares year 1980 — 2016 DSSAT modeled corn yield and irrigation
demand at the case study sites, given either GRIDMET or ANN modeled surface solar
radiation forcing data. Results confirm the suitability of the ANN modeled surface solar
radiation forcing for crop yield and irrigation demand modeling at the case study locations,
especially for the purpose of assessing long term trends in local agricultural production and
irrigation demand. The ANN model will therefore be used for generating daily surface solar
radiation forcing data that corresponds to LOCA downscaled CMIP5 variables, assuming
that relationship between ANN model inputs and solar radiation output modeled for the

1980-2000 calibration period will remain valid for the 2000 — 2095 climate change period.
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Mitchell County, Georgia San Joaquin County, California
Rainfed Corn Yield, Mitchell County, GA
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Note: rainfed corn yield was not modeled for the San Joaquin County site.

Figure 5-18: Comparison of DSSAT modeled corn yield and irrigation amount at the
Mitchell County, Georgia and San Joaquin County, California case study sites given
GRIDMET reference and ANN modeled surface solar radiation forcing data.

5.4.2 Results

Figure 5-19 presents the climate change forecasts of rainfed corn yield, irrigated corn
yield, and irrigation demand for the Mitchell County, Georgia case study site. DSSAT
simulations were forced with LOCA CMIPS downscaled data from the 6km x 6km pixel
nearest the case study site. In the figure, the uncertainty bars characterize the standard
deviation from the mean of crop simulations forced by 32 different GCM models. The

green curve represents the RCP 4.5 emissions scenario while the red curve represents the

“worst-case” or “business-as-usual” CO> emissions scenario. In general, corn crop yield
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and irrigation demand forecasts are nearly indinstinguishable between the RCP 4.5 and
RCP 8.5 scenarios until year 2050, after which the RCP 8.5 scenario reports substantially
lower crop yields and more intense irrigation demands than the RCP 4.5 scenario. Under
the RCP 4.5 scenario, the mean of modeled rainfed corn yield at the Mitchell County case
study site goes from 8,297 kg/ha in year 2000 to 5,211 kg/ha by year 2095, an over 37
percent reduction. Under the RCP 8.5 scenario, year 2095 mean rainfed corn yield is only
2,625 kg/ha, a loss of over 68 percent.

Alarmingly, regardless of RCP scenario or GCM model, crop yields are forecasted to
reduce considerably, even if all water needs of the crop are met (i.e. irrigated crop yield).
Under the RCP 4.5 scenario, the mean of modeled irrigated corn yield at the Mitchell
County case study site goes from 11,793 kg/ha with 144 mm of irrigation in year 2000 to
8,092 kg/ha with 171 mm or irrigation by year 2095, an over 31 percent reduction in crop
yield and 19 percent increase in irrigation demand.

Under the RCP 8.5 scenario, year 2095 mean irrigated corn yield reduces to only 3,779
kg/ha with 189 mm of irrigation, a 68 percent loss in yield and a 31 percent increase in
irrigation demand.The finding that even irrigated crop yields are forecasted to fall, despite
the absence of water stress (and the abdundance of atmospheric CO;), suggests that
temperature rise is responsible for reducing crop yields. As mentioned previously in this
dissertation, corn crops have an ideal daily temperature for carbohydrate production, that
if surpassed, adversely impacts crop yield, even if no water stress is present. Results
suggest that climate change would adversely impact corn’s water-use efficiency, in that

more water would be required to produce lesser yield.
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Figure 5-19: Year 2000 — 2095 Mitchell County, Georgia corn crop yield and irrigation

demand forecasts from DSSAT model simulations driven by LOCA CMIP5 downscaled
data.
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Figure 5-20 presents the climate change forecasts of irrigated corn yield and irrigation
demand for the San Joaquin County, California case study site. Similar to the Mitchell
County site, irrigated corn yield is forecasted to drop substantially by year 2095. Irrigated
crop yield goes from 9,239 kg/ha in year 2000 to 6,677 kg/ha by year 2095 under the RCP
4.5 scenario, a 28 percent reduction. Under the RCP 8.5 scenario, irrigated crop yield falls
by 48 percent to 4,786 kg/ha by year 2095. However, the mean of modeled irrigation
amount remains largely unchanged at approximately 720 mm regardless of RCP scenario;
however, the spread of irrigation demand increases more under the RCP 8.5 than the RCP

4.5 scenario.
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Figure 5-20: Year 2000 — 2095 San Joaquin County, California corn crop yield and
irrigation demand forecasts from DSSAT model simulations driven by LOCA CMIP5

downscaled data.

5.5 Summary

In this chapter, the utility of modern remote-sensing and reanalysis gridded data

products for seasonal and long-term prediction of crop yield and irrigation demand is

assessed. A data-driven historical analog approach involving time series data of SMAP

surface soil moisture estimates was assessed to be ineffective for prediction of end-of-

season crop yield and irrigation amount. Similarly, the time series of depth averaged soil

moisture simulated using the DSSAT model was not effective for prediction of growing
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season crop yield or irrigation amount, despite soil moisture being an integrator of
precipitation, temperature, and evapotranspiration information. Because reanalysis
precipitation data based on rain gauge data showed poor skill in forecasting crop yield and
irrigation amount, it can also be assumed that near-real-time remote sensing precipitation
retrievals, which can have substantial errors as shown in Chapter 3, would also have poor
predictive skill under the historical analog approach tested in this study.

With regard to long-term analysis of climate change impacts on crop yield, this study
showed how modern bias-corrected and downscaled GCM data can be combined with other
agriculture-relevant gridded data products to quantify climate change impacts on local
agricultural production and irrigation demand. The data and methodology adopted in this
study can be used to assess the long-term feasibility of current agricultural and irrigation

practices.
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CHAPTER 6

CONCLUSIONS

6.1 Summary and contributions

This dissertation explores how modern multi-sensor remote sensing and reanalysis
gridded data products can provide decision support for crop yield hindcasting and
prediction, irrigation planning, agricultural drought assessment, and monitoring of
hydrological flows when integrated into state-of-the-science agricultural and hydrological
models.

Data products from recently launched remote sensing missions, including NASA
SMAP, NASA GPM, JAXA GSMaP, along with national and global gridded reanalysis
data products such as GRIDMET, Daymet, HarvestChoice Global High Resolution Soil
Profile Database, USDA Cropscape Cropland Data Layer, and LOCA downscaled GCM
projections, provide relatively fine resolution (spatially and/or temporally) information on
a full range of hydrometeorologically relevant parameters and variables from the near
surface atmosphere, ground surface, to the bottom of the root-zone. This study assesses
how these modern data products can be synergistically incorporated into a popular
agricultural decision support model, DSSAT-CSM, and a commonly used rainfall-runoff
routing model, Sacramento Soil Moisture Accounting model (SAC-SMA). What follows
is a point summary of major findings and contributions from this research in answering the

science question: Can prediction of crop yield, assessment of irrigation demand, and
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monitoring of agricultural drought and hydrological flows be improved by integrating

multiple gridded data sets with agricultural and hydrological models?

6.1.1 Quality Assessment of remote sensing retrievals of precipitation over the

continental U.S.

NASA GPM IMERG Version 5 Late Release, JAXA GSMaP-Standard and
JAXA GSMaP-Gauge were assessed in relation to the observation network
derived gridded GRIDMET precipitation data set for the various seasons and
climate regions of the continental U.S. Generally, satellite retrievals of
precipitation overestimate precipitation in relation to the GRIDMET reference,
but the nature of the biases vary with season (and implicitly storm-type) and
climate region. Despite issues in accurately capturing the magnitude of
precipitation events, remote sensing precipitation retrievals appear to capture the
occurrence of precipitation events.

GPM IMERG Version 5 Late Release tends to underestimate precipitation in the
western (West and Northwest) climate regions, while overestimating
everywhere else. The most severe overestimation is in the winter season,
particularly in the Northwest, Northeast, and Central climate regions. Winter
time underestimation of precipitation is also apparent in the arid West and
Southwest climate regions.

The JAXA GSMaP-Gauge product agrees well with the GRIDMET reference;
however, this agreement is due entirely to the incorporation of rain gauge data
with the satellite retrievals. This finding highlights the importance of rain gauge

calibration of remote sensing precipitation retrievals. The availability, low-
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latency, and apparent accuracy of the GSMaP-Gauge product as assessed in this
study should inspire future versions of the NASA GPM IMERG Late Release
data product to more efficiently incorporate rain gauge data. However, results
beg the question of how accurate remote sensing retrievals of precipitation are
over national and especially global regions which are only scarcely gauged, if at

all.

6.1.2 Leveraging SMAP surface soil moisture retrievals to improve accuracy of

remote sensing precipitation retrievals
After identifying dry and wet biases in daily remote sensing precipitation
retrievals over the continental U.S., this study investigated whether these biases
could be predicted, and thusly removed, given information of daily remote
sensing retrievals of surface soil moisture state. Unfortunately, there was no
discernable correlation, regardless of climate zone or season, between estimates
of surface soil moisture from SMAP and biases in remote sensing retrievals of

daily precipitation.

6.1.3 Impact of spatial averaging of high-resolution gridded meteorological data

on DSSAT-CSM crop model output
DSSAT-CSM was originally developed for application at the single field (point-
scale). This study aimed to determine the coarsest acceptable spatial resolution
for atmospheric weather variables and soil property data for reliable DSSAT
mean crop yield and irrigation assessments. While very fine spatial resolution
information of daily weather data is ideal (though computationally expensive),

results from this study suggest that atmospheric variables and soil property data
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of spatial resolution no coarser than ~10km are acceptable for crop yield and
irrigation assessments. Thus, it may not be necessary to downscale modern
remote sensing precipitation data products for the study purpose (which to date
have finest spatial resolution of 10 km), provided that the remote sensing

retrievals provide accurate information to begin with.

6.1.4 Hindcasting and near-real-time prediction of crop yield, irrigation demand,

and agricultural drought

Various remote sensing and reanalysis data products (and synergistic
combinations of them) were incorporated into the DSSAT-CSM crop model for
crop yield prediction and assessment of irrigation demand.

Dry and wet biases in SMAP L3 Enhanced data product prevented SMAP data
from being useful in improving the accuracy of, or reducing the uncertainty in,
prediction of crop yield. The failure of the active sensor on the SMAP satellite
prevents us from having a truly sub-10km remote sensing characterization of
surface soil moisture state. Though it is sufficient for atmospheric variables (e.g.
incoming solar radiation, air temperature, and precipitation) to have spatial
resolutions of 10 km, heterogenerities in surface condition (e.g. type of crop
planted, irrigated, non-irrigated, etc.) is an issue that has to be addressed before
SMAP retrievals of surface soil moisture can be integrated into the DSSAT crop
model.

Dry and wet biases in remote sensing retrievals of precipitation have a profound
impact on crop yield and irrigation demand simulations. Remote sensing

retrievals of precipitation that are not heavily calibrated with gauge data should
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not be used in agricultural models, a finding from this research which casts
doubts on the utility of remote sensing precipitation data for near-real-time
monitoring of crop state and irrigation planning in ungauged regions.

Integration of multiple high resolution data products can guide critical analyses
of the feasibility of modern agricultural practices at the watershed scale in light
of climate change. Long-term agricultural simulations driven by modern gridded
data products provide insight into the highly non-linear interactions between
crop, soil, atmosphere, and climate, and allow for refined characterizations of

the occurrence and severity agricultural drought.

6.1.5 Incorporation of remote sensing retrievals of precipitation for near-real-time

monitoring of hydrological flows
Dry and wet biases in remote sensing retrievals of precipitation have a profound
impact on streamflow simulations. Remote sensing retrievals of precipitation
that are not heavily calibrated with gauge data should not be used in streamflow
models, a finding from this research which casts doubts on the utility of remote
sensing precipitation data for near-real-time monitoring of streamflow. In order
to incorporate remote sensing precipitation data in streamflow models, such data
needs to be calibrated with other observational data sets in order for the
precipitation data to accurately capture the timing, spatial extent, and magnitude

of events.

6.1.6 Use of modern multi-sensor data for seasonal prediction of and climate-

change impacts on local crop yield and irrigation demand
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This study investigated a historical data association method for prediction of
end-of-season crop yield and irrigation amount.

Root zone soil moisture estimates did not have skill in predicting end-of-season
crop yield via the historical analog method used in this study. It is unclear if
there would be skill in this approach provided a longer (e.g., more than 20 years),
temporally continuous (e.g., daily) time series of SMAP surface soil moisture
retrievals were available. This is because the historical analog approach also
failed to show predictive skill when depth-averaged soil moisture (which is more
indicative of crop state than surface soil moisture) was used for predicting crop
yield and irrigation amounts. Furthermore SMAP-derived root zone soil
moisture estimates may have substantial biases.

Reanalysis estimates of monthly regional precipitation did not, and near-real-
time remote sensing precipitation retrievals would not have skill in predicting
crop yield and irrigation demand via the historical analog approach tested in this
study.

This study integrated the new LOCA bias-corrected and downscaled CMIP5
Climate Projections into the DSSAT-CSM for assessment of climate change
impacts on local-scale crop yield and irrigation demand. According to review of
the literature, this is the first study incorporating this data product along with
other agriculture-relevant data sets into DSSAT-CSM. Findings from this
exercise allowed for evaluation of the long-term feasibility of current
agricultural management practices of irrigated corn at the case study sites under

multiple projected climate-change scenarios. Incidently, a simple, but effective
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artificial neural network was developed to leverage historical fine resolution
weather and solar radiation estimates to predict daily projections of solar
radiation which are usually not provided by CMIP5 GCM projections, but are

necessary for crop modeling.

6.2 Recommendations for future work

Based on the findings, analyses, and results developed in this thesis, the following topics

warrant further investigation:

Identification of the source of biases in remote sensing retrievals of precipitation
and their subsequent correction/removal. Significant dry and wet biases in
remote sensing retrievals of precipitation, especially for ungauged regions,
seriously hamper the usefulness of such data products in agricultural modeling
and streamflow simulation and monitoring. This research identified the
existence of these anomalies and quantified them, but it is still not clear what
is/are the source(s) of these errors in the raw retrieval algorithms. It is hoped that
identification of the causes of dry and wet biases in retrievals would lead to
correction and improved accuracy of these vital data products.

Spatial and temporal downscaling of SMAP surface soil moisture retrievals to
10 km and finer resolution. Even though the SMAP L3 Enhanced data product
is posted at ~10 km spatial resolution, the native resolution of the product is still
considerably coarser. Sub-10 km heteorogeneity in crop plantings suggests
potentially substantial differences in surface soil moisture state between

different crops planted within a single 10 km SMAP pixel, especially during
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stages of crop growth and development that are acutely water-sensitive.
Considering that the finest spatial resolution of the USDA Cropscape Crop Land
Data Layer is 30 meters, it is of interest to investigate how close to this fine
resolution we can reliably downscale SMAP estimates to. Future releases from
the SMAP mission do include down to 3 km spatial resolution; however, these
proposed products have a long latency and temporal gaps (i.e. 10 - 12 days
between retrievals) making them unsuitable for incorporation in near-real-time
decision support systems for agriculture.

While the historical analog approach applied in this study using SMAP surface
soil moisture data and/or depth-averaged simulated soil moisture did not
demonstrate skill in prediction of precipitation or crop yield, it may be possible
that this approach, along with soil moisture time series data, can demonstrate
skill in the prediction of streamflow. With streamflow being strongly connected
to antecedent soil moisture condition (and to precipitation), such forecasting
experiments would be expected to demonstrate predictive skill in accordance
with soil moisture persistence characteristics.

Alternative applications of remote sensing data to support and improve
agricultural and hydrologic modeling. Significant biases in remote sensing
retrievals and precipitation and surface soil moisture from the GPM, GSMaP,
and SMAP missions generally prevent such data products from being directly
incorporated into agricultural and streamflow models without correction/pre-
processing. However, these data, in spite of biases and errors, may be beneficial

through indirect means. For example, remote sensing retrievals of surface soil
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moisture, combined with identification of wet days from remote sensing
precipitation data can possibly lead to improved modeling of daily solar
radiation. Similiarly remote sensing data from other missions can be explored to
support applications in agricultural planning and modeling of hydrological

flows.
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