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Abstract  

Using biocompatible materials to develop inexpensive, self-powered devices is 

significant for novel clinical applications. Here we report the engineering optimization on a set 

of self-powering triboelectric nanogenerator (TENG) devices. These thin, film-based devices are 

made from a solution of alginate, a biocompatible polysaccharide derived from seaweed, and 

glycerol, a plasticizer which makes the films stronger and more ductile. This TENG device 

converts otherwise wasted mechanical energy to electricity through the triboelectric effect, which 

harnesses the friction energy produced from the contact electrification between two different 

materials. The TENG consists of two nodes on a linear motor, and produce electricity when one 

node contacts and then separates from the other node. Both nodes have a base of Polymethyl 

methacrylate, underneath a layer of aluminum (the conductive layer). Then, one node is covered 

with a layer of Polytetrafluoroethylene polymer, and the other, with the biopolymer film. 

We optimized critical parameters such as the separation distance between the two TENG 

nodes, and the glycerol concentration(s) that enable the TENGs to generate the highest outputs of 

voltage, current, and amount of electric charge (V, I, Q). The TENG device without glycerol 

generated the highest voltage output, but showed unwanted brittleness, while the lowest glycerol 

concentration showed a small decrease in voltage but greatly increased durability. This trend 

suggests an optimal window for the device-fabrication parameters between the decreasing 

voltage output and the increasing glycerol amount. We have also identified the ideal separation 

distance between the two TENG nodes which generates the highest electrical outputs. Thus, an 

optimized biopolymer-TENG device from this systematic engineering study could self-power a 

wide range of medical devices. 
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Introduction 

Renewable energy sources have emerged as an important field for innovation, especially 

with regards to wearable, marketable, and implantable medical devices. This is partly due to the 

detrimental impacts fossil fuels and disposable batteries have had upon both our environmental 

and physical health. As one of the most promising new forefronts in biomedical engineering, 

creating self-powered biomedical devices, especially those that are both biocompatible and 

antimicrobial, is of extreme significance. For instance, doctors often want to monitor the 

conditions of people with chronic illnesses. The current solution to this problem is to request that 

the patient use an ambulatory system. However, ambulatory systems are not a good solution 

when the patient needs to be monitored for any period of time longer than one or two days [1]. 

Ambulatory systems are usually large and somewhat bulky, often with a rolling base design that 

can make many daily activities difficult [2]. Wearable devices are small and discreet, providing 

the perfect solution for any type of long-term patient monitoring [3]. Such biocompatible and 

antimicrobial, wearable devices would have a broad range of applications in both clinical and 

healthcare-industry settings. 

Triboelectric nanogenerators (TENGs) are able to convert otherwise wasted mechanical 

energy into electricity through the triboelectric effect and electric induction, making the use of 

TENGs highly applicable in device design. Essentially, TENGs harness the energy that is 

produced from the friction generated from the contact electrification between two different 

materials [3]. TENG devices could eventually eliminate the need for batteries in many smaller 

electronic devices due to TENGs’ self-powering capabilities and low manufacturing cost [3]. 

Though there are several different types of TENGs, this research is concerned with the vertical 

contact-separate mode TENG devices. As seen in Figure 1a below, vertical contact-separate 
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mode TENGs are made up of two different nodes, each covered with a different dielectric film. 

The dielectric films are arranged to face one another. Vertical contact-separate mode TENGs 

generate periodic amounts of voltage, current, and electrical charge due to the constant contact-

separate cycle. This periodicity is influenced by the separation distance between the two TENG 

nodes, as well as the speed, acceleration, and deceleration of the two nodes. When the two 

dielectric films contact each other, two oppositely charged surfaces are created, which is known 

as the triboelectric effect. As the two TENG nodes are released from contact with each other, an 

electrical field is generated between the two oppositely charged film surfaces, which causes a 

potential difference between the two electrodes [3]. 

 

Figure 1a: The figure above shows the structure of a vertical contact-separate mode TENG 

device, as well as how the contact electrification occurs. The arrow shows how the two TENG 

nodes contact and then separate from each other.  

 

However, until very recently, TENGs have experienced low electrical outputs in 

environments with a high relative humidity, which is an obvious issue for biomedical 

applications. Within the body, there is a considerably large relative humidity, and many common 

bodily functions result in some form of perspiration, which also generates a higher than normal 
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amount of relative humidity. Recently, researchers at the National Tsing Hua University 

demonstrated that incorporating a protein, such as gelatin, into the TENG design allows for an 

electric output at a high relative humidity, which is even better than the electrical output 

generated by of TENGs in a dry environment [4]. The amino groups in gelatin allowed for a 

larger number of free electrons to be generated during contact of the two nodes of the TENG, 

which resulted in a high electrical output at a high relative humidity [4]. This is an important 

breakthrough that brings us one step closer to creating a biocompatible, low cost, wearable, self- 

powered, and easily produced TENG device for personal health monitoring. 

Alginate, a biocompatible polysaccharide derived from the brown seaweed 

Phaeophyceae, has several of the same key amino groups as gelatin [5]. Therefore, theoretically, 

using alginate as a part of the TENG device should also generate a high electric output at a high 

relative humidity. The biopolymer layer of the TENG will be an alginate-based film. The 

decision to create make the biopolymer layer alginate-based rather than gelatin-based is due to 

the many properties that alginate has, which make it ideal for biomedical applications. In fact, 

alginate has already been used in a wide variety of biomedical applications, including everything 

from wound dressings to injectable hydrogels [5], [6]. Alginate’s widespread use in the 

biomedical field is largely due to its low toxicity, inexpensive, biocompatible, and mild gelation, 

as well alginate hydrogels’ minimally invasive properties, which allow for injection into the 

body in drug delivery applications [5], [6]. 

To maintain the user satisfaction with a wearable TENG device, such devices should 

also, ideally, be easy to keep clean through a quick, simple, and low-cost process. Another option 

is to make the wearable device antimicrobial, so that the user does not need to do much 

maintenance for the device. Logically, creating a new TENG device that is wearable, self- 
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powering, and biocompatible, as well as antimicrobial, would be highly desirable. Silver 

nanoparticles’ antimicrobial properties have shown to be successful in exterminating common 

strains of bacteria such as S. aureus and E. coli [7]. So, to achieve the antimicrobial component 

of the TENG device, silver nanoparticles will be added to the biopolymer layer of the TENG. 

Using alginate and silver nanoparticles, we can create a wearable TENG device that is 

biocompatible, self-powering, and antimicrobial [1], [5], [7].  

Introducing the antimicrobial aspect to TENG devices also allows for increased usability 

of a wearable device, especially for chronically ill patients who are physically too weak to 

regularly clean devices used. An antimicrobial and biocompatible TENG device would also 

allow for prolonged wear of the device without any user fears of developing a dermal infection 

or skin irritation. This is especially significant because dermal infections could further 

complicate matters for people with chronic illnesses or those that are taking certain medications, 

such as immunosuppressant drugs. Based on the preliminary data from our current work, this 

surface bioengineering on TENGs project is practical, important, and urgently needed. 

The purpose of this project was to manufacture a wearable, alginate-based TENG device 

that is self-powering, biocompatible, and antimicrobial. There were three main goals for this 

research project: 1) To add glycerol, a plasticizer, to the biopolymer films to make the films 

stronger; 2) Experimentally determine which glycerol concentration within the biopolymer film 

would generate the highest voltage (V), current (I), and amount of electric charge (Q); and 3) To 

test films made from different concentrations of silver nanoparticles, alginic acid, and glycerol to 

experimentally determine which solution(s) will generate the highest voltage, current, and 

amount of electric charge for the TENG device. 

 



 

	 7 

Materials and Methods 

Fabricating Biopolymer Films without Silver Nanoparticles 

We created biopolymer films from different concentrations of silver nanoparticles, 

alginic acid, water, and glycerol for the fabrication of the triboelectrification layer of the TENG. 

First, 3 g of alginic acid, in powdered salt form, were dissolved in deionized water, under 

constant stirring at 70 °C, until completely dissolved. Then, different concentrations of glycerol 

were added into the alginate solution to create solutions with glycerol concentrations ranging 

from 0 M to 0.125 M. The specific concentrations of glycerol tested were 0 M, 0.015625M, 

0.03125M, 0.0625M, and 0.125 M. Next, the new solution containing glycerol was stirred for 30 

minutes, until the glycerol was completely dissipated into the original alginate solution. After 

creating the solution, each film was prepared by pouring 20 mL of the solution into sterile 100 

mm x 15 mm petri dishes. These petri dishes were then placed into an oven to dry at 36 °C for 

ten hours. 

 

Fabricating Biopolymer Films with Silver Nanoparticles 

For the fabrication of the biopolymer films containing nanoparticles, the silver 

nanoparticles were prepared by reducing the silver precursor AgNO3 using sodium alginate and 

distilled water. The solution of sodium alginate and distilled water was created following the 

steps listed above, and then, to synthesize the silver nanoparticles, varying amounts of silver 

precursor were added to the existing alginate solution. This solution was then stirred 

continuously at 80 °C for sixty minutes. Different concentrations of silver precursor were added 

into the alginate solution for optimization, each at a volume of 10 μL. The specific 

concentrations we examined were 10 mM, 25 mM, 50 mM, and 100 mM solutions of silver 
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precursor in distilled water. After creating the solution, each film was prepared by pouring 20 

mL of the solution into sterile 100 mm x 15 mm petri dishes. These petri dishes were then placed 

into an oven to dry at 36 °C for ten hours. 

 

Manufacturing TENGs 

TENGs are typically made from two separate nodes, and the energy is produced when 

one node contacts the surface of the other node. Each node consists of different layers of 

material, though each node’s base layer was a 4 cm x 4 cm of 0.125-inch-thick piece of 

Polymethyl methacrylate (PMMA) for our experiments. Then, a sheet of aluminum foil with a 

thickness of 2 mm was taped onto the each of the two PMMA layers, with the aluminum foil 

completely covering one side of each base layer. From here, one node was topped with a layer of 

Polytetrafluoroethylene (PTFE), while the other node was topped with a layer of the biopolymer 

film we fabricated. PTFE and the film we fabricated served as the two triboelectrification layers 

of the TENG device, while the aluminum layer underneath served as the conductive layer. The 

assembly of the two nodes of the TENG device is depicted in Figure 1b below.  

 

Figure 3: The figure above shows the proposed assembly of the two nodes of the TENG device. 

The biopolymer film contains both silver (Ag) nanoparticles and alginate.     
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Linear Motor Measurements 

In order to characterize the performance of the TENG device, we used a linear motor to 

control the contact-separate experimental parameter. Essentially, the linear motor ensured that 

the distance between the two TENG nodes was held constant throughout the experimental trial. 

We set the speed of the linear motor to be 1 m/s, and both the acceleration and deceleration to be 

1 m/s2  for all of the experiments. With separation distance defined as the distance between the 

two nodes of the TENG when fully separated, we tested the separation distances of 5 mm, 10 

mm, and 20 mm for each film to discuss potential relationships between separation distance and 

electrical performance. To control for any possible degradation of the biopolymer films over 

time, each day, we only created the films that we would use for the linear motor measurements 

the next day. We created solutions of alginate with deionized water, which then are dried into 

films, and used in the TENG design as the layer on top of the conductive layer of aluminum. An 

aluminum sheet was cut and taped onto the 4 cm x 4 cm piece of Polymethyl methacrylate, or 

PMMA. Next, the dried film was layered on top of the aluminum sheet, constituting one node of 

the TENG. The other node was created by layering a piece of Polytetrafluoroethylene, or PTFE, 

on top of the aluminum sheet.  

Next, the two nodes were fixed to the linear motor using foam interface tape. Then, the 

nodes were wired to the electrometer (6514 system electrometer from Keithley), to measure the 

voltage output of the synthesized biopolymer film. The electrometer was then connected to a NI 

(or National Instruments) BNC-2120 board, before being connected to the computer board. The 

electrical output was read using a pre-written Labview code that acquired the signal readout from 

the computer board. We took measurements (V, Q, I) of each of the biopolymer films using the 

linear motor, the system set-up mentioned previously, and a pre-written LabView code. We then 
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exported the experimental data into Microsoft Excel and created time vs. voltage, time vs. 

current, and time vs. amount of electrical charge graphs for each biopolymer film.  

 

Results 

To examine the results of this research project, we looked at the trends observed from the 

data collected. One aim of our project was to examine the correlation, if any, between separation 

distance and voltage output, with separation distance defined as the distance between the two 

TENG nodes when mounted on the Linear Motor. Another goal was to determine the biopolymer 

film that would generate the highest voltage, current, and amount of electrical charge. With this 

goal, we distinguished that voltage output was the most crucial evaluation of electrical capacity, 

so we based our criteria mainly upon voltage. 

 

 

Figure 1b: Above is a graph of voltage vs. time for a 20 mL glycerol film at the separation 

distance of 5 mm. This particular biopolymer film generated a voltage range of 165 V. 



 

	 11 

 

Figure 1c: Above is a graph of voltage vs. time for a 20 mL glycerol film at the separation 

distance of 10 mm. This particular biopolymer film generated a voltage range of 146 V. 

 

 

Figure 1d: Above is a graph of voltage vs. time for a 20 mL glycerol film at the separation 

distance of 20 mm. This particular biopolymer film generated a voltage range of 130 V. 
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It is important to note that in Figures 1b, 1c, and 1d above, the peaks in the graphs 

correspond to contact between the two nodes of the TENG while the valleys correspond to 

separation of the two nodes. An interesting phenomenon observed with the 0 M glycerol films 

was that as separation distance between the two TENG nodes increased, the voltage output 

decreased. This trend is significant because it is unique to the 0 M glycerol films. 

 

 

Figure 2: The figure above shows the differences in voltage ranges between the alginate-based 

biopolymer films without glycerol and the films with the highest concentration of glycerol (0.125 

M glycerol). 
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Figure 3: Above is a graph depicting the maximum voltage output range for each 20 mL film at 

separation distance of 10 mm. From the figure, we can see that the 0 M glycerol films generated 

the highest voltage output, and the 0.0625 M glycerol film generated the lowest voltage output. It 

is also interesting note that the 0.015625 M glycerol film generated the highest voltage output 

out of all of the films containing glycerol. 

 

An interesting trend we noted was that the general decrease in maximum voltage output 

increases with amount of glycerol added – with the exception of the 0.125 M glycerol film. 

When testing the TENG devices, we noticed that films with higher glycerol concentrations were 

less brittle, more flexible, and highly adhesive to other surfaces. In fact, the larger the glycerol 

concentration was in the film, the more adhesive the film was. The highly adhesive nature of the 

films with large amounts of glycerol created an interesting phenomenon in which there were 
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larger spikes in voltage, current, and amount of electrical charge that directly corresponded to the 

biopolymer film adhering to the PTFE momentarily during experimentation. This phenomenon 

may serve to explain why the 0.125 M glycerol film did not follow the general trend as seen 

above in Figure 3. 

When glycerol was added to the biopolymer films, a different trend was observed with 

respect to the separation distance that produced the highest voltage output. Instead of 5 mm 

separation distance generating the highest voltage output, as observed in the 0 M glycerol films, 

for films with glycerol, we saw that the 10 mm separation distance generated the highest voltage 

output. In Figure 4 below, we can see that the 10 mm separation distance generates the highest 

voltage output of 138 V for the 20 mL 0.015625 M glycerol film. We are only examining the 

0.015625 M glycerol film here because this concentration of glycerol produced the highest 

voltage output in all films that contained glycerol, as shown above in Figure 3. 
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Figure 4: Above is the comparison of maximum voltage output range between the three 

separation distances tested for the 20 mL 0.015625 M glycerol film. It’s clear that the 10 mm 

separation distance generates the highest voltage output. 

 

Discussion 

In our experiments, we saw that alginate-based biopolymer films constructed without 

glycerol (0 M glycerol films) generated the highest voltage output. The biopolymer films without 

glycerol were brittle in comparison to even those with the lowest glycerol concentration. 

Glycerol’s properties as a plasticizer served to strengthen the films that contained it, making the 

films with glycerol less brittle, more ductile, and stronger than those without it. However, the 

strength of the films with glycerol came with a tradeoff – adding glycerol resulted in lower 

voltage outputs, with a direct correlation between decreasing voltage output and amount of 
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glycerol added to the films. In our data, we saw the trend that increasing glycerol concentration 

resulted in decreasing voltage output. Though the films with the lowest glycerol concentration of 

0.015625 M only experienced a small decrease in voltage, the films with the highest glycerol 

concentration of 0.125 M has a significant decrease in voltage when compared to the 0 M 

glycerol films. The difference in voltage between the films with 0.015625 M glycerol and the 0 

M glycerol films was 22 V, while the difference in voltage between the films with 0.125 M 

glycerol and the 0 M glycerol films was 79 V. 

However, despite the fact that 0 M glycerol alginate-based biopolymer films generate the 

highest voltage output, we must acknowledge the brittleness of the 0 M glycerol films. Since 

brittle films break easily, 0 M glycerol films are not a durable option and realistically, can only 

be used for TENGs in certain controlled environments. To further explore options to strengthen 

the alginate-based biopolymer films, we examined the affect that Calcium Chloride (CaCl2) 

would have on the films. Calcium Chloride has shown to cause gelling when in contact with 

alginate solutions [3]. We believed the gelling would serve to strengthen the films, in a similar 

manner as the addition of glycerol strengthened the films. To do so, we created biopolymer films 

using the materials and methods described above, and then sprayed the films with a 1 M CaCl2 

solution prior to placing the films into the oven. 

Similar to the effect of adding glycerol, adding calcium chloride to our films resulted in a 

decrease in voltage output, though the decrease in voltage with films with calcium chloride was 

significantly higher than those with glycerol. The maximum voltage generated by a film 

containing calcium chloride was only 75 V, which is much too low to be of use in most practical 

applications. Due to the sharp decrease in voltage between the films with calcium chloride and 

those without, we did not explore the effects of calcium chloride on alginate-based biopolymer 
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films further. Additionally, we found that films with calcium chloride appeared stronger and 

thicker than those without it, but unfortunately, were still brittle. This was an important 

distinction between the films with calcium chloride and those that contained glycerol – the 

glycerol-containing films were stronger and less brittle while the films with calcium chloride 

were stronger but still brittle. Therefore, we concluded that alginate-based biopolymer films with 

calcium chloride were not a good option for TENG devices with user interaction, such as 

biomedical devices. 

From our experiments, we have successfully distinguished the biopolymer film that is 

both the most durable and generates the highest voltage output – the 20 mL 0.015625 M glycerol 

film. Through our evaluation of different separation distances, we also identified 10 mm to be 

the best separation distance between the two TENG nodes in order to generate the highest 

voltage, current, and amount of electrical charge for alginate-based biopolymer films containing 

glycerol. 

 

Future Work 

Since we have successfully isolated the biopolymer film that is the most durable, and that 

generates the highest voltage output, our next step is to explore the effects silver nanoparticles 

will have upon our biopolymer films. In the Fall 2017 semester, I plan to work with Dr. Yi- 

Cheng Wang to explore the effects of adding silver nanoparticles to the 20 mL 0.015625 M 

glycerol film. The silver nanoparticles will be prepared by reducing the silver precursor AgNO3 

(from Sigma-Aldrich) using sodium citrate (from Sigma-Aldrich). Different amounts of silver 

nanoparticles will be added into the alginate-glycerol solution for optimization, starting at a 

volume of 10 μL. We were also unable to use an e-beam evaporator to deposit aluminum onto 
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the nodes this summer due to equipment issues. In the next phase of this project, we plan to 

create the aluminum layer by depositing aluminum with a thickness of 100nm onto each of the 

two PMMA layers through an e-beam evaporator. 

Although we tested both 20 mL and 30 mL films for each of the glycerol concentrations, 

we were not able to reach a conclusion that favored any one thickness of biopolymer film over 

the other. However, it was interesting to note that the general trend we observed was that 30 mL 

films were often more brittle than 20 mL films. This trend was especially true for films with 

lower amounts of glycerol. Since the 30 mL films were more brittle, most broke during the 

TENG manufacturing process, and so we were unable to test these films. A future step would be 

to more closely examine the role that film thickness plays in voltage output, current, and amount 

of electrical charge generated. 

Professor Wang’s lab has recently acquired a Fourier transform infrared spectroscopy 

(FT-IR) machine, which can characterize polymer surface functional groups [8]. FT-IR machines 

are able to identify the presence of specific functional groups and to detect the molecular makeup 

of a particular sample [9]. We plan to use the FT-IR to examine the surfaces of the films 

containing calcium chloride to better understand the brittleness of these films. The FT-IR would 

also help us determine the reason behind the decrease in voltage output experienced when 

glycerol is added to the alginate-based biopolymer films. 

However, we have not conducted in-depth data analysis yet. After we experimentally 

determine the effect that the addition of silver nanoparticles has, we will use paired t-tests to 

determine significance. Specifically, we will be comparing the differences, if any, in voltage, 

current, and amount of electrical charge produced in alginate-based biopolymer films versus 

alginate-based biopolymer films with silver nanoparticles.  
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However, from our preliminary data, we predict that the voltage, current, and amount of 

electrical charge will increase with respect to concentration of silver nanoparticles. From the 

biopolymer films with silver nanoparticles that we have tested thus far, this trend has been 

followed. This linear trend, if it continues in repeat experiments, would be highly significant for 

the field in terms of potentially creating a new triboelectric material.  
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