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ABSTRACT 

The metal additive manufacturing process of laser powder-bed fusion (LPBF) 

presents a challenge to develop qualified processes to match the rapid pace of technology 

development. An aspect of the LPBF process where this applies is defining the how powder 

feedstock conditions affect the quality of produced components. This study examines how 

in-machine powder feedstock supplies evolve and are otherwise affected during the LPBF 

process, and how these effects impact subsequent builds which use said feedstock. An 

examination of powder flowability, rheology, and morphology is conducted to characterize 

the powder conditions. To study the effects, an assessment of produced component tensile, 

fatigue, and microstructural properties is conducted. Fatigue life is analyzed using a 

reliability modeling approach in order to provide detailed statistical conclusions often 

missing in other analyses. Powders are found to evolve their characteristics over exposure 

to repeated LPBF processes, particularly in the extremes of powder size distribution and 

measures of bulk flow. No significant effects on microstructural, hardness, tensile, and 

fatigue properties of the produced components are shown. Fatigue life is discovered to 

exhibit a dependence on spatial origin of the produced component. Additionally, a detailed 

characterization of the scatter in fatigue life typical to the process and material is provided. 
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INTRODUCTION 

1.1 Problem statement 

Metals powders are an integral part of the laser powder bed fusion (LPBF) 

manufacturing process in their role as the feedstock material. The lack of fundamental 

measurement science behind quantifying the morphology, chemistry, and microstructure 

of powders has been clearly identified by the additive manufacturing community [1], [2]. 

The evolution of in-machine powder supplies, used over the course of one or several builds, 

is an unstudied condition of powder. This evolution of powder condition is related but not 

identical to better studied practices such as powder recycling and extended environmental 

exposure which are known to lead to changes in powder characteristics [3]–[5]. Even in 

the case of these practices the links between powder and the effects on produced component 

quality are not fully understood. In particular, fatigue in LPBF produced components as a 

function of powder condition requires more in-depth study in addition to a generalized 

characterization of fatigue typical of the LPBF process and associated material systems. 

This work will address the unstudied case of in-machine LPBF process exposed powder 

via direct study of the powder, examination of produced component quality, and 

development of a detailed understanding of fatigue properties typical of the process and 

powder conditions. 

1.2 Thesis organization 

This thesis is organized into 5 chapters: Introduction, Background, Methodology, 

Results and Discussion, and Conclusion. In Chapter 2 provides context for metal powder 

use in AM along with a review of current challenges in qualification of powder feedstocks 
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in LPBF. Additionally, a review of relevant material fatigue properties is provided. Chapter 

3 details the experimental methods used to characterize the sampled powders, assess the 

mechanical and microstructural properties of the produced specimens, and analyze and 

compare specimen response to fatigue. Chapter 4 presents the corresponding experimental 

results, a statistical analysis of powder and mechanical properties, and interspersed 

accompanying discussion as to the significance of the results. Chapter 5 provides a 

summary of results and the conclusions drawn from them. Contributions to the field are 

defined and opportunities for future work are identified. 
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BACKGROUND 

2.1 Metal additive manufacturing 

Advancement of manufacturing technology plays a critical enabling role in the 

development of numerous other fields. Designs, concepts, and manufacturing process 

improvements that were previously unattainable are now approachable via additive 

manufacturing (AM) which has recently captured the attention of industry, academia, and 

government alike when it comes to enabling new and groundbreaking development across 

a number of fields. Metal AM, specifically, is of interest due to its use of high-performance 

engineering materials. As opposed to traditional subtractive manufacturing techniques 

which remove material from a bulk to form the desired end-component, metal AM fuses, 

sinters, or bonds small units of raw material together, frequently in a layer-wise strategy, 

to create a component that is of the final desired geometry or near-net shape. 

Laser powder bed fusion (LPBF) has emerged as a metal AM process which 

surpasses others in terms of attainable geometric precision, end-product density, process 

flexibility, and mechanical properties [6]. LPBF utilizes powdered metals as the feedstock 

material, their small size enabling piecewise fusion of the particles into a whole. This 

process goes by several other names in industry including direct metal laser sintering 

(DMLS) and selective laser melting (SLM). Electron beam additive manufacturing 

(EBAM) is closely related, with the major difference being the heat source utilized for 

fusion. While some of these common names imply a piece-wise sintering process it should 

be noted that LPBF is a true fusion process, creating near fully solid components from a 
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feedstock material that was fully melted before solidifying. The core mechanics of the 

LPBF process are described in Figure 1, where a prototypical process is shown.  

 

Figure 1. The prototypical laser powder bed fusion process. Gas flow and recoat directions 

may differ between respective machines. The origin of the coordinate system is normally 

defined off the top of the build plate. 

The process proceeds as such: a thin layer of powder is spread over the build area by 

a recoating mechanism, most often a simple blade or straight edge. Galvanometer actuated 

steering mirrors direct a high-intensity laser, normally well over 100 W, through an optic 

and onto the build plate. The optic, an F-theta lens, focuses the beam to a consistent spot 

size on the build plate regardless of its X and Y position. The laser fuses a selective portion 

of the first powder layer to the sacrificial build plate. The build plate is lowered an amount 

known as the layer size, typically 20-80 μm, and the process is repeated. This continues 

incrementally, with selective portions of the powder bed corresponding to ‘slices’ of the 

final component geometry being fused to the previous layers until the desired geometry 
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has been achieved. The local fusion process, though at a small scale, is directly analogous 

to well-known welding processes such as laser welding although process speed, energy 

density, and thermal patterns do differ [6]–[8]. A shielding gas is flowed across the build 

area to protect the process zone from oxidization and remove byproducts. 

Due to this methodology, metal AM provides a litany of advantages that enable 

designs, materials, and production practices that could yield significant benefits in many 

applications. Design freedom is offered via the layer-wise fabrication technique, allowing 

for components with internal cooling/fluid channels, novel light-weighting techniques, 

designs of a ‘generative’ origin, and structures that utilize ‘meta-materials’ such as lattices 

which can offer unrealized mechanical performance [9]–[11]. In the area of materials 

advances, metal AM offers increases in particular tensile performance metrics over 

wrought materials (in-part due to the nature of the high-power density solidification 

process), tailored materials properties, and gradient material properties [12]–[14]. Some 

results of these primary differentiators of metal AM are: reduced development time and 

design iteration overhead, more affordable realization of customizable/optimized designs, 

light-weighting/improved component mechanical performance, and ‘distributed 

manufacturing’ processes that can be utilized to increase supply chain robustness [15]–

[17]. Much of the heightened interest surrounding metal AM in both popular press and 

academic literature has focused on these topics, however metal AM methods are not 

without their limitations. As compared to conventional subtractive processes and even 

some near-net-shape processes, metal AM produces less geometrically precise, rougher, 

less dense, and more defect-prone components [14], [18]–[20]. The potential benefits of 

metal AM cannot be reaped unless an advanced set of process qualification techniques can 
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be implemented [2], [21], [22]. Metal AM components offer great advantages under 

nominal and idealized conditions, but the process is inherently prone to defects such as 

porosity, unrepeatable material properties, and geometric uncertainty [18], [20], [21]. Due 

to these issues, demanding fields such as aerospace, medical, and automotive will not be 

able to adopt metal AM processes to their fullest extent without the technology to ensure 

process control and produced component quality [10], [23]. 

Qualification techniques applied in recent years are broad in their scope and method 

and encompass AM machine qualification [24], in-process monitoring [25], [26], and 

produced component destructive [27] and nondestructive evaluation [28], [29]. Although 

a large amount of work is focused on process and end-product qualification, control of the 

raw materials used by AM have been receiving heightened attention. Many commercial 

and cutting-edge metal AM techniques utilize powdered metals as the raw or feedstock 

material in the fabrication process. This includes LPBF process in addition to ‘powder-fed’ 

processes such as directed energy deposition. The question arises, how does powder 

feedstock affect the metal AM process and the produced components?  Further, what 

features of the powder feedstock determine powder behavior in AM processes such as 

LPBF, and consequentially produced component behavior? 

2.2 Powder feedstock use in LPBF 

2.2.1 Powdered metal technology 

Powdered metals are not a feedstock material form unique to metal AM. The field 

of “powder metallurgy” has existed for quite some time, with commercial uses of the 

technology beginning with difficult to process refractory metals such as tungsten in the late 
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1700s [30]. By the beginning of the 1900s the powder metallurgy (PM) process was in 

common commercial use in such applications. Also of note was the use of PM for 

processing of cemented carbides and porous bushings, bearings, and filters also in the early 

1900s – PM is still used in these applications today [30], [31]. PM has since been used with 

conventionally difficult to process metals such as tool steels, superalloys, and the 

aforementioned refractory metals and cemented carbides [30], [31]. In addition, PM has 

proven to be an attractive route for economical processing of high production components 

with complex geometries [32]. For such applications sintering or metal injection molding 

(MIM) has been used in combination with powder feedstock material to create a near-net-

shape component. It should be noted that powders have also been used in thermal-spray 

and welding applications for quite some time, where powders take the place of the normal 

wire or rod-shaped filler materials [31], [32]. 

Historical uses of PM, welding applications with powdered metals notwithstanding, 

have generally relied on compaction of the feedstock material in combination with heat to 

form the produced components. Use of powdered metals in freeform fabrication processes, 

now more commonly termed as additive manufacturing, differs in this aspect since it relies 

primarily on a repetitive small-scale welding process that does not create compaction or 

densification due to application of pressure [33]. Post-procession methods such as hot 

isostatic pressing (HIP) may be applied to AM components, though [34]. In particular, the 

AM processes that rely on powdered metal feedstock materials either insert powders into 

a meltpool (powder-fed) or locally fuse portions of a spread powder layer (powder-bed). 

Powder-bed applications include the quite common LPBF and EBAM processes, which 

are essentially the same in process structure with differences in the associated heat source 
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that drives the welding process. They may both be referred to as powder bed fusion 

methods. Powder-fed applications include directed energy deposition (DED), which 

involves a similar constitutive welding process albeit with directed addition of powder 

instead of a powder bed [35]. These various methods go by many trade names, and together 

make up a very large portion of the metal AM technologies currently utilized in industry. 

Amongst the similarities they share is the use of powdered metal as the feedstock material. 

2.2.2 Measurement science for powders 

 Given the significant history of PM in industrial applications, methods for 

measuring metal powders were developed prior to modern AM applications to allow for 

quality control of feedstock materials. In a production environment especially, 

measurement science gains utility when based in standardization of materials specifications 

and test methods. The three most prevalent standardization bodies currently issuing 

standards in the field are ASTM, the Metal Powder Industries Federation (MPIF), and the 

International Standards Organization (ISO) [36]. Issued standards generally cover either 

material specifications or test methods. While important in the further advancement of 

powered metals in AM, a review of efforts to standardize material specifications is not 

focused on here. Test methods which provide standardized measurement techniques used 

to define aspects of powder that can be applied to powders regardless of material or type 

are given a greater focus. 

While the body of standards in existence is quite large, there is an unfortunate 

dearth of relevant test methods for applications in the metal AM field exists. The majority 

of historically issued standards apply to more classical PM methods or end-products [36]. 
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Many test methods are strongly rooted in the processes used in classical PM production 

methods [36]. This is an issue, especially in the context of the emerging focus on process 

and end-product qualification in AM. With its many high-performance applications and 

acknowledged propensity for quality control issues [16], [32]–[34] powder qualification 

has been identified as critical [2], [37], [38]. Further, qualification processes must be built 

on well-vetted and trusted methods if they are to be adopted and used to their maximum 

potential [1].  

Leaders in measurement science and AM have clearly identified this gap. The 

National Institute of Standards and Technology (NIST) has been tasked by the Department 

of Commerce with identifying challenges to the industrial adoption of AM. Their 

Measurement Science Roadmap for Metal-Based Additive Manufacturing has clearly 

identified weaknesses in powder characterization, lack of standardization in AM-specific 

characterization techniques, and missing correspondence between powder and produced-

component quality as major areas critical to metal AM at large [37].  Similar conclusions 

have been drawn by other road-mapping efforts, including one from the Consortium for 

Additive Manufacturing Materials (which dedicated an entire thrust area to “Part and 

Feedstock Testing Protocols”), and the NSF/ONR funded Roadmap for Additive 

Manufacturing developed by the leading organizers and contributors to the AM-focused 

yearly conference, the Solid Freeform Fabrication Symposium [2], [38]. 

Sutton et. al. provide a well-informed breakdown of powder properties and their 

existing characterization methods. Powders are said to be constituent of morphological, 

chemical, and microstructural properties [39]. Morphological properties include particle 

size, shape, and surface texture. Particle size characterization can be accomplished via a 
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crude sieving analysis, microscopy, or light diffraction [39]. Light diffraction offers the 

best sampling capabilities of the three but does not have the ability to characterize particle 

shape as all particles are treated as spheres to calculate their equivalent spherical diameter 

[3]. Particle chemistry can be evaluated through a gauntlet of well-known analytical 

methods (some challenged in expense, time, and precision) with combustion analysis 

notably providing a very rapid and precise measure of several elements [3], [39]. 

Microstructure includes internal porosity in addition to the arrangement of crystal 

structures within individual powder particles which can be evaluated via the conventionally 

methods used in metallography [39]. One other important category of powder 

characteristics would be what is sometimes termed as ‘bulk behavior’ which includes 

various measures of density and fluid behavior. There exists a litany of test methods and 

metrics in this area, many tied to specific functionalities of interest in industrial fields. It 

must be made clear that many terms exist to describe the fluid-like behavior of powders 

and they are often used interchangeably. For the purposes of this study ‘flowability’ refers 

to the mass-flow rate of powder flow under its own weight (measured by tests such as Hall 

flow), while terms such as ‘cohesivity’ and ‘resistance to shear’ specifically describe 

properties derived from shear tests of powders. Non-cohesive powders are also free 

flowing. The property measured by basic flow energy (BFE) is derived from a dynamic 

flow test? 

Several authors have expounded on these needs in recent years. Anderson et. al. 

focused on powder internal porosity as a result of mushy-zone solidification physics, 

powder agglomeration and satellites, surface impurities inherent to powders in their 

directly manufactured or ‘virgin’ state, and how these defects can create porosity in the 
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produced AM components [40]. Slotwinski, Garboczi, and Jacob of NIST have made 

extensive comments on the broad metrology needs for metal AM powders across several 

works [1], [3], [41]. Their focus is on the need for traceable data that can be relied on with 

confidence to create definitive process controls. They point out the weak connection 

between powder size distribution (PSD) and the outcomes of the AM process, as well as 

the disagreement between powders with nearly identical PSDs that register as vastly 

different when characterized via other methods such as flowability and rheological tests 

[1]. A critical conclusion is that the all-important PSD characterization often held up as the 

defining powder characteristic is only a part of the overall powder characterization 

challenge. Amado et. al. pointed out that a review of the literature has shown a severe lack 

in methods applied than can quantitatively describe particle shape [42]. Amado studied 

plastic powders for selective laser sintering, but makes highly relevant comments about the 

lack of AM-process rooted tests that measure powder spreadability over the build area and 

proposes a conceptual test method that would address this gap in existing test methods [42]. 

Notably, the factors that contribute to the physics of spreading a powder bed are complex 

and not fully understood. The most prominent metrics in use to consider would be Hall 

flowability, basic flow energy (BFE), and multiple aspects of the dynamic flow behavior 

(rheology) including flow function, cohesivity, and resistance to shear. The metrics are 

subtly distinguished, complex, and observed behavior can be the result of many 

constitutive powder properties [43].  

Standardization in some of the morphological, chemical, and microstructural 

efforts exist, but a thorough review here would be out of the scope of this work. Drake 

provides a detailed review that can be referenced, as does Senthilvelan et. al. [44], [45]. 
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The important standards to note are those that govern PSD evaluation by light diffraction 

and image analysis, chemical analysis via combustion, and apparent, tap, and bulk density 

[46]–[49]. The list of methods for measuring various forms of density is quite long and not 

provided here. Also of note is the ASTM standard on powder sampling which has a strong 

pedigree based on applications of sampling feedstock materials in the PM field and is 

actually quite applicable to generalized purposes [50]. This standard is heavily utilized for 

the sampling of powders in AM. Some of the prominent methods of testing powder fluid 

behavior that have standards behind them are the Hall flowability test and the FT4 

rheometry test (or shear cell test) [51], [52]. Both tests are rooted in powder processing 

techniques utilized in more conventional PM processes, and neither has a very direct 

physical relation to the mechanical processes undergone by powders in the LPBF process 

[42]. 

2.2.3 Powder feedstock characterization efforts for LPBF  

Many efforts in powder characterization and powder effects on produced 

components have been motivated by the practice of powder recycling. Metal AM processes 

that utilize powder feedstock are characterized by low material usage efficiency and high 

material cost at the moment which together present a need for recycling practices [53].  

Industrial practices exist for recycling powder which utilize a simple sieving process to 

remove both particles larger than desired (such as multiple particles fused together during 

the preceding build) and occasionally particles too fine for use. This removes large, non-

spherical, and typically compositionally impure particles that decrease packing density 

[54]. Often though, machine operators engage in sieving practices to simply try to match 

virgin powder PSDs out of the simple motivation to not diverge from origin manufacturer 
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specification. This all said, this practice is still on the edge between the research stage and 

full-scale adoption and only users that have decided they can accept the potential loss of 

control over powder quality engage in this practice currently [1], [39]. Established process 

controls for identifying when powder has reached the end of its recyclability are sparse and 

certainly not standardized [41]. Due to this application of powder recycling the earlier 

discussed measurement science techniques and lack thereof have been studied in quite a 

large amount of recent work in the LPBF field.  

Slotwinksi et. al. presented the results of a suite of characterization methods that 

were aimed at several powder types, including a 17-4 stainless steel powder [3]. Helium 

pycnometry, light diffraction, XCT, XRD, EDS, and XPS were all utilized. A novel 

technique of CT imaging of powders suspended in epoxy provided an extremely data-rich 

evaluation of powder morphology that included information about powder size and 

correlated data on powder shape. XPS did not uncover significant changes in elemental 

content and XRD showed a small increase in the amount of retained austenite in the 17-4 

powder with degree of recycling, attributed to the powder’s exposure to heat during 

previously experienced LPBF process conditions. Measurements of PSD via light 

diffraction offered an interesting insight into the recycling practice. The recoating process 

is identified to preferentially transport larger particles across the build area and into the 

powder collector [3]. Sieving is observed to largely restore powder to a PSD similar to that 

of virgin powder. A gradual increase the 90th percentile of particle diameter, or d90 in 

conjunction with degree of recycling is also observed. This is primarily attributed to 

smaller particles adjoining to larger ones during the LPBF process, creating agglomerates 

which are not filtered out by sieving due to their elongated shape [3]. A companion paper 
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by Luecke and Slotwinski covers an evaluation of mechanical properties of components 

produced with virgin and recycled powders [55]. These components are treated with a 

stress-relieving heat treatment not strictly designed to harden the material via to 

solutionizing and aging. They note a significant departure in mechanical properties 

between AM and wrought materials. A hardness mapping effort does not discover any 

variation in mechanical properties related to location on the build plate. Evidence is found 

for a significant amount of retained austenite in the nominally martensitic 17-4 specimens. 

Heiden et. al. have also conducted a thorough study of 316L stainless steel powder 

characteristics as a function of degree of recycling [4]. In agreement with Slotwinski et. 

al., they observe greater sphericity in virgin powders and an increase in satellites and 

irregular shapes in recycled powders. Heiden also notes a disagreement between PSD 

measurements attained by laser diffraction and SEM image processing, but both methods 

confirm a relatively minor change in PSD with recycling indicating an effective sieving 

process. Elongation to failure of built components appears to decrease with degree of 

recycling. Other authors have observed similar results [56]. Yield and ultimate strength do 

not change with degree of powder recycling. Large oxide particles are discovered in the 

recycled powder and also seen in the fracture surfaces of the tested specimens. Several 

other powder studies on powder recycling have produced a largely harmonious set of 

results. PSD and tensile properties (with the exception of elongation at failure) are observed 

to not be greatly influenced [5], [41], [57]. Flowability and apparent density changes are 

seen to both increase with degree of recycling [5], [41], [57]. These results are observed in 

several material systems including titanium, nickel-based, aluminum, and stainless-steel 

alloys. 
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The AM community has realized the importance of measures of bulk powder fluid 

behavior, as they can often reveal powder differences that other tests do not, but 

simultaneously the difficulty of applying them has become evident [39], [42], [43], [56]. 

Applications of relevance include two powder recycling studies that have observed the 

greater permeability of virgin powders, measured by pressured drop of a gas passed 

through them, and attributed the finding to a higher content of agglomerated particles that 

reduce packing density (recycling was seen to remove agglomerates via sieving) [57], [58]. 

This does not strictly match conclusions of other authors who have noted that virgin 

powders tend to be more spherical. In this case, the lack of agglomerates was concluded to 

mean greater flowability. In the first study this accompanied a higher basic flowability 

energy (BFE) and in the second the highest cohesivity, both indicators of a less free-

flowing nature. In both cases more permeable less cohesive recycled powders showed 

better mechanical properties attributed to higher quality and denser powder beds. 

Importantly, flowability behavior (specifically when measured via the more direct method 

of Hall flow) can be distinct from measures produced by a powder shear test such as BFE 

and cohesivity measurements in some cases [43]. In a case study published by Clayton et. 

al. BFE, which is the energy required to displace powders during forced flow, is connected 

to higher packing and better cohesion of particles during a shearing behavior such as 

spreading. This claim is notably opposite to correlations established by the authors of both 

powder recycling studies [57], [58]. Strondl et. al. has also characterized the results of 

powder recycling in terms of fluid behavior, and in an EBM application found that virgin 

powder packed best and had a lower BFE while in an LPBF application it was recycled 

powder that packed better and had a higher BFE [56]. These opposing results imply that 



 16 

even a powder condition evolution theorized to be similar in two cases did not produce the 

same fluid behavior results. To sum up, the measurement of powder fluid behavior in 

relation to AM is still developing, few consistent trends have yet been identified, and many 

powder properties cannot be consistently expected to trend together. 

Studies on the aspects of 17-4 powder and the produced components have produced 

results that run in contrast to what might be expected of the conventionally processed alloy. 

The content of the powder and the as-built components is observed to contain significant 

amounts of retained austenite [41], [59]–[61]. This is explained by the extremely small 

austenite grain size present in both powder particles and fused portions of a build formed 

as a result of rapid cooling from their super-heated states [60]. While the composition of 

17-4 would normally dictate that this austenite transforms to martensite as the powder 

particles and fused components cool, the extremely small prior austenite grain size inhibits 

the kinetics of the phase transformation [62]. This presence of retained austenite is also 

suspected to possibly inhibit the precipitation of copper rich particles during the aging 

process that hardens and strengthens the alloy [59]. Processing atmosphere conditions are 

also noted to affect the produced alloy phase composition. Both nitrogen and argon are 

commonly used as atmospheres for producing of powders via gas atomization and 

shielding gasses in LPBF processing of 17-4 powders. Nitrogen atmospheres are observed 

to contribute heavily to more austenitic microstructures while argon atmospheres produces 

a mostly martensitic microstructure [59], [63], [64]. Powders atomized in nitrogen gas will 

that are used in an LPBF that uses an argon atmosphere will produce a mostly martensitic 

end-product, though. This is attributed to the roughly four-times lower conductivity of 
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nitrogen gas as compared to argon gas [63]. Nitrogen, if incorporated in the alloy, is also 

an austenite stabilizer. 

Linking powder properties to produced component properties remains a challenge 

for the field. Many studies have been published that either strictly evaluate changes in 

powder during recycling or assess mechanical and microstructural properties of produced 

components, but rarely are both aspects considered together. A small number of significant 

works (many of which have been reviewed here) have been conducted that perform the two 

assessments in parallel and can provide a few strongly evidenced correlations between 

powder and parts [4], [5], [41], [55], [57], [65], [66]. Notably, the work is spread out over 

several material systems, among them Ti-6Al-4V, Inconel 625, Inconel 718, and 17-4 PH. 

More work is required to better elucidate the dependent relationships proposed. 

Rheological properties of powder have rarely been studied in conjunction with properties 

of produced components. Powder chemistry is often evaluated by methods that lack 

precision. Further, it should be noted that a somewhat narrow definition of powder 

recycling has mostly been investigated, and several other powder conditions of interest 

deserve greater attention. Finally, the effects of powder on fatigue properties of produced 

components has received very little attention, with only a handful of studies, which are 

reviewed in the following sections, devoted to this possible effect.  

2.3 Fatigue in LPBF produced components 

2.3.1 Approaches to assessing fatigue performance 

The nature of powder condition effects on produced components discussed thus far 

gives rise to questions about the possible effects on fatigue. Various treatments and 
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conditions of powders have been shown to produce disfavorable phases in microstructures, 

oxides that could be incorporated as incoherent second-phase inclusions, and conditions 

that favor porosity. Although it has been shown that the impact on tensile performance has 

been negligible each of these changes are established suspects that lead to premature failure 

in fatigue [67]–[69]. Fatigue failure is of great interest in many fields due to its roll in well 

over  50% of in-service failures [70]–[72]. In order to address this problem researchers and 

product developers engage in the practice of fatigue testing which has long been 

acknowledged as a time-intensive and expensive experimental effort [70], [72]. Testing 

can be summarized to accomplish one or more of several common goals [72]:  

1. Extract information that yields actionable design knowledge.  

2. Compare distinct materials or processing methods by determining their respective 

impacts on fatigue response. 

3.  Identify root causes that lead to failure in fatigue. 

Multiple test methods exist that evaluate fatigue. They may largely be considered to 

fall into two categories: evaluation of fatigue life, and resistance to crack initiation and 

growth under specified loading conditions. Both methods can produce complex data sets 

where a resistance to fatigue, whether expressed in terms of fatigue life or crack growth, is 

represented over possibly several loading conditions. Experimentally observed fatigue life, 

often measured as number of loading cycles, is a highly stochastic property exhibiting 

coefficients of variation of 25-75% [71], [72]. It has been acknowledged that AM process-

induced defects are particularly responsible for very high degrees of scatter in fatigue 

properties [69]. Frequently, when fatigue life is investigated a set of several loading 

conditions are examined. For uniaxial, bending, or rotating bending fatigue tests, different 
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regimes of fatigue life are often targeted for evaluation, broadly described as high cycle 

fatigue (HCF) and low cycle fatigue (LCF). These regimes correspond to low load 

amplitudes that lead to failure in roughly 105 cycles or greater (HCF) or higher load 

amplitudes that lead to failure in roughly 104 cycles or fewer (LCF). For design purposes 

it is valuable to express fatigue life over a spectrum of low-to-high cycle fatigue, providing 

life expressed in number of loading cycles (N) as a function of applied load or stress (S) 

forming a S-N curve [70], [72]. S may sometimes be replaced with strain should testing be 

conducted in a situation where strain is the driven variable (not applied force) forming a ε-

N curve.  

S-N curves provide valuable design information but are difficult to use for comparing 

materials or material processes due to their complex form, difficulty to describe 

deterministically, and the natural stochastic variation in fatigue life [71]. A very large 

number of tests conducted at varying stress or strain levels is required to form the curve, 

and a difference in variation at different stress/strain levels is expected, forming a 

heteroscedastic phenomenon, depicted in Figure 2Figure 1, where fatigue life variation 

increases as tests proceed from the LCF to HCF regimes. Some statistical tools exist to 

analyze S-N curves, notably ASTM E739 which describes the statistical description of 

linearized S-N or ε-N curves [73]. This method has multiple weakness – first data must be 

well described by a simple linear relationship that relies on taking the log of stress (or 

strain), or both stress and life. Second, the primary method of comparison between curves 

available involves a visual comparison of curve confidence bounds. Confidence bounds 

will be very large throughout the curve unless a very large number of tests is conducted at 

each level. 
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Figure 2. A simplified visualization of typical heteroscedastic behavior displayed in fatigue 

life. PDFs of an arbitrary distribution type are superimposed over the S-N curve at various 

stress levels to model increase in fatigue life variation as the stress level decreases. 

An alternate method of comparing fatigue life between materials or manufacturing 

processes utilizes methods broadly described as reliability modeling. Simply put, these 

methods are generally pointed at a single measure (e.g. fatigue life), under a single set of 

service conditions (e.g. stress, strain). Methods for comparing reliability are varied and 

robust.  They generally fall into two categories of statistical analysis – parametric and non-

parametric. Wirsching and collaborators have provided a strong description of these 

methods applied to structural fatigue across multiple works [71], [74], [75]. Parametric 

methods used to model fatigue most frequently utilized the lognormal, Weibull, or three 

parameter Weibull probability distributions functions (PDF) to have long been used model 

fatigue life [75]–[77]. Modern applications are widespread, with common use of these 

methods in fields where manufacture methods are prone to defects, e.g. casting or 

composites, and applications of high demand and cost of failure [78]–[80]. Importantly, 

these methods provide for comparisons between models with definitive statistical tests 

[81], [82]. Simply put, conducting fatigue tests at a single or very select number of loading 

conditions can produce a large sample size which lends itself to robust statistical analysis. 
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This comes at the cost of not providing a description of fatigue properties useful to designer 

beyond the narrow band of loading conditions investigated but allows for a more 

conclusive answer of whether treatments produce a difference or lack thereof in fatigue 

life. 

2.3.2 Prior work on fatigue of LPBF components 

The body of work dedicated to describing fatigue in LPBF processed 17-4 PH 

stainless steel has been growing in recent years due to the popularity of 17-4 PH as a high 

strength corrosion resistant alloy that is more cost effective and safer to handle than  nickel-

based super alloys and titanium alloys (which are somewhat less tough than 17-4 PH). In 

addition, relevant work in other material systems has also been published. The effects of 

multiple aspects on fatigue have been investigated, including surface roughness and 

condition, internal porosity size location and shape, and heat treatment. 

The basic metallurgy of 17-4 PH is worth a brief discussion to establish a context 

for decisions on heat treatment and microstructure, which greatly affect fatigue. 17-4 PH 

is also frequently referred to as just ‘17-4’, as it is here, and known technically as both 

grade UNS S17400 and AISI type 630.  17-4 is a stainless steel and thus Fe-based, with a 

significant content of Cr (~17%) and Ni (~4%). The alloy also contains roughly 4% Cu and 

less than 0.1% C. Ni content is kept low in order to avoid creating an austenitic 

microstructure at room temperature, as Ni is an austenite stabilizer. This means 17-4 does 

not have the high Ni content that boosts corrosion resistance in stainless steels such as 316, 

and to compensate Cr content has been raised far past the 12% threshold required to create 

the protective Cr-film of stainless steels. Corrosion resistance is preserved, though 17-4 
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does not compare to more corrosion resistant austenitic and duplex stainless steels without 

as much carbon. Importantly, the high chromium content also increases the hardenability 

of the alloy, raising the martensite formation start and finish temperatures. In order to be 

hardened, C is added to both extend the γ-loop (allowing for austenite formation at high 

temperatures) and to provide the necessary interstitial alloying required for martensite 

formation upon quenching. Together, the Cr and C content leads to a γ → α’ transformation 

upon cooling from a sufficiently high temperature. Normally air quenching produces 

sufficient cooling rates to accomplish this. It should be noted that the martensitic 

transformation is not the primary hardening method for 17-4. Cu, dissolved in the matrix, 

provides the opportunity for precipitation hardening, which is the dominant mechanism for 

raising hardness and strength in 17-4. 

17-4 PH industry standard heat treatments are defined by an Aerospace Materials 

Specification (AMS) of SAE, which provides the standard for heat treatment of the alloy 

in industry [83]. Heat treatment is performed in two steps: solutionizing and aging. 

Solutionizing raises the alloy to a high temperature for a sufficient time to produce a fully 

austenitic microstructure and suspend all alloying elements, Cu in particular, into solid 

solution. Upon quenching, the Cy is trapped in a super-saturated solid solution. The alloy 

can now heat treated to varying degrees of hardness and strength by aging, which facilities 

the rejection of Cu by the matrix through precipitation of Cu-rich particles due to by 

exposure to intermediate temperatures. These precipitates accomplish higher hardness and 

strength by acting as impediments to dislocation movement and are the reason for the PH 

(precipitation hardening) term being sometimes included in the colloquial alloy name. As 

with most PH alloys, 17-4 PH is frequently utilized in its peak-aged state where the Cu-
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rich precipitates are very fine and near-fully coherently incorporated in the matrix 

producing peak yield and hardness properties. This condition is referred to H900, referring 

to 1 hour of aging at 900 °F [482 °C] after solutionizing. 17-4 is also utilized in slightly 

over-aged conditions which can produce a mix of coherent, semi-coherent, and incoherent 

precipitates that promote strength in combination with ductility and toughness. 

Given the unique processing history of LPBF processed 17-4 components, several 

researchers have studied which heat treatments most positively affect the alloy in regard to 

fatigue performance. Yadollahi et. al. performed multiple tests on as-built and H900 

condition 17-4 specimens and identified that fatigue crack growth (FCG) behavior in LPBF 

manufactured 17-4 was not dependent on heat treat state [84]. Yadollahi also claimed that 

the large internal pores present dominated the material’s response to fatigue and as such 

the conventional H900 condition did not produce more favourable fatigue properties as is 

expected in wrought material. Nezhadfar et. al. studied 17-4 heat treated to various 

conditions, and identified the H1025 condition as producing the best HCF life [61]. The 

solutionizing step of the heat treatment process was deemed to be critical as it removed 

defects in the as-built microstructure [85]. Multiple other researchers have noted this detail 

and have investigated condition H1025 17-4 to study optimal fatigue properties of the 

material [58], [86]. 

Several researchers have attempted to identify defects that drive fatigue 

performance. Surface condition is the most critical aspect of a structure in fatigue, and it 

has been broadly concluded that the rough, as-built surface condition of LPBF 

manufactured 17-4 will drive failure in fatigue [22], [69], [85]. Should as-built surfaces be 

removed or altered by secondary processing steps, it was found that defects of a sufficient 
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size, especially ones that fall in a sub-surface region, drive fatigue life [22], [84], [86]. 

These secondary manufacturing steps remove both surface defects and sub-surface internal 

porosity which is generally of greater concentration and severity in LPBF manufactured 

components [87]. These defects, if large enough, do not require any crack incubation period 

and thus fatigue life is defined by crack growth. It is noted that builds with this sort of 

significant porosity will not be greatly influenced in their fatigue life no matter the heat 

treat condition they are tested in [84]. Build orientation has been studied as well, with 

Yadollahi, Nezhadfar, and others consistently finding that orienting build direction 

perpendicular to the direction of internal stress increases fatigue life throughout the fatigue 

spectrum [61], [84], [88], [89]. This can be attributed to the lower projected area of lack-

of-fusion (LoF) defects onto the stressed cross-sectional areas in this configuration. It was 

also concluded that build orientation did not greatly affect fatigue crack growth (FCG) rate 

or directionality [84]. 

Studies of fatigue as a function of powder characteristics have only been performed 

very recently and are few in number. Carrion et. al. studied powder recycling effects on the  

tensile and fatigue behavior in LPBF manufactured Ti-6Al-4V [57]. Reported powder 

measurements agree with the earlier presented works and show a narrowing of PSD due to 

a depletion of small particles as a result of recycling. This is correlated to increased 

flowability but, critically, Carrion points out that a narrowed PSD with fewer small 

particles and higher flowability contributes to lower powder bed density and commensurate 

increased part porosity. This suggests a possible ‘sweet-spot’ in flowability conditions, 

when weighed against other findings. Exposure to humid conditions is noted as influencing 

particle agglomeration, thus lowering powder flowability. Oxygen pick-up, due to 
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atmosphere exposure, is suspected based on prior work [90]. Carrion does not observe 

produced component microstructure changes as a result of recycling. Fatigue testing on 

specimens produced with virgin and recycled powder show no noticeable difference in 

LCF, but results in HCF, notably with high scatter, may show better performance for 

recycled powder manufactured components. Carrion points to flowability improvements 

as result of narrowed PSD as more important to determining powder bed density than the 

ideal packing density that might be attributed to a wider PSD. 

Only one work known to this author has studied fatigue behavior in stainless steels 

as a function of powder characteristics. Soltani-Tehrani et. al. studied fatigue in LPBF 

manufactured 17-4 that was built with virgin and recycled powders in a nitrogen 

atmosphere [58]. Highly recycled powders are observed to show improved flowability and 

less compressibility due to a reduction in fines and agglomerates which agrees with the 

prior work. In agreement with Carrion, Soltani-Tehrani observes improved fatigue life for 

specimens manufactured from highly recycled powders. The causes of this are suspected 

to be complex. While a narrowed PSD increases flowability a reduction in fines might also 

cause powder agglomeration which decreases the density of the spread powder layers. 

These two effects would run in contrast, and thus it is difficult to attribute fatigue property 

changes to a specific powder characteristic. The author also observes a trend otherwise not 

presented in the known body of work – fatigue life dependence on built plate spatial origin. 

Components built further in the direction of recoat exhibited longer lives. 

Although the efforts of multiple researchers have established a benchmark for 

fatigue in LPBF manufactured metals such as 17-4 and in some cases connected fatigue 

performance to attributes of the powder feedstock material there exists multiple weakness 
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and gaps in the prior work. Many investigations into fatigue have focused on the effects of 

large detrimental defects of the sort that may not be present in a well-controlled, monitored, 

and optimized production process. This means ideal service conditions of LPBF 

components have been understudied. Quite a few studies have conducted work in 

disagreement with best practices for fatigue testing, utilizing test specimens with machined 

or polished surfaces that do not meet guidelines designed to remove confounding factors 

from fatigue testing. This may not be of great importance, though, due to the more severe 

defects present in AM materials as compared to wrought materials. Of the small body of 

work that has examined powder condition effects on fatigue, a number of complex and 

interacting phenomena are observed, and clear conclusions are difficult to draw. Finally, 

many researchers have made conclusions based on relatively small sample sizes and have 

not made comparisons using rigorous statistical methods.  
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METHODOLOGY 

3.1 Powder use methodology and specimen manufacture 

3.1.1 Powder use methodology 

In order to fully define a LPBF process, treatment of the feedstock metal powder must 

be carefully defined across the entire process. In this study, a specific set of powder 

handling and treatment conditions were examined. In summary, two methods of powder 

utilization were contrasted. The first method may be termed as direct use of virgin powder. 

Consider that a build is calculated to use 10 kg of virgin powder. Slightly more than 10 kg 

is loaded into the LPBF machine powder hopper directly from the sealed container supplied 

by the powder manufacturer. The LPBF machine is immediately prepped for a build, and 

the process chamber is flooded with an inert gas to minimize the exposure of the contents 

to atmosphere. Finally, a build is begun in a timely manner. Once the process is complete 

the build is removed, and the process chamber is cleaned of all remaining powder and by-

products. Any subsequent builds would utilize virgin powder taken directly from the 

manufacturer-provided powder container in the same manner. In this manner the powder 

utilized for a build has had minimized exposure to any conditions other than those 

experienced during its original manufacture and the LPBF process that has produced the 

build it was directly utilized for. Exposure to atmosphere, handling conditions, and LPBF 

process chamber conditions has been minimized in aspects of both quantity and time. 

The second method may be termed as repeated process exposure powder use. In this 

approach, four subsequent builds are planned. Each build has been calculated to use 10 kg 

of powder and slightly more than 40 kg of powder is loaded into the LPBF machine powder 
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hopper directly from the sealed container supplied by the powder manufacturer. The LPBF 

machine is immediately prepped for a build, and the process chamber is flooded with an 

inert gas. Once the first build is complete, the build process chamber is opened, exposing 

it to atmosphere. The hopper is covered with a sieve to protect it from undue contamination. 

The first build is removed, exposing the process chamber to contamination by the operator 

and powder from the build area, and new build plate is installed. The process chamber is 

flooded with an inert gas. The top layer of the powder hopper is swept into the powder 

collector by the recoater. The second build process is started, and the process is repeated 

until all planned builds (in this case four) are complete. In this situation powder is exposed 

to multiple potential channels of contamination and alteration increasing in aspects of both 

quantity and time linearly between the first and final builds. The powder used for the first 

of four builds is of the directly used virgin condition. The powder used for each subsequent 

build has evolved and is of the repeated process exposure condition with the second, third, 

and fourth builds being exposed to one, two, and three prior LPBF processes, i.e. various 

degrees of repeated process exposure. 

This study compares these two powder conditions, directly used virgin power and 

repeated process exposed powder, through four consecutively executed builds as described 

above and detailed in Table 3. An assumption is made that these conditions are 

representative of operating procedures relevant to multiple LPBF machines and processes 

in-use. The first build, termed additive build 1 or A1, models virgin powder direct use. The 

subsequent second, third, and fourth additive builds (builds A2, A3, and A4) model various 

degrees of repeated process exposure conditioned powder. Figure 3 displays a graphical 
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explanation of how powder in the hopper of the LPBF machine is used for subsequent 

builds, and the overall LPBF process architecture. 

Table 1. Analyzed powder conditions 

Powder 

supply/build ID 
Condition Number of prior processes 

A1 Virgin powder direct use 0 

A2 Repeated process exposed 1 

A3 Repeated process exposed 2 

A4 Repeated process exposed 3 

 

Figure 3. Depiction of the build process used for production of the tested and analyzed 

LPBF specimens. The powder hopper contains powder that will be used for four 

consecuitively executed builds. The hopper supply is not replenished or purposely altered 

between builds. Several methods of powder supply contamination due to the fusion process 

are depicted. 

A precise description of the build operation procedures is provided below. 

1. Load 80 kg of powder directly from the sealed manufacturer container to the 

powder hopper. 

2. Collect a powder sample from the powder hopper. 

3. Calibrate the laser: Command the laser to 100W. Calibration limits are ±2% of the 

commanded value. 
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4. Level the build plate. 

5. Seal the process chamber and command flooding with argon. 

6. Apply doses of powder until the build plate is fully covered with one layer of 

powder. 

7. Execute the build. Powder quantity used is roughly 25 kg. 

8. Once the build is complete, use the recoater sweep the top layer of the powder in 

the hopper over the completed build into the powder collector. 

9. Open the process chamber, cover the hopper with a 75 μm sieve. 

10.  Remove powder from the build area into the powder collector. Remove the build 

plate. 

11. Clean the process chamber of excess powder in the build area. 

12. Install a new build plate. 

13. Remove the sieve. 

14. Repeat steps 2-13 for the three subsequent builds. 

3.1.2 Virgin powder characteristics 

The powder feedstock used in this study was procured from Praxair Surface 

Technologies, under the commercial product name of Truform 174-l61 adhering to Praxair 

specification ZFE276-L62BK. This product specification conforms to the chemical 

composition specifications of UNS S17400 in all aspects other than maximum allowable 

nickel content. The manufacturer lot-specific chemical composition analysis is provided in 

Table 2, along with the manufacturer and UNS specifications per ASTM A693-16 [91], 

[92]. Powder lot #1 of the provided specification was utilized, manufactured on August 

17th of 2018. This powder was gas atomized in an argon atmosphere, as opposed to water 
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atomization or gas atomization in an atmosphere of another inert gas. Several additional 

powder measurements, reported in Table 3 with measurement method noted, were provided 

by the manufacturer. All measurements reported were taken on powders sampled per 

ASTM B215. Reported PSD measurements d10, d50, and d90, refer to the diameter of the 

10th, 50th, and 90th percentiles, by diameter, of the characterized sample, as per ASTM 

E1617. 

Table 2. Chemical composition of 17- PH virgin powder 

Element Fe Cr Ni Cu Mn Mo Si C  

Mfg. 

specification 
Bal. 

16.70 

15.50 

4.60 

3.60 

3.50 

3.00 
0.70 0.50 1.00 0.06  

UNS 

specification 
Bal. 

17.5 

15.0 

5.0 

3.0 

5.0 

3.0 
1.00 … 1.00 0.07  

Test result Bal. 16.27 4.18 3.24 0.03 0.07 0.76 0.06  

Element P S N O Sn Al Ta Nb/Cb Other 

Mfg. 

specification 
0.025 0.025 0.025 0.040 0.02 0.05 0.05 

0.40 

0.15 

0.20 

UNS 

specification 
0.040 0.030    …  

0.45 

0.15 

 

Test result <0.005 0.002 0.007 0.022 0.00 0.00 0.00 0.19 0.14 

Units are [%]. Limits are a maximum unless shown as a range 

Table 3. Manufacturer powder test results 

Metric Test method Result 
*Minimum 

specification 

*Maximum 

specification 

Hall flow** ASTM B213 13.8 s/50g   

Sieve, +230† ASTM B214 0% wt.  0% 

Sieve, +270† ~ 1% wt.  5% 

Tap Density ASTM B527 4.57 g/cm3   

PSD, d10 ASTM B822 25 µm 10 µm  

PSD, d50 ~ 37 µm   

PSD, d90 ~ 55 µm  55 µm 

PSD, -16 µm‡ ~ 1% vol.  2% 

PSD, -22 µm‡ ~ 5% vol.   

*Minimum and maximum manufacturer specification are provided only if specified. 

**Method 1 utilized. 
†Refers to the percent mass of the sample retained by the sieve, where #230 and #270 

sieves have openings of 63 and 53 µm respectively, per ASTM E11. 
‡Refers to percent volume of sample measured to be under the specified diameter. 
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3.1.3 Specimen design 

Each build includes specimens intended primarily for either quasi-static uniaxial 

tensile testing, uniaxial fatigue testing, or microstructural evaluation. Two specimen types 

were designed to accommodate for these needs – a ‘universal’ as-built specimen design 

that can be post-processed to produce a specimen appropriate for either tensile or fatigue 

testing, and a ‘witness’ specimen for microstructural evaluation. The tensile specimen as-

machined design corresponds to a standard sub-size cylindrical with a 6.0 mm gage 

diameter specimen per ASTM E8 [93]. The fatigue specimen design corresponds to the 

guidelines of ASTM E466 for cylindrical gage section specimens, and has a reduced 

diameter section of 6.0 mm [94]. Both designs are detailed in Figure 4. Specimen grip 

surface runout in relation to the gage section was kept under 0.03 mm total runout. 

 

Figure 4. Top) As-machined tensile specimen geometry. Middle) As-machined fatigue 

specimen geometry. Bottom) As-built universal specimen design, in relation to the build 

plate. All unbracketed dimensions are in [mm], and bracketed dimensions are in [in]. 
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The design of the LPBF-manufactured specimens, shown in Figure 4, is a simple 

hexagonal prism of 15.2 mm across flats and 91.0 mm in length.  All specimens were built 

horizontally, or with their longitudinal axis normal to the build direction. Specimens were 

built horizontally since such a strategy yields the longer fatigue life and additionally keeps 

overall powder usage to a reasonable amount. These specimens are each raised off the build 

plate by the support geometry of a short, fully fused, rectangular prism that provides ample 

allowance for separation of the specimen from the build plate by band sawing. This large, 

solid support provides even heat syncing across the length of the specimen in addition to 

mechanical anchoring to the build plate that resists thermally induced stresses. 

3.1.4 LPBF build strategy 

An EOS M290 commercial LPBF system (commercially known as direct metal 

laser sintering (DMLS) system) was used to manufacture the specimens analyzed in this 

thesis. All four builds were manufactured on the same machine using the same processing 

parameters and build strategy.  The layout of a single 250 x 250 mm build plate is provided 

in Figure 5.  A single build layout contains 24 specimens for use in mechanical testing and 

3 ‘witness’ specimens for microstructural evaluation. The layout may be considered to have 

5 distinct rows of mechanical test specimens, where rows are specimens located at the same 

Y location in the build plate. Specimen names identify row number as the first digit, 

beginning at “1” and proceeding consecutively to “5” in the +Y direction. The second digit 

refers to a specimen’s location within a row, beginning at “1” and proceeding consecutively 

to either “2” or “9” in the +X direction. The first, third, and fifth rows have two specimens 

each oriented with their longitudinal axis in the X direction. The second and fourth rows 

have nine specimens each, oriented with their longitudinal axis in the Y direction. It should 
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be noted that specimens 3-1, 4-1, 4-2, and 5-1 from build A4 did not build properly due to 

a short-coating issue and were therefore not processed nor analyzed and tested. 

 

Figure 5. Build layout for all builds. Build direction is +Z, or out of the page. Note that 

specimens 3-1, 4-1, 4-2, and 5-1 from build A4 did not build properly and were not 

subsequenbtly processed nor analyzed or tested. 

Fusing/exposure order was designed to adhere to known best practices for LPBF 

systems which minimize contamination via by-products of the laser-welding process. 

These by-products are mostly known to be preferentially transported in the direction of gas 

flow and recoat.  As such, components furthest in the direction of gas flow are fused first, 

starting from the component furthest in the direction of recoat and proceeding against the 

recoat direction.  Once a group of components approximately in the same Y region are 

fused, the next group of components that are now furthest in the direction of gas flow are 
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fused and so-on for each layer. The order of component fusion in addition to the a list of 

which tests were conducted on which specimens is provided in Table 4. 

Table 4. Scan order 

Specimen Use 
Build seq. 

No. 
Specimen Use 

Build seq. 

No. 

1-1 - 1 4-1 T** 15 

1-2 F 3 4-2 F** 17 

2-1 T 2 4-3 T 18 

2-2 F 4 4-4 T 19 

2-3 - 5 4-5 F 20 

2-4 T 7 4-6 T 21 

2-5 F 8 4-7 - 22 

2-6 T 9 4-8 F 23 

2-7 T 10 4-9 T 24 

2-8 F 11 5-1 - 25 

2-9 T 12 5-2 - 27 

3-1 - 13 B1 M 6 

3-2 - 16 B2 M 14 
   B3 M 26 

“F” indicates fatigue specimen. “T” indicates tensile specimen. “M” indicates 

‘witness’ specimen for microstructural evaluation. 

*A4-4-7 underwent tensile testing. 

**A4-3-1, 4-1, 4-2, and 5-1 were not tested due to improper manufacture. 

All specimens were built using the ‘stripes’ scan strategy and the ‘time 

homogenization’ methodology. The stripes scan strategy, in addition to the homogenizing 

heat treat applied to the specimens post-build, makes specimen orientation within the X-Y 

plane non-influential on mechanical properties. The stripes scan strategy, shown in Figure 

6, refers to a single nth layer of a component, i.e. a cross-sectional slice, being scanned in 

parallel stripe regions.  Once the entire interior of a slice of a component is fused in this 

manner the contours of the slice are scanned. All components present in the current nth 

powder layer are fused in this fashion in the specified scan order. The process repeats in 

all subsequent layers. Stripe orientation is incremented by 67° between layers resulting in 

the orientation of the stripe in the nth layer only repeating in the (n + k∙361)th layers. The 
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time homogenization methodology uses the infill longest scan vector within a layer to 

define the time between the start and end of all other scan vectors within a layer. This 

strategy avoids areas of a build which only require short scan vectors from building up 

heat. 

 

Figure 6. Description of the ‘stripes’ scan strategy. Infill scan vectors are in black, contour 

scan patterns in blue, and stripe boundaries in red. 

Relevant LPBF build process parameters are provided in Table 5.  These parameters 

adhere to standard build parameters provided by EOS for 40 µm-layer 17-4 PH powder.  

Only parameters for the scan paths that form the interior of the analyzed specimens are 

provided, as alternate parameters for specialized scan paths such as those used for a contour 

scan path, ‘upskin’, or ‘downskin’ will not make up the final as-machined specimens which 

are analyzed and tested. 
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Table 5. LPBF build parameters 

Parameter Value 

Layer height 40 µm 

Laser power 220 W 

Scan speed 755 mm/s 

Hatch spacing 0.11 µm 

Beam diameter 80 µm 

Built plate temperature 80 °C 

Scan strategy ‘Stripes’ 

Stripe orientation alternation 67° 

Build time (approximate) 85 hr 

3.1.5 Post-LPBF specimen processing 

The post-LPBF thermal processing and surface preparation of the mechanical test 

specimens examined in this study should were chosen according to two major motivations. 

First, the independent variable to be primarily investigated is powder-use state, the effects 

of which are suspected to be subtle. Factors in specimen preparation and post-processing 

known to produce confounding effects in fatigue should are thus either eliminated or made 

equal between all tested specimens. Second, specimen thermal processing and surface 

preparation conditions of interest and relevance to the considered field of applications 

should be investigated. The overall processing flow for both tensile and fatigue specimens 

is described in Figure 7. All specimens are solutionized and aged on the build plate, then 

separated by band sawing. Both specimen types are rough and finish machined via a similar 

procedure. Specimens intended for fatigue testing are polished to eliminate effects of the 

machining process that can influence fatigue performance. A small amount of 0.625 in 

diameter wrought bar (UNS S17400 AISI type 630 specification) was heat treated in the 

same lot and used in following experiments to provide a baseline of performance. This 

material is referred to as “W1” in subsequent writing and figures. 
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Figure 7. Manufacturing process workflow for tensile and fatigue type mechanical test 

specimens. 

As discussed earlier, the best fatigue properties are seen in the H1025 condition, 

which is therefore used here. Per the AMS specification heat treatment was accomplished 

by solutionizing at 1900 °F [1038 °C], air quenching at a sufficient rate to below 90 °F [32 

°C], and finally aging at 1025 °F [552 °C] for 4 hours [83]. All specimens were heat treated 

in a single lot, in their as-built condition on the build plate, in a temperature monitored 

vacuum furnace with quenching performed by back-filling with argon. Prior to this heat 

treatment all specimens were solutionized and aged in one prior cycle as a single lot. This 

cycle utilized the incorrect time period for aging and as such a second correct cycle was 

performed, as described. This additional prior treatment is not expected to produce 

significant differences as opposed to a single, correctly executed cycle nor produce any 

differences between individual specimens. 

All specimens intended for mechanical testing were machined to 1) produce a low 

roughness free surface and 2) remove all sub-as-built-surface defects typical of the LPBF 
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process. Machining was performed by the author on an NC Okuma Genos L250 turning 

center. All specimens were turned with identical tooling, tool paths, cutting feeds and 

speeds, and flood coolant conditions. The only differences in machining strategy between 

tensile and fatigue type specimens is tool path shape. Cutting conditions echo example 

practices described in ASTM E466, Appendix section X1. After facing, drilling, and boring 

of a center in one specimen end, all functional features of a specimen are turned in a single 

set-up on a live-center, ensuring low-runout between specimen grip surfaces and the gage 

portion and thus low bending stresses experienced during testing. The finish tool path 

removed 0.012 in (dia.) of material with carbide insert tooling. Inserts were carefully 

monitored for wear and frequently replaced. Inspection of the machined specimens showed 

no evidence of undercutting of the fillet radii nor significant barrelling of the gage section 

due to deflection. Tensile specimens were machined with a 0.001 in taper towards the 

middle of the gage section, as allowable per ASTM E8. All specimens of both types were 

visually inspected for scratches, chatter, nicks, and other deviations from expected surface 

finish. As-machined specimens were inspected with a Mitutoyo Surftest SJ-410 and 

displayed a surface roughness of roughly Ra = 9.0 µm. Fatigue specimens were polished 

after machining using the below procedure to impart a final surface with low roughness 

and a lay parallel to the specimen axis. 

1. Hand-polish using #1000 grit SiC sandpaper and a light cutting fluid (WD-40) the 

gage portion and fillets of a specimen rotating at 500 rpm for approximately 10 

seconds, imparting a circumferential lay. This is to remove machining marks and 

the surface layer affected by the machining process. 
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2. Hand-polish longitudinally using a light cutting fluid and increasing grits of SiC 

sandpaper (#800, #1000, and #2000 consecutively) imparting a lay along the axis 

of the specimen parallel to the direction of stress. 

A large sample of fatigue specimens (19) were inspected via the non-contact method 

of scanning coherence interferometry using a Zygo zegage interferrometer. A region of 834 

x 834 µm was scanned. While ASTM E466 only specifies Ra = 0.2 µm [8 µin] as a 

requirement, multiple other parameters were measured, as displayed in Table 6. Form was 

subtracted from the measured surface profile by removing a cylinder of best fit, as is 

standard procedure per ASME B46. The software tools accompanying the interferometer 

were used for calculation of all presented surface roughness parameters, adhering to 

standard methods. While the region inspected does not encompass the entire gage section 

surface it provides a measurement typical of any one specimen surface finish, barring the 

presence of significant defects in the unscanned region. Since all sampled specimens 

displayed acceptable surface finishes the remaining specimens were not individually 

inspected via interferometry, and merely visually screened for surface defects. A typical 

scan is provided in Figure 8. 
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Table 6. Typical fatigue specimen gage section surface roughness 

Parameter Mean [µm] Standard deviation [µm] 

Sa
 0.121 0.018 

Sq 0.162 0.018 

Sv -1.300 0.304 

Ra 0.080 0.023 

19 polished fatigue specimens were sampled. Measurements were taken from an 834 x 

834 µm sample area, with a best-fit cylinder subtracted from the as-measured profile to 

remove form. 

 

Figure 8. Typical interferometric scan of a polished fatigue specimen. The depicted scale 

in microns. The portion of the scan that forms the areal and profile samples are depicted 

in red and black, respectively. The profile sample is taken perpendicular to the direction 

of lay.  

3.2 Powder characterization 

Powder samples were taken from the hopper area immediately prior to each build in 

accordance with ASTM B215, via practice 1B, using a single-level tube sampler. Samples 
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were immediately stored in sealed containers and kept in an environmentally controlled 

location. In the case of all powder characterization efforts, powder sample containers were 

not opened except to extract them for measurement. For morphological evaluation powders 

were placed on carbon tape and imaged using a Zeiss Ultra 60 SEM – all samples were 

immediately imaged in the same session. 

In order to assess flowability of the sampled powder conditions Hall flow testing 

was conducted per ASTM B213. A Hall flowmeter funnel was used in combination with 

test method 2. A quantity of roughly 50 g (-0.09/+0.16 g) of powder from each powder 

condition was used for each test. Each ~50 g sample was tested three times, and each 

sample was weighted directly prior to each test. All flow times were taken by a single 

operator in a single session. A corrected flow time was calculated for each test, where the 

measured flow time (tflow,meas.) was multiplied by a correction factor of 50 g divided by the 

measured mass of the sample (m) to form a corrected flow time (tflow). All flow times 

reported from this point on refer to this corrected flow value. 

 
𝑡𝑓𝑙𝑜𝑤 = 𝑡𝑓𝑙𝑜𝑤,𝑚𝑒𝑎𝑠. ∗ (

50

𝑚
) (1) 

A Freeman FT4 powder shear cell was used for rheological evaluation of the 

sampled powders according to ASTM D7891. Specified masses of the powder samples 

were loaded into the testing apparatus shear cell vessel using the built-in mass scale. 

Powders were first conditioned (thoroughly mixed and homogenized) in the shear cell, then 

compacted, and finally leveled according to the standard. Powders were compacted under 

a consolidation stress of 6 kPa. The powder was then manually pre-sheared according to 

the standard, then the automatic test program proceeded to the shear the powder at several 
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distinct levels of applied normal stress while recording the powder’s torsional resistance to 

shearing. Torsional force measurements were converted to shear stress according to the 

standard. Bulk rheometry measurements were extracted according to the standard. 

3.3 Microstructural evaluation 

Witness specimens B1, B2, and B3 were extracted from each build and subjected 

to the same heat treatment in the same heat lot as all specimens. Specimens were sectioned 

by band sawing in a plane parallel to the build section through their middle. Once sectioned, 

specimens were mounted in epoxy mixed with conductive nickel powder. Specimens were 

rough ground for approximately 30 min using a conventional automatic metallographic 

grinder/polisher with #240 SiC sand paper lubricated and cooled with water, removing any 

heat or deformation affected portions due to the sectioning process. Following this step, 

mounted specimens were polished with #500, #1000, #2000, and #4000 grit SiC sandpaper. 

Diamond abrasive suspensions of 9, 3, and 1 µm in abrasive particle size were then used. 

Modified Fry’s reagent, consisting of 25 mL HCl, 25 mL HNO3, 75 mL H2O, and 1 g CuCl2, 

was swabbed on for roughly 30 seconds to chemically etch and reveal microstructure. 

Specimens were inspected optically with a Leica DVM6 digital microscope. Additionally, 

specimens were inspected with a Zeiss Ultra 60 SEM. 

3.4 Mechanical testing 

3.4.1 Computed tomography inspection of fatigue test specimens 

Computed tomography (CT) was used to gain insight as to the typical quality level 

of the produced components in addition to possible correlation of pre-existing defects with 
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fracture initiators. Inspections were conducted on three fatigue specimens. A Zeiss 

Metrotom 800 industrial CT scanner with a maximum acceleration voltage of 130 kV was 

used for the inspection. Specimens were inspected in their fully heat treated and machined 

condition. The relevant CT analysis parameters are provided in Table 7. Two scans of 

differing parameters were conducted on a select specimen in an attempt to assess the effects 

of beam hardening on the identification of porosity subsurface regions. CT data was 

reconstructed using the commercially available software package VGStudio MAX from 

Volume Graphics. ISO-50 thresholding was used for initial surface determination, after 

which an advanced deformable volume technique was used for a refined surface 

determination. The integral porosity identification tool “EasyPore” was used to identify 

regions of porosity. Identified regions, if there were any, were manually screened for 

identify them as true pores or scan artifacts. 

Table 7. CT analysis parameters 

Parameter Scan 1 Scan 2 

CT system Zeiss Metrotom 800 

Voxel side length 15 μm 

No. of projections 800 

Scan time ~1.0 hrs 

Accel. voltage 130 kV 

Current 45 μA 60 μA 

Prefilter 0.75 mm Cu 1.5 mm Cu 

3.4.2 Tensile, fatigue, and hardness testing 

Tensile tests were conducted on H1025 condition fully machined LPBF 

manufactured specimens. In addition, a small number of reference tests were conducted on 

wrought 17-4 bar, heat treated and machined in the same manner. Tests were conducted 

according to ASTM E8 on an MTS servohydraulic 98 kN capacity load frame. An Interface 

111 kN capacity load cell was used for data acquisition. Cylindrical collet grips with a 12 
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mm grip diameter were used. Extensometry data for both analysis and control purposes was 

attained with an MTS 1 in blade-type extensometer. Following recommended ASTM E8 

procedures, specimens were pulled at a strain rate of 0.45 mm/min prior to yield, and 5 

mm/min after yield and until failure. Force, extensometry (strain), crosshead displacement, 

and time data were captured at a rate of 102 Hz. Frame alignment was checked via the 

method described in Appendix X2 of ASTM E1012. Once force and strain data were 

acquired stress was calculated as the measured force over the cross-sectional area. Yield 

strength was calculated via the 0.2% offset method. Modulus was calculated via linear 

least-squares fitting to the linear portion of the stress-strain curve. Ultimate strength and 

elongation at failure were also extracted as the peak engineering stress observed and the 

maximum strain before failure observed. Ten specimens per build were tested, as noted in 

Table 4. Note that the same specimens in each build were used for testing, with the 

exception of specimen A4-4-1 not being tested, and specimen A4-4-7 being tested in its 

stead. 

Fatigue tests were conducted on H1025 condition fully machined and polished 

specimens. Force controlled constant amplitude axial fatigue tests were conducted 

according ASTM E466 on the same MTS servohydraulic 98 kN capacity load frame. An 8 

Hz sinusoidal forcing function with a stress ratio of R = 0.1 was utilized. Force error was 

captured at a rate of 512 Hz using a logarithmic sampling strategy and occasionally 

inspected for divergence from the commanded levels – none was shown. Six tests per build 

were conducted, and tests were on the same specimens of the same location from each 

build, spread across the build area. A1-4-2 and A2-2-8 data is not presented, due the lack 
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of a properly built specimen in the first case and an improperly interrupted fatigue test in 

the second. 

Rockwell hardness was measured for a selection of specimens from each build. 

Hardness tests were conducted with a Wilson Rockwell 574 automatic hardness tester. 

Tester repeatability and error was checked for compliance with ASTM E18 before and 

after any testing session. Hardness was measured on the HRC scale, using the appropriate 

indenter. Hardness was measured on the 12 mm diameter grip portion of fully machined 

H1025 condition specimens. Specimens were mounted to a V-block, anchored to the test 

platform to prevent movement between tests, to center them under the indenter and 

measured hardness was compensated for the known diameter of the tested specimen 

according to ASTM E18. 

3.5 Fatigue life reliability analyses 

This study uses a reliability modeling approach to compare the effects of powder 

condition on fatigue life. A small set of initial fatigue tests (four) were conducted at varying 

stress levels to produce a very rough S-N curve to aid in selection of loading conditions for 

in-depth investigation. Once initial tests were conducted, a simple linear fit was made to 

the S-log(N) data. A testing load that would produce a stress of Smax = 867 MPa was 

selected based on this fit to produce failure in the desired HCF regime. All following 

fatigue tests were conducted at this Smax, with a loading ratio of R = 0.1, at a frequency of 

8 Hz, under a force-controlled sinusoidal forcing function. 

Two analysis methods were used to compare the fatigue life data from each build, 

A1, A2, A3, and A4. The first utilized parametric methods to fit probability density 
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functions to the observed distribution of fatigue lives from each build and conclude if any 

were different. The second utilized the non-parametric empirical survival function to 

characterize each fatigue lives displayed in each build and conclude if any were different. 

3.5.1 Parametric analysis 

Parametric statistics are based in description of data using a deterministic model 

such as a probability density function (PDF). A wide range of PDFs exist to model many 

natural and man-made phenomena. Historically, fatigue life and reliability have been 

modelled by a select number of PDFs, notably the Weibull and lognormal distributions, or 

variations thereof. An extensive review of the history of applications of these distributions 

to fatigue life data is beyond the scope of this work, but other authors have extensively 

summarized their use and applicability, as noted in the background section. To summarize, 

both distributions have similar characteristics. Both can be right skewed which accurately 

describes the infrequent phenomena of structures exhibiting very long or possibly infinite 

fatigue lives far from the average fatigue life exhibited. The lognormal PDF is often 

favored for its simple form which is a log-transformation of the well-known normal 

distribution. As such the lognormal distribution is described by two parameters, the log-

mean and log-standard deviation, µ and σ. Here, if x is the random variable, µ is the mean 

of ln(x) and σ is the standard deviation of ln(x). This form allows many well-known 

statistical techniques developed for comparing normal distributions by simply 

transforming the data mathematically. The Weibull distribution is well-used in the world 

of mechanics and reliability modelling and favored for its flexible shape which can model 

data as having a PDF that is exponentially shaped, bell-shaped, or some variation in 

between. The distribution is described by the shape and scale parameters, β and η. Both the 
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Weibull and lognormal distribution PDFs are presented in equations (2) and (3), 

respectively. 
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The workflow used for parametric analysis of fatigue life in this work began with 

an exploratory data analysis to evaluate how a range of PDFs fit the data. Both the Weibull 

and lognormal distributions are shown to be appropriate descriptors. Next, both 

distributions are fit to the data from each build forming a deterministic predictor of the 

probability of the fatigue life. Fitting is accomplished via the maximum likelihood 

estimation (MLE) method. This method is computationally intense but does not require the 

binning of data that other methods would. Likelihood refers to the probability of a 

hypothesis or model (given a set of parameters, θ) accurately describing data. Likelihood, 

L, is the optimized variable during the MLE process. Frequently, the natural log of a 

likelihood function, ln(L), is handled for mathematical convenience. Additionally, the log-

likelihood is sometimes made negative before it is optimized since optimization techniques 

apply best to minimization. For a model with the parameter set, θ, the MLE process 

iteratively varies the parameters to maximize the likelihood (or minimize the negative log-

likelihood). We are left with a scalar value of maximized likelihood given these parameter 

values, 𝐿|𝜃, or the negative log-likelihood −ln(𝐿|𝜃). Despite both these values 

corresponding to a specific value of likelihood, they are often simply referred to as just the 

likelihood of a model. 
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Once models, e.g. Weibull or lognormal PDFs, have been fitted via MLE statistical 

tests may be applied for comparing the models. The likelihood ratio test compares two 

models based on their maximized likelihood. The models must be nested, meaning that if 

one model relies on the parameter set θ, the other relies on the same parameter set in 

addition to additional parameters as well. An example would be 𝑓(𝑥)  =  𝑎 +  𝑏𝑥 +  𝑐𝑥2 

nests the both the models 𝑔(𝑥)  =  𝑎 +  𝑏𝑥 or ℎ(𝑥)  =  𝑎 +  𝑏𝑥 +  2𝑥2, where the 

parameter c has been either removed or fixed. The more complex model has all parameters 

unrestricted, and the less complex model restricts one or more parameters by either 

eliminating or fixing them. The likelihood ratio test assumes the null, that the restricted 

model accurately represents the data and tests for the alternative, that the unrestricted 

model more accurately represents the data. Letting L0 and L1 be likelihood of the restricted 

(null), and unrestricted (alternate) models the likelihood ratio is simply: 

𝜆 =
𝐿0

𝐿1
 (4) 

As discussed, it is more convenient to use log-likelihoods. Additionally, by taking the log 

of the ratio and doubling it we can produce a relevant test statistic that follows the chi-

squared distribution when the null model applies. 

𝛸2 = −2 ln(𝜆) = −2 ln
𝐿0

𝐿1
= −2(ln 𝐿0 − ln 𝐿1) (5) 

If the negative log-likelihoods are considered, a simple substitution of each ln(L) term is 

performed, and the negative sign factors out. The test statistic can be compared to a chi-

squared distribution at the desired significance level α, with k degrees of freedom, referring 
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to the difference between the number of free parameters considered in the unrestricted and 

restricted models. 

𝑛𝑢𝑙𝑙 𝑖𝑠 𝑡𝑟𝑢𝑒: 𝛸2 < 𝛸𝑘,𝛼
2

 

𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝑖𝑠 𝑡𝑢𝑟𝑒: 𝛸2 > 𝛸𝑘,𝛼
2  

To utilize the test to determine if two distributions which described the data from 

two groups differ, the problem is phrased as such and the following steps are executed. 

Null: Both groups come from a single population, described by n parameters 

Alternative: Each group comes from a distinct population described by n parameters, 

making for m = n + n parameters total. 

1. Fit a distribution using MLE to a single set of data made up of both groups. 

Calculate the log-likelihood of this null model. 

2. Fit a distribution using MLE to each group individually and calculate each log-

likelihood. Sum them to produce the log-likelihood of the alternative. 

3. Compare null and alternate log-likelihoods with the likelihood ratio test, with k = 

m – n degrees of freedom, at a desired significance level. 

3.5.2 Non-parametric analysis 

Non-parametric analysis does not rely on fitting of deterministic models to data. 

Non-parametric methods are extremely valuable in cases where data cannot be confidently 

said to adhere to a known distribution or if a data set is small enough that it is difficult to 

prove as much. A non-parametric method of describing reliability data of great use is the 

empirical survival function, also known as the Kaplan-Mier estimator. This function 

describes the probability for survival, or in this case the probability for any one specimen 



 51 

to not have failed by N cycles. This concept results in a metric that is directly analogous to 

the complement of the cumulative density function (CDF). Utilizing a set of fatigue life 

data for tests conducted at a single loading criterion the survival function is expressed as 

function of the number of failures thus far ON and the number of test specimens still ‘at 

risk’ RN at any cycle count N. 

 
𝑆(𝑁) = ∏ (1 −

𝑅𝑁

𝑂𝑁
)

𝑖:𝑁𝑖≤𝑁

 (6) 

An estimator of variance, Greenwood’s formula for variance, can be calculated for the 

survival function, and confidence bounds can be calculated via the z-distribution. 

 
𝑉𝑎𝑟(𝑆(𝑁)) = 𝑆(𝑁)2 ∑

𝑂𝑁

𝑅𝑁(𝑅𝑁 − 𝑂𝑁)
𝑖: 𝑡𝑖≤𝑡

 (7) 

 
𝐵𝑜𝑢𝑛𝑑𝑠 = 𝑧𝛼/2√𝑉𝑎𝑟(𝑆(𝑁)) (8) 

The log-rank test, also known as the Mantel-Cox test, distinguishes the empirical 

survival curve between groups, S(t)j. While survival curves can be compared graphically, 

the log-rank test takes into account how sampling error effects how well a curve models 

the survival probability of the underlying population. The strengths of the test include not 

assuming any underlying population distribution, the ability to account for right-censored 

observations, and good handling of right-skewed distributions. The test relies on the same 

assumptions that the Kaplan-Mier estimator does, namely that censoring is not related to 

prognosis and that recorded event times are accurate. While the test is most often used to 

conduct pairwise comparisons it can also be aimed at more than two groups and conclude 



 52 

whether any display detectable differences. When doing so, the power of the test increases, 

analogously to how the power of ANOVA is superior to multiple pairwise t-tests. 

The structure of the test is simple: the null hypothesis assumes that there is no 

difference in underlying population survival probabilities, with the alternative being that 

there is a detectable difference. In the context of fatigue lives, we define that for each group 

g an event constitutes a failure at N cycles, and a censored observation is a test which was 

halted without failure at N cycles. Computation of the test statistic requires first assuming 

the null and treating all groups as a single set of observations to construct a single empirical 

survival function. This survival function predicts survival probability at any cycle count N 

as a proportion of observed failures thus far ON divided by the number of specimens that 

are still ‘at-risk’ of failure RN.  

𝑆0(𝑁) =
𝑂0,𝑁

𝑅0,𝑁
∈ [0,1] (9) 

By referencing this null survival function, the expected number of failures in each group, 

should its independent survival function be identical to S0, can be calculated.  The number 

of specimens at risk in group g at time N multiplied by the null survival function defines 

the expected number of failures that have occurred in group g at time N. 

𝐸𝑔,𝑁 = 𝑅𝑔,𝑁

𝑂0,𝑁

𝑅0,𝑁
 (10) 

Once the expected and actual number of failures in for each group is known they can be 

compared in each group and combined across groups to produce a relevant test statistic. 
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There are multiple methods for calculation of a test statistic for the log-rank test, but here 

a statistic that can be related to the chi-squared distribution is chosen. 

𝛸2 = ∑
(∑ 𝑂𝑔,𝑁 − ∑ 𝐸𝑔,𝑁)

2

∑ 𝐸𝑔,𝑁
𝑔

 (11) 

For m groups being compared, this statistic is then compared to the value of chi-squared 

distribution with k = m - 1 degrees of freedom evaluated at the desired probability of type 

I error, α. 
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RESULTS AND DISCUSSION 

4.1 Powder measurements 

Powder morphology can be qualitatively assessed by the SEM micrographs attained 

of the various powder samples. Powder samples A2, A3, and A4 all displayed fairly similar 

morphological characteristics, and as such Figure 9 displays a sample from the powder 

used to manufacture build A1 compared to the powder used to manufacture build A3. The 

A1 powder sample was sampled from the hopper directly prior to the execution of the A1 

build process and thus represents directly used virgin powder, solely exposed to the 

conditions require to load it into the LPBF machine and prepare the first build. 



 55 

 

Figure 9. SEM images of powder samples taken from the hopper powder supply 

corresponding to powder used for the first (A1) and third (A3) builds. Suspected meltpool 

ejecta are identified by red arrows. Particles that display satellites or fusion to other 

particles suspected as a result of the fusion or spatter process are identified by blue arrows. 

The A1 powder sample exhibits particles of a fairly tight size distribution, 

particularly with a lack of many particles far above 40-50 μm in diameter – for reference, 

the d90 measurement provided by the powder manufacturer is 55 μm. There does not appear 

to be an excess of fine particles either. Particles display a morphology typical of the gas 

atomization process which was used to manufacture the powder [3]–[5]. Particles are 

generally fairly spherical, with a significant proportion accompanied by small satellites, 

normally several factors smaller in diameter than the parent particle. Very few highly 

elongated particles are present. The A3 powder sample notably differs in its make-up due 

to the presence of several very large single particles or multi-particle agglomerates. These 
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particles appear to be byproducts of the LPBF process that is undertaken in the build area 

of the process chamber. The large particles or size with few satellites (notated with red 

arrows) are likely meltpool ejecta due to violent meltpool conditions [95]. The large 

agglomerates appear to show very smooth surface texture of at least one large particle, 

indicating that meltpool ejecta managed to fuse with other virgin particles. The particles 

have been evidently transported to the hopper area via one of several possible mechanisms. 

High velocity spatter, large enough in size, may have traveled against the dominant 

shielding gas flow direction [96]. Turbulent gas flow in regions of the build may also be 

responsible [97]. The recoater blade may have also transported them back into the hopper. 

Particles much larger than the layer height (40 μm) have difficulty settling in the power bed 

and may be captured by the recoater blade and shed in the hopper during a subsequent 

recoat when a high wall of powder can rip the large particles from the recoater. 

Measurements of powder flowability, quantified as Hall flowability, are presented in 

Figure 10. The results show an increasing trend in flow time (i.e. a decrease in flowability) 

accompanying the degree of powder repeated process exposure, which matches basic 

flowability energy (BFE) measurements from a study looking at un-sieved re-used 

powders, which are a similar condition to the repeated process exposed powders [43]. A 

one-way ANOVA was performed on the data, shown in Table 8, resulting in a conclusion 

that at least one group significantly differs from the rest with a p-value of <0.001. A Tukey-

Kramer analysis was performed to further investigate the differences between the powder 

flowabilities, as shown in Table 9. Data appears to be distributed normally and the 

respective sample variances are sufficiently homogenous, taking into consideration small 

number of observations. Levene’s test on the data produces a p-value of 0.206, supporting 
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this claim. The virgin powder and powder used to manufacture build A1 displays a 

significant difference when compared to all other builds. Finally, the powder that is used 

to manufacture builds A3 and A4 display a difference at the limits of significance with a 

p-value of 0.05. The minor differences between the powder samples A2, A3, and A4 imply 

that the effects of repeated process exposure conditions on Hall flowability saturates after 

the powder has been exposed to just two prior builds, in this case. A reduction in flowability 

may be attributed to the large aspherical particles that have been added to the powder 

supplies by the LPBF process exposure. The difference in the virgin and A1 powder is 

interesting, as the powder should have experience very little exposure to influencing 

conditions. It is possible that the compaction of powder in the hopper by the operator prior 

to build A1, a standard procedure, better mixed the powder or broke up agglomerate 

particles present in the virgin powder container. 

 

Figure 10. Hall flowability, measured in seconds of flow per 50g sample. The average of 

three tests with an identical powder sample is presented. 

Table 8. One-way ANOVA on Hall flowability 

Source DoF SS MS F p 

Factor 4 1.555 0.389 35.7 <0.000 

Error 10 0.109 0.011   

Total 14 1.663 
   

Sum of squares (SS) and mean square (MS) are presented in [sec2]. 
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Table 9. Tukey-Kramer comparison of Hall flowability 

Comparison 

Lower C.B. Mean diff. Upper C.B. 

p [sec] 

Vir.-A1 -0.57 -0.29 -0.01 0.04 

Vir.-A2 -1.05 -0.77 -0.49 <0.001 

Vir.-A3 -0.87 -0.59 -0.31 <0.001 

Vir.-A4 -1.15 -0.87 -0.59 <0.001 

A1-A2 -0.77 -0.49 -0.21 <0.001 

A1-A3 -0.59 -0.31 -0.03 0.03 

A1-A4 -0.87 -0.59 -0.31 <0.001 

A2-A3 -0.10 0.18 0.46 0.29 

A2-A4 -0.38 -0.10 0.18 0.77 

A3-A4 -0.56 -0.28 0.00 0.05 

Powder rheometry was investigated via the FT4 powder rheometry testing method. 

The results of testing on virgin powder as well as powders sampled from the hopper supply 

that was used to manufacture builds A1, A2, A3, and A4 are presented in Figure 11. In 

order to allow for a closer inspection of the produced shear stress values the pre-shear data 

points are not depicted, as they are at significantly higher normal stress values of 6 kPa. 

The shear stress curves do not imply any differences between the rheological properties of 

any powder sample, with minimal differences between individual gathered data points and 

overlapping of the interpolated curves in multiple places. 
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Figure 11. FT4 rheomtery test data. Data presented are taken during steady-state shear, 

pre-shear data is not pictured. 

Several rheological properties of the powder can be extracted from these data using 

methods described in the relevant standard. A depiction of these methods applied to the 

virgin powder sample is provided in Figure 12. Shear data is used to calculate the yield 

locus as a line of best fit. The yield locus’ y-intercept determines cohesion, and its angle to 

the horizontal is the angle of internal friction. Two Mohr’s circles are drawn to determine 

the unconfined yield strength and the major principle stress. The first circle is tangent to 

the yield locus and the y-axis, with its center on the x-axis. The second is tangent to the 

yield locus, intercepts the pre-shear point, and has its center on the x-axis. The effective 

yield locus connects the origin to a tangent point on this circle and its angle to the horizontal 

is the angle of effective friction. A summary of these values for all analyzed powder 

samples is presented in Table 10. Interestingly, the virgin powder sample displays the 

greatest resistance to shearing, with the lowest angle of internal friction, highest cohesion, 

unconfined yield strength, and major principle stress. The flow function of the virgin 

powder is also the lowest, indicating a high cohesivity and resistance to free flow. No trends 

that accompany the degree of powder repeated process exposure are observed in any 
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extracted values. Interestingly the results run in contrast to what the flowability test might 

suggest; the virgin powder displays the most viscous properties in the FT4 test, but the 

greatest flowability in the Hall test. As earlier discussed, powder bulk fluid properties 

appear to be complex in their relation. There seems to be two possible conclusions – other 

studies [57], [58] that have concluded flowability trends with cohesivity/BFE incorrectly 

used permeability to approximate flowability; or the powder condition measured here is 

unique in that it results in good flowability coming with high cohesivity. It should also be 

noted that the inability to statistically test the reported rheology results, especially when 

the data is closely gathered as mentioned, may mean the cohesivity conclusions made here 

are confounded by measurement error. 

 

Figure 12. A depiction of the values extracted from a FT4 rheometry test. Data 

corresponding to the virgin powder sample is presented. 
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Table 10. FT4 rheometry test extracted values 

 

Ang. 

internal 

friction, φ 

[deg.] 

Cohesion, 

C 

[Pa] 

Unconfined 

yld. 

strength, f
c
 

[Pa] 

Maj. 

principle 

stress, σ
1
 

[Pa] 

Effective 

ang. of 

friction, δ 
[deg] 

Flow 

function, FF 
[σ

1
/f

c
] 

Vir. 19.7 331 941 8199 23.0 8.7 

A1 20.4 250 720 7960 22.9 11.1 

A2 21.9 178 527 7966 23.7 15.1 

A3 20.6 280 807 7940 23.4 9.8 

A4 20.7 251 725 7772 23.3 10.7 

Values were extracted from data in accordance with ASTM D7891. 

4.2 Microstructural description of produced components 

After mounting, polishing, and etching, specimens B1, B2, and B3 from all four 

builds were inspected via optical microscopy and SEM. Micrographs are presented in 

Figure 13. Microstructural differences detectable via these methods as a function of powder 

condition were not hypothesized and a cursory inspection of the revealed microstructures 

did not reveal any clearly defined distinctions. For contrast, micrographs from the 

equivalently heat treated wrought material (W1) are provided in Figure 13a. While both 

alloys appear to be of a largely martensitic content, the wrought material presents a 

microstructure with more lath-like packets of martensite, grouped in distinct directions that 

subdivide prior austenite grains. The AM material presents martensite that appears to be 

more blunted in its shape. This is likely due to the increased carbon content of the virgin 

powder (0.06%) compared to the wrought material (0.023%), which favors different 

martensite morphology as is well established for steels. The optical micrographs show that 

the solutionizing step of the heat treatment effectively homogenized the microstructure, 

removing most directionality and gradient due to repeated meltpool solidification, similar 

to results reported in other studies of LPBF manufactured 17-4 [61], [86]. This is especially 

evident when comparing to Figure 13c and d, which show a 17-4 as-built specimen, 
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sampled from a distinct build manufactured from a different powder lot but produced with 

the same process parameters. 

 

Figure 13. Micrographs of polished an etched a) Wrought H1025 17-4 b) LPBF H1025 

17-4 c-d) As-built LPBF 17-4, different powder lot e) LPBF H1025 17-4, specimen A1-B3 

f) LPBF H1025 17-4, specimen A4-B2. 

Other expected features of the microstructure include retained or reverted austenite 

as well as precipitate particles. Retained austenite is not expected in the heat treated 
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specimens due to the argon processing atmosphere and the properly applied solutionizing 

cycle, and large retained austenite grains do not appear to be present [61], [63]. The optical 

micrographs do not provide sufficient magnification to examine for less obvious features, 

but the SEM micrograph in Figure 13f yields some insights. The martensite structure is 

more apparent, and it appears in groupings of elongated, but not strictly lath-like subgrains. 

Notably, a homogenous distribution of dark and irregularly shaped second phases are 

present – they correspond to the bright irregularly shaped areas in the optical micrograph 

of Figure 13e. They appear to have some depth, but they are not voids or porosity, as 

confirmed by an inspection of the unetched portions of the specimens (masked during 

etching) which did not show these features. The second phase regions range from 1-5 µm 

in size, effectively ruling them out as copper precipitates which have been widely reported 

to be very fine, on the order of 1-30 nm, depending on the degree of ageing. More likely, 

this second phase is reverted austenite. Bhambroo et. al. identified via EBSD reverted 

austenite with very similar density, size, and morphology in wrought 17-4 solutionized and 

aged at 1075 °F [580 °C] for 4 hrs. Several authors have reported findings of reverted 

austenite in aged 17-4 despite the fact that the known austenite formation start temperature 

of the bulk alloy is higher than the aging temperature used here (1025 °F [552 °C]) as well 

as in the noted study [98]–[100]. It is theorized that the matrix rejection of austenite 

stabilizing elements such as Ni, Cu, and C towards martensite boundaries during aging 

provide strong local nucleation sites for austenite to form at aging temperatures. The bright 

martensite boundaries seen in the optical micrographs and displayed as strings of particles 

in the SEM images are difficult to positively identify without applying further experimental 

techniques. They may be more reverted austenite, as observed by Viswanathan et. al. in 
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17-4 solutionized and aged at 1075 °F [580 °C] for 4 hrs [98]. They could also be M6C27 

or M7C3 type carbides decorating the boundaries, which would also be the result of Ni, Cu, 

and C rejected by the supersaturated martensite during the aging process which is also 

supported by prior literature [98], [100]. The difference in how they etched compared to 

the larger reverted austenite colonies would suggest they are carbides. The presence of 

these carbides, possibly greater in quantity than the wrought material due to the high AM 

carbon content, may impact ductility as observed in the conducted tensile testing. 

4.3 Computed tomography inspection 

CT scans of three specimens e.g., A1-F03, A4-F02, & A4-F07, were reconstructed 

and analyzed for porosity. Reconstructions of two scans of A4-F07 using two distinct CT 

analysis parameters are shown in Figure 14. It can be seen that the parameters of Scan 2 

were successful at reducing beam hardening effects although their effect on the porosity 

analysis still cannot be entirely ruled out, even though a relatively low degree of beam 

hardening is observed. While some pores were identified by the software tools used, all 

automatically identified pores were disregarded as either scan artifacts or lacking in 

certainty of identification due to a their extremely small volume of only several voxels. 

None of these small pores displayed a change in gray values in the supposed pore region 

upon a manual inspection of individual scan slices. Overall, no pores were identified with 

any confidence in any of the analyzed CT scans. Fractography work, presented later in this 

study, supports this finding with fracture initiating defects being of a size and shape that 

would be extremely difficult to positively identify via the CT scanning methods used. 
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Figure 14. Images of from reconstructed CT scans showing a) The entire scan region of 

fatigue specimen A4-3-5. b) A 316L stainless steel specimen scanned using the same CT 

system displaying exemplar porosity [101]. c&d) A typical slice of a reconstruction 

corresponding to a scans of A4-3-5 using the scan 1 and scan 2 parameters – no porosity 

is detected. 

4.4 Hardness by build and spatial origin 

Rockwell hardness measurement were extracted from the grip regions of machined 

mechanical test specimens from each of the four builds, specifically specimens 1-1, 1-2, 3-

1, 3-2, and 5-2. Note that specimen A4-3-1 could not be measured due to previously 

described short-coating issues. To test for a difference in the hardness between the tested 

specimens from the four builds a one-way ANOVA is conducted. Measurements from all 

3-1 specimens are excluded in order to compare the identical sets of specimens between 

the builds. Results are presented in Table 11. There does appear to be at least one group 

that may significantly differ from the others. A Tukey-Kramer analysis is presented in 

Table 12 to provide further insight. The data was found to be approximately normal and 

the variances homogenous, with Levene’s test on the data producing a p-value of 0.136. 

A2 appears to present the highest overall hardness, with the Tukey-Kramer method 

providing pairwise comparisons with A1, A3, and A4 with respective p-values of 0.099, 

0.084. and 0.041. The mean differences are less than 0.37, 0.38, and 0.43 HRC points. 

These differences are close to the known limits of Rockwell hardness testing repeatability 
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[102], and should be viewed with some skepticism especially given that the overall results 

do not display any easily explainable trends. 

Table 11. One-way ANOVA on Rockwell hardness between builds 

Source DoF SS MS F p 

Factor 3 0.94 0.31 3.37 0.032 

Error 28 2.60 0.09    

Total 31 3.54       

Sum of squares (SS) and mean square (MS) are presented in [HRC2]. 

Table 12. Tukey-Kramer comparison Rockwell hardness between builds 

Comparison 

Lower C.B. Mean diff. Upper C.B. 

p [HRC] 

A1-A2 -0.78 -0.37 0.05 0.099 

A1-A3 -0.40 0.01 0.43 1.000 

A1-A4 -0.35 0.06 0.48 0.976 

A2-A3 -0.04 0.38 0.79 0.084 

A2-A4 0.01 0.43 0.84 0.041 

A3-A4 -0.37 0.05 0.47 0.988 

Rockwell hardness testing results are further detailed in Figure 15. Two 

measurements per specimen spatial origin are presented, one representing all averaged 

measurements from tests sites 1, 2, and 3 across all builds and the other from tests sites 4, 

5, and 6 across all builds. This produces a map of 10 hardness measurements across the 

build plate. The presented map indicates the lowest hardness in the center of the build plate 

and increasing hardness towards in the positive and negative Y directions. LPBF processes 

are known to vary spatially, with the most noticeable variations at the X and Y extremes 

of the build area. In this case, the process aspect that might be suspect would be meltpool 

size and thermal conditions. The laser in an LPBF machine such as an EOS M290 travels 

the furthest distance to reach the build area and additionally the beam spot shape is most 

distorted at the limits of the build area. Several other researchers have worked on hardness 

mapping across the build area, producing mixed results [55]. That said, a close statistical 
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interrogation of the hardness results does not allow for any conclusive statements as to 

hardness variation by component spatial origin. A one-way ANOVA was conducted on the 

data, organized by spatial origin, and results are reported in Table 13. The data was found 

to be normally distributed, with some notable discrepancies towards the tails of the 

distribution. The variances homogenous, with Levene’s test on the data producing a p-

value of 0.055. It seems further investigation would be required to definitely prove or 

disprove an effect of spatial origin on hardness. In either case, the measured differences 

are very small; less than 1 HRC point between extremes. 

 

Figure 15. HRC hardness as measured by probing transverse to the build direction on the 

machined grip areas of select specimens. Three measurements were taken on each grip 

section, sites 1-3 on the –X end and sites 4-6 on +X end of the specimen. Results from each 

end are averaged across all builds. 
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Table 13. One-way ANOVA on Rockwell hardness between spatial origins 

Source DoF SS MS F p 

Factor 9 2.08 0.23 2.01 0.076 

Error 28 3.21 0.11    

Total 37 5.29       

Sum of squares (SS) and mean square (MS) are presented in [HRC2]. 

4.5 Quasi-static tensile properties 

Tensile tests displayed excellent repeatability in the general form of their stress-

displacement profiles, pictured in Figure 16. Results from specimen A4-2-6 have been 

identified as an outlier data point, with no clear explanation. Exhibited yield was over 4.5 

standard deviations lower than the grand mean of all additive tensile tests. As such, this 

data point is not included in any analyses. For closer examination, a stress-strain curve 

typical of both the additively manufactured and wrought specimens are presented in Figure 

16b. The additively manufactured specimens exhibit a lesser degree of strain hardening 

and lower elongation both of which indicated the absence of large amounts of retained 

austenite [59], [60]. They also have a higher yield and ultimate strength, all features typical 

in additive materials partly due to the characteristic Hall-Petch strengthening as a result of 

the fine grain sizes produced by the high cooling rates [10], [59]. The specimens did 

undergo static recrystallization during solutionizing, but their beginning grain size will 

have influenced the fineness of the produced martensite. The superior yield and ultimate 

strengths are also indicative of an aging process that effectively enabled precipitation 

hardening. Further factors to consider when explaining the differences between the LPBF 

and wrought tensile properties include composition and response to heat treatment. 

Notably, manufacturer-provided material certifications show that the wrought material 

tests contained 0.026% C whereas the virgin powder has been noted as containing 0.06% 
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C – both contain an identical amount of Cu, 3.240%. This difference in carbon content 

contributes to the formed martensite being harder and stronger for the LPBF material as a 

result of greater dislocation density. Additionally, if the LPBF material starts with a finer 

austenite grain size it will have a finer martensite structure and the diffusion kinetics that 

govern precipitation during aging will act differently in the two materials. 

  

Figure 16. a) Engineering stress vs. cross-head displacement as measured by an in-line 

load cell and in-line LVDT for all tesed AM and wrought specimens. b) Engineering stress 

vs. engineering strain as measured by an in-line load cell and a contact extensometer for 

two specimens with performance typical the AM and wrought specimens. 

Yield strength and ultimate strength are presented in Figure 17. A one-way analysis 

of variance (ANOVA) was utilized to test for differences between yield and ultimate 

strengths between groups A1, A2, A3, and A4. Yield strength data is approximately 

normally distributed, with minor deviations in the tails of the data. Levene’s test on the 

data produces a p-value of 0.020 but considering that Bartlett’s test produces a p-value of 

0.28 it is difficult to rule the variances as definitely homogenous or not. In the case of 
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ultimate strength, the data was found to be normally distributed with some deviations in 

the tail regions, and the variances homogenous as indicated by the p-value of 0.406 

produced by Levene’s test. The results are presented in Table 14 and Table 16, respectively. 

Both tests display very low p-values, indicating that the null is disproven with high 

confidence and at least one group differs from the others. To further parse these results, a 

Tukey-Kramer analysis was conducted. Results are displayed in Table 15 and Table 17, 

respectively. It is found that A2 displays significantly greater yield and ultimate strength 

compared to all other builds. The mean of the yield strength of specimens from A2 are 

6.28, 8.46, and 6.76 MPa higher than the mean strengths of builds A1, A3, and A4, 

respectively. Similarly, the ultimate strengths are 9.60, 10.14, and 7.37 MPa higher. Due 

to the sole outstanding nature of A3 tests this is not expected to be a function of powder 

condition, nor would prior work indicate that powder condition is expected to greatly affect 

tensile properties. It would seem a stochastic variation in the LPBF process could be 

associated with build A3 and can be attributed with the minor albeit statistically detectable 

differences shown. 
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Figure 17. Yield and ultimate strength, Sy and Su, for each group of specimens. The data 

reported for ‘All AM’ specimens corresponds to statistics that summarize groups A1, A2, 

A3, and A4 when considered together. 95% confidence intervals are calculated via the 

relevant t-statistic multiplied by standard error. The mean value minus three standard 

deviations is presented to predict the lower-bound of performance. 

Table 14. One-way ANOVA on yield strength, Sy 

Source DoF SS MS F p 

Factor 3 3.80E+14 1.27E+14 6.01 0.002 

Error 34 7.18E+14 2.11E+13    

Total 37 1.10E+15       

Sum of squares (SS) and mean square (MS) are presented in [Pa2]. 

Table 15. Tukey-Kramer comparison of yield strength, Sy 

Comparison 

Lower C.B. Mean diff. Upper C.B. 

p [MPa] 

A1-A2 -11.98 -6.28 -0.58 0.026 

A1-A3 -3.37 2.19 7.74 0.714 

A1-A4 -5.22 0.48 6.19 0.996 

A2-A3 2.76 8.46 14.17 0.002 

A2-A4 0.91 6.76 12.61 0.018 

A3-A4 -7.40 -1.70 4.00 0.851 

Table 16. One-way ANOVA on ultimate strength, Su 

Source DoF SS MS F p 

Factor 3 6.08E+14 2.03E+14 9.70 <0.000 

Error 34 7.10E+14 2.09E+13    

Total 37 1.32E+15       

Sum of squares (SS) and mean square (MS) are presented in [Pa2]. 
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Table 17. Tukey-Kramer comparison of ultimate strength, Su 

Comparison 

Lower C.B. Mean diff. Upper C.B. 

p [MPa] 

A1-A2 -15.27 -9.60 -3.93 <0.000 

A1-A3 -4.98 0.54 6.06 0.993 

A1-A4 -7.90 -2.23 3.45 0.716 

A2-A3 4.46 10.14 15.81 <0.000 

A2-A4 1.55 7.37 13.19 0.008 

A3-A4 -8.44 -2.76 2.91 0.559 

Elongation was analyzed in a similar manner. The data was found to be 

approximately normal, with several outlier observations, and the variances potentially not 

homogenous, shown by the p-value of 0.0026 reported by Levene’s test. This is likely due 

to the relatively small sample size and outlier observations typical to elongation 

measurements. As such, the results of the applied statistical tests should be viewed with 

some skepticism. A one-way ANOVA on the elongation of groups A1, A2, A3, and A4, 

shown in Table 18, reveals a result on the edge of statistical significance, with a p-value of 

0.06. Upon closer inspection via a Tukey-Kramer comparison shown in Table 19, this may 

be attributed a combination of even less significant differences between groups A1 and A3, 

and A2 and A3 with individual comparison p-values of 0.099 and 0.153. Due to the low p-

values of these individual comparisons, it is concluded that no significant effects of powder 

condition on elongation can be detected. Note that a limited number of tests could be 

analyzed for each group, given a lack of strain data past yield for a handful of specimens. 

Sample sizes are noted in Figure 18. 
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Figure 18. Elongation at failure, εf, for each group of specimens presented as a percent 

value. The data reported for ‘All AM’ specimens corresponds to statistics that summarize 

groups A1, A2, A3, and A4 when considered together. 95% confidence intervals are 

calculated via the relevant t-statistic multiplied by standard error. The mean value minus 

three standard deviations is presented to predict the lower-bound of performance. 

Table 18. One-way ANOVA on yield strength, εf 

Source DoF SS MS F p 

Factor 3 1.58E-04 5.28E-05 2.94 0.060 

Error 19 3.42E-04 1.80E-05    

Total 22 5.00E-04       

Sum of squares (SS) and mean square (MS) are presented in [(mm/mm)2]. 

Table 19. Tukey-Kramer comparison of yield strength, εf 

Comparison 

Lower C.B. Mean diff. Upper C.B. 

p [%] 

A1-A2 -0.77 0.03 0.83 1.000 

A1-A3 -0.09 0.66 1.41 0.099 

A1-A4 -0.63 0.04 0.70 0.998 

A2-A3 -0.17 0.63 1.43 0.153 

A2-A4 -0.71 0.01 0.73 1.000 

A3-A4 -1.29 -0.62 0.04 0.072 

Modulus is presented in Figure 19. A one-way ANOVA on the elongation of groups 

A1, A2, A3, and A4, shown in Table 20, revealed no significant difference, with a p-value 

of 0.683. The data was found to be normally distributed, with some deviations at the tails, 

and the variances homogenous, with Levene’s test producing a p-value of 0.92. 

Interestingly, the additively manufactured material had a somewhat higher modulus than 
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the wrought comparison. This is not an effect of higher porosity content influencing the 

apparent modulus, as this would actually lower the measured stiffness due to a reduction 

in cross sectional area. Modulus is a complex property depending on many variables and 

as such a further insight cannot be provided in this context. 

 

Figure 19. Modulus, E, for each group of specimens. The data reported for ‘All AM’ 

specimens corresponds to statistics that summarize groups A1, A2, A3, and A4 when 

considered together. 95% confidence intervals are calculated via the relevant t-statistic 

multiplied by standard error. The mean value minus three standard deviations is presented 

to predict the lower-bound of performance. 

Table 20. One-way ANOVA on modulus, E 

Source DoF SS MS F p 

Factor 3 3.35E+19 1.12E+19 0.50 0.683 

Error 34 7.57E+20 2.23E+19    

Total 37 7.90E+20       

Sum of squares (SS) and mean square (MS) are presented in [Pa2]. 

Tensile tests exhibited a stress-strain curve typical of a fairly plastic strain-

hardening metal and examination of the fracture surfaces, shown in Figure 20, support this 

finding. Significant necking prior to final failure is present, as can be seen in a specimen 

whose test was halted prior to final failure. Facture surfaces show a classic cup-and-cone 

structure, indicating ductile failure. SEM fractographs in Figure 21 support this claim, with 

ductile dimples observed in both additively manufactured and wrought specimens. 
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Figure 20. Typical characteristics of a static tensile failure in an AM specimen. 
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Figure 21. Figures a-c, SEM fractographs of specimen A1-2-4. Figures d-f, SEM 

fractographs of specimen W1-15. 
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4.6 Fatigue properties of produced components 

4.6.1 Fatigue life a function of powder condition 

Four initial tests on specimen 2-2 of each build were conducted at various stress 

levels and loading ratio of R = 0.1, these tests were used to select a loading criterion of Smax 

= 867 MPa. A simple linear least-squares fit to the data, where Nf was transformed to 

log(Nf), was used to select a load that would produce failure towards the lower end (Nf  = 

~350,000) of the HCF regime. All subsequent tests were conducted under these conditions. 

As stated, prior work predicts the most sensitive response to processing conditions in this 

regime. Interestingly, as seen in Figure 22 the subsequently executed tests do not closely 

follow the predicted S-N curve, which vastly overpredicts performance.  

 

Figure 22. S-log(Nf) plot, for R = 0.1, displaying data corresponding to both initially 

conducted tests and the extended testing conducted at a fixed stress level. The initially 

conducted tests were on specimen 2-2 from A1, A2, A3, and A4. 

In order to answer the main research question of this work, results are organized by 

build and presented in Figure 23. A significant amount of variation within each group is 

evident. Fatigue lives vary from roughly 30,000 to 500,000 cycles between all the groups. 

A visual examination the plotted data does not reveal any easily detectable differences. 
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Figure 23. Fatigue life of all specimens tested at Smax = 867 MPa, R = 0.1 organized by 

builds A1, A2, A3. 

 In order to distinguish the data, the non-parametric empirical survival function, was 

calculated for each group. Results are presented in Figure 24a) where the probability of 

survival past N cycles is presented as a function of N. Greenwood’s formula for variance 

was used to calculate confidence bounds on the functions for groups A1 and A4 shown in 

figure Figure 24b. Neither figure shows easily detected differences between the groups. 

The confidence bounds in Figure 24b overlap considerably. 

 

Figure 24. a) Survival functions as estimated by the Kaplan-Mier method for specimens 

tested at Smax = 867 MPa, R = 0.1 for groups A1, A2, A3, and A4. b) Survival for groups 

A1, and A4. 95% confidence bounds derived by Greenwood’s formula. 

The log-rank test was applied in order to further compare the respective survival 

functions. The null assumes that all groups hail from a population with the same survival 
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function, and the alternate states that at least one group has a survival function distinct from 

the others. The test considers data from all four groups as a single set to calculate survival 

function should the null be true. Using this function, the expected survival probability was 

calculated at each recorded point of failure for the four groups and compared to actual 

number of failures at each point for each group. All four tests were considered 

simultaneously, and the log-rank test produced a chi-squared statistic of 2.43, 

corresponding to a p-value of 0.49 when compared to the critical chi-squared value of 6.25 

for α = 0.10 and k = 3 degrees of freedom. The null hypothesis holds, and no difference 

between the four groups’ survival functions was detected. 

In order to conduct a parametric analysis of the gathered life data, an exploratory 

data analysis was first conducted to choose the appropriate descriptive distribution. Figure 

25 displays the data on probability plots corresponding to normal, exponential, extreme 

value, lognormal, and Weibull distributions. With the non-parametric analysis indicating a 

lack of great difference between the groups, all four are considered at once for the sake of 

choosing a common underlying model. These plots display probability of failure as a 

function of life on non-linear axes that would arrange the data on a line should they 

accurately model the underlying distribution. Notably, failure of specimen A3-2-8, which 

failed at 509,052 cycles, was not accounted for by any of the five considered distributions, 

with the normal, exponential, and extreme value distributions severely under-estimating its 

probability. In order to better visualize how well the various distributions model data in 

lower life regimes this data point was removed from Figure 26. The probability plots for 

the lognormal and Weibull distributions show the data fairly linearly, distribute the data 

evenly, and provide a fairly accurate model for specimens that displayed a lower life, an 
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important aspect since these specimens provide a lower bound to performance. The normal 

and extreme value distributions have weaknesses with modeling specimens displaying a 

higher life. The exponential distribution shows some promise, but as it is a reduction of the 

more complex Weibull distribution, and does not show a significantly better fit than the 

more general Weibull distribution it does not provide any significant strengths. Given the 

historical basis for modeling fatigue data with Weibull and lognormal distributions, these 

distributions are selected for further analysis. Due the difficulty of describing the life of 

specimen A3-2-8, this data point is considered as an outlier for subsequent parametric 

analysis methods and not used in following calculations. The results of this exploratory 

data analysis also informed the earlier described non-parametric approach, and this outlier 

data point was not considered there, either. 
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Figure 25. Probability plots of five distribution types using the life data for tests conducted 

at Smax = 867 MPa and R = 0.1. Note that the fit line is merely provided as a judge of 

linearity and is determined by intersecting the 25th and 75th percentiles of the data. Outlier 

data point Nf = 509,052 for specimen A3-2-8 is included. 
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Figure 26. Probability plots of five distribution types using the life data for tests conducted 

at Smax = 867 MPa and R = 0.1. Note that the fit line is merely provided as a judge of 

linearity and is determined by intersecting the 25th and 75th percentiles of the data. Outlier 

data point Nf = 509,052 for specimen A3-2-8 is excluded. 

One weakness of the two down-selected distributions is that neither has a definite 

lower bound, meaning data with a value of zero has a finite probability of occurring. An 

interesting variation on the Weibull distribution to consider that accounts for this is the 

three-parameter Weibull distribution, described by equation (12).  

 
𝑃(𝑥) =

𝛽

𝜂
(

𝑥 − 𝛾

𝜂
)

𝛽−1

𝑒𝑥𝑝 [− (
𝑥 − 𝛾

𝜂
)

𝛽

] (12) 

This distribution is simply a shift on the conventional Weibull distribution by the value γ, 

and thus produces a lower bound that can be based in a physical understanding of the 

modeled phenomena. To test the fitness of this distribution several potential values of γ 

were subtracted from the life data set, and then plotted on Weibull probability plots shown 
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in Figure 27. Should a three parameter Weibull distribution be a better model the data 

would appear as more linear. Values of γ = 0, 10,000, 20,000, and 30,000 were tested, 

corresponding to a limit on the lower bound of life of the same value. None of the three 

non-zero values created significantly more linearity in the plots, and thus a three parameter 

Weibull distribution was excluded from further analysis. 

 

Figure 27. Probability plots testing the effect of various values of a shift parameter, γ, in 

a three parameter Weibull distribution. Shift parameter values of 0, 10,000, 20,000, and 

30,000 cycles are tested. Note that the fit line is merely provided as a judge of linearity and 

is determined by intersecting the 25th and 75th percentiles of the data. 

Having selected the appropriate models for the fatigue lives displayed by the four 

groups of data, a comparison between fitted models was undertaken. To begin, lognormal 

and Weibull distributions were fit to each of the four sets of data via MLE, using the MLE 

tools integral to the computation software package Matlab. The outcome was parameter 

estimations for each distribution, in addition to asymmetric confidence intervals based on 
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the sample size and variability of the data, displayed in Figure 28. Group A1 shows both 

the highest log-mean and scale for the lognormal and Weibull distributions, respectively. 

In both cases this indicates that the fitted distribution for A1 is shifted further in the 

direction of longer life, although differences in the log-standard deviation and shape 

parameters between groups may influence the actual arithmetic mean of the fitted 

distributions in the other direction. The large overlap of the confidence intervals for all 

parameters for both distribution types does not encourage drawing any conclusions on 

model differences at this point. 

 

Figure 28. The estimated parameters correspond to tests conducted at Smax = 867 MPa and 

R = 0.1 for groups A1, A2, A3, A4, and all groups considered as a single set of data. a) 

Lognormal parameters determined by maximum likelihood estimation. b) Weibull 

parameters determined by maximum likelihood estimation.  

To additionally distinguish the fitted distributions they were plotted on probability 

plots and their MLE parameters were used to draw lines that represent the fitted underlying 

distributions. These probability plots use the maximum likelihood estimates to draw these 

lines, not the crude linear judge previously shown that connects the 25th and 75th percentiles 

of the data. Figure 29 shows this for both cases of the fitted lognormal and Weibull 

distirbutions. The high log-mean and scale of group A1 is again evident by noticing the 

right shift in the line representing the estimated disribution for A1. Both plots suggest, in 
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order, that the log-mean and scale increases from group A2 to A3 to A4 to A1. This order 

does not seem to imply an accompanying trend in fatigue life as the degree of repeated 

process exposure increases other than the A1 group displaying the most favorable 

estimated log-mean and scale. While the lognormal probability plot shows very similar 

slopes between the esitmated distirbutions, indicating similar log-standard deviations, the 

Weibull probabilty plot suggests that A2 may have a distinct shape parameter due to its 

somewhat higher slope when compared to the other distribution estimates. This would 

mean the PDF shape proceeds from an exponential to a bell-shaped curve and that the area 

under the estimated A2 PDF is lesser at lower life, implying a higher probability for 

specimens from A2 to display a higher life. 

 

Figure 29. Data collected from groups A1, A2, A3, and A4 for tests conducted at Smax = 

867 MPa and R = 0.1. a) Lognormal probability plot with lines corresponding to the 

respective MLE distributions of each group. A right shift in a corresponds to an increase 

in the log-mean and a decrease in slope corresponds to an increase in the log-standard 

deviation. b) Weibull probability with  lines corresponding to the respective MLE 

distributions of each group. A right shift in a corresponds to an increase in the scale 

parameter and an increase in slope corresponds to an increase in the shape parameter. 

A qualitative insight into the deviations between the estimated distributions for each 

group is now established. The likelihood ratio test was then used to produce a definitive 

comparison via a binary indication of pairwise difference between the groups. Having 



 86 

already calculated the maximum likelihood parameter estimates for each group it is 

relatively simple to extract the likelihood value associated with each estimate, again using 

software tools integral to the computational software package Matlab. The likelihood ratio 

test can only be utilized for comparisons between two models at a time, so six pair-wise 

comparisons were performed to detect possible differences between all of the four groups. 

In each case the null assumes that the two compared groups hail from the same underlying 

population and thus a maximized likelihood was additionally calculated for the set of data 

that contains the results from both compared groups. The likelihood of this estimation was 

then compared to the sum of the likelihoods for the individual estimates for each compared 

group via the likelihood ratio test to produce the relevant test statistic. In this case a value 

was produced that was compared to the chi-squared distribution with k = 2 degrees of 

freedom, indicating that the unrestricted (alternate) model uses two more free parameters 

than the restricted (null) model. This applies in both the cases of the Weibull and lognormal 

distributions, as both distributions are fully described by two parameters each, and when 

comparing a model made up of two distributions to a single one the difference in 

unrestricted parameters is 2. The significance level used for this test is α = 0.10, which was 

used to calculate the critical test statistic value. The results of each pair-wise comparison 

are presented in Table 21. None of the comparisons produced a test statistic that meets the 

chosen significance level although the A1-A2 comparison produces a p-value of 0.11 

alluding to possible difference. This finding is supported by the qualitative interpretations 

of the estimated distributions for these two groups, implying that they are spread the 

furthest apart. However, in the case of the Weibull distribution, the PDF estimation for A2 

is less right-skewed than A1, which somewhat counteracts the supposed shift between the 
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two estimated distributions. Overall, no definitive difference is detected between any of 

the four groups. 

Table 21. Likelihood ratio test results 

Comparison 

Lognormal estimation Weibull estimation 

Χ2 hyp. p Χ2 hyp. p 

A1-A2 1.92 0 0.383 4.49 0 0.106 

A1-A3 0.87 0 0.647 1.74 0 0.419 

A1-A4 0.16 0 0.923 0.36 0 0.834 

A2-A3 0.01 0 0.996 0.79 0 0.673 

A2-A4 0.76 0 0.684 3.03 0 0.220 

A3-A4 0.13 0 0.936 0.79 0 0.674 

Χ2
crit = 4.61 corresponding to α = 0.10 and k = 2 degrees of freedom. Hyp. = 0 indicates 

the null. 

4.6.2 Fatigue life dependence on spatial origin 

While the impacts of powder condition on fatigue life have thus far been presented, 

with powder condition appearing to not influence fatigue life in the HCF regime, insights 

generalized to the LPBF process and the 17-4 PH material system can still be made. Of 

great interest is the implied dependence of fatigue life on the build plate spatial origin of a 

produced component. Figure 30 displays fatigue life results labeled by specimen number, 

i.e., spatial origin, and provides a map of the average fatigue life over the build plate. 
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Figure 30. a) Fatigue life of specimens tested at Smax = 867MPa, R = 0.1 organized by 

specimen number, signifying build plate spatial origin. b) Mean cycles to failure, Nf, shown 

for each set of tested specimens. The mean was taken across the all specimens 

corresponding to the same spatial origin on the build plate for all builds, where data was 

available. 

Two major observations can be made. First, average fatigue life appears to vary based 

on spatial origin. Second, variation in fatigue life is heteroscedastic – specimens of a spatial 

origin that exhibit low fatigue life display low variation while those of a higher typical life 

display much greater variation. This kind of heteroscedasticity mirrors what is typically 

expected with a decrease in stress amplitude, as was shown in Figure 2. The portrayed 

dependence of fatigue life on spatial origin is of great interest, as it would suggest that 

components with well qualified and defined design and processing parameters may exhibit 

vastly different fatigue properties should their placement within the build area not be 

controlled. Typically, this parameter of spatial origin has not been studied in reference to 

fatigue life and neither does it seem to be greatly emphasized in industry as a process 

parameter that requires close control [97], [103]. Fatigue life does not appear to exhibit a 

single trend across any one direction of the build plate. Notably specimens 1-2 and 4-2 

have, by far, the lowest fatigue lives of the tested specimens. Specimen 2-8 appears to have, 

on average, a quite high fatigue life but this result is somewhat influenced by the fatigue 
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life of specimen A3-2-8, which was earlier identified as an outlier observation. Should this 

specimen be excluded from the map specimen 2-8 would show a fatigue life still at the 

high end of the observed fatigue life spectrum, but to a far lesser degree. Specimens with 

very low average lives (1-2 and 4-2) are notably the tested specimens located furthest in 

the directions of shielding gas flow and recoater motion, respectively. This observation 

matches common knowledge of two phenomena observed in the LPBF process. Shielding 

gas flow is a critical feature of the LPBF process, as the gas serves both purposes of shieling 

the process zone in addition to clearing process by-products from the build area. The 

byproducts of the laser welding process, such as meltpool ejecta/spatter and condensate, 

are both undesirable. The large particles that often are ejected from the meltpool will 

impact local powder bed density and create voids in the powder bed that may persist in the 

fusion of subsequent layers, as is theorized in numerous works about powder and part 

quality relations [5], [57], [58]. Condensate composition will differ from the bulk material 

and spatter has been shown to have considerable oxide layers [4], [104] – both deleterious 

to the final component if incorporated. Further, oxides are not always burned off in the 

laser welding process and may create non-nominal meltpool conditions [104]. Shielding 

gas flow is supposed to transport these byproducts into a gas receiver nozzle on the other 

side of the build plate. However, this function is known to be imperfect, with process 

byproducts frequently settling on the -Y end of the build area [95]. This will incorporate 

byproducts into the subsequently fused layers of a component, should the recoater not 

transport them entirely off the build area while spreading the next layer. 

Recoater motion is also known to produce effects that may impact produced 

component quality issues. As identified by several researchers, due to the extremely small 
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distance between a recoater blade and the powder bed, large particles are preferentially 

transported across the build area in the direction of the recoat [3], [95]. This may include 

particles from the hopper as well as particles already present in the build area, such as the 

large meltpool spatter particles earlier described. In these cases the particles can either be 

dragged entirely over the build area or dragged over a portion of the build area until powder 

bed conditions allow them to settle. In the first case shallow valleys may be created in the 

newly spread powder bed and in the latter large particles can create local powder bed voids. 

Both situations can lead to porosity in a final produced component. Overall, this 

phenomenon of mechanical property dependence on spatial origin has been rarely studied 

with few conclusive relations presented as of yet. Esmaelizadeh identified areas of the build 

in the direction of gas flow and recoat to have a greater density of large particles [95]. Chua 

and Chong showed a trend in tensile properties that produced higher strengths trending 

opposite to the recoat direction and noted a likely non-laminar gas flow in certain regions 

[97]. Fitzgerald and Everhart found that builds more densely packed with components 

exhibit lower tensile performance, suggesting the effect of process byproducts [103]. They 

also noted a decrease in tensile properties in the direction of gas flow. Finally, in the only 

study known to the author to correlate location with fatigue, Soltani-Tehrani et. al, 

observed fatigue life reducing in the direction of recoat [58]. 

An examination of a selection of the specimen fracture surfaces was conducted to 

provide insight as to the driving factors behind fatigue failure. A depiction of the typical 

fracture surface topography is presented in Figure 31. Topography was measured with a 

Keyence VR-5000 high resolution structured light scanner and analyzed with the 

accompanying software. The fracture topography is typical of fatigue failure of a ductile 
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metal. A fracture growth area is plain to see, oriented normal the specimen axis and 

direction of stress. The growth area shows the region that the crack progressed through due 

to cyclic loading prior to final failure. Shear lips are evident on either side of the growth 

area, and minor plastic deformation (localized necking) is noticeable on the free surfaces 

of the specimen that are close to the shear lips. All tested specimens exhibit a very similar 

fracture surface topography, with the only major differences being the exact configuration 

of the shear lips. 

 

Figure 31. Typical fracture surface topography displayed by tested specimens. On the left 

the fracture surface topography is presented in detail. On the right, the surface is 

superimposed on a CAD image of a fatigue specimen. 

Extensive imaging of the fracture surfaces of many specimens was conducted via 

scanning electron microscopy. Due to the similarity in overall topography, focus was given 

to the fracture growth region and in particular the initiation site. Figure 32 shows images 

of a fracture growth region and an inset of the identified LoF fracture initiator. All inspected 

fracture surfaces displayed prominent chevrons and clear topography that identified a 

single fracture initiation point in a sub-surface region. Nearly all inspected fractures 

surfaces also show a clear defect at the initiation site. A selection of SEM fractographs are 

presented in Figure 33 which represent a range of the initiation sites (with the exception of 
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Figure 33a) seen across the inspected specimens. Figure 34a and b also identify defects at 

initiation sites. The majority of defects appear to be LoF defects. They can be identified by 

either the clearly present unfused powders, voids, or a distinct local surface texture that 

does not show river lines or signs of fracture growth indicating that these defects existed 

prior fatigue testing. LoF defects that are present at initiation sites have a size range of 

roughly 25-125 μm. Figure 33a shows a LoF defect in the fracture growth area of one 

specimen that very clearly shows lack of fusion surrounding what looks to be two scan 

paths areas, one on top of the other. There was lack of fusion both between layers and in 

the plane perpendicular to the layer indicating there was a particularly poor powder bed 

density in this area. Specimen A3-2-8, shown in Figure 34a, which showed the highest 

observed fatigue life, shows a very small gas pore that looks to incubate into a larger crack 

before steady crack growth begins. Specimen A4-2-5, shown in Figure 34b, has an 

unidentified defect present at its initiation site. This defect does not appear to be of the 

parent material and is more likely a non-metallic inclusion. Figure 34b-f show the initiation 

site and three significant LoF defects present in the fracture growth surface of specimen 

A3-1-2. This specimen, which displayed one of the lower observed fatigue lives, displayed 

a very high concentration of LoF defects in the fracture growth area as compared to other 

specimens. This would suggest that the fracture growth stage makes up a significant portion 

of fatigue life in this study, with possibly more rapid growth in this specimen due to 

multiple large defects in the path of the crack.  
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Figure 32. Typical identification of fracture intiator modeeld by specimen A3-2-2. 

Suspected gas porosity, LoF, and unidentified defects are noted by red, yellow, and blue 

arrows. The arrow labeled “BD” points in the build direction. 



 94 

 

Figure 33. Suspected gas porosity, LoF defects are noted by yellow arrows. The arrow 

labeled “BD” points in the build direction. Figure a shows defects present in the fracture 

surface. Figures b-f show defects at the fracture initiaion site.  
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Figure 34. Suspected gas porosity, LoF, and unidentified defects are noted by red, yellow, 

and blue arrows. Figures a-c show defects at the fracture initiaion site. Figures d-f show 

defects present in the fracture surface. 

4.6.3 Statistical description of all builds as a single population 

Given that it has been shown that the powder conditions studied did not drive 

fatigue properties of the studied builds, it is possible to look at the entire set of fatigue data 
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as representative of a single underlying population. Due to the large number of tests 

conducted under the same process and test conditions this offers a fairly unique possibility 

for characterizing variation in fatigue life in the low HCF regime for LPBF produced and 

heat treated 17-4. Figure 35 provides an empirical survival function that describes the 

variation in the tested specimens across builds A1, A2, A3, and A4. Fatigue lives exhibit a 

coefficient of variation of 79%, should the specimen with Nf = 509,052 be considered, and 

51% otherwise. The survival function shows a somewhat linear decrease in probability of 

survival through roughly 150,000 cycles, after which the right-skewed nature of observed 

fatigue lives dominates. Parametric measures can also be fitted to the whole set of data – 

Figure 35 shows maximum likelihood estimated Weibull and lognormal theoretical 

survival functions superimposed on the data. Survival functions were calculated as the 

compliment of the respective cumulative distribution functions. This provides a better 

judge of fit than superimposing a PDF on a histogram as no binning is required that would 

obscure the data. The Weibull survivor function appears to fit the data in the middle of the 

life regime better and provide a more conservative estimate in the low life regime. 

Examining these two distributions as PDFs, shown in Figure 36, the difference is more 

evident. The Weibull PDF notably does not approach N = 0 asymptotically, due to its shape 

parameter. Altogether, the Weibull distribution appears a more appropriate model for 

fatigue life scatter, due to its fit and conservative nature at points. In a design context a 

finite lower limit on life probability might need to be established. If one notes the 

confidence bounds on the parameters of both fitted functions from Figure 28 these 

estimations appear to be fairly descriptive of the true underlying population. 
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Figure 35. Survival function as estimated by the Kaplan-Mier method for specimens tested 

at Smax = 867 MPa, R = 0.1 from all groups A1, A2, A3, and A4. 95% confidence bounds 

derived by Greenwood’s formula. Weibull and lognormal theoretical survival functions 

are calculated via MLE. Outlier specimen A3-2-8 has been excluded. 

 

Figure 36. PDFs fitted to the life of specimens tested at Smax = 867 MPa, R = 0.1 from all 

groups A1, A2, A3, and A4 via MLE. Outlier specimen A3-2-8 has been excluded. 

Evidently, the LPBF process studied here has several stochastic underlying factors 

that have produced this result. In this case it seems that the precise nature of the build plate 

layout has driven a large amount of this variation, and since nearly all of the build plate 

was used and fairly evenly sampled by the conducted tests these descriptors provide a 

strong picture of fatigue life scatter typical in HCF. A study of the fracture surfaces 

suggests that variation in defect size and position appear to contribute significantly to 

fracture initiation. That said, barring defects of extreme size and severity (which were not 
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observed), there does not appear to be a relation between defect size and fatigue life 

implying that overall concentration of defects, which enable faster crack growth, are more 

important in determining fatigue life. This observation follows with findings from other 

researchers who have identified the crack incubation stage in AM parts that present flaws 

to be negligible and HCF to be more governed by crack growth [84]. This might explain 

the spatial origin dependence of fatigue, as the mechanisms that change powder bed quality 

and composition across the build area would affect the gross amount and density of defects 

in build plate locations that are more heavily affected than others. 
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CLOSING 

5.1 Conclusions 

Taking the whole of the presented results into account, it is possible to draw several 

conclusions on the analyzed LPBF process and powder conditions. Powder characteristics 

are shown to change, but with limited effects on the end product. The conducted 

experiments have illuminated several interesting fatigue properties. An enumeration of the 

conclusions drawn from this study are presented below. 

1. Repeated process exposure of in-machine powder supplies has been shown to 

evolve the powder quickly, with less than roughly 86 hours of build time 

significantly altering A2 powder supplies, and subsequent process exposures 

further altering the A3 and A4 powder supplies. Effects were primarily seen in PSD, 

flowability, and powder rheology. Fusion process byproducts increased the number 

of large particles. Powder decreased in flowability and increased in cohesivity. 

Each of these outcomes can be conceptually connected to deleterious effects on 

powder bed quality of powder layers that are produced with these powders. 

2. The evolution of in-machine powder supplies due to repeated process exposure 

does not match the evolution of powder properties seen in powder recycling 

practices. Recycling tends to increase shift virgin powder PSD curves right by the 

reduction of fine particles and addition of large particles, albeit ones that fit within 

the original virgin powder PSD. In-machine repeated process exposure does not 

reduce the number of fine particles and does add particles of a size previously not 

represented in the virgin powder PSD. 
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3. The studied powder condition does not produce detectable effects in mechanical 

properties. Tensile properties, fatigue life in HCF, and hardness are shown not to 

change with powder condition. 

4. Fatigue life appears to be largely driven by two things: LoF defects which randomly 

fall in subsurface regions and initiate cracks, and bulk defect concentration that 

enables crack growth. Both of these variables exhibit considerable variation, which 

appears to be partly attributable to how powder bed conditions vary withing the 

build area. This produces a heteroscedastic variation in fatigue life as a function of 

build plate spatial origin. 

5.2 Contributions, limitations, and future study 

The contributions of this thesis are in the characterization of an understudied powder 

condition – in-machine repeated process exposed powders – and its effects. This work 

provides a fuller picture of the LPBF process and the feedstock material it utilizes. These 

materials are not to be thought of as static in their attributes once loaded into an LPBF 

machine – they evolve with exposure to processing conditions. These results will be 

presented in a publication aimed at the AM community. Another contribution is in the 

selection of techniques that might be applied to characterizing the highly variant fatigue 

behavior seen in AM materials. Although the applied methods are not new, communication 

of this work is expected to introduce them to a community of researchers that are unfamiliar 

with these tools. Finally, several insights that further the understanding of fatigue 

mechanisms and driving process conditions are identified. This informs future 

development of LPBF processes and the selection of post-processing steps, such as HIP, 

that can be taken to mitigate the identified issues. These results will be considered for 
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publication in a journal or conference that would invite critique from experts in both the 

AM and fracture & fatigue fields.  

This thesis is not without its limitations. Powder PSD and chemistry were not studied 

to the level of thoroughness that would form a inform greater conclusions on the evolution 

of powder characteristics. Additionally, in the area of powder characterization, the 

discovered changes in powder characteristics are quite subtle and due to this the precision 

and bias of the measurement methods used should considered when interpreting the results. 

A highly specific material system and associated heat treatment has been investigated, even 

if it is a relevant combination. Notably, many conclusions of fatigue properties are based 

in reasoning that should be confirmed with continued experimentation. With this thesis’ 

main research question being related to powder conditions additional results on the 

dependence of fatigue life on build plate spatial origin did not receive as thorough an 

investigation as they require. Future work will include a continuation of the presented 

fatigue testing, fracture surface characterization, and statistical representation of the 

behavior the produced typical of the produced components. Fatigue crack growth testing, 

interrupted fatigue testing, and more extensive fractography would be needed to state the 

conclusions provided with greater certainty. Additionally, simulation and experimental 

work on the nature of powder bed quality based on the suspected underlying mechanisms 

that vary within the build area would further this work. 
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