
Performance Based Task Assignment
in Multi-Robot Patrolling

Charles Pippin
Georgia Tech Research

Institute
Georgia Institute of

Technology
Atlanta, Georgia 30332
pippin@gatech.edu

Henrik Christensen
Center for Robotics and

Intelligent Machines
Georgia Institute of

Technology
Atlanta, Georgia 30332
hic@cc.gatech.edu

Lora Weiss
Georgia Tech Research

Institute
Georgia Institute of

Technology
Atlanta, Georgia 30332

lora.weiss@gtri.gatech.edu

ABSTRACT
This article applies a performance metric to the multi-robot
patrolling task to more efficiently distribute patrol areas
among robot team members. The multi-robot patrolling
task employs multiple robots to perform frequent visits to
known areas in an environment, while minimizing the time
between node visits. Conventional strategies for performing
this task assume that the robots will perform as expected
and do not address situations in which some team members
patrol inefficiently. However, reliable performance of team
members may not always be a valid assumption. This pa-
per considers an approach for monitoring robot performance
in a patrolling task and dynamically reassigning tasks from
those team members that perform poorly. Experimental re-
sults from simulation and on a team of indoor robots demon-
strate that in using this approach, tasks can be dynamically
and more efficiently distributed in a multi-robot patrolling
application.

Categories and Subject Descriptors
I.2.9 [ARTIFICIAL INTELLIGENCE]: Robotics—work-
cell organization and planning ; I.2.11 [ARTIFICIAL IN-
TELLIGENCE]: Distributed Artificial Intelligence—Mul-
tiagent systems

Keywords
Multi-robot cooperation, task assignment, auction algorithms,
trust, performance monitoring, ROS

1. INTRODUCTION
The area of multi-robot systems has been an active area

of research for many years, due in no small part to the abil-
ity for a team of robots to operate more efficiently and be
more robust to failure than a single robot. However, there
are still many challenges related to the interaction between

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13, March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

the robots themselves. In conventional multi-robot systems
approaches, each team member explicitly operates as part
of a team and is generally trusted. However, future robotic
teams may have different quality levels and operational ca-
pabilities. For instance, a team member may have trouble
cooperating due to communication errors, or because they
are busy performing other tasks, or even because of con-
flicting goals [1]. Robot teams may need to consider which
team members are trustworthy and dynamically adjust their
teaming and task assignment strategies accordingly.

The multi-robot patrolling problem is a surveillance task
that uses multiple robots to visit every important location
in a known environment [4]. Each location in the environ-
ment must be visited repeatedly, with the problem being
to minimize the time in-between visits. This problem is in-
teresting from a multi-robot research perspective, because
it presents challenges in optimization and task assignment,
cooperation, communication and reliability. This problem
also has useful implications for real world scenarios, includ-
ing those in the surveillance, security, and search and rescue
domains.

Cooperation is important in this task, as it is necessary
for the robots to work together to improve the efficiency
of the system as a whole. An effective multi-robot patrol
team should be able to visit points more efficiently and with
greater reliability than a single robot. However, reliability
is also important, particularly in security applications. For
instance, if robots on the team do not perform as expected,
the system should degrade gracefully.

The performance criterion considered in this paper is the
refresh time, which is the time gap between any two visits
to the same location1. The maximum refresh time reflects
the bounds on the effectiveness of a robot team in detecting
events in the environment [13]. If a robot fails to perform
its assigned tasks or visits locations too infrequently, this
will affect the performance of the team. To mitigate such
performance issues, other robots could be assigned some of
these tasks, thereby decreasing the maximum refresh time.
This paper presents a dynamic approach for observing which
team members patrol poorly, and can be used to more effec-
tively perform patrol task allocation by reassigning those lo-
cations with the greatest refresh time to other team members
using a bidding mechanism between the better performing
team members.

1In the literature, this is also referred to as the idle time of
a node.

This paper is organized as follows. In Sections 2 and 3
we present the related work and review the problem formu-
lation for the multi-robot patrolling task. In Section 4, we
discuss the use of a performance monitor and a task reas-
signment approach. In Sections 5 and 6, we present results
of experiments using this approach, performed in simulation
and on a team of indoor mobile robots. Finally, in Section
7, we conclude and present future work.

2. RELATED WORK
The problem of cooperative patrolling by a multi-robot

team has received considerable attention recently in the robotics
literature [13, 16, 7, 18]. This problem is similar to the well
known ‘Art Gallery’ problem [10], in which each location
in an art gallery must be viewable by a guard. However,
here the tasks are to repeatedly visit the locations in the en-
vironment and to minimize the amount of time in-between
visits.

A theoretical analysis of the patrolling problem is provided
by Chevaleyre [4]. The results showed that the problem
could be solved with a Traveling Salesman Problem (TSP)
approach. This is extended to the multi-robot case by spac-
ing each of the robots evenly along the path [4, 5]. Cheva-
leyre also showed that it makes sense to partition the graph
in some cases, particularly when there are long corridors or
edges separating clusters of nodes. Experiments were per-
formed in simulation using existing real robot architectures
and realistic simulation environments in [7, 16].

An approach for reassigning tasks from poorly perform-
ing team members was presented in Parker’s L-ALLIANCE
framework, in which a robot monitored a peer robot and
took over a task from when the time for completing the task
exceeded a threshold [11]. Pippin and Christensen presented
an approach to monitoring robot performance as compared
to the performance of the team for determining when a
robot’s performance could be considered out of control [14].
Lewis and Weiss [8] developed a collection of metrics to mea-
sure the performance achieved when collaboration is allowed
among vehicles, including the gain obtained over the base
capability of the robots operating independently.

In other works, market-based auction methods were ap-
plied to the patrolling problem as an approach to the ini-
tial node assignment [6, 9]. Auction methods are a class
of decentralized algorithms that solve the multi-robot task
allocation problem by splitting computation across multiple
nodes and iteratively performing task assignments [3]. These
algorithms serve as a mechanism for distributed task alloca-
tion and generally do not explicitly consider individual team
members’ performance characteristics. However, individual
robots on a team may have varying levels of performance.
In this work, we update the multi-robot patrol task with a
mechanism for monitoring task performance and reassigning
patrol locations using an auction based mechanism.

3. MULTI ROBOT PATROLLING
Many recent approaches to the patrolling task represent

areas in the environment with a topological map (a graph)
[15]. The nodes in a graph represent areas of interest in the
environment, and edges in the graph represent traversable
paths between two locations. Applying the notation from
the literature, we can refer to the graph as G(V,E), where
V = 1 . . . n is the set of nodes and E is the set of edges.

A weight is associated with each edge, ei,j , representing the
distance between each edge. The graph is assumed to be
metric and undirected. Let R = 1 . . . r be the team of robots
to assign the set of nodes in each of the r graph partitions.
When the patrol task begins, there is an initial startup time
for all robots to navigate to their assigned starting nodes in
the graph and to begin patrolling. Robots patrol simultane-
ously and repeatedly along the graph, visiting their assigned
patrol nodes, according to a given strategy [4].

Chevaleyre presents two main classes of patrolling strate-
gies, the cyclic strategy and partition based strategies [4].
In the cyclic based strategies, a single closed path, s, is gen-
erated that visits all of the nodes in the graph at least once.
In the single robot case, a robot travels this closed path in-
definitely. In the worst case, the amount of time for a robot
to visit a node twice while following this strategy is equal to
the length of s. Calculating the closed path is known to be
np-hard, and this problem is closely related to the Travelling
Salesman Problem [4].

In the multi-robot case, the simplest approach is to space
the robots along the closed path such that during the pa-
trol they maintain a constant distance between them [4, 5].
Cyclic strategies have known optimality bounds and are pre-
ferred when the graph does not contain long edges that con-
nect clusters of nodes [4]. From a reliability perspective,
when one robot malfunctions, the remaining (r − 1) team
members can simply space themselves evenly over the patrol
cycle and continue patrolling. However, there are situations
in which robots may have degraded performance, but con-
tinue to function. In these situations it would be desirable
to allow the poorly performing robot to continue to perform
a subset of its original patrol path.

Graph partition approaches divide the graph into subsets
of nodes and assign these nodes to individual robots on the
team. Pasqualetti et al. present optimality bounds for three
major types of partition based patrol graphs: cycles, trees,
and chains, and remark that the selection of the roadmap
may not be unique for an environment and that the per-
formance can vary based on the choice of the graph struc-
ture [13]. For the partitioning case, a cyclic graph can be
transformed into an acyclic roadmap using min-max path
cover approaches or a chain partition approach. For acyclic
graphs, a tree based approach can be used. For the pur-
poses of this paper, we convert a cyclic roadmap of the en-
vironment into a chain partition, using the approximation
algorithm described in [12]. This algorithm is easy to com-
pute and has known optimality bounds. This approach is
described further in the next section.

4. APPROACH
In this section, we present our approach to performance

monitoring and task reassignment of robots performing the
patrol task. We assume that the a map of the environment
is provided in advance, and that further a topological map is
generated from this map and provided to each of the robots.
At startup, each of the r robots on the team partitions this
graph and assigns the rth partition to itself, calculating a
closed cycle over the partition. There is an initial startup
time for each robot to navigate from its starting location to
the first node in its closed path. Once each robot begins
patrolling, it is observed by a central monitor process which
keeps track of the maximum refresh time of each robot’s as-
signed nodes. If a robot’s performance exceeds a threshold,

based on the performance of its team members, one of the
poorly performing robot’s nodes is offered to the rest of the
team and re-assigned using an auction based protocol.

4.1 Graph Partitioning
To obtain the initial graph representation of the environ-

ment we perform a series of pre-processing steps. We begin
with the bitmap image file which represents a map of the
environment generated from a mapping process and use the
EVG-THIN software from Beeson [2] to generate a Voroni
graph. This is the same approach used by Portugal and
Rocha [15]. Next, we perform additional pre-processing on
the graph to prune short leaf nodes and to merge nodes that
are close together.

From this graph, we calculate the minimum spanning tree
(MST) to remove cycles in the graph. Next, we compute an
open tour of the edges that visits all of the vertices (nodes)
in the graph by starting with a leaf in the MST and visiting
each branch of the tree, shortest edges first. Finally, we use
the chain partition algorithm to divide the path among the
r team members. This determines the initial assignment of
nodes to robots.

4.2 Performance Monitor
In this paper, we adopt the performance metric of max-

imum refresh time. When the refresh time of any robot’s
assigned nodes exceeds a threshold on this metric, we seek
to re-assign some of that team member’s nodes to other team
members. In our approach, we assume the existence of an
external monitor that can fully observe the visits to each
node. Each robot self reports node visits to the monitor
which tracks the refresh time for each node. At each time
step, the monitor can calculate the node with the maximum
refresh time for each robot. We set the amount of time in
between performance monitoring periods to be the expected
maximum refresh time for the patrol partition.

The monitor compares each robot’s maximum refresh time,
defined as the maximum refresh time of all nodes assigned
to that robot, against the average refresh times of all cur-
rently trusted team members. Specifically, we define a con-
trol threshold at one standard deviation, σ, above the aver-
age max refresh time for the team. When a robot exceeds
this threshold, the monitor marks this robot as untrusted
and performs a task reassignment.

The max refresh time for a robot is the maximum refresh
time for all nodes assigned to robot r. Let Irk be the set of
the refresh times at the previous k node visits for a robot,
r. Let Irn denote the refresh time of a node visited by robot
r and being the nth visit by r to any node assigned to it.
The running max refresh time, Mr

k = max(Irk..n), is the
observed maximum refresh time for a robot over the window
(n, n − 1, . . . , n − k), where n > k > 0. The threshold for
the max refresh time, θmaxrefresh is defined as the average
running max refresh time over all robots, plus one standard
deviation:

θmaxrefresh = Mk + σ (1)

We define a patrol period as the expected amount of time
to perform a patrol of the maximum partition plus a con-
stant factor. This factor is included to capture the additional
time needed to navigate due to the non-holonomic motion
of the robot and related to time spent navigating around
obstacles. At the end of each patrol period, the monitor

checks whether Mr
k > θmaxrefresh for each robot. In that

case, a robot is considered to be performing poorly and is
marked as untrusted. The monitor then selects one node to
be reassigned from all poorly performing robots, using the
process described in the next section.

4.3 Auction Based Task Reassignment
We use a market-based auction algorithm to perform task

reassignment from the poorly performing robots to the re-
maining robots on the team. This approach reassigns a sin-
gle node from the set of poorly performing robots during
each monitor period. The pseudocode for this process is
shown in Fig. 1. Recalling that the joint patrol partitions
form a single patrol chain, we seek to exchange those nodes
that are the ends of a robot’s chain partition. These nodes
comprise the leaf nodes of a partition. Let L denote the
set of leaf nodes belonging to all known poorly performing
robots. Then, our approach is to reassign a node from L to
another team member that is currently performing well and
considered to be a trusted performer.

This approach varies from the general auction approach
in the literature in that tasks are initially assigned according
to the graph partitioning algorithm described in Section 4.1.
Here, auctions are only used to reassign tasks. A central
auctioneer performs the auction, announces the task winner
and reassigns the task. The first step in the process is to
calculate the set L over the partitions. A separate auction
is announced to all team members for each node, n ∈ L,
by sending an Announce Auction message with the node
identifier.

4.3.1 Bid Calculation
Upon receiving the Announce Auction message, each robot

calculates a bid for adding the new, candidate node to its
patrol partition as follows. The candidate node is added to
the list of the existing nodes in the robot’s partition, along
with any intermediate nodes along the minimal path to the
candidate node. Next, the minimum spanning tree (MST)
of the subgraph is calculated and an open tour that visits
all of the nodes in the MST is generated by visiting each
of the branches in the MST, shortest branches first, as de-
scribed in [13]. The candidate max refresh time of the new
partition, cmax(i), is calculated from the new tour by com-
puting the path distance along the tour for a round trip:
cmax(i) = PathDist(tour) ∗ 2. Finally, Cmax(i) is submitted
as the bid for this robot.

4.3.2 Winner Selection and Task Reassignment
The auction approach seeks to reassign a node from one

of the poorly performing (untrusted) robots to a robot that
is performing well by selecting from among the bidders that
will result in the smallest candidate refresh time. Intuitively,
this reassigns a node from a poorly performing robot to
one that is comparatively underutilized by assigning it to
the robot that would still have the smallest candidate path.
Note that this is different from assigning the node to the
robot with the smallest marginal cost for adding the candi-
date node. The latter could result in robots that dispropor-
tionately grow their patrol paths.

The auction algorithm selects the bid with the minimum
max refresh time from the set of bids received from all
trusted robots for all n ∈ L. To ensure iterative improve-
ments, the monitor also keeps track of the max observed

1: for all p : PoorPerformers do
2: for all n : leaf nodes in Partitionp do
3: a← AnnounceAuction(n,R)
4: end for
5: C ← ReceiveBids(A)∀R ∈ Trusted
6: w ←Min(MaxRefresh(A))
7: end for
8: AnnounceWinner(w, n)
9: if Receive ACKw then

10: ReassignTask(p, n)
11: end if

Figure 1: ReassignTask() pseudocode.

refresh time during the current patrol cycle and will not
award a node to any candidate bid that exceeds this value.
The winning bid is sent as an Announce Winner message
to the winning bidder. The auctioneer waits to receive an
acknowledgement message from the winning bidder before
performing the task reassignment from the original robot.
This is necessary to ensure that at least one robot is still
including this node in its partition.

When a robot receives the Reassign Task message, it re-
moves the node from its current partition, and recalculates
the MST and open tour for the new partition. It is assumed
that a robot will relinquish the node when this message is
received. However, even if it does not, this will still result
in an improved refresh time for the node because the winner
robot will also cover that node.

Figure 2: Using the chain partition algorithm, the graph

is initially partitioned into approximately equal tours for

each robot.

5. EXPERIMENTS
A set of experiments were performed to demonstrate that

the use of the reassignment approach can improve the per-
formance of the team by re-assigning tasks away from poorly
performing team members, thereby reducing the overall max
refresh time of nodes in the graph. Each of the r robots is
given a map of the environment and the full patrol graph.
At startup, each roboti locally partitions the graph into r
separate partitions and assigns the ith partition to itself.

Figure 3: The partitions have been updated after sev-

eral task reassignment operations as a result of poor per-

formance by robot 2.

The central task monitor is available and has full visibility
into the arrival of robots at nodes. Robots send node visit
messages to the monitor using the network interface. The
monitor keeps track of the refresh time for each node, as well
as the maximum refresh time for all nodes.

In these experiments, a subset of the robots are marked
as poor performers. The performance for this type of robot
is affected by randomly adjusting the maximum forward ve-
locity of the robot after each visit to a patrol node. The
robots that perform normally have a maximum speed of
0.25ms−1 and the maximum speed of the poor performers
is determined by sampling from a normal distribution with
µ = 0.15ms−1 and σ = 0.10ms−1.

5.1 Experiments in Simulation
Three different experiment types were performed:

naive strategy The robots patrol the set of nodes in the
initial partition. A subset (1 or 2) of the robots on the
team are marked as poor performers.

auction strategy A central monitor observes the perfor-
mance of the robots on the team and reassigns tasks
using the auction based approach as described in Sec-
tion 4. A subset (1 or 2) of the robots on the team are
marked as poor performers.

all perform The robots patrol the set of nodes in the ini-
tial partition. None of the robots are poor performers.

Simulations were run with 3, 5, and 8 robots on a team.
Each simulation ran for 2 hours of simulated time. For the
3 and 5 robot teams, 5 experiments of each type were per-
formed, while 2 experiments were run for each 8 robot team
type, resulting in over 80 hours of simulated patrols. The
experiments used the Stage multi-robot simulation environ-
ment [19], shown in Fig. 4. The open-source Robot Operat-
ing System (ROS) architecture [17] was used to implement
the robot messaging, low level control and behaviors.2 Each

2The setup was patterned after the ROS patrol simulation
from: http://www.ros.org/wiki/isr-uc-ros-pkg#patrol.

robot uses the ROS navigation stack for navigation, localiza-
tion, and obstacle avoidance. Each robot also runs a custom
Patrol behavior which implements the graph chain parti-
tion algorithm, and repeatedly navigates to the nodes in the
robot’s patrol path. This behavior also implements the auc-
tion protocol and calculates the robot’s bids. The simulation
also includes a central monitor node which listens for task
completion messages and includes the performance monitor-
ing and task reassignment components. Robots communi-
cated with the central monitor by sending messages using
UDP broadcast over the local network.

Figure 4: The Stage multi-robot simulator is shown with

eight robots patrolling the environment. The robots in

the simulation run the ROS navigation stack and partic-

ipate in auctions for task reassignment.

For each experiment, we track the running max refresh
time of the overall patrol. This value represents the maxi-
mum refresh time of any node in the environment, computed
over a window of the last τ seconds. We set the value for
τ to be greater than twice the expected time to complete a
patrol, to prevent cycling of the value, due to the out and
back nature of the open tour in each partition.

5.2 Robot Experiments
A second set of experiments was performed using the Turtle-

Bot indoor mobile robot.3 The robot has a bumper sensor
and a single axis gyroscope. The robot also uses a Kinect
sensor, which includes an infrared laser projector and corre-
sponding infrared camera which generate range data of the
scene for indoor distances up to 6 meters. The turtlebot car-
ries a netbook laptop which runs Linux and the same ROS
libraries and behaviors used in the simulation experiments.

The experiments were performed using a team of three
TurtleBots in the same office environment, shown in Fig. 5,
that was mapped for use in the simulations. Three experi-
mental runs were performed with a central monitor perform-
ing the auction strategy and a single poor performer on the
team. In the first two runs, after observing multiple patrol
cycles, the monitor observed the poor performer on the team
and used the auction-approach to reassign one of its nodes
to other team members. Those runs were ended after the

3http://turtlebot.com

successful node reassignments.
The third run was executed for approximately 90 min-

utes, with all three robots patrolling continuously during
that time. The robot trajectories during this run are shown
in Fig. 8. After several initial cycles, the monitor auctioned
and reassigned nodes from the poor performer, robot 0 to
robot 1. Later, after several more patrol cycles, the monitor
reassigned another set of nodes, this time from robot 0 to
robot 2. At this point, no more nodes were reassigned as the
running max refresh times across the team were similar.

Figure 5: A TurtleBot shown patrolling in the hallways

of an office building during the robot team experiments.

6. RESULTS AND DISCUSSION
In our first result, we compare the running max refresh

time for each of the three types over the full patrol time. An
example result from experiments with three robots is shown
in Fig. 6. In the case where all robots perform as expected,
the running max refresh time is approximately constant, and
is close to the calculated value for the max partition patrol
time (it is slightly greater than the calculated value, due
to the non-holonomic motion and obstacle avoidance behav-
iors of the robot.) For both the naive and auction cases, the
running max refresh time values vary, due to the random
sampling of the velocity for the poor performer robot. How-
ever, after some initial task reassignment, the performance
of the auction method improves over that of the naive ap-
proach. The auction approach reassigned multiple nodes
from the poor performer robot to robots with neighboring
partitions. After the neighbors were assigned these tasks,
the poor performer is well below maximum refresh time.
Subsequent reassignments shifted tasks from the poor per-
former’s neighbors to their neighbors.

The results for different team sizes were averaged over all
of the experimental runs, and are shown in Fig. 7. In all ex-
periments, the auction based approach to task reassignment
resulted in better performance than the naive approach to
patrolling which does not consider individual robot perfor-
mance. In the set of experiments with 1 poor performer out
of 8 robots, the auction approach unexpectedly resulted in
better performance than the all perform case. We attribute
this result to the obstacle avoidance behavior of the robot.

Here, there are fewer nodes for each robot to visit, and inef-
ficiencies in robot motion are more noticeable. In this case,
a robot that was modeled as a good performer had difficulty
navigating a narrow doorway on the right side of the envi-
ronment, and this caused the robot to slow down on this leg
of its tour, resulting in unexpected poor performance and
increasing the max refresh time for the entire patrol. The
auction based method reassigned one of this robot’s assigned
nodes to a neighbor robot and this resulted in a decreased
the maximum refresh time.

The experiments with the team of robots demonstrated
the use of this approach in a real-time patrolling scenario in
an office environment. Here the poor performance dimen-
sion of varying speed was artificially introduced. However,
this approach could be applied more generally to other per-
formance dimensions.

In this paper, the tasks being reallocated are patrol areas.
However, it should be noted that this approach to moni-
toring and task reallocation is not limited to graph parti-
tions in the multi-robot patrolling problem. More generally,
this approach can be applied to any domain that requires
task allocation amongst multiple robots with the possibility
of variance in performance across team members. Another
particularly interesting aspect is the notion of trust and rep-
utation. Here, it is assumed that the team members have
the intent to perform tasks, but perform them poorly, due
to errors in navigation, control or hardware. Once a robot’s
performance moved below the θ threshold, it was no longer
considered trustworthy for assigning new tasks. However, we
observed that in some situations, an individual robot’s per-
formance decreases when it takes on additional tasks for the
benefit of the team. An improved trust model should take
this into account. Our ongoing work considers situations
in which robots maintain models of trust about team mem-
bers that they have interacted with, and share those models
within the community in a decentralized manner. Further-
more, while the auction based task assignment mechanism
is decentralized, in this paper, the auctioneer and monitor
were implemented on a centralized node. However, the mon-
itor and auctioneers could also be distributed. This is also
a subject of our ongoing work.

 400

 500

 600

 700

 800

 900

 1000

 1100

 1000 2000 3000 4000 5000 6000 7000

R
u

n
n

in
g

 M
a

x
 R

e
fr

e
s
h

 T
im

e

Time (seconds)

naive
auction

all perform

Figure 6: Results are shown for a team of 3 robots with

1 poor performer and compare Max Refresh Times for

the naive and task re-assignment approaches and the case

in which all robots perform as expected.

 0

 200

 400

 600

 800

 1000

1/3 1/5 2/5 1/8 2/8

R
u

n
n

in
g

 M
a

x
 R

e
fr

e
s
h

 T
im

e

Fraction of Poor Performers on Team

naive
auction

all perform

Figure 7: The auction based strategy is compared to

the naive strategy when there are poor performers on

the team and to the case where all robots perform as

expected. The error bars represent one standard devia-

tion.

7. SUMMARY
This paper presents a method for recognizing which robots

are performing poorly in a multi-robot patrolling task. Both
simulated and robot experimental results using this approach
were presented. The experiments showed that a monitoring
approach can be effective for detecting poorly-performing
team members. In addition, a task reassignment mecha-
nism can be effective for more efficiently allocating patrol
tasks, when compared to the naive approach which doesn’t
monitor individual robot performance. This may prove use-
ful in situations in which multi-robot teams are dynamically
formed or when not all team members are likely to perform
effectively over time. The results show that by observing
the performance characteristics of individual robots, tasks
can be allocated more efficiently than the approaches which
do not consider performance.

Future work will consider learning mechanisms relevant to
task performance, as well as to study the problem using a
more distributed approach to task monitoring and reassign-
ment, and also consider the case of limited communications.
Finally, we plan to perform additional experiments using our
team of TurtleBot indoor mobile robots.

8. ACKNOWLEDGMENTS
The authors wish to thank the anonymous reviewers for

their helpful comments. We also appreciate the helpful com-
ments from Fabio Pasqualetti regarding that author’s re-
lated work on graph partitioning for the patrolling problem.
This work was internally funded by the Georgia Tech Re-
search Institute.

9. REFERENCES
[1] R. C. Arkin. Behavior-Based Robotics, chapter 9.

Cambridge, Mass., MIT Press, 1998.

[2] P. Beeson, N. Jong, and B. Kuipers. Towards
autonomous topological place detection using the
extended voronoi graph. In Robotics and Automation
(ICRA), pages 4373 – 4379, April 2005.

10 20 30 40
0

10

20

30

(a) Initial Partition

10 20 30 40
0

10

20

30

(b) After Task Reassignments

Figure 8: A set of trajectories is shown for a team of

three TurtleBot indoor robots while patrolling an office

environment, with 1 poor performer on the team (the

leftmost, green trajectory). (a) After initial startup, the

robots patrolled and partitioned the environment using

the chain partition algorithm. (b) After observing multi-

ple cycles, the central monitor auctioned and reassigned

tasks away from the poor performer to others.

[3] D. P. Bertsekas. The auction algorithm for assignment
and other network flow problems: A tutorial.
Interfaces, 20(4):133–149, 1990.

[4] Y. Chevaleyre. Theoretical analysis of the multi-agent
patrolling problem. In Intelligent Agent Technology,
2004. (IAT 2004). Proceedings. IEEE/WIC/ACM
International Conference on, pages 302 – 308, Sept.
2004.

[5] Y. Elmaliach, N. Agmon, and G. Kaminka.
Multi-robot area patrol under frequency constraints.
In Robotics and Automation, 2007 IEEE International
Conference on, pages 385 –390, April 2007.

[6] K.-S. Hwang, J.-L. Lin, and H.-L. Huang. Cooperative
patrol planning of multi-robot systems by a
competitive auction system. In ICCAS-SICE, 2009,
pages 4359 –4363, aug. 2009.

[7] L. Iocchi, L. Marchetti, and D. Nardi. Multi-robot
patrolling with coordinated behaviours in realistic

environments. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on,
pages 2796 –2801, Sept. 2011.

[8] A. S. Lewis and L. G. Weiss. Intelligent autonomy and
performance metrics for multiple, coordinated UAVs.
Integrated Computer-Aided Eng., 12(3):251–262, July
2005.

[9] T. Menezes, P. Tedesco, and G. Ramalho. Negotiator
agents for the patrolling task. In J. Sichman,
H. Coelho, and S. Rezende, editors, Advances in
Artificial Intelligence - IBERAMIA-SBIA 2006,
volume 4140 of Lecture Notes in Computer Science,
pages 48–57. Springer Berlin / Heidelberg, 2006.

[10] T. Michael. How to Guard an Art Gallery and Other
Discrete Mathematical Adventures. Baltimore: The
Johns Hopkins University Press, 2009.

[11] L. E. Parker. ALLIANCE: An architecture for fault
tolerant multi-robot cooperation. In IEEE
Transactions on Robotics and Automation, volume 14,
pages 220–240, 1998.

[12] F. Pasqualetti, A. Franchi, and F. Bullo. On optimal
cooperative patrolling. In Decision and Control
(CDC), 2010 49th IEEE Conference on, pages 7153
–7158, Dec. 2010.

[13] F. Pasqualetti, A. Franchi, and F. Bullo. On
cooperative patrolling: Optimal trajectories,
complexity analysis, and approximation algorithms.
Robotics, IEEE Transactions on, 28(3):592 –606, June
2012.

[14] C. Pippin and H. Christensen. Performance based
monitoring using statistical control charts on
multi-robot teams. In Information Fusion (FUSION),
2012 15th International Conference on, pages 390
–395, July 2012.

[15] D. Portugal and R. Rocha. MSP algorithm:
multi-robot patrolling based on territory allocation
using balanced graph partitioning. In Proceedings of
the 2010 ACM Symposium on Applied Computing,
SAC ’10, pages 1271–1276, New York, NY, USA, 2010.
ACM.

[16] D. Portugal and R. Rocha. On the performance and
scalability of multi-robot patrolling algorithms. In
Safety, Security, and Rescue Robotics (SSRR), 2011
IEEE International Symposium on, pages 50 –55, Nov.
2011.

[17] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Y. Ng. ROS:
an open-source robot operating system. In Proceedings
of the Open-Source Software workshop at the
International Conference on Robotics and Automation
(ICRA), 2009.

[18] E. Stump and N. Michael. Multi-robot persistent
surveillance planning as a vehicle routing problem. In
Automation Science and Engineering (CASE), 2011
IEEE Conference on, pages 569 –575, Aug. 2011.

[19] R. Vaughan. Massively multi-robot simulation in
Stage. Swarm Intelligence, pages 189–208, 2008.

