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A Geometric Snake Model for Segmentation
of Medical Imagery
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Abstract—In this note, we employ the new geometric active
contour models formulated in [25] and [26] for edge detection and
segmentation of magnetic resonance imaging (MRI), computed
tomography (CT), and ultrasound medical imagery. Our method
is based on defining feature-based metrics on a given image which
in turn leads to a novel snake paradigm in which the feature of
interest may be considered to lie at the bottom of a potential
well. Thus, the snake is attracted very quickly and efficiently to
the desired feature.

Index Terms—Active contours, active vision, edge detection,
gradient flows, segmentation, snakes.

I. INTRODUCTION

T HE technique ofsnakesor active contourshas become
quite popular for a variety of applications in the past

few years. This methodology is based upon the utilization
of deformable contours which conform to various object
shapes and motions. Snakes have been used for edge and
curve detection, segmentation, shape modeling, and visual
tracking. Active contours have also been widely applied for
various applications in medical imaging. For example, snakes
have been employed for the segmentation of myocardial
heart boundaries as a prerequisite from which such vital
information such as ejection-fraction ratio, heart output, and
ventricular volume ratio can be computed. (See [20], [42],
and the references therein.) In this paper, we will apply a
new snake paradigm which the authors have developed [25],
[26] for edge detection and segmentation of various kinds
of medical imagery including magnetic resonance imaging
(MRI), computed tomography (CT), and ultrasound.

In the classical theory of snakes, one considers energy
minimization methods where controlled continuity splines
are allowed to move under the influence of external image

Manuscript received August 31, 1995; revised October 14, 1996. This
work was supported in part by the National Science Foundation under Grant
DMS-9204192 and Grant ECS-9122106, in part by the Air Force Office of
Scientific Research under Grant F49620-94-1-0058DEF, and in part by the
Army Research Office under Grant DAAH04-94-G-0054 and Grant DAAH04-
93-G-0332. The Associate Editor responsible for coordinating the review
of this paper and recommending its publication was J. S. Duncan.Asterisk
indicates corresponding author.

A. Yezzi, Jr. is with the Department of Electrical Engineering, University
of Minnesota, Minneapolis, MN 55455 USA.

S. Kichenassamy and P. Olver are with the Department of Mathematics,
University of Minnesota, Minneapolis, MN 55455 USA.

A. Kumar is with the Department of Aerospace Engineering, University of
Minnesota, Minneapolis, MN 55455 USA.

*A. Tannenbaum is with the Department Electrical Engineering, University
of Minnesota, Minneapolis, MN 55455 USA (e-mail: tannenba@ee.umn.edu).

Publisher Item Identifier S 0278-0062(97)02399-9.

dependent forces, internal forces, and certain constraints set
by the user [7], [24], [55]. As is well known, there may be
a number of problems associated with this approach such as
initializations, existence of multiple minima, and the selection
of the elasticity parameters. Moreover, natural criteria for the
splitting and merging of contours (or for the treatment of
multiple contours) are not readily available in this framework.
(See, however, the recent solution to this problem proposed
by McInerney and Terzopoulos [34].)

In this work, we will apply a new active contour method
which was developed [25], [26]. (Independently, similar meth-
ods have been recently formulated [9], [49].) Our method
unifies the curve evolution approaches for active contours [8],
[32] and the classical energy methods mentioned above [7],
[24], [55]. Since the geometric curve evolution equations can
in fact treat merging and splitting of contours, our model gives
the user the capability of automatically handling topological
changes within the gradient flow energy framework. Moreover,
our model has an important advantage over the geometric
snakes of [8], [32] as well. Indeed, the approach in these
works amounts to curve evolution together with a multiplica-
tive stopping term. These models will only slow down the
active contour at an edge, and so the snake will in general
pass through the desired feature (see Sections II and IV for
more discussion about these points). Our model handles the
topological complexities while providingextra stopping power
to the capture the features of interest, based on first principles
from geometric energy minimization. (The geometric snakes
of [8] and [32] arenotderived from a minimization of energy.)
Thus, the approach to active contours which we give below
may be regarded as the natural unification of the two main
snake models previously considered.

More precisely, our technique employs ideas from Euclidean
curve shortening evolution which defines the gradient direction
in which the Euclidean perimeter is shrinking as fast as
possible; see Section III. We therefore note that we can derive
new active contour models by multiplying the Euclidean arc-
length by a function tailored to the features of interest to which
we want to flow and then writing down the resultinggradient
evolution equations. Mathematically, this amounts to defining
a new metric in the plane tailored to the given image and then
computing the corresponding gradient flow. This leads to some
new snake models which efficiently attract the given active
contour to the features of interest (which basically lie at the
bottom of apotential well). Further, the method allows us to
naturally write down three-dimensional (3-D) active surface
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models for 3-D image segmentation which we do in [25],
[26], and [59]. One can completely justify this method using
viscosity theory which is done as well in [25] and [26] (some
remarks regarding some of the salient points in this regard are
made in the Appendix).

The contents of this paper may be summarized as follows.
In Section II, we briefly sketch some background from the
classical theory of snakes. In Section III, we give the relevant
from curve evolution theory, which allows us to formulate
our new active contour paradigm in Section IV. In Sections
V and VI, we indicate how these methods may be extended
for volumetric segmentation based on mean curvature flow.
Finally in Section VII, we apply our methods to some specific
medical images, and then we draw our conclusions in Section
VIII. We also include an Appendix with some of the relevant
mathematical details for the convenience of the reader.

II. BACKGROUND ON SNAKES

In this section, we briefly review the energy based optimiza-
tion approach to deformable contours as discussed in [7], [12],
[24], and [55]. For complete details, we refer the interested
reader to the collection of papers in [7, especially [54]].

Let be a closed contour in where
. (Note that the superscript denotes transpose.) We

now define an energy functional on the set of such contours
(“snakes”), Following standard practice, we take
to be of the form

where is the internal deformation energyand is an
external potential energy which depends on the image. (Other
external constraint forces may be added.) Perhaps the most
common choice for the internal energy is the quadratic func-
tional

where and control the “tension” and “rigidity” of the
snake, respectively. (Note that the subscripts denote deriva-
tives with respect to in the latter expression, and denotes
the standard Euclidean norm.)

Let be the given grey-scale image.
Then the external potential energydepends on the image

. It can be defined by

where is a scalar potential function defined on the
image plane. The local minima of attract the snake. For
example, we may choose to be

for a suitably chosen constant, in which case the snake will
be attracted to intensity edges. Here denotes a Gaussian
smoothing filter of standard deviation.

Solving the problem of snakes amounts to finding, for a
given set of weights , the curve that minimizes

. As argued in [8], the classical snakes method provides
an accurate location of the edges sufficiently near a given
initialization of the curve, it has the ability to extract smooth
shapes, and can retrieve angles. (Of course, one must tune
the parameters to the given problem.) On the other
hand, it does not directly allows simultaneous treatment of
multiple contours. The classical (energy) approach of snakes
cannot deal with changes in topology, unless special topology
handling procedures are added [34], [52]. The topology of
the initial curve will be the same as the one of the (possibly
wrong) final solution. This is the basic formulations of two-
dimensional (2-D) active contours. Other related and 3-D
formulations have been proposed in the literature (e.g., [12],
[13], and [56]). Reviewing all of them is beyond the scope
of the present paper. We should add that there have been a
number of nice papers which improve the traditional snake
methodology. (See [58], [21], and the references therein).

One also typically considers dynamic time-varying models
in which becomes a function of time as well; see [54]. In
this case, one defines a kinetic energy and the corresponding
Lagrangian (the difference between the kinetic energy and the
energy defined above). Applying the principle of least action,
one derives the corresponding Lagrange equation which one
tries to solve numerically employing various approximations.

In the approach to be given below in Section IV, we will also
use an energy method. However, in contrast to moread hoc
approaches, we believe that our energy is intrinsic to the given
geometry of the problem, as is the corresponding gradient
flow. It will also be able to handle topological changes in
a completely automatic fashion.

III. CURVE EVOLUTION THEORY

The mathematical foundation of our new active contour
model is based onEuclidean curve shortening. Since this is
essential in understanding our proposed snake models, we will
now sketch the some of the key concepts from curve evolution
theory in the plane .

For the curvature, and the inward unit normal, one
considers families of plane curves flowing according to the
geometric heat equation

(1)

This equation has a number of properties which make it very
useful in image processing. In fact, it has become the basis
of a nonlinear scale-space for shape representation [2], [4],
[27], [28].

In particular, (1) is the Euclidean curve shortening flow, in
the sense that the Euclidean perimeter shrinks as quickly as
possible when the curve evolves according to (1) [17], [19].
Since, we will need a similar argument for the snake model
we discuss in Section IV, let us work out the details.

Let be a smooth family of closed curves where
parametrizes the family andthe given curve, say .

(Note we assume that and similarly for the
first derivatives). Define the length functional
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Then differentiating (taking the “first variation”), and using
integration by parts, we see that

But observing now that

is the arc-length, and using the definition of curvature, the last
integral is

Hence, we see

Thus, the direction in which is decreasing most rapidly
is when

(2)

Thus, (1) defines agradient flow.
A much deeper fact is that simple closed curves converge

to “round” points when evolving according to (1) without
developing singularities. This means that if we consider an
associated family of dilated curves of constant area (look at
the evolving family of shrinking curves under a “magnifying
glass”), the curves of the family approach a circle; see [17]
and [19]. This fact is the basis for the nonlinear geometric
scale-spaces studied in vision recently [2], [4], [27], [28], as
well as the active contour models considered below.

In Section IV, we will see that a level set representation of
(2) will be utilized in all the active contour models. Roughly,
this is an evolution of the graph of a function all of whose
level sets evolve according to (2). How to associate such a
level set representation will be sketched in the Appendix. See
[38], [46] and [47] for all the details. For future reference,
the level set version of (1) is given by the function
evolving according to

div (3)

(See Section B of the Appendix.)

IV. NEW ACTIVE CONTOUR PARADIGM

In two key papers, Caselleset al. [8] and Malladiet al. [32]
formulate snake models based on the level set interpretation of
the Euclidean curve shortening equation. Indeed, their model is

div (4)

Here, the function depends on the given image and is
used as a “stopping term.” For example, the function

may be defined in such a way that it has very small magnitude
in the vicinity of an edge and so acts to stop the evolution when
the contour gets close to an edge. In [8] and [32], the term

(5)

is chosen, where is the (grey-scale) image and is a
Gaussian (smoothing) filter. (In [8], , and in [32],

). The function evolves in (4) according to
the associated level set flow for planar curve evolution in the
normal direction with speed a function of curvature which was
introduced in the fundamental work of Osher–Sethian [37],
[38], [45], [46], [47].

As we have just seen, the Euclidean curve shortening part
of this evolution, namely

div

may be derived as a gradient flow for shrinking the perimeter
as quickly as possible using only local information. As is
explained in [8], the constantinflation term is added in (4)
in order to keep the evolution moving in the proper direction.
Note that we are taking to be negative in the interior and
positive in the exterior of the zero level set contour.

The inflationary constant may be considered both with a
positive sign (inward evolution of the evolution of the contour
in the direction of decreasing ) and with a negative sign
(outward or expanding evolution). (Note, the sign convention
we have taken for above.) In the latter case, this can be
referred to as expanding “balloons” or “bubbles” [12], [53].
One should also note that there are many possibilities for a
stopping term besides intensity: texture, optical flow, stereo
disparity, etc.

The models proposed in [8] and [32] have the important
advantage over the classical models discussed in Section II
of being able to automatically handle different topologies. On
the other hand, (4) does not come from the minimization of
an energy functional as in the classical model. In fact, for
inward evolutions, (4) consists of terms which shrink the initial
contour (the inflation and the curvature term), and the stopping
term consisting of . Thus, the model seems a bitad hocand
the powerful energy intuition of the classical case is lacking.
From a more practical point of view, unless the stopping
term is exactly zero (which never occurs in real images), the
evolving contour will not in general completely stop at the
given edge. (There is an extensive mathematical discussion of
this in [26]; see also, the Appendix.) We would therefore like
a model with additional stopping power as well.

Therefore, we would like to find a model which combines
the advantages of both the classical energy and the geometric
curve evolution models. This is precisely the type of model
we are about to give. The idea is to find an energy functional
based onfirst principles and right down the corresponding
flow. This will lead to a new curve evolution method which
will unify these two fundamental methods.

Our approach is based on modifying the model equation
(4) using the gradient evolution ideas given in Section III. We
accomplish this, by changing the ordinary Euclidean arc-length
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function along a curve with parameter
given by

to

where is a positive differentiable function. The result-
ing metric is called aconformal metricand appears in a variety
of applications including phase transitions. (See [25] and the
references therein.)

We now modify the computation made in Section III, i.e.,
we compute the gradient flow for curve shortening relative to
the new metric . Consequently, we set

Then, taking the first variation of the modified length function
, and using integration by parts just as above, we get that

which means that the direction in which the perimeter is
shrinking as fast as possible is given by

(6)

[See the Appendix for all of the mathematical details involved
in the derivation of (6)]. This is precisely the gradient flow
corresponding to the minimization of the length functional.
The level set implementation of this flow may be computed
to be

div (7)

This evolution attracts the contour very quickly to the
feature which lies at the bottom of thepotential welldescribed
by the gradient flow (7). As in [8] and [32], we may also add
a constant inflation term, and so derive a modified model of
(4) given by

div (8)

Notice that for as in (5), will look like a “doublet”
near an edge. (An edge is defined by a step function, and
involves two derivatives of the grey-scale image function.)
One may easily check that the effect of is to attract the
evolving contour as it approaches an edge, and to push the
contour back out if it should pass the edge [25], [26]. Thus,
the model we have, combines that of [8] and [32] together with
the extra stopping power derived from the new gradient term.
We should also note that (8) was derived using first principles
from energy minimization exactly as in the standard snakes
approaches (see [7] and the references therein).

Of course, one may choose other candidates forin order
to pick out other features as we remarked above. The point
is that the metric has the property that it becomes small
where is small and vice versa. Thus, at such points lengths

decrease and so one needs less “energy” in order to move.
Consequently, it seems that such a metric is natural for
attracting the deformable contour to an edge whenhas the
form (5).

We have implemented this snake model based on the
algorithms of Osher–Sethian [37], [38], [45], [46], [47] and
Malladi et al. [32]. In Section VII, we apply (8) to a number
of medical imaging modalities.

V. MEAN CURVATURE SURFACE EVOLUTION

It is easy to extend the 2-D active contour model just
presented to the 3-D case. The key to our segmentation
approach is a modification of the ordinary area functional,
and the corresponding gradient flow. In order to motivate this,
we need to briefly summarize some of the literature on mean
curvature motion and the resulting theory of minimal surfaces.
For all the key concepts in differential geometry, we refer the
reader to [14].

Let denote a compact embedded
surface with (local) coordinates . Let denote the mean
curvature, that is, is the arithmetic mean of the principal
curvatures. (Recall that at each point, the surface has two
principal curvaturesgiven by the maximum and minimum
of plane curves which are cut out on the surface by planes
meeting it orthogonally at .) We let denote the inward
unit normal. Set

Then the infinitesimal area on is given by

It is a classical fact that the gradient flow associated to the
area functional for surfaces can be defined in terms of the
mean curvature (see [33] and the references therein). More
precisely, for a family of surfaces depending on a parameter
, consider the area functional

Taking the first variation, and using integration by parts, it is
easy to compute that

Therefore, the direction in which the area is shrinking most
rapidly (using only local information) is given by

(9)

Consequently, this flow is very closely connected to the theory
of minimal surfaces (surfaces of minimal area with given
boundary conditions).
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VI. 3-D ACTIVE CONTOUR MODELS

In this section, we will formulate our geometric 3-D contour
models based on the mean surface motion sketched in Section
V. Our method is derived by modifying the Euclidean area by
a function which depends on the salient image features which
we wish to capture.

Indeed, let be a positive differentiable
function defined on some open subset of. The function

will play the role of a “stopping” function. Thus,
the function will depend on the given grey-level
image. Explicitly, the term may chosen to be small
near a 3-D edge, and so acts to stop the evolution when the 3-
D contour reaches the edge. For example, as in the 2-D case,
we can choose

(10)

where is the (grey-scale) volumetric image and
is a Gaussian (smoothing) filter.

What we propose to do is to replace the Euclidean area
given above by a modified (conformal) area depending on,
namely

Indeed, for a family of surfaces (with parameter), consider
the -area functional

Then, exactly as above, taking the first variation and using a
simple integration by parts argument, we get that

(See, the Appendix). The corresponding gradient flow is then

(11)

Notice that Euclidean conformal area is small near an
edge. Thus, we would expect and initial 3-D contour to flow
to the potential well indicated by the evolution (11).

The level set version of (11) [37], [38], and [47] is given in
terms of the evolving level set function by

div (12)

As before, a constant inflation termmay be added to give
the model

div (13)

(Once again, this inflationary constant may be taken to be
either positive (inward evolution) or negative in which case
it would have an outward or expanding effect. As in the 2-D
case, we take to be negative in the interior and positive in
the exterior of the zero level set.)

It is important to note that there is a mathematically a major
difference between the 2-D and 3-D models discussed here.

Indeed, the geometric heat equation will shrink a simple closed
curve to a round point without developing singularities, even if
the initial curve isnonconvex. The geometric model equation
(4) is based on this flow. For surfaces, it is well known
that singularities may develop in the mean curvature flow
(9) nonconvex smooth surfaces. (The classical example is the
dumbbell.) We should note however that the mean curvature
flow does indeed shrink smooth compact convex surfaces to
round “spherical” points; see [22]. Because of these problems,
several researchers have proposed replacing mean curvature
flow by flows which depend on the Gaussian curvature.
Indeed, define Then Caselles and Sbert
[10] have shown that theaffine invariant flow

sign( ) (14)

will (smoothly) shrink rotationally symmetric compact sur-
faces to ellipsoidal shaped points. Thus, one could replace
the mean curvature part by in (13). Another

possibility would be to use as has been proposed in [35].
See also, [53]. (Note that Chow [11] has shown that convex
surfaces flowing under shrink to spherical points.) These
possible evolutions for 3-D segmentation have been discussed
in our recent paper [59].

VII. A PPLICATIONS TO MEDICAL IMAGERY

We will now apply the active contour model derived above
to some medical imagery. The numerical methods we have
used come from the level set evolution techniques developed
by Osher–Sethian [37], [38], [45], [46], [47], and Malladiet
al. [32]. To speed up the evolutions, we have used the local
versions of these algorithms precisely as described in [1]. The
equations described in this paper have been coded for the
case of active contours on 2-D images. In Section A of the
Appendix, we make some remarks about this method.

For 2-D active contours, the evolution equation as derived
above is [(8)]

div

where is a constant inflation force and div is
the curvature of the level sets of . This equation
describes a propagating front, and we are interested in its
propagation in the plane of an image. It is known that
a propagating front may not remain smooth at all times
(for example, it may cross itself). For evolution beyond
the discontinuities the solutions are required to satisfy an
entropy condition to ensure that the front remains physically
meaningful at all times. The discrete approximations to the
spatial derivatives are thus, derived from the entropy condition.
Osher and Sethian [38] have given such entropy satisfying
schemes and these have been used successfully in shape
modeling [32]. We can regard a decomposition of our speed
function as

div (15)
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Fig. 1. Contour extraction from MRI heart image via bubble.

Fig. 2. Contour extraction from MRI heart image via different bubble
placement.

where is regarded as the constant passive advection term
and the curvature is the diffusive term of the speed func-
tion. The inflation part in (8), i.e., is approximated
using upwind schemes. The diffusive part, i.e., is
approximated using usual central differences [32].

There are several stability considerations for the choice
of the step sizes. In [32], it is noted that for the evolution
equation used in that work the requirement is .

Fig. 3. Contour extraction from MRI heart image via snake.

Therefore, if small spatial step sizes are used, it forces a
small time step and the resulting evolution can be very slow.
One possibility for speeding up the evolution is to use a
larger inflationary force and move the front faster (recall
the advection term causes a constant contraction/expansion
of the front). However, in our experience with using the
approach in [32] this results in large motion of the front
causing “overshooting” of the edge of the feature of interest
in the image, because might not be rigorously zero on the
desired contour. This problem is resolved by the evolution in
(8) in which has a behavior similar to a doublet near
an edge. Thus, it exerts a “stronger” stopping effect and
arrests the evolution of the contour close to an edge. In our
simulations, we have observed that this arresting behavior of
the term allows use of large inflationary forces,
resulting in features being extracted in relatively fewer time
steps.

A. Contour Extraction Results

We now describe a number of 2-D images from which
we extracted the contours using the snake/bubble technique
which we have previously described. We have chosen images
from three of the key modalities, MR, ultrasound, and CT to
demonstrate our techniques. All of the simulations were done
on a Sparc10 workstation. The differences in unit iteration
times among the various images are functions of the initial
contours as well as the type of image. For example, the number
of iterations depends on how close the initial contour is placed
to the region of interest (ROI). This is explicitly illustrated
in Figs. 1 and 2. On the other hand, for numerous initial
placements we were always successful in finding the relevant
edges.
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Fig. 4. Myocardial contour extraction via merging bubbles.

Fig. 5. Contour extraction of cyst from ultrasound breast image via merging bubbles.

The value we took for the inflation parameterin all of the
extractions below was one.

1) In Fig. 1, using an initial bubble, we find the boundary
of the left ventricle in an MRI heart image. The contour
was found in 45 iterations which took about 3 s.

2) In Fig. 2, we demonstrate the insensitivity of our meth-
ods to bubble placement. Therefore, using a very dif-
ferent placement of the bubble, we find once again the
boundary of the left ventricle. The contour was found
in about 60 iterations which ran for about 4 s.

3) In Fig. 3, the snake (inward) evolution is utilized for
the same purpose in another MRI heart image. The

contour was found in 30 iterations which also ran for
about 2.5 s.

4) In Fig. 4, we place two bubbles to find the myocardium
surrounding the left ventricle. Notice how the expand-
ing bubbles automatically merge. The evolution took
about 80 steps which ran for about 8.5 s.

5) Fig. 5, illustrates bubbles capturing the edge of a cyst
in a breast ultrasound image. We start with three
bubbles in order to demonstrate once again the ability of
the algorithm to automatically handle merging. Notice
that we successfully find the contour in a very noisy
environment. Because of the noise, we presmoothed the
image using ten iterations of the affine curve shortening
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Fig. 6. Contour extraction from CT bone image via snake.

nonlinear filter [2], [3], [43], [44]. The cyst boundary
was found in 75 steps which took about 5 s.

6) In Fig. 6, we indicate the detection of a multiply
connected contour in a CT bone image using inward
evolving snakes. Notice how we get automatic splitting
of the contour to catch the two bone regions. In this
case, the evolution took about 67 steps which ran
for 8 s.

It is very interesting to compare the contour extraction
results in Figs. 1–4 with similar MR cardiac images using
standard snakes, e.g., in [20]. Using the traditional method-
ology one must start quite close to the contour of interest in
order to be able to capture in. In Figs. 1–4 this is certainly not
the case. Moreover, Figs. 1 and 2, illustrate the fact that initial
bubbles placed quite far from one another still can extract the
relevant contour.

The results from Figs. 4–6 demonstrate the speed and utility
of our methods for treating topological changes, multiple
contours, and finding boundaries for segmentation even in
noisy environments. Because of the ease of simplicity of use
and speed of the algorithm, it seems ideal for use on a wide
variety of medical imagery as indicated above. For bubbles,
just place the bubble in the ROI, and let it grow to capture
the desired boundary. (For this technique to work in general,
the initial bubble must be placed completely inside the given
feature of interest.)

VIII. C ONCLUSION

In this paper, we have applied the novel active contour
model formulated in [25] and [26] to a number of medical
images coming from a variety of common modalities. The

power of this technique in extracting features from even rather
noisy medical images has been demonstrated. Our approach
is geometric, based on image-dependent Riemannian metrics
and the associated gradient flows for active contour models.
Fast, reliable implementations of the 3-D mean curvature
equations for the volumetric segmentation of medical images
are reported in [59].

APPENDIX

MATHEMATICAL JUSTIFICATION OF THE MODELS

In this Appendix, we will provide some mathematical details
of the equations we study here. This section is optional and has
been included in order to make this paper as self-contained as
possible. Obviously, we can only sketch some of the relevant
background here, and so we refer the interested reader to the
papers referenced in our discussion below.

A. Derivation of Active Contour Model

First we will derive the model equation (6). We use the
same notation as in Section IV. Accordingly, let
be a smooth family of closed curves whereparametrizes the
family and the given curve, say . Taking the first
variation of the length functional

we get that
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Set

and

(integration by parts)

Using the fact [33] that

we see

Therefore

from which we derive, the required equation

The derivation of the mean curvature flow (11) in Section VI
is very similar; see, [25] and [26].

B. Level Set Representations

We now go over the level set representation for curves
flowing according to functions of the curvature. This is the
basis of the numerical algorithm chosen for the active contour
model given in Section VII. The level set approach for such
evolutions is due to Osher and Sethian [38], [46], [47], [48].
Let be a family of curves satisfying
the following evolution equation:

(16)

There are a number of problems which must be solved
when implementing curve evolution equations such as (16) on
computer. For example, singularities may develop. A typical
instance of this phenomenon is when in (16); here, even
a smooth initial curve can develop singularities. The question
is how to continue the evolution after the singularities appear.
A natural way is to choose the solution which agrees with the
Huygens principle [45], [46], or as Sethian observed, if the
front is viewed as a burning flame, this solution is based on the
principle thatonce a particle is burnt, it stays burnt[45], [46].
One can show that, from all theweaksolutions corresponding
to (16), the one derived from the Huygens principle isunique,
and can be obtained via the entropy condition constraint.

In any numerical algorithm, we have the key requirements of
accuracy and stability. The numerical algorithm must approxi-
mate the evolution equation, and it must be robust. Sethian [47]
showed that a simple, Lagrangian, difference approximation,
requires an impractically small time step in order to achieve
stability. The basic problem with Lagrangian formulations is
that the marker particles on the evolving curve come very
close during the evolution.

The algorithm proposed by Osher and Sethian [38], [46],
[47], [48] provides a reliable numerical solution for curve (and
hypersurface) evolution. It is based on the Hamilton–Jacobi
and viscosity theory. Indeed, first the curve is embedded in a
2-D surface, and then the equations of motion are solved using
a combination of straightforward discretization, and numerical
techniques derived from hyperbolic conservation laws.

The embedding step is done in the following manner: The
curve is represented by the zero level set of a smooth
and Lipschitz continuous function .
Assume that is negative in the interior and positive in the
exterior of the zero level set. We consider the zero level set,
defined by

(17)

We have to find an evolution equation of, such that the
evolving curve is given by the evolving zero level ,
i.e.,

(18)

By differentiating (17) with respect to we obtain

(19)

Note that for the zero level, the following relation holds:

(20)

In this equation, the left side uses terms of the surface,
while the right side is related to the curve. The combination
of (16) to (20) gives

(21)

and the curve , evolving according to (16), is obtained by the
zero level set of the function , which evolves according to
(21). Sethian [47] called this scheme anEulerian formulation
for front propagation, because it is written in terms of a fixed
coordinate system. Finally, one can compute that

div

(This is the curvature of an implicitly defined curve; see [33].)
Therefore, we derive the level set representation of Euclidean
curve shortening (3) as a special case of (21).
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C. Viscosity Theory

Next, we make some remarks about the existence and
uniqueness of the models we consider in this paper. (Again full
mathematical details may be found in [26].) The equations we
study here are special cases of a nonlinear diffusion equation
of the form

(22)

Because of the form of the in the equations we con-
sider, and the fact that may vanish, studying (22) requires
some care; in particular, the solutions are not expected to be
sufficiently regular for the equation to make sense, and we
need to use a type of generalized solutions known asviscosity
solutions. Defining these is beyond the scope of this paper,
and so we refer the interested reader to [23] for a general
discussion of the theory and [26] for their application to the
equations studied here. We will just summarize some of the
relevant conclusions of [26] now.

The key point is thatthere exists a unique solution for (22)
in a suitable viscosity sense. (See [26, Th. 1]). Moreover,
slight differences between images will not become artificially
enhanced by our active contour methods. We have also shown
that the level curves of the function do approach the desired
contour . These results show that the model of
the present paper is justified from a theoretical standpoint.

We should also note that if is not rigorously zero on the
desired contour, the evolution has no reason to stop. In fact,
one would rather expect it to shrink the snake to a point. This
explains why in dealing with poor images, one may see the
snake passing through the features of interest. This is a further
advantage of the additional doublet stopping term. Some
care must therefore be given to the choice of, so that the
evolution slows down significantly near the desired contour.

Moreover, the appropriate amount of inflation of (8) can
be estimated (from above). Without the gradient term, it is
safe to take an inflation term of the order of the curvature of
the desired contour. Finally, we can give precise estimates on
sensitivity of the final contour as a function of initial contour
placement (see [26, Theorem 2]).
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