
Optimal Control of Autonomous

Switched-Mode Systems: Gradient-Descent

Algorithms with Armijo Step Sizes

Y. Wardi, M. Egerstedt, and M. Hale

Research supported in part by NSF under Grant CNS-1239225.

Abstract

This paper concerns optimal mode-scheduling in autonomous switched-mode hybrid dynamical

systems, where the objective is to minimize a cost-performance functional defined on the state trajectory

as a function of the schedule of modes. The controlled variable, namely the modes’ schedule, consists

of the sequence of modes and the switchover times between them. We propose a gradient-descent

algorithm that adjusts a given mode-schedule by changing multiple modes over time-sets of positive

Lebesgue measures, thereby avoiding the inefficiencies inherent in existing techniques that change the

modes one at a time. The algorithm is based on steepest descent with Armijo step sizes along Gâteaux

differentials of the performance functional with respect to schedule-variations, which yields effective

descent at each iteration. Since the space of mode-schedules is infinite dimensional and incomplete,

the algorithm’s convergence is proved in the sense of Polak’s framework of optimality functions and

minimizing sequences. Simulation results are presented, and possible extensions to problems with dwell-

time lower-bound constraints are discussed.

Keywords. Switched-mode systems, optimal control, optimization theory, Armijo step size,

optimality functions.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332.

Email:{ywardi,magnus,mhale30}@ece.gatech.edu

I. INTRODUCTION

This paper concerns dynamical systems described via the following equation,

ẋ = f(x, v), (1)

where x ∈ Rn is the state variable, v ∈ V for a given finite set V , and f : Rn × V → Rn is

a suitable function. Suppose that the system evolves on a horizon-interval [0, T] for some fixed

T > 0, and that the initial state x(0) = x0 is given for some x0 ∈ Rn. The input control to this

system, v(t) : [0, T] → V , will be denoted by v for brevity, and the context will ensure that

no confusion arises from the use of v as a control signal as well as an element of V . Every

point v ∈ V corresponds to a particular mode of the system and hence the control function

v : [0, T] → V represents the schedule of modes. Let L : Rn → R be a function, and defining

the cost-functional (performance criterion) J to be

J :=

∫ T

0

L(x)dt, (2)

we consider the problem of minimizing J over a class of control functions v.

A more-general class of systems has a continuous control u ∈ Rk in addition to the discrete-

valued control v, and such systems are called controlled in contrast to the systems defined by

(1) which are called autonomous. We focus on autonomous systems only since they capture

the salient features of switched-mode optimization, and will point out natural extensions of the

results, derived in the sequel, to the case of controlled systems.

Such systems, autonomous and controlled, and their related optimization problems have been

investigated in the past several years due to their relevance in control applications such as mobile

robotics [14], automotive powertrain control [34], switching circuits [13]; [1] and references

therein, telecommunications [26], [20], and situations where a controller has to switch its attention

among multiple subsystems or data sources [21], [7]. The optimal control (optimal mode-

scheduling) problem was defined in a general framework of nonlinear switched-mode systems

in [6], several variants of the maximum principle were derived for it in [23], [31], [32], [27],

[30], and subsequently a number of provably-convergent algorithms were developed in [37],

[38], [27], [28], [15], [8], [29], [30], [3], [5], [4], [19], [9], [10], [11], [33], [16]. References

[18], [12] developed an optimal control framework for systems whose modes are determined by

their respective preceding events. For a recent, comprehensive survey please see [39].

2

Early algorithms for the optimal control problem considered the case where the sequence

of modes, namely successive values of v, is given and the variable parameter consists of the

switching times [37], [38], [27], [28], [15]. For the general scheduling problem, where the

variable parameter consists of both the mode-sequence and the switching times, a number of

approaches recently emerged, including zoning and location algorithms that use the geometric

structure of the problem to iterate on the mode-sequences [8], [29], [30], relaxation algorithms

that use averaging techniques [5], [9], [10], [33], [22], [11], and needle-variations methods [3],

[4], [19], [36]. Our algorithm falls in the latter category.

The starting point for our investigation is in the mode-insertion algorithms developed in [4],

[19]. These algorithms alternate between the following two steps: (1). Given a sequence of modes,

compute the optimal switching times. (2). Update the mode-sequence by replacing a single mode

by another mode during a certain time-interval. This approach may have the potential drawback

of requiring an infinite-loop algorithm each time step 1 is entered, and its effectiveness at the

mode-insertion step may be limited by the requirement of changing only a single mode at step

2. This can become problematic if such a mode is inserted in a short interval, which can be the

case when an optimal schedule is being approached by the algorithms. It is these two points

that motivated us to explore algorithms that iterate directly in the mode-schedule space without

a need for optimizing mode-schedules for given mode-sequences; in other words, we develop

a provably-convergent algorithm that eliminates step 1 while extending step 2 to include the

switching of multiple modes across large sets in the horizon interval [0, T].

The main idea underscoring our algorithm is to identify sets of time-points where needle

variations yield lower values of the cost functional J , parameterize them according to their

Lebesgue measures, and compute a set where, switching the modes in all of its points, results in

a steep decline in J . The step size, namely the Lebesgue measure of the above set, is computed

according to the Armijo procedure, having an essential quality of descent that yields effective

algorithms and guarantees their convergence theoretically.

The theory of nonlinear programming contains various results regarding convergence of de-

scent algorithms with Armijo step size [25]. However, these typically were derived in the

setting of finite-dimensional optimization, and they do not apply to our scheduling optimization

problem whose parameter-space is not only infinite-dimensional but also lacks a natural topology.

Therefore a new framework for convergence analysis is being developed, and it is based on

3

Polak’s notions of optimality functions and minimizing sequences, developed in [24] for infinite-

dimensional optimization problems. Furthermore, our algorithm is of a sufficient descent type,

and hence (see [25]) it yields considerable descent at mode schedules that are far from minimum

(in a suitable sense); this point will be explained in detail in the sequel.

As mentioned earlier, one of the current approaches to the optimal control problem is based

on relaxation and averaging. The gist of this approach is to consider a relaxed control comprised

of the convex hull of the mode-functions, solve the resultant continuous-control problem by

current techniques, and represent its solution point by a switched-mode control [5]. One of

the appealing features of this approach is that the relaxed problem is convex in the case of

autonomous systems as well as in a class of controlled systems, and it is especially suitable

to problems whose solution points have infinite switching frequency. In fact, Reference [22]

compared the algorithm in [5] to the one presented here, and found it to yield a lower cost for

a particular two-dimensional problem (4.74 as compared to 4.78). However, our approach can

have advantages in the following situations:

1) When there are lower-bound constraints on the dwelling times, i.e., periods during which

modes remain fixed. Our method is suitable for this case (as will be explained in the

sequel) while we do not see a direct extension of relaxation techniques.

2) When the solution point of the relaxed problem consists of extreme points, namely a

switching-mode control; in some such cases our algorithm may converge quite fast.

3) Due to its sufficient-descent property, our algorithm can get a substantial amount of descent

in the first few iterations. This is not untypical of gradient-descent algorithms with Armijo

step sizes, and later examples indicate over 95% of the total descent in only about 5

iterations.

These points will be discussed in detail in the sequel.

The rest of the paper is organized as follows. Section II formulates the problem and recounts

some existing results. Section III proposes our algorithm and establishes its sufficient-descent

property. Section IV presents simulation results and discusses ways to extend the scope of the

algorithm, and Section V concludes the paper.

We mention that the algorithm and its analysis were presented without proofs in the 2012

ACC [36], and the proofs were supplied in an unpublished technical memorandum [35].

4

II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Consider the system defined by Equation (1) with the cost functional defined by (2). Recall

that the set V is finite, and suppose that the initial state and final time for the optimal control

problem are given and fixed. The following assumption will be made throughout the paper.

Assumption 1: For every v ∈ V , the function f(x, v) : Rn → R is twice-continuously

differentiable (C2), and there exists a constant K > 0 such that, for every x ∈ Rn and v ∈ V ,

||d2f
dx2 (x, v)|| ≤ K.

We point out that the boundedness of the second derivative d2f
dx2 (x, v) on compact sets in Rn

follows from the C2 property, and that is all that we need for the forthcoming analysis. However,

formally assuming the bound over all of Rn will simplify the presentation.

The set V acts as an index set for the modes of the system, but we assume that it is a

subset of R. The reason for this assumption is that the later discussion will involve topological

concepts and properties of functions v : [0, T] → V . For example, saying that such a function v

is piecewise continuous means that it is piecewise constant, and speaking of the L1 or L2 norms

of such functions requires a distance-measure on the set V .

We define a feasible control to be a function v(t) : [0, T] → V which is left continuous and

changes its values a finite number of times in the interval [0, T], and we denote by V the space

of feasible controls. The condition of left continuity simplifies the analysis without detracting

from its scope, and the condition of finite number of changes in v is certainly realistic. For

every v ∈ V let vi, i = 1, . . . , N + 1 (for some N ≥ 0) denote the successive values of v(t),

t ∈ [0, T], and let τi denote the switching time between vi and vi+1, i = 1, . . . , N . We refer

to the switching times by the vector notation τ̄ := (τ1, . . . , τN)
T ∈ RN , and we further define

τ0 := 0 and τN+1 := T . Thus, the state equation (1) assumes the following form,

ẋ = f(x, vi), ∀t ∈ [τi−1, τi), i = 1, . . . , N + 1, (3)

and to simplify the notation in the sequel we denote the Right-hand Side (RHS) of (3) by

F (x, t), so that ẋ = F (x, t). Furthermore, we will use the notation fi(x) := f(x, vi) when no

confusion arises, as shown in Figure 1. The optimal control (scheduling) problem is to minimize

the performance function J , defined in Equation (2), over the space of feasible controls, V .

It is convenient to use an alternative notation for representing the input control v as a schedule

of modes of the system. The term “schedule” means sequencing as well as timing: the sequence

5

ẋ = f1

ẋ = f2
ẋ = f3

x

t

τ1 τ2 τ3

Fig. 1. The system is switching among different modes.

is that of the successive values of v, namely {vi}N+1
i=1 , and the timing variable is comprised

of the switching-times vector τ̄ := (τ1, . . . , τN)
T ∈ RN . Denote by Q the set of all finite

sequences (finite strings) of elements from V , denote by q a typical element in Q, and define

ℓ(q) to be the length of (number of symbols in) q. Furthermore, for every N = 1, 2, . . ., define

ΛN := {τ̄ ∈ RN : 0 ≤ τ1 ≤ . . . ≤ τN ≤ T}. Finally, define

Σ := {(q, τ̄) : q ∈ Q, τ̄ ∈ Λℓ(q)−1}. (4)

We denote a typical element in Σ by σ = (q, τ̄), and the associated input control by vσ(·) ∈ V .

The mode associated with σ at a specific time t will be denoted for brevity by vσ(t). More

generally, we will denote the mode associated with a point w ∈ V by w instead of calling it

“the mode associated with w”.

Given σ ∈ Σ, define the costate p(t) ∈ Rn by the following differential equation,

ṗ = −
(∂F
∂x

(x, t)
)T

p−
(dL
dx

(x)
)T

(5)

with the boundary condition p(T) = 0 (recall that F (x, t) is the RHS of (3)). The costate

trajectory also can be used to compute the cost-sensitivity associated with needle variations of

modes. To clarify this point, consider a schedule σ := (q, τ̄) ∈ Σ, a time s ∈ [0, T), and an

element w ∈ V . For a given λ > 0, consider inserting the mode (associated with) w to the

schedule σ during the λ-long interval [s, s+ λ); that is, we modify the control vσ by changing

the values of vσ(t) to w for every t ∈ [s, s+λ). Let us view the cost functional J as a function of

6

λ ≥ 0, and denote it by Jσ,s,w(λ). Under broad assumptions the right-derivative of this function

at λ = 0 exists (see [25]), and denoting it by Dσ,s,w, it has the following form (e.g., [15]),

Dσ,s,w :=
dJσ,s,w
dλ+

(0) = p(s)T
(
f(x(s), w)− f(x(s), vσ(s))

)
. (6)

We call this one-sided derivative the insertion gradient, and we note that its computation requires

the costate trajectory as defined by (5).

Now if σ = (q, τ̄) ∈ Σ is an optimal schedule for J then for every s ∈ [0, T) and w ∈ V ,

Dσ,s,w ≥ 0. This is due to the fact (proved in Proposition 1, below) that if Dσ,s,w < 0 then

inserting the mode w at a λ-long time-interval centered at s, for a sufficiently-small λ > 0, will

result in a reduction in J . We can phrase this condition in the following, more-compact way,

inf
{
min{Dσ,s,w : w ∈ V } : s ∈ [0, T]

}
≥ 0. (7)

Let us define, for every s ∈ [0, T], Dσ,s := min{Dσ,s,w : w ∈ V }; and define Dσ := inf{Dσ,s :

s ∈ [0, T]}, where we recognize Dσ as the Left-Hand Side (LHS) of (7). Now Dσ cannot be

positive because for every s ∈ [0, T], Dσ,s,vσ(s) = 0 (inserting a mode onto itself would not

change J) and hence Dσ,s ≤ 0. Therefore, the necessary optimality condition for a schedule

σ = (q, τ̄) is that Dσ = 0.

This optimality condition stimulated the development of the algorithm, proposed in [4] which,

at each iteration, inserts a single mode to a given schedule as described in the Introduction.

The algorithm in this paper pursues a different approach, in that at each iteration it considers,

simultaneously, several modes for modification. In fact, the time-set where such modes are

considered need not be an interval but can be a disconnected set, and it may have a large

Lebesgue measure thereby yielding a large descent in J . This set is determined according to

an Armijo-like procedure, albeit in a nonstandard setting. From a theoretical standpoint, the

main hurdle we faced was in extending the Armijo step size from single intervals and single

mode-switchings (as in [4], [19]) to general time-sets and multiple modes, and as we shall later

see, this challenge was by-no-means trivial. Before discussing these issues, we recount the main

results concerning the Armijo algorithm.

A. Descent Algorithms with Armijo Step Sizes

Consider the problem of minimizing a continuously-differentiable function f : Rn → R over

x ∈ Rn. Steepest-descent techniques are iterative algorithms that move from a point x ∈ Rn

7

in the direction of −∇f(x). Denoting by γ(x) ≥ 0 the step size, the resulting (next) iteration

point, denoted by xnext, is

xnext = x− γ(x)∇f(x). (8)

The Armijo step size procedure defines γ(x) by an approximate line minimization in the fol-

lowing way (see [25]): Given constants α ∈ (0, 1) and β ∈ (0, 1) independent of x ∈ Rn. Define

the integer j(x) by

j(x) := min
{
j = 0, 1, . . . , : f(x− βj∇f(x))− f(x) ≤ −αβj||∇f(x)||2

}
, (9)

and define

γ(x) = βj(x). (10)

The steepest descent algorithm with Armijo step size computes a sequence of iteration points xk,

k = 1, 2, . . . , by the formula xk+1 = xk −γ(xk)∇f(xk), where γ(xk) is computed via (10) with

j(xk) defined in (9). This algorithm is globally convergent (see [25]) to stationary points (typi-

cally local minima) and its convergence rate is linear. It is evidently a descent algorithm in the

sense that f(xnext) ≤ f(x). In fact, (9) and (10) mean that f(xnext)−f(x) ≤ −αγ(x)||∇f(x)||2,

indicating that larger step sizes generally result in greater descent for a given gradient’s magnitude

||∇f(x)||. Reference [25] provides several practical suggestions for its implementation, including

the following values of α and β, α = β = 0.5.

The algorithm’s convergence to stationary points has been proved under the assumption

that f(x) is continuously differentiable, and weaker assumptions require modifications of the

algorithm. If f(x) is twice-continuously differentiable then the step size is bounded from below

according to the following result, proved in [25]. Let H(x) denote the Hessian of f , namely

H(x) := d2f
dx2 (x), and let ⟨·, ·⟩ denote the inner product in Rn.

Lemma 1: Suppose that f(x) is C2, and that there exists a constant K > 0 such that, for

every x ∈ Rn, ||H(x)|| ≤ K. Then the following two statements are true: (1). For every x ∈ Rn,

and for every γ ∈ [0, 2
K
(1− α)],

f(x− γ∇f(x))− f(x) ≤ −αγ||∇f(x)||2. (11)

(2). For every x ∈ Rn,

γ(x) ≥ 2

K
β(1− α). (12)

8

Proof: Please see the proofs of Equations (8a) and (8b) in [25], pp. 60-61.

We observe that the Right-hand Side (RHS) of (12) depends on the function f(x) only via

the upper bound on ||H(x)||, K. Therefore, defining γ̄ := 2
K
β(1− α), we have that γ(x) ≥ γ̄,

and hence, by (8) and (11),

f(xnext)− f(x) ≤ −αγ̄||∇f(x)||2. (13)

According to this formula, the descent in f is at least by a quantity proportional to ||∇f(x)||2.

A slightly alternative view of the Armijo step size and Lemma 1 is obtained by scaling the

search direction and the step size by ||∇f(x)||−1 and ||∇f(x)||, respectively. Thus, defining

h(x) := ∇f(x)
||∇f(x)|| and λ(x) := γ(x)||∇f(x)||, Equation (8) becomes xnext = x − λ(x)h(x).

Furthermore, λ(x) can be computed as follows: defining j(x) by

j(x) : min
{
j = 0, 1, . . . , : f(x− βj||∇f(x)||h(x))− f(x) ≤ −αβj||∇f(x)||2

}
, (14)

then it can be seen that

λ(x) = βj(x)||∇f(x)||. (15)

It is also evident that the steepest-descent algorithm with Armijo step size computes xk, k =

1, 2, . . . , by the formula xk+1 = xk − λ(xk)h(xk), and Lemma 1 is equivalent to the following

assertion:

Corollary 1: Suppose that f(x) is C2, and that there exists a constant K > 0 such that, for

every x ∈ Rn, ||H(x)|| ≤ K. Then the following two statements are true: (1). For every x ∈ Rn

and for every λ ∈ [0, 2
K
(1− α)||∇f(x)||],

f(x− λh(x))− f(x) ≤ −αλ||∇f(x)||. (16)

(2). For every x ∈ Rn,

λ(x) ≥ 2

K
β(1− α)||∇f(x)||. (17)

Proof: Immediate.

Suppose now that the steepest-descent algorithm with Armijo step sizes computes a sequence

of iteration points xk, k = 1, 2, . . . , where xk+1 = xk − λ(xk)h(xk). Equations (16) and (17),

with c := 2
K
βα(1 − α), yields the inequality f(xk+1) − f(xk) ≤ −c||∇f(xk)||2. This implies

that if x̂ ∈ Rn is an accumulation point of the sequence {xk}∞k=1, then x̂ satisfies the stationarity

optimality condition ∇f(x̂) = 0. This reasoning has been extended to a general setting of

9

continuous-parameter optimization which includes problems with constraints, nondifferentiable

functions, and infinite-dimensional parameter spaces. The next subsection reviews the elements

of this abstraction that are relevant to this paper.

B. Optimality Functions and Minimizing Sequences

The material surveyed below can be found in [25] (optimality functions) and [24] (minimizing

sequences).

Let X be a normed linear space, and consider the problem of minimizing a function f : X →

R. Given an appropriate optimality condition, let ∆ ⊂ X be the set where the optimality condition

is satisfied, namely x ∈ ∆ if and only if x satisfies the optimality condition. Furthermore, let

θ : X → R− be a non-positive valued function such that {x ∈ X : θ(x) = 0} = ∆, and at every

x ∈ X , |θ(x)| indicates the extent to which x fails to satisfy the optimality condition. θ(·) is

called an optimality function.

An algorithm for solving the optimization problem typically computes a sequence of points

{xk}∞k=1 ⊂ X . In nonlinear programming, where X = Rn, a common requirement of an algorithm

is that if x̂ is an accumulation point of the sequence {xk}∞k=1, then is satisfies the optimality

condition θ(x̂) = 0. Optimality functions often are not continuous but upper-semi continuous,

namely, if limm→∞ xm = x then lim supm→∞ θ(xm) ≤ θ(x). This implies that, if the computed

sequence {xk}∞k=1 satisfies the limit limk→∞ θ(xk) = 0, then each one of its accumulation points

satisfies the optimality condition θ(x̂) = 0.

One way to ensure that limk→∞ θ(xk) = 0 is to have the algorithm have the following property,

called sufficient descent: For every x̄ such that θ(x̄) < 0 there exists δ > 0 and η > 0 such

that, if ||xk − x̄|| < δ, then f(xk+1) − f(xk) ≤ −η. This guarantees, under mild assumptions,

that if the sequence {xk}∞k=1 is bounded then limk→∞ θ(xk) = 0 and hence that each one of its

accumulation points satisfies the optimality condition.

The latter result holds true regardless of whether X is finite dimensional or infinite dimensional.

However, if dim(X) = ∞, a bounded sequence {xk}∞k=1 might not have any accumulation points,

and in that case the result is vacuous. For this reason the convergence of algorithms has to be

characterized by means not involving accumulation points. Reference [24] proposed a framework

where an algorithm aims at computing not a minimum point, but rather a sequence {xk}∞k=1 such

that the limit lim supk→∞ f(xk) has a minimum value, and hence the existence of accumulation

10

points is immaterial. The optimality condition analogous to stationarity is that

lim
k→∞

θ(xk) = 0 (18)

or alternatively, if the algorithm is of a descent type, lim supk→∞ θ(xk) = 0. This cannot be

obtained by the property of sufficient descent mentioned above, but it follows (under certain

conditions) from the following stronger condition: For every C > 0 there exists η > 0 such that,

for every point xk ∈ X , computed by the algorithm, if θ(xk) ≤ −C, then f(xk+1)−f(xk) ≤ −η.

This condition is called a uniform sufficient descent. In fact, the following result is immediate

(see Section 1.2 of [25]): Suppose that inf
{
f(x) : x ∈ X

}
> −∞. If a descent algorithm for

minimizing f(x) has the sufficient descent property, then for every iteration-sequence {xk}∞k=1

computed by it, Equation (18) is satisfied.

The next section presents our algorithm and derives its sufficient-descent property, the main

result of the paper. This result is somewhat surprising since the insertion gradient is not con-

tinuous at boundary points of modes, and continuity of the gradient is essential for proving

convergence of the Armijo procedure without resorting to (often cumbersome) techniques from

nondifferentiable calculus.

III. SUFFICIENT-DESCENT ALGORITHM FOR THE OPTIMAL SWITCHED-MODE PROBLEM

Consider the system defined by Equation (1) and the optimal control problem of minimizing

J , defined via (2), as a function of the discrete control variable v ∈ V . Let σ ∈ Σ be the

corresponding mode-schedule so that v = vσ. Recall that, by definition, every schedule σ ∈ Σ

has a finite string, but the string-size of the mode-sequence {σk}∞k=1 may be unbounded. The

algorithm described below replaces a sufficiently-large set of modes at a given schedule so as to

guarantee the uniform sufficient-decent property, and this is achieved by using the Armijo step

size on the time-set where the modes are being replaced.

Consider a mode-schedule σ ∈ Σ that does not satisfy the necessary optimality condition,

namely Dσ < 0. Define the set Sσ,0 as Sσ,0 := {s ∈ [0, T] : Dσ,s < 0}, and note that

Sσ,0 ̸= ∅. For every s ∈ Sσ,0, consider a point w ∈ V such that Dσ,s,ω = Dσ,s, namely,

w ∈ argmin{Dσ,s,v : v ∈ V }. Such w may not be unique but we assume a systematic way to

assign a specific, single point w, which we denote by w(σ, s) in order to highlight its dependence

on σ nd s. For example, w(σ, s) := vi ∈ argmin{Dσ,s,v : v ∈ V } having the smallest index i.

11

Since Dσ < 0, for every s ∈ Sσ,0, Dσ,s,w(σ,s) < 0. This implies that, an insertion of the mode

w(σ, s) to the schedule σ at a small-enough interval beginning at s, would result in a decrease

in J (a proof of this intuitive statement follows directly from Proposition 1, below). Our goal is

to switch the modes in this fashion in a large subset of Sσ,0 so as to reduce J by a substantial

amount, where by the term “substantial” we mean a decrease by at least aD2
σ for some constant

a > 0. This uniform sufficient descent in J is akin to the descent property of the Armijo step

size as reflected in Equation (13).

This sufficient-descent property cannot be guaranteed by changing the mode at every time-

point s ∈ Sσ,0; not even any descent in J can be guaranteed. Instead, we search for a subset of

Sσ,0 where, changing the mode at every s in that subset would guarantee a uniform sufficient

descent. This subset will consist of points s where Dσ,s is “more negative” than at typical points

s ∈ Sσ,0. Fix η ∈ (0, 1) and define the set Sσ,η by

Sσ,η =
{
s ∈ [0, T] : Dσ,s ≤ ηDσ

}
, (19)

as illustrated in Figure 2. Obviously Sσ,η ̸= ∅ since Dσ < 0. Let µ(Sσ,η) denote the Lebesgue

measure of Sσ,η, and more generally, let µ(·) denote the Lebesgue measure on R. For every

subset S ⊂ Sσ,η, consider modifying σ by changing the mode from vσ(s) to w(σ, s) at every

point s ∈ S, and denote by σ(S) the resulting mode-schedule. Note the boldface notation σ

which indicates that the designated mode schedule is a function of S; similar boldface notation

will be used in the sequel to indicate functional notation. In the forthcoming we will search for

a set S ⊂ Sσ,η that will give us the desired sufficient descent.

Fix η ∈ (0, 1). Consider a mapping S : [0, µ(Sσ,η)] → 2Sσ,η (the latter object is the set of

subsets of Sσ,η) having the following two properties: (i) ∀λ ∈ [0, µ(Sσ,η)], S(λ) is the finite union

of intervals; and (ii) ∀λ ∈ [0, µ(Sσ,η)], µ(S(λ)) = λ. Note that σ(S(λ)) is the mode-schedule

obtained from σ by changing the mode at every time-point s ∈ S(λ) from vσ(s) to w(σ, s).

For example, ∀λ ∈ [0, µ(Sσ,η)] define sλ := inf{s ∈ Sσ,η : µ
(
[0, s] ∩ Sσ,η

)
= λ}, and define

S(λ) := [0, sλ] ∩ Sσ,η. Then σ(S(λ)) is the schedule obtained from σ by changing the modes

lying in the leftmost subset of Sσ,η having Lebesgue-measure λ, and it is the finite union of

intervals if so is Sσ,η.

We next use such a mapping S(λ) to define an Armijo step-size procedure for computing a

schedule σnext from σ. Given constants α ∈ (0, 1) and β ∈ (0, 1), in addition to η ∈ (0, 1).

12

Dσ,s

ηDσ

Dσ

s

Sσ,η

Fig. 2. Illustration of the set Sσ,η .

Consider a given σ ∈ Σ such that Dσ < 0. For every j = 0, 1, . . ., define λj := βjµ(Sσ,η), and

define j(σ) by

j(σ) := min
{
j = 0, 1, . . . , : J(σ(S(λj)))− J(σ) ≤ αλjDσ

}
. (20)

Finally, define λ(σ) := λj(σ), and set σnext := σ(S(λ(σ))).

Now the algorithm we propose has the following form. Given constants α ∈ (0, 1), β ∈ (0, 1),

and η ∈ (0, 1). Suppose that for every σ ∈ Σ such that Dσ < 0 there exists a mapping

S : [0, µ(Sσ,η)] → 2Sσ,η with the aforementioned properties.

Algorithm 1: Step 0: Start with an arbitrary schedule σ0 ∈ Σ. Set k = 0.

Step 1: Compute Dσk
. If Dσk

= 0, stop and exit; otherwise, continue.

Step 2: Compute Sσk,η as defined in (19), namely Sσk,η = {s ∈ [0, T] : Dσk,s ≤ ηDσ}.

Step 3: Compute j(σk) as defined by (20), namely

j(σk) = min
{
j = 0, 1, . . . , : J(σ(S(λj)))− J(σk) ≤ αλjDσk

}
, (21)

and set λ(σk) := λj(σk).

Step 4: Define σk+1 := σ(S(λ(σk))), namely the schedule obtained from σk by changing the

mode at every time-point s ∈ S(λ(σk)) from vσk
(s) to w(σk, s). Set k = k + 1, and go to Step

1. 2

Remark 1: E. Polak coined the phrases conceptual algorithm and implementable algorithm,

and makes the point of distinguishing between them in the context of infinite-dimensional

13

optimization [25]. Conceptual algorithms assume infinite computational precision and are used in

analysis, while implementable algorithms are based on finite precision. Algorithm 1 is conceptual

and it does not specify finite-precision approximations to J(σk), Dσk
, and Sσk,η. In fact, the entire

discussion and analysis in the paper are carried out in the setting of conceptual algorithms since

an extension to the implementable setting would require a longer paper and complicate the

presentation without adding scope to the derived results.

Generally there are two principal approaches to implementable versions of conceptual al-

gorithms: one discretizes the problem and then develops an algorithm for the resulting finite-

dimensional problem, and the other discretizes the computation of the original, infinite-dimensional

problem. The former approach underscores most of the developments in [25], whereas we implic-

itly adopt the latter approach. Therefore, while carrying out the entire analysis in the conceptual

domain, we have in mind (but do not specify) a high-degree of grid-based approximations to

the various quantities mentioned in the algorithm’s statement.

The following discussion will be carried out under Assumption 1 and the following assumption.

Assumption 2: For every v ∈ V , the function w(σ, s) in the variable s is piecewise constant,

left continuous, and has a finite number of switching points in the interval s ∈ [0, T].

Remark 2: Although Assumption 2 cannot be proven from general properties of the vector

fields fi(x), it is justified by the following argument that it is satisfied except under pathological

situations. Consider a mode-schedule σ ∈ Σ, and recall that it has a finite sequence of mode-

switchings. Consider a point t ∈ [0, T) that is not the timing of a mode-switching. Then there

exists δ > 0 and w̄ ∈ V such that for every s ∈ [t, t+ δ), vσ(s) = w̄, namely w̄ is the mode of

σ throughout s ∈ [t, t+ δ). By definition, w(σ, s) ∈ argmin{Dσ,s,w : w ∈ V }. By Assumption 1

and Equation (6), Dσ,s,w is continuous in s ∈ [s, s + δ]. Therefore, if argmin{Dσ,s,w : w ∈ V }

is a singleton then there exists δ1 > 0 such that for every s ∈ [t, t + δ1), argmin{Dσ,s,w :

w ∈ V }, hence having a constant value. On the other hand, consider the case where the set

argmin{Dσ,s,w : w ∈ V } consists of multiple points, and suppose without loss of generality that

it has only two points, w1 and w2. If, for some δ1 > 0, argmin{Dσ,s,w : w ∈ V } = {w1, w2}

for all s ∈ [t, t+ δ1), then w(σ, s) can we can choose w(σ, s) = w1 ∀s ∈ [t, t+ δ1), a constant.

Otherwise, by (6), the only way the statement of the assumption fails to be satisfied is if the

function p(s)⊤(f(x(s), w1)−f(x(s), w2)) changes signs at an infinite sequence of points {sj}∞j=1

convergent to t from above. Since this function is differentiable, this situation is pathological. A

14

similar situation arises if w(σ, s) cannot be chosen to have a finite number of switching times

in the interval s ∈ [0, T].

The forthcoming analysis of the algorithm will be carried out in terms of optimality functions.

The optimality condition that we consider is Dσ = 0, and hence it is natural to adopt the term Dσ

as the optimality function. Regarding its upper-semi continuity, the question is which topology

on the space of Lebesgue-measurable functions v : [0, T] → V is to be considered. What

comes to mind is the topology induced by the L1 norm or the L2 norm since these norms are

commonly used in the theory of optimal control. However, care must be taken when considering

this optimality function on the Banach spaces L1
(
[0, T], R

)
or L2

(
[0, T], R

)
, since it is not well

defined there. To see this point, consider two functions v : [0, T] → V and w : [0, T] → V that

have different values at a single fixed point s ∈ [0, T) but identical values at all other points

t ∈ [0, T]\{s}. Denote the corresponding schedules by σv and σw, respectively. Certainly v and

w are identical when viewed as elements in the Banach spaces L1
(
[0, T], R

)
or L2

(
[0, T], R

)
, and

J(v) = J(w). On the other hand, the difference term in the RHS of (6) implies that Dσw,s,w(s) = 0

while there is no reason to expect that Dσv ,s,w(s) = 0, and hence that Dσw = Dσv . This problem

arises when a schedule is modified by inserting to it a new mode at a single point: The respective

representations of the two schedules in L1
(
[0, T], R

)
are identical and their respective state and

costate trajectories are identical as well, but Dσv ̸= Dσw due to the fact that the last multiplicative

term in the RHS of (6) depends on the function f at the particular point s ∈ [0, T).

The above problem is circumvented when we restrict σ to Σ, or v to V , since this requires

vσ(t) to be left continuous and hence to have each one of its values on a positive-length interval.

We will use the L1 topology on the subspace V ⊂ L1
(
[0, T], R

)
even though it is not a complete

space, but it serves our purposes concerning the algorithm’s analysis.

We next establish the convergence of Algorithm 1. Our analysis requires a few preliminary

results from the theory of perturbations of differential equations, whose proofs are based on

several propositions made in [25], and hence are relegated to the appendix.

Given σ ∈ Σ, consider an interval I := [s1, s2) ⊂ [0, T] such that σ has the same mode

throughout I , namely for every s ∈ I , vσ(s) = vσ(s1). Given w ∈ V , denote by σs1,w(γ) the

mode-sequence obtained from σ by changing the mode at every time s ∈ [s1, s1+γ] from vσ(s)

to w, and consider the resulting cost function J(σs1,w(γ)) as a function of γ ∈ [0, s2 − s1].

Lemma 2: There exists a constant K > 0 such that, for every σ ∈ Σ, for every interval

15

I = [s1, s2] as above, and for every w ∈ V , the function J(σs1,w(·)) is twice-continuously

differentiable (C2) on the interval γ ∈ [0, s2−s1]; and for every γ ∈ [0, s2−s1], |J(σs1,w(γ))
′′ | ≤

K (“prime” indicates derivative with respect to γ).

Proof: Please see the appendix.

We remark that the C2 property of J(σs1,w(·)) is in force only as long as vσ(s) = vσ(s1)

∀s ∈ [s1, s2]. The second assertion of the lemma does not quite follow from the first one; the

bound K holds for every such interval [s1, s2], for every σ ∈ Σ, and for every w ∈ V .

Lemma 2 in conjunction with Lemma 1 can yield sufficient descent only in a local sense, as

long as the same mode is scheduled according to σ. However, at mode-switching times Dσ,s is

no longer continuous in s, and hence Lemma 2 cannot be extended to intervals where v(·) does

not have a constant value. Nonetheless the algorithm has a uniform sufficient descent, as will

be proved with the aid of the following lemma.

Given a set S ⊂ [0, T) we say that two schedules σ1 ∈ Σ and σ2 ∈ Σ are identical on [0, T)\S

if ∀ τ ∈ [0, T) \ S, vσ1(τ) = vσ2(τ).

Lemma 3: There exists K > 0 such that, for every subset S ⊂ [0, T) comprised of a finite

number of intervals, for every pair of schedules σ1 ∈ Σ and σ2 ∈ Σ that are identical on [0, T)\S,

for every s ∈ [0, T) \ S, and for every w ∈ V ,

|Dσ1,s,w −Dσ2,s,w| ≤ Kµ(S). (22)

Proof: Please see the appendix.

Note that Equation (22) does not hold true for s ∈ S, as can be seen from the difference term

in the RHS of (6).

We now state and prove the paper’s main result, namely the sufficient-descent property of the

algorithm.

Proposition 1: Fix η ∈ (0, 1) and α ∈ (0, η). There exists a constant c > 0 such that, for

every σ ∈ Σ satisfying Dσ < 0, for every λ ∈ [0, µ(Sσ,η)] such that λ ≤ c|Dσ|, and for every

set S ⊂ 2Sσ,η comprised of a finite union of disjoint intervals such that µ(S) = λ,

J(σ(S))− J(σ) ≤ αλDσ. (23)

Proof: Consider σ ∈ Σ and an interval I := [s1, s2) such that ∀s ∈ I , vσ(s) = vσ(s1)

and w(σ, s) = w(σ, s1). By Lemma 2, for every w ∈ V , the function J(σs1,w(γ)) is C2 in

16

γ ∈ [0, s2 − s1), and by the first equality in the RHS of (6), J(σs1,w(0))
′
= Dσ,s1,w. Fix

a ∈ (α
η
, 1). Consider w ∈ V such that Dσ,s1,w < 0. By Lemma 2 and Corollary 1 (Equation

(16)) there exists ξ > 0 such that, for every γ ≥ 0 such that γ ≤ min{−ξDσ,s1,w, s2 − s1},

J(σs1,w(γ))− J(σ) = J(σs1,w(γ))− J(σs1,w(0)) ≤ −αγ|J(σs1,w(0))
′| = aγDσ,s1,w. (24)

Furthermore, ξ does not depend on the mode-schedule σ, the interval I = [s1, s2), or the mode

w ∈ V as long as Dσ,s1,w < 0.

Next, by Lemma 3 there exists a constant K > 0 such that, for every set S ⊂ [0, T] consisting

of the finite union of intervals, for every pair of schedules σ1 ∈ Σ and σ2 ∈ Σ that are identical

on [0, T) \ S, for every point s ∈ [0, T) \ S, and for every w ∈ V ,

|Dσ1,s,w −Dσ2,s,w| ≤ Kµ(S). (25)

Fix c > 0 such that

c < min
{ 2

aK
(aη − α),

η

2K

}
; (26)

we next prove the assertion of the proposition for this c. Fix σ ∈ Σ such that Dσ < 0, fix

λ ∈ [0, µ(Sσ,η)], and consider a set S ⊂ Sσ,η consisting of the finite union of disjoint intervals

such that µ(S) = λ. Denote the intervals whose union comprises S by Ij , j = 1, . . . ,m, in

increasing order, and let Ij = [s1,j, s2,j) for some s1,j ∈ [0, T) and s2,j ∈ (s1,j, T). Denote the

length of Ij by γj := s2,j − s1,j , then λ = µ(S) =
∑m

j=1 γj . By subdividing the intervals Ij ,

j = 1, . . . ,m, if necessary, we can ensure ∀ j = 1, . . . ,m, that: (i) γj < −1
2
ξηDσ, and (ii)

∀ s ∈ Ij , vσ(s) = vσ(s1,j) and w(σ, s) = w(σ, s1,j). Observe that s1,j ∈ Sσ,η and hence (by

definition of the latter set) Dσ,s1,j ≤ ηDσ.

Next, recall that µ(S) = λ, and that the mode-schedule σ(S) is obtained from σ by changing

the mode vσ(s) to the mode w(σ, s), for every s ∈ S. Let us define a sequence of intermediate

mode-schedules, σj , j = 0, 1, . . . ,M , in the following way. σ0 = σ, and for every j = 1, . . . ,m,

σj = σj−1
s1,j ,w(σ,s1,j)

(γj); in words, σj is obtained from σj−1 by replacing vσj−1(s) by w(σ, s1,j)

∀ s ∈ Ij . Recall that w(σ, s) = w(σ, s1,j) ∀s ∈ Ij , and hence we observe that σj is obtained

from σ via changing the mode vσ(s) by w(σ, s) ∀ s ∈ ∪j
i=1Ii. In particular, σm = σ(S).

Suppose that λ ≤ −cDσ; we next establish Equation (23), and this will complete the proof.

To prove (23) we first show that for every j = 1, . . . ,m,

J(σj)− J(σj−1) ≤ aγjηDσ + aKγj

j−1∑
i=1

γi. (27)

17

The case j = 1 follows from Equation (24) with I = I1 = [s1,1, s1,2), w = w(σ, s1,1), and γ = γ1.

To see this recall that by definition Dσ,s1,1,w(σ,s1,1) = Dσ,s1,1 , by assumption s1,1 ∈ Sσ,η and hence

Dσ,s1,1 < ηDσ, and by assumption γ1 < −1
2
ξηDσ; consequently γ1 ≤ −1

2
ξηDσ < −1

2
ξDσ,s1,1 =

−1
2
ξDσ,s1,1,w(σ,s1,1), and hence the conditions for (24) are satisfied. Applying (24) and recalling

that σs1,1,w(σ,s1,1) = σ1 and Dσ,s1,1,w(σ,s1,1) = Dσ,s1,1 ≤ ηDσ, we obtain that J(σ1) − J(σ) ≤

aγ1ηDσ. But this is (27) with j = 1.

Consider next j = 2, . . . ,m. Recall that σj is obtained from σj−1 by replacing the mode

vσj−1(s) by w(σ, s) ∀ s ∈ Ij = [s1,j, s2,j). We next apply Equation (24) with σj−1, I = Ij ,

and w = w(σ, s1,j). The conditions required for (24) are: (i) Dσj−1,s1,j ,w(σ,s1,j) < 0, and (ii)

γj ≤ −ξDσj−1,s1,j ,w(σ,s1,j); we now ascertain them. Recall that σj−1 is obtained from σ by

replacing vσ(s) by w(σ, s) ∀ s ∈ ∪j−1
i=1Ii. Since s1,j /∈ ∪j−1

i=1Ii, Equation (25) can be applied to

yield the following inequality,

|Dσj−1,s1,j ,w(σ,s1,j) −Dσ,s1,j ,w(σ,s1,j)| ≤ Kµ(∪j−1
i=1Ii) = K

j−1∑
i=1

γi. (28)

Recall that
∑j

i=1 γi ≤
∑m

i=1 γi = λ; and that λ ≤ −cDσ by assumption; c < η
2K

by (26);

Dσ,s1,j ,w(σ,s1,j) = Dσ,s1,j by definition; and s1,j ∈ Sσ,η (by assumption) and hence Dσ,s1,j ≤ ηDσ.

All of these inequalities, together with (28), imply that

Dσj−1,s1,j ,w(σ,s1,j) <
1

2
ηDσ < 0. (29)

Equation (29) ascertains condition (i) for (24). As for condition (ii), by definition of the intervals

Ij we have that γj < −1
2
ξηDσ, and by (29), −1

2
ξηDσ ≤ −ξDσj−1,s1,j ,w(σ,s1,j); this is condition

(ii) for (24).

Equation (24) now can be applied with σj−1, I = Ij = [s1,j, s2,j), and w = w(σ, s1,j); it yields

the following inequality,

J(σj−1
s1,j ,w(σ,s1,j)

(γj))− J(σj−1) ≤ aγjDσj−1,s1,j ,w(σ,s1,j). (30)

Recall that σj−1
s1,j ,w(σ,s1,j)

(γj) = σj; now an application of (30), (28), and the fact that Dσ,s1,j ,w(σ,s1,j) =

Dσ,s1,j , yield (27) after some straightforward algebra.

Finally, recall that σm = σ(S) and µ(S) = λ =
∑m

j=1 γj . Sum up (27) over j = 1, . . . ,m, to

obtain,

J(σ(S))− J(σ) ≤ aηDσλ+ aK
m∑
j=1

(
γj

j−1∑
i=1

γi
)
. (31)

18

But
m∑
j=1

(
γj

j−1∑
i=1

γi
)
=

m∑
i,j=1,i ̸=j

γiγj ≤
1

2
(

m∑
j=1

γj)
2 =

1

2
λ2,

and hence, and by (31),

J(σ(S))− J(σ) ≤ aηDσλ+
1

2
aKλ2. (32)

By assumption λ ≤ −cDσ, by (26) c < 2
aK

(aη−α), and by assumption α− aη < 0; all of this,

together with (32), yield the inequality in (23) and hence completes the proof.

Note that the the choice of α in Proposition 1 is restricted to the interval (0, η), and not to the

interval (0, 1) which is standard in Armijo-based algorithms. η can be anywhere in the interval

(0, 1), and its choice reflects on the following balance. On one hand, larger η permits a larger

value of α, with the possible result of greater decrease in J in the iterations of the algorithm.

On the other hand, larger η would limit the sets Sσ,η thereby potentially restricting the step size

and hence the descent in J . The choice of η and α has to be done in an ad-hoc way.

As a result of Proposition 1, the algorithm converges in the following way.

Proposition 2: Suppose that Algorithm 1 computes a sequence of mode-schedules σk ∈ Σ,

k = 1, 2,

1) The following limit holds,

lim sup
k→∞

Dσk
= 0. (33)

2) Suppose that v ∈ V is an accumulation point, in the L1 norm, of the sequence {vσk
}∞k=1,

and let σ ∈ Σ be its corresponding schedule so that v = vσ. Then

Dσ = 0. (34)

Proof: Let {σk}∞k=1 be a sequence of mode-schedules computed by the algorithm. By Step

4 of the algorithm, σk+1 := σ(S(λ(σk))), where S : [0, µ(Sσk,η)] → 2Sσk,η is the point-to-set

mapping underscoring Step 3 and Step 4. By Equation (23),

J(σk+1)− J(σk) ≤ αλ(σk)Dσk
. (35)

Since Dσk
≤ 0, this implies that the algorithm is of a descent type, namely, J(σk+1) ≤ J(σk)

for all k = 1, 2, By an application of the Bellman-Gronwall inequality it is readily seen that

19

there exists a constant E ∈ R such that for every σ ∈ Σ, J(σ) ≥ E; hence, and by (35) and the

fact that the algorithm always yields descent, it follows that

lim
k→∞

λ(σk)Dσk
= 0. (36)

We now prove Equation (33). Suppose, for the sake of contradiction, that (33) is not true. Then

there exists ϵ > 0 and a positive integer k1 such that, for every k ≥ k1,

Dσk
≤ −ϵ. (37)

By (36), this implies that

lim
k→∞

λ(σk) = 0. (38)

Recall the definition of λj made just before Equation (20): λj = βjµ(Sσ,η), and the set {λj :

j = 0, 1, . . .}, is the set of candidates for the Armijo step size as defined by (20). Similarly in

(21), where the Armijo step size is defined via λ(σk) := λj(σk). The search for this Armijo step

sizes starts at its largest-possible value, which is µ(Sσk,η). Therefore, and by Proposition 1 and

Equations (37) and (38), there exists k2 ≥ k1 such that, for every k ≥ k2,

λ(σk) = µ(Sσk,η). (39)

This, in conjunction with Step 4, imply that σk+1 is obtained from σk by changing the mode,

at every s ∈ Sσk,η, from vσk
(s) to w(σk, s), while leaving intact all the other modes vσk

(s) for

every s ∈ [0, T) \ Sσk,η. This results in eliminating the more negative part of the graph of Dσk,s

as a function of s, as illustrated in Figure 2. We next use this argument to prove that

lim inf
k→∞

(
Dσk+1

− ηDσk

)
≥ 0. (40)

Let C0
(
[0, T];Rn

)
denote the space of continuous functions x : [0, T] → Rn, and consider the

mapping Γ1 : V → C0
(
[0, T];Rn

)
, taking v ∈ V to x ∈ C0

(
[0, T];Rn

)
via Equation (1). By

lemma 5.6.7 in [25], this mapping is uniformly continuous on V considering the L1 topology on V

and the L∞ topology on C0
(
[0, T];Rn

)
. In a similar way, the mapping Γ2 : V → C0

(
[0, T];Rn

)
,

taking v ∈ V to p ∈ C0
(
[0, T];Rn

)
via Equations (1) and (6), is uniformly continuous on V

considering the L1 topology on V and the L∞ topology on C0
(
[0, T];Rn

)
. Let xk(·) and pk(·)

denote the state trajectory and costate trajectory associated with vσk
, k = 1, 2, . . ., via Equations

(1) and (6), respectively. By (38) we have that limk→∞ ||vσk+1
− vσk

||L1 = 0, and therefore,

lim
k→∞

||xk+1 − xk||L∞ = 0, and lim
k→∞

||pk+1 − pk||L∞ = 0. (41)

20

Consequently, for every w ∈ V ,

lim
k→∞

max
s∈[0,T]

|pk+1(s)
Tf(xk+1(s), w)− pk(s)

Tf(xk(s), w)| = 0. (42)

Recall that, by Step 4 of the algorithm, σk+1 is obtained from σk by changing vσk
(s) to w(σk, s)

∀s ∈ Sσk,η, while keeping intact vσk
(s) ∀s ∈ [0, T)\Sσk,η. Consider now the relationship between

Dσk+1,s and Dσk,s for every s ∈ [0, T). First, consider s ∈ [0, T) \Sσk,η. By (19), Dσk,s ≥ ηDσk
;

by Step 4, vσk+1
(s) = vσk

(s); and by (7) and (43), we have that

lim inf
k→∞

inf
s∈[0,T)\Sσk,η

(
Dσk+1,s − ηDσk

)
≥ 0. (43)

Next, consider s ∈ Sσk,η. By Step 4 of the algorithm, vσk+1
(s) = w(σk, s), while by definition,

w(σk, s) minimizes the term Dσk,s,w over all w ∈ V . Therefore, and by (6) and (42), we have

that

lim inf
k→∞

inf
s∈Sσk,η

Dσk+1,s = 0. (44)

Now Equation (40) follows from (43) and (44).

Since η ∈ (0, 1) and Dσk
≤ 0 for all k = 1, 2, . . ., (40) implies that limk→∞ Dσk

= 0. However,

this contradicts Equation (37) and hence yields the proof of Equation (33).

Consider next the second part of the proposition. Let σk ∈ Σ, k = 1, 2, . . ., be a mode-

sequence computed by the algorithm, and let vσk
∈ V denote the corresponding input-control

functions. Let v ∈ V be an accumulation point of the sequence {vσk
}∞k=1 in the L1 norm, and

suppose that

lim
j→∞

||vσk(j)
− v||L1 = 0 (45)

for some subsequence {vσk(j)
}∞j=1. Let σ ∈ Σ be the mode-sequence corresponding to v, such

that v = vσ.

Our objective is to prove Equation (34). Suppose the contrary, namely that Dσ < 0, for the

sake of contradiction. We first establish the following equation:

lim sup
j→∞

Dσk(j)
≤ Dσ. (46)

Since σ ∈ Σ, the function vσ : [0, T] → V is piecewise constant, and it has its values changed

a finite number of times (say, N) in the interval (0, T). Denoting by τi, i = 1, . . . , N the

switching times in increasing order, and further defining τ0 = 0 and τN+1 = T , we have,

for every i = 1, . . . , N + 1, that (i) τi − τi−1 > 0, and (ii) v(s) = vi for some vi ∈ V

21

throughout the interval [τi−1, τi). Now for every j = 1, 2, . . ., define the set Λj ∈ [0, T) by

Λj = {s ∈ [0, T) : vσk(j)
(s) ̸= vσ(s)}. By (45), ∀ ϵ > 0 ∃ j1 > 0 such that for every j ≥ j1,

µ(Λj) < ϵ. If ϵ < mini=1,...,N+1{τi − τi−1}, then for every i = 1, . . . , N + 1, there exists

s ∈ [τi−1, τi) such that

vσk(j)
(s) = vσ(s). (47)

This means that, for every j ≥ j1, every mode scheduled according to σ at a time s is also

scheduled according to σk(j) at some time s̄ ∈ (s − ϵ, s + ϵ). Let xk(j)(·) and x(·) denote the

state trajectories associated with vk(j)(·) and v(·), respectively, via Equation (1), and let pk(j)(·)

and p(·) denote the costate trajectories associated with vk(j) and v, respectively, via (1) and (6).

By (45) and Lemma 5.6.7 in [25], we have that

lim
j→∞

||xk(j) − x||L∞ = 0, and lim
j→∞

||pk(j) − p||L∞ = 0. (48)

Now by (6), (47), and (48),

lim
j→∞

sup
s∈[0,T]

∣∣∣pk(j)(s)Tf(xk(j)(s), vσ(s))− p(s)Tf(x(s), vσ(s))
∣∣∣ = 0. (49)

By the definition of Dσ via the LHS of Equation (7), this implies (46).1

Proposition 1, together with (46) and the assumption that Dσ < 0, imply the following three

statements in the same way Equations (38) - (40) were proved: (i) the following limit holds,

lim
j→∞

λ(σk(j)) = 0; (50)

(ii) there exists j3 > 0 such that for every j ≥ j3,

λ(σk(j)) = µ(Sσk(j),η); (51)

and

lim inf
j→∞

(
Dσk(j)+1

− ηDσk(j)

)
≥ 0. (52)

Now (50) and (45) imply that

lim
j→∞

||vσk(j)+1
− v||L1 = 0. (53)

1Note that the argument for proving (46) requires the assumption that v ∈ V , and may break down without it. Also, observe

that it is possible that, for arbitrarily-large j, a mode present in vk(j) at a time s may not be present in vσ at any time near s;

consequently a sharp inequality in (46) is possible, namely limj→∞ Dσk(j)
< Dσ .

22

Consequently, Equations (46) and (50) - (53) apply to k(j) + 1 instead of k(j). Repeating the

argument, given m ≥ 1, (46) and (50)-(53) hold true for every k(j) + i, i = 1, . . . ,m, instead

of k(j). In particular, these extensions of (46) and (52) imply that

lim sup
j→∞

Dσj+m
≤ Dσ (54)

and

lim inf
j→∞

(
Dσk(j)+m

− ηmDσk(j)

)
≥ 0. (55)

But the insertion gradient Dσ is uniformly bounded from below, namely there exists a constant

E1 < 0 such that ∀ σ ∈ Σ, Dσ ≥ E1. Since η ∈ (0, 1), Equations (55) for every positive integer

m is not compatible with (54). This contradiction yields the proof of (34) and hence completes

the proof of the proposition.

Remark 3: The assertion in part 2 of Proposition 2 may be vacuous since there are no

guarantees that a bounded sequence of control functions vσk
∈ V have an accumulation point

in the L1 norm. If it does, however, then the optimality condition is guaranteed via Equation

(36). Generally, Equation (35) is the most we can say about the optimality function of such a

sequence. The stronger condition of limk→∞ Dσk
= 0 does not necessarily hold. This is due to

the nature of the optimality function, which is not upper-semi continuous and may not be well

defined on functions v ∈ L1([0, T];V) \ V). Alternative optimality functions such as
∫ T

0
Dσ,sds

would not have this problem while having the same zero-set as Dσ, but we chose to develop our

theory with the former one since it is more natural. From a practical standpoint, the sequence

{J(σk)}∞k=1 is monotone non-increasing, and hence, if the iteration sequence {σk}∞k=1 has a

subsequence convergent to a minimum point (schedule), the entire sequence {J(σk)}∞k=1 will

converge to the minimal value. All of this suggests that the result stated in part 1 of Proposition

2 adequately characterizes the asymptotic convergence of Algorithm 1.

IV. SIMULATION EXAMPLES

We tested the algorithm on the double-tank system shown in Figure 3. The input to the system,

v, is the inflow rate to the upper tank, controlled by the valve and having two possible values,

v1 = 1 and v2 = 2. x1 and x2 are the fluid levels at the upper tank and lower tank, respectively,

23

x1

x2

v

Fig. 3. Two-tank system

as shown in the figure. According to Toricelli’s law, the state equation is ẋ1

ẋ2

 =

 v −√
x1

√
x1 −

√
x2

 , (56)

with the (chosen) initial condition x1(0) = x2(0) = 2.0. Notice that both x1 and x2 must satisfy

the inequalities 1 ≤ xi ≤ 4, and if v = 1 indefinitely then limt→∞ xi = 1, while if v = 2

indefinitely then limt→∞ xi(t) = 4, i = 1, 2.

The objective of the optimization problem is to have the fluid level in the lower tank track

the given value of 3.0, and hence we chose the performance criterion to be

J = 2

∫ T

0

(
x2 − 3

)2
dt, (57)

for the final-time T = 20. The various integrations were computed by the forward-Euler method

with ∆t = 0.01. For the algorithm we chose the parameter-values α = β = 0.5 and η = 0.6, and

we ran it from the initial mode-schedule associated with the control input v(t) = 1 ∀ t ∈ [0, 10]

and v(t) = 2 ∀ t ∈ (10, 20].

Results of a typical run, consisting of 100 iterations of the algorithm, are shown in Figures 4-6.

Figure 4 shows the control computed after 100 iterations, namely the input control v associated

with σ100. The graph is not surprising, since we expect the optimal control initially to consist

of v = 2 so that x2 can rise to a value close to 3, and then to enter a sliding mode in order

for x2 to maintain its proximity to 3. Figure 5 shows the corresponding state trajectories x1(t)

and x2(t), t ∈ [0, T], associated with σ100, where the jagged curve is of x1 while the smoother

24

t

¾(100)

Fig. 4. Control (schedule) obtained after 100 iterations

curve is of x2. Figure 6 depicts the graph of J(σk) as a function of the iteration count k, and

we discern a rapid descent at the early stage of the algorithm run.

It could be argued that Figure 4 indicates a rather slow buildup of the sliding mode, and

consequently the tracking shown in Figure 5 is not very tight. As a matter of fact, [22] obtained

tighter tracking by solving the relaxed problem via an alternative technique. We will address

such a potential critique with the following three arguments: First, the objective of our algorithm

is to solve an optimization problem and not a tracking problem, and the final cost that it obtains

is barely distinguishable from that computed by [22]. Second, the most salient feature of descent

algorithms with Armijo step sizes is not in their asymptotic convergence rate but rather in their

initial descent rate, and this is clearly demonstrated in Figure 6. Third, in contrast with techniques

for the relaxed problem, our algorithm has natural extensions to problems with minimum dwell-

time constraints. We next present these arguments in detail.

The potential significant merit of our algorithm is evident from Figure 6. Depicting the graph

of the cost criterion J(σk) as a function of the iteration count k, it exhibits a rapid descent of

the algorithm in a few iterations at the early stage of its execution. The initial schedule, σ1, is

far away from the minimum and its cost is J(σ1) = 70.90, but J(σk) declines to below 7.0

(J(σ3) = 6.34) in just two iterations, thereafter remaining flat until J(σ100) = 4.85 at the final

25

t

x1

x2

Fig. 5. x1 and x2 at σ100

Iteration count (k)

J

Fig. 6. Cost criterion vs. iteration count

point. An extension of the run to 200 iterations (not shown in the graph) yielded J(σ200) = 4.78.

With respect to the optimal cost computed in [22], Jopt = 4.74, our algorithm achieved over

97.5% of the total descent in those two iterations, which required cpu time of 0.1 seconds to

execute on a MacBookPro 7.1 running at 2.4 GHz on an Intel Core 2 Duo. The entire run of

100 iterations took cpu time of 5.16 seconds, and the 200-iteration run took 10.99 seconds. As

26

mentioned earlier, this run was made with ∆t = 0.01, and hence a 2, 000-point discretization

grid of the horizon interval [0, T]. To reduce the computing times of the algorithm, we increased

∆t to 0.1 for the first 10 iterations. It took 3 iterations and 0.0091-seconds cpu time to obtain

a decline from J(σ1) = 70.90 to below 7.0 (J(σ4) = 6.78), and 6 iterations and 0.018-seconds

cpu time to obtain a value under 6.0 (J(σ7) = 5.95). This suggests that adaptive-precision may

play a role in reducing computing times in large problems.

All of this makes it clear that the salient feature of our algorithm is in its rapid initial approach

towards the minimum points.

Concerning Figure 5 and the apparent oscillations of x2(t) about its target value of 3.0, most of

the cost at σ100 is incurred during the period when x2(t) climbs to that value and not during the

period when it oscillates around it (see Figure 5). To wit, we calculated the first time x2(t) = 3.0

at t = t1 = 7.36; the part of the cost in the interval [0, t1] is 2
∫ t1
0
(x2(t) − 3)2dt = 4.77, while

the remaining part is 2
∫ T

t1
(x2(t)− 3)2dt = 0.08. Thus, over 98.3% of the total cost is incurred

during the initial interval [0, t1], while the oscillatory behavior of x2 about 3.0, noted only in

the remaining interval [t1, T], plays a minor role in the total cost.

The presence of a singularity in the solution point of the relaxed problem may slow down

the asymptotic convergence of our algorithm at its later stages, because it has to track the

construction of the sliding modes. As a matter of fact we observed that after two iterations,

at σ3, the contribution of the interval [0, t1] (just before the sliding mode starts) to the total

cost is 2
∫ t1
0
(x2(t) − 3)2dt = 4.79 which is quite close to Jopt, while in subsequent iterations

the main efforts of the algorithm are in constructing the sliding mode. This suggests that the

algorithm would converge much faster for (a class of) problems whose solutions do not contain

singularities or sliding modes.

To test this point we modified the problem to track a time-dependent curve, r(t), defined as

r(t) =

 0.5, t ∈ [0, 0.25T) ∪ [0.5T, 0.75T)

4.5, i ∈ [0.25T, 0.5T) ∪ [0.75T, T],

where we chose T = 200 to ensure that x2 has enough time to reach its extreme values of 1.0

and 4.0. The algorithm was identical to the one described for the previous system except that

η = 0.75. After 20 iterations the control is shown in Figure 7 and its corresponding graph of

x2(t) is plotted in Figure 8. We believe that this is the optimal solution (or very close to it) since

the tracking in Figure 8 seems to be as tight as possible. The optimality function, which started

27

t

¾(20)

Fig. 7. Tracking r(t): Control (schedule) obtained after 20 iterations

t

x2

Fig. 8. Tracking r(t): x2 at σ20

at Dσ1 = −55.13, ends at Dσ20 = −0.062, further affirming that σ20 indeed is very close to

the minimum point. The graph of J(σk) as a function of k is shown in Figure 9 and it exhibits

rapid descent at the initial stage of the algorithm. As a matter of fact, with J(σ1) = 2, 298.6,

J(σ5) = 343.3, J(σ7) = 280.5, and J(σ20) = 231.7, over 94.6% of the total decrease is obtained

in just 4 iterations, and 97.6% in 6 iterations.

The switching frequency often is limited for practical reasons, and the optimal switched-

28

Iteration count (k)

J

Fig. 9. Tracking r(t): Cost criterion vs. iteration count

mode problem can reflect that either by adding a cost-penalty term to each switching, or by

imposing lower-bound constraints on the dwell times of the modes. These formulations do not

quite fall within the optimization framework discussed above, yet they cannot be ignored due

to their relevance in applications. In the coming paragraphs we describe a heuristic approach to

problems with minimum dwell times; the ideas are preliminary and only half-baked, and a more

comprehensive analysis will be presented elsewhere.

Consider the problem of minimizing J as defined in (2) subject to the constraint that the dwell-

time of each mode must not be less than a given constant tδ > 0. Recall that τi denotes the

switching time between the ith mode and the i+1st mode of a given schedule, then the dwell-

time constraint has the form τi+1 − τi ≥ tδ, i = 1, 2, Given a schedule σ ∈ Σ, the following

procedure modifies it to satisfy the lower-bound constraint on the dwell times. Throughout its

formal description we use the notation σ̄ to refer to the running schedule-variable as it is being

modified. Its final value is the output of the procedure.

Dwell-time constraint-compliance procedure.

Initialize: Set ℓ = 1. Set σ̄ = σ.

1. If σ̄ satisfies the dwell-time constraint then stop and exit. Otherwise, continue.

2. Compute j := min{i ≥ ℓ : τi+1 − τi < tδ}. Cancel all the switching times of σ̄, τi,

29

i = j + 1, . . ., that are between τj and τj + tδ. Set τj+1 = τj + tδ.

3. Compute

w := argmin{
∫ tj+1

tj

Dσ,t,vdt : v ∈ V }. (58)

Set to w the mode of σ̄ throughout the interval [tj, tj+1).

4. Keep the rest of the schedule σ̄ unchanged except for, if need be, renumbering the switching

times as τj, τj+1, . . . in order to have them be consecutive.

5. Set ℓ := j + 1, and go to Step 1. 2

A few remarks are due.

1) Throughout the procedure we use σ (and not σ̄) in Equation (58), to indicate the insertion

gradient at the schedule with which we entered the procedure.

2) The use of Equation (58) to determine the mode in the interval [τj, τj+1) is underscored by

the same principle as Algorithm 1, namely an attempt to minimize the optimality gap. In

this regard, the use of the integral term is due to the minimum dwell-time constraint. Of

course this would be effective only if tδ is small enough. On the other hand, large values

of tδ may result in few switching times and hence trivialize the problem.

3) It is certainly possible to refine the result of the final run of the above procedure with a

gradient-descent algorithm for adjusting the switching times while maintaining the dwell-

time constraints and the sequence of modes.

It is reasonable to first solve the mode-switching problem without regard to the dwell-time

constraint, and then use the procedure to guarantee that those constraints are satisfied. Alterna-

tively, it is possible to embed the procedure in the cycles of an algorithm such as Algorithm 1;

for example, run it after every given number of iterations. This approach may have the advantage

of limiting the number of switching times and hence avoiding the sliding modes, which generally

slows down Algorithm 1. We tested this idea on the problem of minimizing J as defined by

(57), with the same initial point (schedule) as for the unconstrained problem. For this simulation

experiment we chose tδ = 0.25, and we used the dwell-time procedure after every run of 10

iterations of Algorithm 1. After 100 iterations we obtained J(σ100) = 4.83, essentially the same

as for the unconstrained problem, where J(σ100) = 4.85. The graph of σ100 is shown in Figure

10, and not surprisingly it does not have the chatter of the analogous graph in Figure 4. The

30

0 2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

t

σ(100)

Fig. 10. Minimum dwell time: Control obtained after 100 iterations

associated state trajectories as well as the graph of J(σk) (as a function of k) were quite similar

to those in Figures 5 and 6 (respectively) for the unconstrained problem, and hence are not

shown here.

V. APPENDIX

Proof of Lemma 2. The proof follows from Proposition 5.6.8 and Proposition 5.6.10 in [25],

which are stated in a more general context. For detailed arguments, consider the following

setting. Let f1 : Rn → Rn, f2 : Rn → Rn, and L : Rn → R be C2 functions, and fix T > 0 and

x0 ∈ Rn. Given γ ∈ [0, T], define the vector field

F (x, t; γ) :=

 f1(x(t)), if t ∈ [0, γ]

f2(x(t)), if t ∈ (γ, T],

and consider the differential equation ẋ(t)) = F (x(t), t; γ) on the interval t ∈ [0, T], with the

initial condition x(0) = x0. Since the equation depends on γ, we denote its solution by x(t; γ).

Define the performance function J(γ) by J(γ) :=
∫ T

0
L(x(t; γ)dt. Define the costate variable

p(t; γ) by the equation ṗ(t; γ) = −
(
∂F
∂x
(x, t; γ)

)⊤
p(t; γ) −

(
∂L
∂t
(x; γ)

)⊤, dot denoting derivative

with respect to t, with the boundary condition p(T ; γ) = 0.

31

In the context of this paper, Lemma 2 amounts to the assertion that J(γ) is C2. Reference

[15] proved (in a more general context) that J(γ) is C1 and the first derivative is given by

J ′(γ) = p(γ; γ)⊤
(
f1(x(γ; γ)− f2(x(γ; γ))

)
(59)

(see Proposition 2 2 and Proposition 3.1 there). Now the partial derivatives ∂x
∂t
(γ; γ) and ∂x

∂γ
(γ; γ)

generally do not exist, but the total derivative dx
dγ
(γ; γ) exists and it is continuous. To see this

note that for all t ∈ [0, γ] x(t; γ) satisfies the equation ż(t) = f1(z(t)), and hence dx
dγ
(γ; γ) =

ż(γ) = f1(x(γ; γ), and the latter term is continuous by the assumption that f1(x) is C2. In a

similar way, the total derivative dp
dγ
(γ; γ) exists and it is continuous. To see this, [25] (Corollary

5.6.9) proves that for every t ∈ (γ, t] the derivative term ∂x
∂t
x(t; γ) is continuously differentiable

in γ. Furthermore, by the costate equation the evolution of p(t; γ) backwards in time depends

only on the vector field f2 but not on f1, and therefore dp
dγ
(γ; γ) =

(
−
(
∂F
∂x
(x, γ; γ)

)⊤
p(γ; γ)−(

∂L
∂t
(x; γ)

)⊤)′, “prime” denoting derivative with respect to γ; continuity follows by standard

variational arguments on differentiability of differential equations (e.g., Corollary 5.6.9) and the

C2 assumptions on f1, f2, and L. All of this implies that term in the the RHS of Equation (59)

is continuously differentiable thereby ascertaining that J(γ) is twice continuously differentiable.

Proof of Lemma 3. Consider a set S ⊂ [0, T) and schedules σ1 and σ2 as in the statement

of the lemma. For i = 1, 2, let xi(·) and pi(·) denote the state trajectory and costate trajectory,

respectively, associated with vσi
. By Equations (1) and (5), and by Lemma 5.6.7 in [25] con-

cerning Lipschitz continuity of solutions of differential equations, there exists K1 > 0 such that,

for all S ⊂ [0, T), σ1 ∈ Σ, and σ2 ∈ Σ as above,

||x1 − x2||L∞ ≤ K1||vσ1 − vσ2 ||L2 , (60)

and

||p1 − p2||L∞ ≤ K1||vσ1 − vσ2 ||L2 . (61)

For every s ∈ [0, T) \ S, vσ1(s) = vσ2(s), and therefore, and by (6), for every w ∈ V ,

Dσ1,s,w −Dσ2,s,w

= p1(s)
T
(
f(x1(s), w)− f(x1(s), vσ1(s))

)
− p2(s)

T
(
f(x2(s), w)− f(x2(s), vσ1(s))

)
. (62)

32

Consequently, and by (60) and (61), there exists K2 > 0 such that, for every S ⊂ [0, T), σ1 ∈ Σ,

and σ2 ∈ Σ as above, and for every w ∈ V ,

|Dσ1,s,w −Dσ2,s,w| ≤ K2||vσ1 − vσ2 ||L2 . (63)

Since V is a finite set, and since vσ1(τ) = vσ2(τ) ∀τ ∈ [0, T) \ S, there exists K3 > 0 such that

for all S ⊂ [0, T) and σ1 ∈ Σ and σ2 ∈ Σ as above, ||vσ1 − vσ2 ||L2 ≤ K3µ(S). This, together

with (63), implies Equation (22) with K := K2K3.

REFERENCES

[1] S. Almér, S. Mariéthoz, and M. Morari. Sampled Data Model Predictive Control of a Voltage Source Inverter for Reduced

Harmonic Distortion. IEEE Control Systems Technology, to appear (also, IEEE Early Access).

[2] S. Almér, S. Mariéthoz, and M. Morari. Robust tracking control of pulse-width modulated systems through multi-frequency

averaging. Proc. ACC, Montreal, Canada, June 27-29, 2012.

[3] S.A. Attia, M. Alamir, and C. Canudas de Wit. Sub Optimal Control of Switched Nonlinear Systems Under Location and

Switching Constraints. Proc. 16th IFAC World Congress, Prague, the Czech Republic, July 3-8, 2005.

[4] H. Axelsson, Y. Wardi, M. Egerstedt, and E. Verriest. A Gradient Descent Approach to Optimal Mode Scheduling in

Hybrid Dynamical Systems. Journal of Optimization Theory and Applications, Vol. 136, pp. 167-186, 2008.

[5] S.C. Bengea and R. A. DeCarlo. Optimal control of switching systems. Automatica, Vol. 41, pp. 11-27, 2005.

[6] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A Unified Framework for Hybrid Control: Model and Optimal Control Theory.

IEEE Transactions on Automatic Control, Vol. 43, pp. 31-45, 1998.

[7] R. Brockett. Stabilization of Motor Networks. IEEE Conference on Decision and Control, pp. 1484–1488, 1995.

[8] P. Caines and M.S. Shaikh. Optimality Zone Algorithms for Hybrid Systems Computation and Control: Exponential to

Linear Complexity. Proc. 13th Mediterranean Conference on Control and Automation, Limassol, Cyprus, pp. 1292-1297,

June 27-29, 2005.

[9] T.M. Caldwell and T.D. Murphey. An Adjoint Method for Second-Order Switching Time Optimization. Proc. 49th CDC,

Atlanta, Georgia, December 15-17, 2010.

[10] T.M. Caldwell and T.D. Murphey. Switching mode generation and optimal estimation with application to skid-steering.

Automatica, Vol. 47, pp. 50-64, 2011.

[11] T. M. Caldwell and T. D. Murphey. Projection-Based Switched System Optimization: Absolute Continuity of the Line

Search. —it Proc. 51st CDC, Maui, Hawaii, December 10-13, 3012.

[12] C.G. Cassandras, D.L. Pepyne, and Y. Wardi. Optimal Control for a Class of Hybrid Systems. IEEE Transactions on

Automatic Control, Vol. 46, No. 3, pp. 398-415, 2001.

[13] X.C. Ding, Y. Wardi, D. Taylor, and M. Egerstedt. Optimization of Switched-Mode Systems with Switching Costs. Proc.

American Control Conference, Seattle, Washington, June 11-13, 2008.

[14] M. Egerstedt. Behavior Based Robotics Using Hybrid Automata. Lecture Notes in Computer Science: Hybrid Systems III:

Computation and Control, Springer Verlag, pp. 103-116, Pittsburgh, PA, March 2000.

[15] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-Time Optimization for Switched Systems. IEEE Transactions on

Automatic Control, Vol. AC-51, No. 1, pp. 110-115, 2006.

33

[16] K. Flaßkamp, T. Murphey, and S. Ober-Blöbaum. Switching Time Optimization in Discretized Hybrid Dynamical Systems.

Proc. 51st CDC, Maui, Hawaii, December 10-13, 2012.

[17] C.W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall Series in Automatic

Computation, Englewood Cliffs, New Jersey, 1971.

[18] K. Gokbayrak and C.G. Cassandras. Hybrid Controllers for Hierarchically Decomposed Systems. Proc. 2000 Hybrid

Systems Control Conf., pp. 117-129, 2000.

[19] H. Gonzalez, R. Vasudevan, M. Kamgarpour, S.S. Sastry, R. Bajcsy, and C. Tomlin. A Numerical Method for the Optimal

Control of Switched Systems. Proc. 49th CDC, Atlanta, Georgia, pp. 7519-7526, December 15-17, 2010.

[20] D. Hristu-Varsakelis. Feedback Control Systems as Users of Shared Network: Communication Sequences that Guarantee

Stability. IEEE Conference on Decision and Control, pp. 3631–3636, Orlando, FL, 2001.

[21] B. Lincoln and A. Rantzer. Optimizing Linear Systems Switching. IEEE Conference on Decision and Control, pp. 2063–

2068, Orlando, FL, 2001.

[22] R.T. Meyer, M.Zefran, and R.A. Decarlo. Comparison of Multi-Parametric Programming, Mixed-Integer Programming,

Gradient Descent Based, Hybrid Minimum Principle, and the Embedding Approach on Six Published Hybrid Optimal

Control Examples. Private Communication, 2012.

[23] B. Piccoli. Hybrid Systems and Optimal Control. Proc. IEEE Conference on Decision and Control, Tampa, Florida, pp.

13-18, 1998.

[24] E. Polak and Y. Wardi. A Study of Minimizing Sequences. SIAM Journal on Control and Optimization, Vol. 22, No. 4,

pp. 599-609, 1984.

[25] E. Polak. Optimization Algorithms and Consistent Approximations. Springer-Verlag, New York, New York, 1997.

[26] H. Rehbinder and M. Sanfirdson. Scheduling of a Limited Communication Channel for Optimal Control. IEEE Conference

on Decision and Control, Sidney, Australia, Dec. 2000.

[27] M.S. Shaikh and P. Caines. On Trajectory Optimization for Hybrid Systems: Theory and Algorithms for Fixed Schedules.

IEEE Conference on Decision and Control, Las Vegas, NV, Dec. 2002.

[28] M.S. Shaikh and P.E. Caines. On the Optimal Control of Hybrid Systems: Optimization of Trajectories, Switching Times

and Location Schedules. In Proceedings of the 6th International Workshop on Hybrid Systems: Computation and Control,

pp. 466-481, Prague, The Czech Republic, 2003.

[29] M.S. Shaikh and P.E. Caines. Optimality Zone Algorithms for Hybrid Systems Computation and Control: From Exponential

to Linear Complexity. Proc. IEEE Conference on Decision and Control/European Control Conference, pp. 1403-1408,

Seville, Spain, December 2005.

[30] M.S. Shaikh and P.E. Caines. On the Hybrid Optimal Control Problem: Theory and Algorithms. IEEE Trans. Automatic

Control, Vol. 52, pp. 1587-1603, 2007.

[31] H.J. Sussmann. A Maximum Principle for Hybrid Optimal Control Problems. Proceedings of the 38th IEEE Conference

on Decision and Control, pp. 425-430, Phoenix, AZ, Dec. 1999.

[32] H.J. Sussmann. Set-Valued Differentials and the Hybrid Maximum Principle. IEEE Conference on Decision and Control,

Vol. 1, pp. 558 -563, Dec. 2000.

[33] R. Vasudevan, H. Gonzalez, R. Bajcsy, and S.S. Sastry. Consistent Approximations for the Optimal Control of Constrained

Switched Systems. Private communication, August 2012.

[34] L.Y. Wang, A. Beydoun, J. Cook, J. Sun, and I. Kolmanovsky. Optimal Hybrid Control with Applications to Automotive

Powertrain Systems. In Control Using Logic-Based Switching, Vol. 222 of LNCIS, pp. 190-200, Springer-Verlag, 1997.

34

[35] Y. Wardi and M. Egerstedt. Algorithm for Optimal Mode Scheduling in Switched Systems. Technical Memorandum,

www.ece.gatech.edu/∼magnus/OptSwitchTechnReport.pdf, Georgia Institute of Technology, March 2011.

[36] Y. Wardi and M. Egerstedt. Algorithm for Optimal Mode Scheduling in Switched Systems. Proc. ACC, Montreal, Canada,

June 27-29, 2012.

[37] X. Xu and P. Antsaklis. Optimal Control of Switched Autonomous Systems. IEEE Conference on Decision and Control,

Las Vegas, NV, Dec. 2002.

[38] X. Xu and P.J. Antsaklis. Optimal Control of Switched Systems via Nonlinear Optimization Based on Direct Differentiations

of Value Functions. International Journal of Control, Vol. 75, pp. 1406-1426, 2002.

[39] F. Zhu and P.J. Antsaklis. Optimal Control of Switched Hybrid Systems: A Brief Survey. Technical Report of the ISIS

Group at the University of Notre Dame, ISIS-2011-003, July 2011.

35

