
Specification and Efficient Monitoring of Local
Graph-based Constraints in Hypermedia

Systems
Stephen Arnold , Leo Mark, and Sham Navathe

College of Computing,
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
GIT-CC-94-56

November 29, 1994

Abstract
The concept of hypermedia has existed for about fifty years. It became a practical technology in the sev-

enties, and widely available in the eighties. The concept has proven quite useful as a paradigm for informa-
tion presentation, and been applied to information relevant to many diverse fields. However, the networks of
semantic connections that exist in hypermedia systems are often so large and complex that they become
overwhelming to people trying to find information in them.

This paper presents a number of types of constraints representing application semantics as a way of
reducing the complexity of networks of semantic connections in hypermedia. Unlike constraints developed
in the past, those presented in this work are graph-based and can be evaluated within local regions of the
hypermedia system. In addition, this work presents an algebra on overview graphs of hypermedia systems.
To formalize the definitions of the algebra and constraints, this paper presents a data model for hypermedia.

Also, this paper presents an algebra on networks of semantic connections in hypermedia. This algebra,
in itself, can be used to define overview graphs on networks of semantic connections. In addition, the alge-
bra increases the expressive power of the constraints by allowing the definition of overview graphs to which
the constraints can be applied.

Keywords: Hypermedia, Algebra, Views, Constraints, Semantic Data Model

Page 2 of 31

1 Motivation
Hypermedia is a very powerful technology for storing and accessing information which is

highly, but not regularly, related. The concept was developed by Bush [Bush45]. He envisioned a
system where information was stored on microfilm and some mechanical system was used to
traverse related pieces of information. Though the concept is the same as the one found in modern
hypermedia systems, microfilm technology did not provide a practical platform for implementing
it.

The development of the computer provided a machine able to support Bush’s concept. The
high speed of information access, the ability to keep track of numerous and complex cross refer-
ences between information, and the powerful methods of displaying information possible in com-
puters today make these machines ideal platforms for hypermedia.

Once it became feasible to implement, hypermedia technology was used to develop a wide
array of diverse applications. Hypermedia systems have been created to support patient care,
intelligence gathering and analysis, car sales, education in a broad range of subjects, etc. It
appears to be useful in any domain where pieces of information need to be related in some irregu-
lar pattern.

With the development of hypermedia systems, however, a major problem appeared. The prob-
lem stems from the fact that complex webs of information are to complex to be effectively used -
even in hypermedia! Often, the networks of semantic connections in hypermedia become very
large and complicated. This problem manifests itself in two ways: users can not find the specific
information they want, and overviews of the semantic connections are too complex to be under-
stood by users. The different descriptions reflect two different perspectives on hypermedia: users
navigating from one piece of information to another and users trying to understand the structure
of a hypermedia system as a whole. The different perspectives highlight the problem that the net-
work of semantic connections in hypermedia systems can become too complex to be useful.

This problem is ironic considering that the objective of hypermedia technology is to present
information in a structured and easily browsable form. But the problem is very real and limits the
usefulness of these systems. The figure below, showing the semantic connections found in a sim-

Page 3 of 31

ple auto broker application, clearly illustrates the problem. The complexity of this overview is so
great that it makes the overview almost useless.

Nielsen surveyed users of a Guide document [Nielsen90] and found that 44% of them agreed
with a statement that they could not find where they had previously been in the document. They
were presented with too many choices of semantic connections to follow.

Different approaches to showing the connections have been tried. The fish-eye view is one of
the most successful. But even the best of these techniques is limited, because no matter how well
a confusing structure is shown, it is still a confusing structure. No matter how well a confusing
network of semantic connections in a hypermedia system is shown, it is still a confusing network.
This work tries to attack the problem at its root, by controlling the structure of the network of
semantic connections.

Figure 1. Overview graph of an autobroker network of semantic connections [Mukerjea94]

Page 4 of 31

In considering how to control the structure of networks of connections, two approaches have
been considered: templates and constraints. The use of templates has been explored [Marshall91]
[Marshall92]. In a discussion with Frank Halasz [Halasz93], he described the disadvantage of the
template approach. Specifically, users dislike templates and, in many cases, refuse to used them.
So this work focus on the other alternative, that of constraints.

Since a hypermedia system can be considered a type of database, it is natural to apply results
from database research to hypermedia. This is especially helpful for the present work, because the
use of constraints in databases is a well explored area - much research has focused on using con-
straints in databases to incorporate application semantics. From this research, the amount of time
it takes to detect a constraint violation is one major difficulty in using constraints in databases.
Many types of constraints are impractical because they make the transaction time in a database
unacceptably long.

The biggest problem in constraint violation detection is that the detection algorithms may
have to access every page of the database. The bottleneck in database systems is the time it takes
to transfer data from disk to memory and back.

Thus, taking into consideration the disk access problem and the objective of simplifying the
network of connections, this work explores local graph-based constraints. These constraints are
local because for a single transaction only a local region of the database needs to be accessed to
determine if a constraint is violated. Graph-based means that these constraints can be expressed as
networks of connections.

Though these constraints by themselves look promising for being able to limit the complexity
of networks of semantic connections in hypermedia systems, there usefulness can be increased.
Often users do not wish to view the raw data in a database, but rather work with abstractions on
the raw data. A traditional approach to defining these abstractions is an algebra. An algebra, once
defined, can allow the user to constrain abstractions of the base semantic connections in addition
to the base connections themselves. This paper presents an algebra to can be used to construct
views which, in turn, can be constrained by the local graph-based constraints.

To be able to define both the constraints and the algebra, a formal description of semantic con-
nections in a hypermedia system is needed. Hence, this paper presents a formal model for seman-
tic connections in hypermedia systems.

In summary, hypermedia systems are here, and here to stay. The networks of semantic connec-
tions in these system can become too complex to be useful. This problem is addressed by devel-
oping constraints, an algebra, and a data model. The constraints cannot be allowed to slow
transaction processing of the hypermedia system too much, so this work will explore efficiency
issues such as localization and caching. The algebra increases the power of the constraints by
allowing them to be used on both raw data and on abstractions on the raw data. Lastly, to be able
to define the constraints and the algebra, a formal model of hypermedia is needed.

The structure of the remainder of this paper is as follows. In section 2, the background is dis-
cussed. This section is divided into three parts: constraints, hypermedia, and other related work.
In section 3, this paper presents high level description of hypermedia concepts. In section 4, this
paper describes the object-oriented data model on which the work here is based. In section 5, this

Page 5 of 31

paper presents a formal data model of the semantic connections in hypermedia. In section 6, this
paper defines an algebra for the semantic connections in hypermedia. Section 7 presents con-
straints on the semantic connections. This section consists of two parts: definitions of constraints
and algorithms for constraint violation detection. In section 8, this paper presents the direction
which the authors plan to continue this research. Section 9 describes the impact of this work.

Page 6 of 31

2 Background
This work represents an intersection between two different areas: constraints and hypermedia.

To the authors’ knowledge, no work dealing with this intersection exists other than that presented
here, but a great deal of research has been done in each of the individual areas. This work is based
on results and approaches from several areas within computer science including formal algebras,
views, and data modeling. This paper addresses the background in each of these areas below.
2.1 Constraints

Constraints are used in the area of artificial intelligence, but the emphasis and thus the results
are not closely related to this work. Constraints in this area aim to capture information and adapt
information to changes. The goal of this work is to develop efficient algorithms for constraint vio-
lation detection, and the constraints in this work simply reject changes that would violate con-
straints. Some examples of artificial intelligence systems that use constraints are the planning
system of MOLGEN [Stefik81.1] [Stefik81.2] and the common sense reasoning system Cyc
[Lenat90].

Graphical user interfaces and simulation systems use constraints in very similar ways. In both
areas, the constraints are arithmetic equations with minor extensions such as conditionals. The
emphasis of the work is to quickly recompute values to adapt to changes.

Within the graphical user interface area, there is a significant quantity of work in the area of
inferring constraints. In this work, constraint equations are inferred from demonstrations or exam-
ples. DEMO II [Fisher92] and Chimera [Kurlander93] are two systems that infer constraints.

In addition, computer languages extended to support use of constraints have been used to cre-
ate interfaces and support simulations. Hudson and Yeats [Hudson91] have developed a visual
language for constraint specification. Eval/vite [Hudson93], ThingLab [Borning81] [Borning87]
and its extensions [Freeman89] [Freeman90], and RENDEZVOUS [Hill93] are extensions of
C++, Smalltalk, and CLOS (an object-oriented LISP), respectively, which allow these languages
to include constraints.

Vander Zanden [Zanden91] and Gleicher [Gleicher93] have investigated issues in constraint
implementation. Vander Zanden extended constraint definitions to support indirect referencing
order, leading to an increase in the expressiveness of constraints. Gleicher used an event-based
model for resolution of constraint violations. His approach is very similar to the constraint work
in databases.

The work presented here takes a different approach to constraints than is used in the areas of
user interface research and simulation systems. This work is not concerned with adapting to
changes that violate constraints, nor are these constraints arithmetic in nature. The aim of con-
straints in both user interfaces and simulation systems is to adapt to changes and to represent and
enforce arithmetic relationships.

Constraints in databases are handled through the use of triggers. Cochrane [Cochran92] pre-
sents the event-condition-action model of triggers, and a taxonomy with fourteen axes: control
strategy, event type, event specification, processing granularity, condition scope, termination con-
dition, event-condition binding, condition-action binding, transition value reference, net effect,

Page 7 of 31

conflict resolution and programming support. The authors are aware of at least seventeen different
systems that are effectively categorized within this taxonomy [Anwar93], [Cervesato92],
[Delcambre89], [Dia91], [Eick93], [Gala93], [Garcia94], [Gertz93], [Han91], [Hanson89],
[Ishikawa93], [Jagadish92], [Mark91], [McCarthy89], [Stonebraker88],
[Stonebraker89],[Widom90], [Zhou90]. The constraints used in the work presented here can be
classified in this taxonomy as well. However, five of the fourteen axes do not apply. These are the
following: termination condition, transition value references, net effect, conflict resolution, and
programming support.

Use of constraints in object-oriented databases has been explored. There are two approaches
to constraints that can be taken in such systems: either constraint definitions are placed inside of
objects[Formica92], [Martin92], or are kept external to them[Shack93], [Yoon92]. This distinc-
tion is important in looking at the degree of support for inter-object vs. intra-object constraints.
Slack and Unger [Slack93] present convincing arguments that constraints should exist at the
schema level. The issue of constraint bind time has been explored[Martin92], [Karadimce93],as
in Cochrane’s work, but under the name of soft constraints verses hard constraints. Soft con-
straints are those that can be violated during a transaction, but not between transactions. Hard
constraints are never allowed to be violated. The constraints in the work presented here are
schema level and soft.

The object-centered approach to constraints proposed by Delcambre et. al. [Delcambre91] is
fundamental to the work presented here. An object-centered constraint is one for which the set of
objects needing to be examined to detect constraint violation can be discovered by tracing a path
originating at any member of that set. Whereas Delcambre applied this concept to Prolog Data-
bases, this work applies it to graphs.

2.2 Hypermedia
A great deal of work has been done in modeling hypermedia. One of the most significant

models is the Dexter Hypertext Reference Model (DHRM) [Halasz89] [Halasz94] [Leggett94]
[Gronbaek94.1]. This model is based on Z [Z] and divides hypermedia into three layers: run-time
layer, storage layer, and internal information chunk structure layer. The practical issues of imple-
menting hypermedia systems in this model have been explored [Gronbaek93] [Gronbaek94.2]. It
has also been extended to address temporal aspects of display [Hardman94].

The author’s previous work [Arnold94] differs from the DHRM in proposing a schema level
for semantic connections, which DHRM does not do. In addition, this work maintains a distinc-
tion between relationships and all other information, whereas DHRM allows the structures that
store relationships to contain arbitrary data.

There are several other model of hypermedia present in the literature, besides DHRM. Each
model addresses different issues. HAM [Campbell88], Conklin[Conklin88], Garg[Garg88],
Lange[Lange90], and Parunak [Parunak91] all present general models of hypermedia. Unlike
other models, Parunak presents a model of semantic connections represented as sets rather than
edges. None of these models has a schema level nor addresses controlling the network of seman-
tic connections like this work does.

Page 8 of 31

Many specialized models have been developed as well. Afrati and Koutras [Afrati90] look at
querying in hypermedia. αTrellis [Stotts90] models information traversal and timing issues in
such traversals. Bra et al. [Bra92] present a metaphor for capturing aggregation of information.
Zheng and Pong [Zheng92] use state charts to model browsing semantics. The author has devel-
oped the Grain-Node-Role-Link model for hypermedia [Arnold94] from observing user interac-
tions.

There has been some previous work on the topic of controlling networks of semantic informa-
tion in hypermedia. Templates were developed to aid users in structuring the hypermedia links
needed by applications[Marshall91] [Marshall92]. A disadvantage of this approach is that users
seem to have difficulty using template structures, and avoid using them in practice[Marshall92]
[Halasz93]. This has led the author to conclude that a better approach might be to allow users to
structure information in a flexible manner (without the use of templates), and use constraint
checking to enforce structure requirements.

2.3 Closely Related Work from Other Areas
The algebra described below is very similar to an object-oriented algebra. Yu and Osborn

[Yu91] have developed a framework for evaluation of object-oriented algebras based on the fol-
lowing criteria: object-orientedness, expressiveness, degree of formality, performance, and how
well database issues are handled. The algebra described does well when evaluated with these cri-
teria.

 Several object-oriented algebras have been created. Bertino at al. [Bertino92] create a calcu-
lus based on first order logic and recursion. Liu [Liu93] develops an algebra based on recursion
and aggregation. Su, Guo, and Lam [Su93], [Gou91] develop an algebra based on associations. In
contrast to these other algebras, the one presented in this work strives for similarity to the rela-
tional algebra, so as to achieve ease-of-learning and ease-of-use.

Agrawal and DeMichiel [Agrawal94] explore type derivation for the project operation,
although their work violates the object-oriented principle of encapsulation. Alhajj and Arkun
[Alhajj92] use sets to emulate relational and nested algebras. Kim [Kim92] develops yet another
relational based algebra, in which selection is used to produce a form of semi-join.

Among all the algebras referenced above, the one presented in this paper is most similar to
Kim’s in that both use traditional relational operators. There are significant differences, however.
For example, the algebra described below maintains encapsulation better than that of Kim. In
addition, while Kim’s algebra functions on a domain of objects, the one developed here functions
on graphs composed of objects.

Hy+ [Consens93] and the work of Catarci et al. [Catarci93] develop algebras for graphs. Hy+
uses a different subset of hypergraphs than used in this work. Catarci overlays graphs onto exist-
ing data models. The work presented here targets the specific application of hypermedia instead of
functioning as a layer above another data model.

The Classic database [Borgida89] addresses issues similar to those addressed in this paper.
Classic generalizes data into classes, but the nature of these generalizations is limited because of

Page 9 of 31

tractability issues. Similarly, the work presented here attempts to find patterns in base data, but
limits the kinds of patterns due to tractability issues.

Page 10 of 31

3 Hypermedia Concepts

The concepts in this work are based in part on the Grain-Node-Role-Link (GNRL) model
described by the author in a previous paper [Arnold94]. Rather than merely trying to model the
semantic linkages existing in a hypermedia system, the GNRL model takes a user’s point of view,
and attempts to describe the kinds of relationships that users have in mind as they traverse hyper-
media links. Using this model as a starting point, the authors can then define constraints which
will reflect the types of semantic relationships that users are interested in.

The GNRL model was developed based on physician interactions with a hypermedia system
when performing patient evaluations. The authors believe that the concepts of grains, nodes,
roles, and links capture the information relationships required to model user interaction in hyper-
media. A node is a chunk of information. A link is a named semantic connection between nodes.
The name of a link denotes the relationship existing between the nodes. A link is composed of
roles, each of which is a named set of nodes. The role name denotes the role that the nodes in the
role play in the link. A grain indicates a section of a node which is related by a link. The concept
of a grain is very closely related to the known hypermedia concept of anchors.

The algebra and constraints developed in this paper utilize the concepts of nodes, roles, and
links. Thus, these concepts of hypermedia and those in an object-oriented data model provide the
formal foundation of this work.

Page 11 of 31

4 Object-Oriented Data Model
The abstract concepts of hypermedia provide a model for information structures, but not a

model for the storage and behaviors needed in hypermedia systems. There are a wide variety of
models which could provide a practical platform for implementation, such as the relational data
model, the entity-relationship data model, and third generation programming languages. How-
ever, none of these effectively captures both information structures and desired behavior, such as
the ability to store, display, and traverse information. Since these behaviors are critical for any
hypermedia system, this paper adopts a model that allows specifying them along with the infor-
mation structures. This combination of data storage and behavioral needs is best modeled with an
object-oriented data model.

Objects support the storage and display of information, and can hold arbitrary pieces of infor-
mation such as nodes. They can also have any desired programmable behavior such as display
routines. They are not good for supporting links, but this weakness can be overcome by defining
objects that specifically support the links needed to allow users to traverse networks of semantic
connections.

Many different object-oriented data models exist. This paper does not use a specific model in
this work, but work within the set of models that have classes and attributes which take values.
Classes are abstract descriptions of objects that include the definition of objects’ attributes and
methods. The attributes of an object hold the values of the object’s state. The methods of an object
define the behaviors of an object. When receiving a method list, an object returns a value. C++
and ORION [Kim92] are examples of object-oriented systems that have these characteristics.

This paper uses an object-oriented data model having classes because this work relies on the
able to refer to groups of objects based on a common abstract description. Subclasses enhance the
ability to refer to groups of objects. This work uses attributes that can take values because the
work relies on the able to refer to the content of the state of an object, but can allow some objects’
states to contain arbitrary values.

Page 12 of 31

5 Formal Model
The GNRL model and an object-oriented data model with classes and attributes that take val-

ues provide the basis for the formal model presented in this paper. The model is based on hyper-
graphs [Berge73]. The model is augmented with both blocks and behaviors to create labeled
hypergraphs with blocks (LHGB). This graph theoretic formalism provides a model on which the
algebra and constraints can be defined.

A LHGB consists of nodes, blocks, and links. A node is a labeled vertex with behaviors. Its
label is part of a hierarchy with “node” as the label at the root of the hierarchy. A method list can
be sent to a node, and the node will respond with a value. A node responds with the same value
every time it is sent the same method list. A node in a LHGB represents a node from the GNRL
model with the same label. A node responds to messages like objects do in an object-oriented data
model.

A block is a labeled set of nodes. The label is the same as the label of roles from the GNRL
model it represents.

A link is a labeled set of blocks, where each block within the set is uniquely labeled. A link
must contain at least two blocks, and at least two of the blocks in a link must contain at least one
node each. A link represents a link from the GNRL model and provides a structure to overcome
the weakness of object-oriented data models in supporting relationships. Links respond to method
lists the same way nodes do.

The figure below shows a consultation link. It has three blocks: patient data, interpretation,
and doctor. Each block contains nodes. The patient data block contains two x-ray nodes, the inter-
pretation block contains a text node, and the doctor block contains a name node.

Figure 2. Example of nodes and links in LHGB notation

X-ray 2X-ray 1

Text Name

Patient data

Interpretation Doctor

Consultation

Page 13 of 31

6 Algebra
The algebra was designed using the following principles:

- operators in the algebra should resemble traditional database operators,
- the algebra should be closed on the set of LHGBs
- the results of operations should be strongly typed
- the results of an operation should be no more complex than the original operands,

where the level of complexity of an LHGB is measured by the number of links,
blocks, and nodes it contains.

The algebra has three kinds of operators: node, link, and graph. Node operators act on nodes
and induce a set of links. Link operators act on links and induce a set of nodes. Graph operators
act on graphs as a whole.

The syntax is simple and traditional. Node and link operators are unary and prefix, and, in
some cases, take lists as subscripts. The graph operators are binary and postfix. Operators are
evaluated from left to right, except when parenthesis are used to specify otherwise. For operators
which take a method list as input, evaluation is done in a sequential fashion; the first method in
the list is applied to the original operand, the next method is applied to the results of that opera-
tion, and so on until all methods in the method list have been applied. The result of the operation
as a whole consists of the output from the application of the final method.

The node operations are node select σn and group γ. The nodes in σn [method list] (G) are all of
the nodes in G which return the value true in response to the method list. The induced set of links
in σn [method list](G) consists of links in G which contain at least one node in each of two different
blocks. These links are missing any node that is not present in the nodes of σn [method list] (G).
This operator is similar to the selection operator in Kim’s algebra because it can be used to select
elements based on their characteristics and do semi-joins along paths of methods [Kim92].

To define the group operator, an aggregation node needs to be defined. An aggregation node
is labeled “aggregation”. It contains two attributes: value and nodes. The value attribute contains
a value and the nodes attribute contains a set of nodes.

The group operator groups nodes based on a common characteristic. The result of applying
γ[method list] to a graph G is a set of aggregation nodes which contains one node for each different
value produced by sending the method list to every node in G. Each aggregation node’s value
attribute is one of these produced values, and its nodes attribute is the set of nodes in G which
responded with that value. The links in γ [method list] (G) are induced as follows: if a node N
appears in an aggregation node’s nodes attribute, then the aggregation node is contained by a
block with the same block label as N’s block, and participates in links with the same link labels as
N.

The link operators are link select σl, project π, and join χ. The links in σl [method list] (G) are
those links in G which respond true to the method list. The induced set of nodes in link select σl
[method list] (G) is the set of the nodes participating in the links of σl [method list] (G). This operator
is similar to the selection operator in Kim’s algebra because it can be used to select elements
based on a characteristics and do semi-joins along paths of methods [Kim92].

Page 14 of 31

The project operator π projects over a set of blocks. It has two forms, project-on and project-
off. The link set of π [label, label,...] (G) is a set of links derived from the set of links in G as fol-
lows: for each link L in G that contains at least two blocks labeled with labels from the list and
having at least one node each, there is a link L’ in π [label, label,...] (G). Each link L’ contains only
those blocks from L which have labels found in the label list. The link set of π [- , label,...] (G) is
defined similarly, except that blocks in the result are those which do not match the labels in the
list. The induced nodes in both results are those that are present in the links of the result.

Before defining the join operation, a path pattern needs to be defined, and a matching path pat-
tern. A path pattern is a list of labels in the following pattern:

<block label> [<node label> <block label> <link label> <block label>] * <node label> <block label>
A path is a list of blocks, nodes, and links with the following characteristics. A block is either fol-
lowed by a node which is contained in the block or a link which contains the block. A link is only
followed by a block which it contains. A node is only followed by a block that contains the node.
A block with a node in front of it is only followed by a link. A path pattern matches a path if
the labels in the path pattern match the labels of the elements in the path.

Join χ joins two links which are connected by a specified path into one link. The set of links
in χ[link type, link type, path pattern](G) is a subset of the union of the blocks in each element of the
cartesian-product of the links of the first link type with the second link type. If there exists a path
from the first link in an element of the cross-product to the second link, and the path matches the
path pattern, then that element is in the result. The nodes in χ[link type, link type, path pattern](G) are
the nodes contained in the links of the result.

To preform a link operation such as project or join on a graph, some scheme is needed for
deriving names for the new links. This scheme works in the following manner: each link L from
G that participates in the derived link L’ is assigned an extended name that consists of listing the
blocks found in that link, and labelling this list with the name of the link L. For example, the Con-
sultation link shown previously can be named Consultation-{Patient Data, Doctor, Interpreta-
tion}. Then, when a link operation is preformed such as project or join, this extended name can be
used to derive a new link name for the result. When project on G is preformed, the block list is
merely updated to contain the names of those blocks that appear in the result. Hence, if the Con-
sultation link is found in G, then π [lDoctor,Interpretation] (G) will result in a new link called Consul-
tation-{Doctor, Interpretation}. If a join is preformed the extended names are concatenated.
Hence, a join on links Consultation-{Patient Data, Doctor, Interpretation} and Education-{Stu-
dent, School} will result in a new link called {Consultation-{Patient Data, Doctor, Interpreta-
tion}, Education-{Student, School}}

Before defining the graph operations, a definition of link equality is needed. Two links are
equal if they have the same label and contain identical blocks. Blocks are identical if they have
the same block label and contain the exact same nodes.

Union + combines two LHGBs together. The set of links in G1 +G2 is the union of the set of
links in G1 with the set of links in G2. The set of nodes in G1 + G2 is the union of the set of nodes
in G1 with the set of nodes in G2.

Page 15 of 31

Set subtraction removes one LHGB from another. The set of nodes in G1 - G2 is the set of
nodes in G1 minus the set of nodes in G2. A link l’ appears in G1 - G2 for every link l such that l is
in the set difference between links in G1 and links in G2, and at least two nodes from different
blocks in l appear in G1 - G2. For every block b’ in l’, there exists a block b in l such that b and b’
have the same label and the set of nodes in b’ is the intersection of the set of nodes in b and the set
of nodes in the result G1 - G2.

Below, this paper provides an example of these the join and project operators applied to a small
graph.

G:

x-ray 1

lab test

text 2

person 1

x-ray 2

text 1

person 2

college

doctor

Consultation

patient data

interpretation

student

school

Consultation

Education

patient data

interpretation

Education

student

school

doctor

Page 16 of 31

χ [consultation, education, doctor-person-student] (G):

π [interpretation, school] (χ [consultation, education, doctor-person-student] (G)):

x-ray 1

lab test

text 2

person 1

x-ray 2

text 1

person 2

college

doctor
patient data

interpretation

student school

patient data

interpretation

student

school

doctor

person 1

person 2

{Consultation-{patient data,
interpretation, doctor},
Education-{student, school}}

{Consultation-{patient data,
interpretation, doctor},
Education-{student, school}}

text 2

text 1
college

interpretation school

interpretation

school{Consultation-{interpretation},
Education-{school}}

{Consultation-{interpretation},
Education-{school}}

Page 17 of 31

7 Constraints
The formalism of labeled LHGBs is used to represent the constraints placed on networks of

semantic connections in hypermedia systems. For reasons of efficiency, the constraints will be
defined in such a way that they only require access to a local region of the graph representing a
network of semantic connections in order to determine if they are violated.

Below this paper will define three different types of constraints: density, graph exclusion, and
subgraph containment. This paper will also present algorithms to detect violations of these con-
straints when a link is added or deleted.
7.1 Definitions

A density constraint, as its name implies, puts a limit on the density of nodes appearing in a
graph. The specification for a density constraint is a fraction t/n, where t is a number of traversals,
and n is a number of nodes. A network of semantic connections satisfies the density constraint t/n
if, for all nodes in the LHGB which represents that network, no more than n nodes can be reached
by all possible paths of t traversals. To fully understand this definition, it is necessary to know pre-
cisely what a traversal consists of. A users current location in a network of semantic connections
is a specific node. Traversal in the network means changing the current location from one node to
another. A single traversal means changing the current location from one node within a block to
another node in a different block where both blocks are in the same link. For example, specifying
that a network of semantic connections satisfies a density constraint of 2/7 means that, in the
LHGB representing that network, it is impossible to find a node from which more than 7 nodes
can be reached by following all paths of 2 (or fewer) traversals.

A LHGB that satisfies the density constraint of 2/7:

Page 18 of 31

A LHGB that violates the density constraint of 2/7:

The definitions of the graph exclusion and subgraph containment both rely on the concept of
subgraph isomorphism. This isomorphism is more than a traditional graph isomorphism. For
graphs to be isomorphic, they must have the same structure, and elements of the two graphs which
correspond in the isomorphism must have the same label. A subgraph isomorphism exists
between two labeled hypergraphs if the second hypergraph contains a subgraph that is isomorphic
to the first hypergraph.

A graph exclusion constraint’s specification is a continuous LHGB. A network of semantic
connections satisfies a graph exclusion constraint G if there is no subgraph isomorphism between
G and the LHGB which represents the network of semantic connections. For example, given links
that represent the semantic connections of ‘membership in the same family’ and ‘employment
supervision’, a graph exclusion constraint can be constructed to prevent nepotism.

Nepotism is not allowed:

A subgraph containment constraint’s specification consists of two continuous LHGBs, the
first being a subgraph of the second. A network of semantic connections satisfies the subgraph

Person Person

supervises

related to

supervisor employee

relative 1 relative 2

Page 19 of 31

containment constraint G1 in G2 if all subgraphs of the LHGB which are isomorphic to G1 are
contained in graphs isomorphic to G2.

For example, in a network of semantic connections containing links for doctors requesting
procedures to be performed on patients, and links for procedures having been performed on
patients by staff members, a constraint could be specified so that a procedure can not be per-
formed without having been ordered.

All procedures must be ordered by a doctor:

7.2 Algorithms
When a semantic connection is inserted into or deleted from a network of semantic connec-

tions, a constraint may be violated. Hence. algorithms are needed for detecting such violations. To
simplify the development of these algorithms, the paper shall consider only addition or deletion of
a single link.

In considering the density and graph exclusion constraints, deleting a link does not pose the
possibility of violation. By deleting a link, more nodes do not become accessible in a given num-
ber of traversals. Similarly, by deleting a link, a subgraph which was not originally present in a
LHGB, does not appear. Therefore, constraint violation detection algorithms are needed only in
the case of addition of links in LGHBs bound only by these types of constraints.

For the subgraph containment constraint G1 in G2, algorithms are needed for both addition
and deletion of a link. When a link is added, a subgraph isomorphic to G1 may be created. When a
link is deleted, a subgraph isomorphic to G2 may be removed while a subgraph isomorphic to G2
still exists.

Patient Procedure

Doctor

Nurse

by

taskon

order

performed

taskon

by

Page 20 of 31

Because of space limitations, this paper will only present informal descriptions of these algo-
rithms.

Algorithm for detecting violation of density constraint, t/n.
Input: t/n, a LHGB G that does not violate the density constraint t/n, a link l to add to G.
Output: yes (the constraint is violated) or no (it is not).
Let G’ be G with l added to it. In G’, gather the set of all nodes reachable by paths of t - 1 links

from all nodes in l. For each node x is this set, gather the set of all nodes that can be reached by a
path of t links starting at x. Count the number of nodes in each of these sets. If that number is
greater than n for any of these sets, then the constraint is violated, otherwise it is not.

The algorithms that detect constraint violations for graph exclusion and subgraph containment
constraint rely on finding subgraph isomorphisms. To simplify these algorithms, this paper will
present an algorithm for finding subgraph isomorphisms and then use this algorithm in the
remaining three algorithms.

Algorithm for detecting subgraph isomorphisms (DSI).
Input: A continuous LHGB G1, another LHGB G2, and an isomorphism between a continuous

subset of links appearing in G1 and G2.
Output: an isomorphism between G1 and a subset of G2 or the empty set.
Place an arbitrary total ordering on the links in G1 and G2. Create an empty set B which will

be used to hold the pairs of elements that cannot be part of the isomorphism. Create an empty list
C that will be used to hold pairs of elements from the graph that are part of the isomorphism.

 Find the least link l1 in G1 which is not part of the input isomorphism and is not in C but
which has at least one node in common with a link in the isomorphism. Find the least link l2 in G2
which could become part of the isomorphism such that l1 and l2 are paired in the isomorphism and
(l1, l2) is not in B. Add (l1, l2) to the end of the list C. Repeat this process until the isomorphism
contains all links in G1, or no pair (l1, l2) can be found. When no pair (l1, l2) can be found, remove
the last element of C and place it in B. Repeat this process until all links in G1 are in the isomor-
phism or no pair (l1, l2) can be found.

 If an isomorphism containing all elements in G1 is found, that is the output. If no such iso-
morphism is found, the output is the empty set.

t - 1

t

Page 21 of 31

.

The algorithm for detecting a violations of a graph exclusion constraint is a direct application
of the DSI algorithm.

Algorithm for detecting a violation of the graph exclusion constraint, G1.
Input: A graph exclusion constraint, G1, a LHGB G2 that does not violate the graph exclusion

constraint G1, and a link l to be added to G2.
Output: yes (the constraint is violated) or no (it is not).
Let G2’ be G2 with l added to it. Let G3 be the LHGB consisting of l and the nodes within l.

Find all possible subgraph isomorphisms between G3 and G1. For each isomorphism, apply the
DSI algorithm to find G1 in G2’ using the isomorphism between G3 and a subset of G1. If the DSI
algorithm ever finds a subgraph isomorphism between G1 and G2’, adding l violates the con-
straint, otherwise it is not.

The algorithm for detecting a violation of a subgraph containment constraint when a link is
added simply applies the DSI algorithm twice, first to find the inner graph pattern G1, the second
to find the outer graph pattern G2. It also produces isomorphisms which will be used by the algo-
rithm for detecting a violation of the subgraph containment constraint G1 in G2 when a link is
deleted.

Algorithm for detecting a violation of the subgraph containment constraint S in G when
a link is added.

Input: A subgraph containment constraint G1 in G2, a LHGB G3 that does not violate the sub-
graph containment constraint G1 in G2, and a link l to be added to G3.

Pattern

Document

Corresponding links

G1

G2’

Page 22 of 31

Output: yes (the constraint is violated); or no (it is not), and a set of paired subgraph isomor-
phisms. The first element of the pair is a subgraph isomorphism between G1 and G3’; the second
between G2 and G3’.

Let G3’ be G3 with l added to it. Let G4 be the LHGB consisting of l and the nodes within l.
Find all possible subgraph isomorphisms between G4 and G1. For each isomorphism, apply the
DSI algorithm to find G1 in G3’ using the isomorphism between G4 and G1. For each subgraph
isomorphism between G1 and G3’, apply the DSI algorithm to find G2 in G3’ using the isomor-
phism with G1. If an isomorphism with G2 is not found for each isomorphism with G1, the con-
straint is violated, otherwise it is not. If the constraint is not violated, create pairs of all
isomorphisms of G1 with the isomorphism with G2 which was found using the isomorphism with
G1. Gather these pairs into a set.

In simpler terms, find all occurrences of G1 around the added link. Then determine if each
instance of the pattern G1 is contained by a pattern G2. If a pattern G1 is found in a pattern G2,
keep the pair for use in the algorithm for detecting a violation of the subgraph constraint G1 in G2
when a link is deleted.

The algorithm for detecting a violation of the subgraph containment constraint G1 in G2 when
a link is deleted assumes that the network of semantic connections G3,which the algorithm is
applied to, was built in a certain manner. Specifically, it starts with an empty network of semantic
connections and add links, one at time, from G3. Between each link addition, the above algorithm
is applied and the isomorphism pairs are associated with G3. This will ensure the availability of
all pairs of subgraph isomorphisms needed for the algorithm presented below to function cor-
rectly.

Algorithm for detecting a violation of the subgraph containment constraint G1 in G2
when a link is deleted.

Input: A subgraph containment constraint G1 in G2, a LHGB G3 that does not violate the sub-
graph containment constraint G1 in G2, all the pairs of subgraph isomorphisms P that was pro-
duced when G3 was constructed as described above, and a link l to be deleted from G3.

Output: yes (the constraint is violated); or no (it is not) and a set of pairs of subgraph isomor-
phisms. The first element of the pair is a subgraph isomorphism with G1; the second with G2.

Let G3’ be G3 with l deleted from it. Gather all (I1, I2) elements of P where there exists some
l1 such that (l1, l) is an element of I2 but not I1. Let this set of pairs of isomorphisms be called P1.
For each I1 where (I1, I2) is an element of P1, apply the DSI algorithm to find G2 in G3’ using I1 as
the isomorphism. Let the output of DSI be called I3. If DSI algorithm does not find a subgraph

G1G2

G3’

Page 23 of 31

isomorphism, then the constraint is violated. If it is not violated, create a set of pairs (I1, I3). Let
this set be called P2.

Gather all (I1, I2) elements of P where there exists some l1 such that (l1, l) is an element of I1.
Let this set of pairs of isomorphisms be called P3. Return the set of isomorphisms (P - (P1 + P2))
+ P2, where - is set subtraction and + is union.

In simpler terms, if a link is removed that was of some pattern G2, but not part of the associ-
ated pattern G1, then try to find another pattern G2 containing that pattern G1. If it is found,
remove the old isomorphism pair and replace it with the new one. If a link is removed from some
pattern G1, then remove all pairs of isomorphisms containing that instance of the pattern G1.

G1
G2

G3’

Page 24 of 31

8 Future Work
This work will be continued by three different task. The formalisms developed will be

extended and the theory will be developed. A practical example will be explored. And this design
will be integrated into a transaction oriented system.

The first task will continue the development of the formal model, the algebra, and the con-
straints. This work will consist of developing formal definitions (based on set theory) and mathe-
matical proofs. The work will develop a set theoretical definition of LHGB model for networks of
semantic connections in hypermedia. This formalization will help us in the exact specification of
the algebra and the constraints and provide a context to perform formal analysis of the data struc-
tures and algorithms related to the algebra and the constraints.

Transformation rule will be developed for the algebra. These rules will be similar to the equiv-
alence rule for relational algebra. The correctness of these rules will be verified by formal proofs
based on graph theory.

The constraints will also be defined in terms of the graph theoretic formalisms mentioned
above. This formalism will be used as a basis to study the decideability of determining if a con-
straint is violated in a network of semantic connections.

The second task will be to identify a compelling example of a hypermedia system which
would be improved by the use of the above defined algebra and constraints. This task will first
show the difficulties that occur when the network of semantic connections is not controlled. Then
it will justify the use of the methods of control (the algebra and constraints) as a way to reduce
these difficulties.

The last task is to take the developed theory mentioned above an show how it can be used in a
realistic system. The constraint violation detection algorithms are defined in an unrealistic envi-
ronment. They are defined assuming that only one semantic connection is added or deleted at a
time, and only one constraint will be enforced. A more realistic environment can have many
semantic connections added and deleted in a single transaction and will have multiple constraints
applied at once. The algorithms mentioned above will be extended to work in this environment.

Maintaining views is a very costly operation. In order to evaluate constraints on views, some
view maintenance will be needed. For constraints function on views, these views must be main-
tained constituently. This task will address view maintenance. This work will be based on the
existing work done by [Blakeley86], [Blakeley89], [Tampa88], and [Roussopoulos91]. Though
there work was developed for a different kind of database, it appears that much of it will transfer
into view maintenance on hypermedia systems.

Constraint violation detection may cause transaction times in database to be so long that the
database becomes unusable. Specifically, the database may become unusable because the number
of page accesses for constraint violation detection becomes very large. This work addresses this
issue by developing a cashing strategy. A local region cashing policy can be developed based on
the object-centered nature of the constraints.

This work will also develop cost formulas for the view maintenance and the constraint viola-
tion detection algorithms. These formulas will be verified by a combination of formal proofs and
simulations.

Page 25 of 31

9 Effect of This Work
Finding a “specific address” of a piece of information in a hypermedia system is difficult.

Developing an understanding of a whole network of information is almost impossible. An exam-
ple of such difficulties occurs with the World Wide Web. Navigating though the World Wide Web,
for instance, requires a strong set of computer skills and a great deal of persistence. As more
information becomes available and more people try to access information, the problems of finding
the desired information and understanding the structure of the available information will only get
worse. The advantages of access to highly connected information provided by hypermedia will be
severely reduced by the difficulties produced by the complex networks of semantic connections
within these systems.

This work will help people find a “specific address” and develop an overall understanding of
the structure of the “information highway” by providing a method of reducing the complexity of
the networks of semantic connections that populate it. As new hypermedia systems are con-
structed, the designers of these systems could use a combination of views and constraints to
reduce their complexity. Thus, when users try to find information in a hypermedia system, they
will be presented with a less complex network of semantic connections. These better organized
networks will be easier to comprehend, so people can develop an overall understanding of the
structure of the information which is available to them, and thus utilize it more productively and
efficiently.

Page 26 of 31

Bibliography
[Afrati 90], Foto Afrati and Constantinos Koutras, A Hypertext Model for Supporting Query

Mechanisms, Hypertext Concepts, Systems and Applications, Ed. N. Streitz and A. Rizk and
J. Andre, p.52-66, Cambridge University Press, 1990.

[Agrawal94], R. Agrawal, and L. G. DeMichiel, Type Derivation Using the Projection Operation,
Advances in Database Technology - EDBT ‘94, International Conference on Extending Data-
base Technology, Cambridge, United Kingdom, March 1994, Springer-Verlag, 1994, pages 7-
14.

[Alhajj93], Reda Alhajj and M. Erol Arkun, A Query Model for Object-Oriented Databases,
Ninth International Conference on Data Engineering, April 19-23, Vienna, Austria, 1993,
pages 163-72.

[Anwar93], E. Anwar, L. Maugis, and S. Chakravarthy, A New Perspective on Rule Support for
Object-Oriented Databases, Proceedings of the 1993 ACM SIGMOD International Confer-
ence on Management of Data, Washington, DC, May 26-28, 1993, 22(2):99-108.

[Arnold94] Stephen C. Arnold, Leo Mark, and Sham Navathe, A Model of Hypermedia Systems
for Administration of Semantic Connections, Proceedings of the 5th International Hong Kong
Computer Society Database Workshop, Next Generation Database Systems, Hong Kong
Computer Society, Kowloon Shangri-La, Hong Kong, pages 155-66, Feb. 26 1994.

[Berge73], Claude Berge, Graphs and Hypergraphs, North-Holland Publishing Company, New
York, 1973.

[Bertino92], E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella, Object-Oriented Query Lan-
guages: The Notion and the Issues, Knowledge and Data Engineering, June 1992, 4(3):223-
237.

[Blakeley86] Jose A. Blakeley, Neil Coburn, and Per-Ake Larson, Updating Derived Relations,:
Detecting Irrelevant and Autonomously Computable Updates. Technical report, CS-86-17,
University of Waterloo, Computer Science Department, May 1986.

[Blakeley89] Jose A. Blakeley, Neil Coburn, and Per-Ake Larson, Updating Derived Relations,:
Detecting Irrelevant and Autonomously Computable Updates. ACM Transactions on Data-
base Systems, 14(3):369-400, September 1989.

[Borgida89], Alexander Borgida, Ronald J. Brachman, Deborah L. McGuinness and Lori Alperin
Resnick, CLASSIC: A Structural Data Model for Objects, ACM SIGMOD International Con-
ference on Management of Data, Portland Oregon, May-June, 1989.

[Borning81] Alan Borning, The Programming Language Aspects of ThingLab, a Constraint-Ori-
ented Simulation Laboratory, ACM Transactions on Programming Languages and Systems,
3(4):353-387, October 1981

[Borning87], Alan Borning and Robert Duisberg and Bjorn Freeman-Benson and Axel Kramer
and Michael Woolf, Constraint Hierarchies, OOPSLA ‘87 Proceedings, pages 48-60, October,
1987

Page 27 of 31

[Bra92], Paul De Bra, Geert-Jan Houben, and Yoram Kornatzky, An Extensible Data Model for
Hyperdocuments, Echt ‘92, The Second ACM Conference on Hypertext, Milano, Italy,
November 30-December 4, 1992, pages 222-231.

[Bush94], V. Bush, “as we may think”, Atlantic Monthly, July 1945, p101-108.
[Campbell 88], Brad Campbell and Joseph M. Goodman, HAM: A General Purpose Hypertext

Abstract Machine, Communications of the ACM, v.31, n.7, p.856-861, July, 1988.
[Catarci93], Tiziana Catarci, Guiseppe Santucci, and Michele Angolaccio, Fundamental Graphi-

cal Primitives for Visual Query Languages, Information Systems, 18 (2), March 1993, pages
75-98.

[Catlin91], Karen Smith Catlin, L. Nancy Garrett and Julie A Launhardt, Hypermedia Templates:
An Author’s Tool, The Third ACM Conference on Hypertext, San Antonio, Texas, December
15-18, 1991, pages 147-160.

[Cervesato92], I. Cervesato and C. F. Eick, Specification and Enforcement of Dynamic Consis-
tency Constraints, Information and Knowledge Management CIKM-92, Baltimore, MD, U. S.
A., November 8-11, 1992, pages 193-99.

[Cochrane92], R. J. Cochrane, Advisor Leo Mark, Issues in Integrating Active Rules into Data-
base Systems, Ph.D. Thesis Report, University of Maryland, College Park, 1992.

[Conklin88], Jeff Conklin, Computer-Supported Cooperation, A Book of Readings, Hypertext: An
Introduction and Survey, p.423-475, Morgan Kaufmann, 1988.

[Consens93], Mariano P. Consens and Alberto O. Mendelzon, Hy+: A Hypergraph-based Query
and Visualization System, Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, Washington, DC, May 26-28, 1993, 22(2):511-522.

[Delcambre89], L. M. L. Delcambre and J. N. Etheredge, The Relational Production Language: A
Production Language for Relational Databases, In L. Kerschberg, editor, Expert Database
Systems - Proc. From the Second Int. Conf., pages 333-351, Redwood City, California, 1989.
Benjamin/Cummings.

[Delcambre 91], Lois M. L. Delcambre and Billy B. L. Lim and Susan D. Urban, Object-Cen-
tered Constraints, Proceeding of the Seventh International Conference on Data Engineering,
p.368-377, April 1991.

[Diaz91], Oscar Diaz, Norman Paton and Peter Gray, Rule Management in Object Oriented Data-
bases: A Uniform Approach, 17th International Conference on Very Large Databases, Sep-
tember 3-6 1991, Barcelona (Catalonia, Spain), pages 317-326.

[Eick93], Christoph F. Eick and Paul Werstein, Rule-Based Consistency Enforcement for Knowl-
edge-Based Systems, Knowledge and Data Engineering, February 1993, 5(1):52-64.

[Fisher92], Gene L. Fisher and Dale E. Busse, Adding Rule-Based Reasoning to a Demonstra-
tional Interface Builder, Proceedings of the ACM Symposium on User Interface Software and
Technology, ACM Press, Monterey, California, November 15-18, 1992, 89-98.

[Freeman89], Freeman, A Module Mechanism for Constraints in Smalltalk, SIGPAN Notices,
v.24, n.10, p.389-396, Oct. 1989.

Page 28 of 31

[Freeman90], Bjorn N. Freeman-Benson and John Maloney and Alan Borning, An Incremental
Constraint Solver, Comunications of the ACM, 33,(1): 54-63, January,1990

[Formica92], A. Formica and M. Missikoff, Adding Integrity Constraints to Object-Oriented
Databases, Information and Knowledge Management CIKM-92, Baltimore, MD, U. S. A.,
November 8-11, 1992, pages 593-601.

[Garcia94], C. Garcia, M. Celma, L. Mota, and H. Decker, Comparing and Synthesizing Integrity
Checking Methods for Deductive Databases, Tenth International Conference on Data Engi-
neering, February 14-18, Houston, Texas1994, pages 214-222.

[Garg88], Pankaj K. Garg, Abstraction Mechanisms in Hypertext, Communications of the ACM,
v.31, n.7, p.862-870, July 1988.

[Gertz93] Michael Gertz and Udo W. Lipeck, Deriving Integrity Maintaining Triggers from
Graphs, Ninth International Conference on Data Engineering, April 19-23, Vienna, Austria,
1993, pages 22-29.

[Gleicher93], A Graphical Toolkit Based on Differential Constraints, Proceedings of the ACM
Symposium on User Interface Software and Technology, ACM Press, Atlanta, Georgia,
November 3-5, 1993.

[Gronbaek93], Kaj Gronbaek, Jens A. Hem, and Ole L. Madsen, Designing Dexter-Based Coop-
erative Hypermedia System, Proceedings of the Fifth ACM Conference on Hypertext, Seattle,
Washington, November 14-18, 1993, pages25-39.

[Gou91], M. Guo, S. Y W. Su, and H. Lam, An Association Algebra for Processing Object-Ori-
ented Databases, Seventh International Conference on Data Engineering, April 8-12, Kobe,
Japan, 1991, pages 23-33.

[Gronbaek94.1], Kaj Gronbaek and Randall H. Trigg, Design Issues for a Dexter-Based Hyper-
media System, Comunications of the ACM, ACM Press, 37(2):30-39, Feb. 1994.

[Gronbaek94.2], Kaj Gronbaek and Hens A. Hem and Ole L. Madsen, and Lennert Sloth, Cooper-
ative Hypermedia Systems: A Dexter-Based Architecture, Comunications of the ACM, ACM
Press, 37(2):64-75, Feb. 1994.

[Halasz89], Frank Halasz and Mayer Schwartz, The Dexter Hypertext Reference Model, Proc. of
the NIST Hypertext Standardization Workshop, 1990

[Halasz93], Discussion with Frank Halasz on May 27, 1993, in the GVU Conference room of the
College of Computing at Georgia Tech.

[Halasz94] Frank Halasz and Mayer Schwartz, The Dexter Reference Model, Comunications of
the ACM, ACM Press, 37(2):26-29, Feb. 1994.

[Han91], J. Han, Constraint-Based Reasoning in Deductive Databases, Seventh International
Conference on Data Engineering, April 8-12, Kobe, Japan, 1991, pages 257-266.

[Hanson89], E. N. Hanson, An Initial Report on the Design of Ariel: A DBMS with an integrated
production rule system. In SIGMOD Record, Special Issue on Rule Management and Process-
ing in Expert Database Systems, 1989, Pages 12-19.

Page 29 of 31

[Hardman94], Lynda Hardman, Dick C.A. Bulterman, and Guido Van Rossum, The Amsterdam
Hypermedia Model: Adding Time and Context to the Dexter Model, Comunications of the
ACM, ACM Press, 37(2):50-64, Feb. 1994.

[Hill93], Ralph D. Hill, The Rendezvous Constraint Maintenance System, Proceedings of the
ACM Symposium on User Inter face Software and Technology, November 11-13, 1991, pages
225-234.

[Hudson91], Scott H. Hudson and Andrey K. Yeatts, Smoothly Integrating Rule-Based Tech-
niques Into A Direct Manipulation Interface Builder, Proceedings of the ACM Symposium on
User Inter face Software and Technology, November 11-13, 1991, pages 145-154.

[Hudson93], Scott E. Hudson, A System for Efficient and Flexible One-Way Constraint Evalua-
tion in C++, Tech. Report GIT-GVU-93-15, Georgia Institute of Technology, 1993.

[Ishikawa93], Hiroshi Ishikawa and Kazumi Kubota, An Active Object-Oriented Database: A
Multi-Paradigm Approach to Constraint Management, 19th International Conference on Very
Large Databases, August 24-27 1993, Dublin, Ireland, pages 467-479.

[Jagadish92], H. V. Jagadish and Xiaolei Qian, Integrity Maintenance in an Object-Oriented Data-
base, 18th International Conference on Very Large Databases, August 23-27 1992, Vancou-
ver, Canada, pages 469-481.

[Karadimce93], Anton P. Karadimce and Susan D. Urban, A Framework for Declarative Updates
and Constraint Maintenance in Object-Oriented Databases, Ninth International Conference on
Data Engineering, April 19-23, Vienna, Austria, 1993, pages 391-398.

[Kim 92], Won Kim, Introduction to Object-Oriented Databases, The MIT Press, 1992.
[Kurlander93], David Kurlander and Steven Feiner, Inferring Constraints form Multiple Snap-

shots, ACM Transaction on Graphics, 12(4):277-304, Oct. 1993.
[Lange 90], Danny B. Lange, A Formal Model for Hypertext, Proceedings of the Hypertext Stan-

dardization Workshop, 1990
[Leggett94], Join J. Leffett and John L. Schnase, Viewing Dexter with Open Eyes, Comunications

of the ACM, ACM Press, 37(2):76-86, Feb. 1994.
[Lenat90], Douglas B. Lenaat and R. V. Guha, Building Large Knowledge-Based Systems: Repre-

sentation and Inference in the Cyc Project, Addison-Wesley Publishing Company, Inc., Read-
ing, Massachusetts, 1990

[Liu93], Ling Liu, A Recursive Object Algebra Based on Aggregation Abstraction for Manipulat-
ing Complex Objects, Data & Knowledge Engineering, North-Holland, 11:21-60, 1993.

[Mark91], L. Mark, N. Roussopoulos, and R. Cochrane, Updated Dependencies in the Relational
Model. Technical Report SRC-TR91-94, Department of COmputer Science, University of
Maryland, College Park, Maryland, October 1991.

[Marshall91], Catherine C. Marshall, Frank G. Halasz, Russell A. Rogers, and William C. Janssen
Jr., Aquanet: a Hypertext Tool to Hold Your Knowledge in Place, The Third ACM Conference
on Hypertext, San Antonio, Texas, December 15-18, 1991, pages 261-275.

Page 30 of 31

[Marshall92], Catherine C. Marshall and Russel A. Rogers, Two Years before the Mist: Experi-
ences with Aquanet, Echt ‘92, The Second ACM Conference on Hypertext, Milano, Italy,
November 30-December 4, 1992, pages 53-62.

[Martin92], H. Martin, M. Adiba, B. Defuce, Consistency Checking in Object-Oriented Data-
bases: a Behavioral Approach, Information and Knowledge Management CIKM-92, Balti-
more, MD, U. S. A., November 8-11, 1992, pages 326-334.

[McCarthy89], D. R. McCarthy and U. Dayal, The Architecture of an Active Database Manage-
ment system, In SIGMOD89, pages 215-224.

[Mukherjea94], Sougata Mukherjea, “Visualizing the Information Space of Hypermedia Sys-
tems”, Ph.D. Proposal, College of Computing, Georgia Institute of Technology, 1994.

[Nielsen 90], Jakob Nielsen, Hypertext and Hypermedia, Academic Press, Inc.1990.
[Parunak91], H Van Dyke Parunak, Don’t Link Me In: Set Based Hypermedia for Taxonomic

Reasoning, The Third ACM Conference on Hypertext, San Antonio, Texas, December 15-18,
1991, pages 233-242.

[Roussopolous91], N. Roussopoulos, The Incremental Access Method of ViewCache: Concept
and Cost Analysis, ACM Transactions on Database Systems, 16(3), 1991.

[Slack93], James M. Slack and Elizabeth A. Unger, Integrity in Object-Oriented Database Sys-
tems, Computers & Security, Elsevier Science Publishers, Ltd.,12:389-404, 1993.

[Slack93], James M. Slack and Elizabeth A. Unger, Integrity in Object-Oriented Database Sys-
tems, Computers & Security, Elsevier Science Publishers, Ltd.,12:389-404, 1993.

[Stefik81.1], Mark Stefik, Planning with Constraints (MOLGEN: Part 1), Artificial Intelligence,
1981, 16, 111-140.

[Stefik81.2], Mark Stefik, Planning and Meta-Planning (MOLGEN: Part 2), Artificial Intelli-
gence, 16:141-169,1981

[Stonebraker88], M. Stonebraker, M. Hearst, and S Potamianos, The POSTGRES rule manager.
IEEE Trans. on Software Engineering, 14(7):897-907, July 1988.

[Stonebraker89], M. Stonebraker, M. Hearst, and S Potamianos. A Commentary on the POST-
GRES Rule System. In SIGMOD Record, Special Issue on Rule Management and Processing
in Expert Database Systems, 1989, pages 5-11.

[Stotts90], P. David Stotts and Richard Furuta, Browsing Parallel Process Networks, Journal of
Parallel and Distributed Computing, v9, p.224-235, 1990.

[Su93], Stanley Y. W. Su, Mingsen Guo, and Herman Lam, Association Algebra: A Mathematical
Foundation for Object-Oriented Databases, Knowledge and Data Engineering, October 1993,
5(5):775-798.

[Tompa88], Frank Wm. Tompa and Jose A. Blakeley, Maintaining Materialized Views Without
Accessing Base Data, Information Systems, 13(4):393-406, 1988.

[Widom90], J. Widom and S. J. Finkelstein, Set-Oriented Production Rules in Relational Data-
base systems. In SIGMOD90, pages 259-270.

Page 31 of 31

[Yoon92], J. P. Yoon and L. Kerschberg, A Framework for Constraint Management in Object-Ori-
ented Databases, Information and Knowledge Management CIKM-92, Baltimore, MD, U. S.
A., November 8-11, 1992, pages 292-299.

[Z], J. M. Spivey, The Z Notation, Prentice-Hall International, 1989
[Zanden91], Brad Vander Zanden, Brad A. Myers, Dario Giuse and Pedro Szekely, The Impor-

tance of Pointer Variables in Constraint Models, Proceedings of the ACM Symposium on User
Inter face Software and Technology, November 11-13, 1991, pages 155-164.

[Zheng92], Yi Zheng and Man-Chi Pong, Using Statecharts to Model Hypertext, Echt ‘92, The
Second ACM Conference on Hypertext, Milano, Italy, November 30-December 4, 1992,
pages242-250.

[Zhou90], Yuli Zhou and Meichum Hsu, A Theory for Rule Triggering Systems, Advances in
Database Technology - EDBT ‘90, International Conference on Extending Database Technol-
ogy, Venice, Italy, March 1990, Springer-Verlag, 1990, pages 407-21.

